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Parametrized models that predict the gravitational-wave (GW) signal from merging black holes are used
to extract source properties from GW observations. The majority of research in this area has focused on
developing methods capable of producing highly accurate, point estimate, predictions for the GW signal.
A key element missing from every model used in the analysis of GW data is an estimate for how confident
the model is in its prediction. This omission increases the risk of biased parameter estimation of source
properties. Current strategies include running analyses with multiple models to measure systematic bias
however, this fails to accurately reflect the true uncertainty in the models. In this work we develop a
probabilistic extension to the phenomenological modeling workflow for nonspinning black holes and
demonstrate that the model not only produces accurate point estimates for the GW signal but can be used to
provide well-calibrated local estimates for its uncertainty. Our analysis highlights that there is a lack of
numerical relativity (NR) simulations available at multiple resolutions which can be used to estimate their
numerical error and implore the NR community to continue to improve their estimates for the error in NR
solutions published. Waveform models that are not only accurate in their point-estimate predictions but also
in their error estimates are a potential way to mitigate bias in GW parameter estimation of compact binaries
due to unconfident waveform model extrapolations.
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I. INTRODUCTION

The strongest gravitational-wave (GW) signals contain
the most information about the source that produced them.
In order to maximize the amount of science we can extract
from GW signals we must build detailed physical models
that describe how compact binaries merge. Waveform
models are the culmination of the efforts of the community
who research new modeling techniques [1–14] to accu-
rately and efficiently include all the relevant physical
effects that are predicted to be important for the current
generation of ground based GW detectors.
However, whilst the loudest events have the most

scientific potential they are also the most susceptible to
systematic and statistical errors in waveform models that
can bias information extraction or masquerade as devia-
tions of general relativity [15]. As detectors continue to
be improved, reaching higher levels of sensitivity, studies
have shown that current numerical relativity codes and
waveform models are not yet accurate enough [16–20]
to minimize the impact of systematic errors. Indeed,

waveform systematics have already begun to impact current
analyses [21–23].
Estimating and modeling waveform error is a growing

area of research with several methods proposed that can
reduce the impact of waveform model systematic error
on GW parameter estimation. Methods such as [24–27]
perform parameter estimation with multiple models either
simultaneously or separately and combine their posterior
samples according to their Bayesian evidence. These types
of methods currently only account for the relative error
between models and do not consider the accuracy of each
model. The following methods take a waveform modelling
approach and require access to numerical relativity (NR)
data in the region of parameter space of interest. The first
method assumes the existence of a baseline model. First the
residual between the baseline model and NR is constructed
which is subsequently modelled using Gaussian process
regression (GPR). This canbe utilized inBayesian parameter
estimation by a modified likelihood function that margin-
alizes over the uncertainty of the residual model [28–30].
Another similar method [31] proposes to build a GPRmodel
by directly interpolating NR data. Recently, it has been
suggested to introducewaveform systematic uncertainty into
waveform models as frequency-dependent amplitude and
phase corrections in a similar procedure to how detector
calibration uncertainty is included and subsequently mar-
ginalize over these corrections in parameter estimation [32].
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We approach this problem from a waveform modeling
perspective and explicitly build a parametric phenomeno-
logical fit calibrated to NR solutions. By using multiple NR
waveforms of different numerical resolutions and from
different numerical codes we estimate the NR uncertainty
which feeds directly into our model. Our fit to discrete
individual NR waveforms is then extended into a continu-
ous model using nonparametric GPR that endows the
model with a number of desirable properties. The first is
that it naturally provides a measure of uncertainty. Second,
with an appropriate choice of kernel, the uncertainty grows
as a function of distance away from training points, this
gives the model a sense for when its being evaluated in
regions where it has not been constrained. Our model is a
semiparametric probabilistic model for the GW signal from
merging black holes that not only provides a best-fit point
estimate but can explicitly produce waveform samples.
Similarly to [33] we propose to use the difference between
the best-fit waveform and a number of randomly drawn
waveform samples produced from our model to estimate
the true error between the best-fit and the NR solution.
Our method extends existing phenomenological

approaches which have already been developed to accu-
rately model a wide range of compact binary coalescences
(binary black hole (BBH) [4,22,34–41], binary neutron

star [42,43], neutron star–black hole [18]) andwill empower
these models with the ability to quantify their confidence in
their predictions. Probabilistic waveform models that are
not only accurate but have accurate error estimation is
crucial for Bayesian parameter estimation methods that
marginalize over waveform uncertainty and will safeguard
GW astronomy against overly confident extrapolations.
InFig. 1we showan example of howour newprobabilistic

phenomenological model (PPM) can generate waveform
samples as well as the mean waveform.We compare against
three NR simulations of a mass ratio 8∶1 BBH system. The
match between the PPMmean andNR ranges from0.9994 to
0.99994 depending on which simulation we compare with.
In the top row we show the hþ polarization optimized over a
relative time and phase shift. In the lower panel we plot the
phase difference. The black lines are the phase difference
between the NR waveforms. The orange dashed line is the
phase difference between the reference NR simulation and
the PPM mean prediction. The orange shaded regions show
the 50th, 90th and 99th percentile width of the phase error
distribution from 100 PPM samples. For this case the only
visible variance in the PPM model can be seen during the
ringdown in the top right panel.
In the remainder of this paper we describe our method-

ology and demonstrate the model’s accuracy.

FIG. 1. GW signal from a mass ratio 8∶1 BBH system compared with predictions from the PPM model. This NR simulation was not
used to train the model. Top row: hþ from the highest resolution NR simulation (black), the mean PPM model prediction (dashed
orange) and the 90th percentile width from 100 PPM samples (orange shaded region). Top left panel: shows the inspiral up to t ¼ 0M.
The level of accuracy and uncertainty are such that deviations between the NR and the model are barely visible on this scale. The top
right panel shows the ringdown where uncertainty in the model is more noticeable. Bottom row: the phase error. The black lines are the
two lower resolution NR simulations compared with the reference NR simulation. The orange dashed line is the PPM mean and the
orange shaded regions show the 50th, 90th and 99th percentile width of the phase error distribution from 100 PPM samples. The match
between the highest and lowest NR simulation is 0.9996. The match between highest resolution NR simulation and the PPM mean is
0.999840.999930.99936. Where the upper and lower bounds are the 5th and 95th percentile of the match between 100 PPM samples and the NR
simulation.
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II. PRELIMINARIES

We consider a BBH system with masses m1 and m2.
Their mass ratio is defined as q ¼ m1=m2 ⩾ 1 and
the symmetric mass ratio is η ¼ m1m2=M2 where M ¼
m1 þm2 is the total mass. The complex GW strain is
defined as

hðt; q; θ;ϕÞ ¼ hþ − ih× ¼
X
l;m

hlmðt; qÞ−2Ylmðθ;ϕÞ: ð1Þ

The angular dependency is factored out using spin-
weight −2 spherical harmonics reducing the waveform to a
one-dimensional time series which is a function of the
physical parameters, only mass ratio in this case.
By restricting the type of BBH system we are modeling to

nonspinning black holes with negligible orbital eccentricity
we can approximate the full GW complex strain with just the
ðl; mÞ ¼ ð2;�2Þ. Furthermore, due to the fixed orbital plane
the positive m and negative m multipoles are related to each
other via a complex conjugate. Here we choose to model the
h22 multipole. This approximation deteriorates as the mass
ratio increases because the relative amplitude of ðl; mÞ ≠
ð2;�2Þ also typically increases.
We can decompose the complex multipole into an

amplitude and a phase which is a successful method to
describe and model binary merger evolution with analytical
models, this decomposition is defined as

h22ðtÞ ¼ A22ðtÞe−iϕ22ðtÞ: ð2Þ

We choose to directly model the angular GW frequency
ω22ðtÞ ≔ dϕ22ðtÞ=dt and then integrate this to obtain the
GW phase.
The ringdown of the remnant black hole is described

analytically as a superposition of quasinormal modes. The
ringdown angular frequency is ωRD ¼ 2πfRD and the
angular damping time is τdamp ¼ 2πtdamp. fRD and tdamp

are expressed as functions of the mass ratio of the binary
and we use model developed in [34] here. The amplitude of
the ringdown is not analytically known and is a quantity
that we explicitly model. Here we have omitted indices l,
m and n which indicate which multipole and overtone
ringdown mode is being considered; however, we only
model the ðl; m; nÞ ¼ ð2; 2; 0Þ multipole.

III. DATA

In this section we describe the numerical relativity
dataset we have aggregated across several code bases.
We use NR solutions from four different NR groups namely
the following: SXS catalog [44], GTech/UTexas catalog
[45], RIT catalog [46] and BAM. The BAM simulations
used here are not publicly available currently however,
there is a public catalogue of precessing simulations [47].

To convert the BAM ψ4 data to strain we used the software
package POWER [48].
Our dataset consists of 25 unique mass ratios ranging

from q ¼ 1 up to q ¼ 32. Ten of the simulations have more
than one NR simulation either performed by different codes
or the same code but at a different numerical resolution. In
Table I we list the NR simulations we use. Assessing the
accuracy of an NR simulation can be challenging. Typically
at least three NR simulations at varying levels of numerical
resolution are needed in order to perform a convergence
test. Even then the results of a convergence test can be
difficult to interpret due to the sophisticated and complex
numerical methods used. See [47] for a recent NR catalog
analysis.
Comparisons within the same code base can test the

accuracy of the code; however, there could exist systematic
code errors [49] that are easier to detect by comparing with
an independent NR code. The difficulty with cross-code
comparisons is that it is not necessarily possible to prefer
one solution over another (without the results of a con-
vergence test). This is the case for the majority of NR
solutions available. Additionally, some NR simulations
have been superseded by more accurate ones and therefore
these simulations are not necessarily representative of the
accuracy of current NR codes. In this study we have
intentionally used NR solutions from not only different
code bases but also using multiple simulations performed at
different numerical resolutions in order to test our method
to build a model that can estimate the NR error. Throughout
we will assume all the NR simulations are equally accurate
which is a potential cause of bias in our results.
The length of each NR simulation is highly varied. The

majority of NR simulations are between ∼900M and
∼2000M long. These simulations are not long enough
on their own to build and test an inspiral model however,
they are long enough to develop the modelling workflow.
Typically, short NR simulations are hybridized with post-
Newtonian (PN) inspiral waveforms to achieve the desired
length. In order to include as many NR simulations as
possible we truncate all NR simulations to a length of
800M, which takes into account removing of an initial
140M of junk radiation and keeping∼90M of the ringdown
signal.
As we will describe in the next section, we use a

collocation fitting algorithm where the coefficients of the
model are values of the data at various points in time. We
first align our data such that the peak of the amplitude is at
t ¼ 0M. To facilitate comparison between NR simulations
with the same parameters we apply an additional time and
phase shift that minimizes the phase error between NR
simulations over the first 800M.

IV. METHOD

The modelling process is split into two main steps: (i) a
parametric part and (ii) a nonparametric part. Schematically,
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the parametric Ansatz is a function of time t and is para-
metrized with parameters θ, i.e., fðt; θÞ with θ being
determined by fitting the Ansatz to the data. The θ coef-
ficients are then expressed as a function of the mass ratio q,
which we construct using a nonparametric function gðqÞ. We
write our semiparametricmodel as an approximation of some
target function y as

yðt; qÞ ≈ fðt; gðqÞÞ: ð3Þ

Here our target functions are the amplitude and angular
frequency of the ðl; mÞ ¼ ð2; 2Þ multipole. Some of the
functional forms we use for our parametric model are
inspired by the work of Estellés et al. [39,40].
One of the motivating factors to pursuing this approach

was to build an interpretable model. The more interpretable
a model is the easier it is for a practitioner to understand
how the model produced the output it did. A high degree of
interpretability is easiest to obtain for linear models. As
such we have attempted to build a model based purely on
linear Ansätze. With a linear model we also have the ability
to use the collocation fitting algorithm in which the
coefficients of the model are values of the data at specific
points in time (the collocation points). The coefficients θ of
the Ansatz are obtained by solving a linear system of
equations at the time of inference. By modeling directly the
value of the waveform we typically find smoother samples
to interpolate (when fitting the nonparametric part of the
model) and we also gain interpretability because now the
error in the coefficients corresponds to the error in either
the amplitude or the frequency at the specific points in time.
If we assume the model coefficients are independent, then
the uncertainty in model coefficients can be directly read

off of the data as opposed to estimating the covariance
matrix. This method can work for nonlinear functions by
first finding optimal values for the nonlinear coefficients,
essentially treating them as hyperparameters. After the
optimal values have been found they can be fixed which
transforms the nonlinear Ansatz into a linear Ansatz. For
some Ansätze the model coefficients could have significant
correlations between them, in this case it might be
necessary to map out the posterior distribution using
Markov chain Monte Carlo sampling techniques. In these
cases, it will be more complicated to construct accurate
waveform samples as it will require a model for the joint
distribution.
Once the collocation values have been extracted from the

discrete dataset we build a continuous model for them as a
function of the physical parameters, just themass ratio in this
case. There are many methods to do this for example using
polynomials or artificial neural networks [50]. Here we use
GPR which has been used in models for aligned-spin BBH
surrogates [33,51], to model the BH remnant properties [52]
and even a prototype 7D precessing model [31]. Gaussian
processes (GPs) have recently been used to model transient
noise events (also called glitches) in GW detector data [53]
as well as for density estimation [54].
We have explored a blend of parametric and nonpara-

metric methods to build a semiparametric model that
combines desirable qualities from both methods. We use
a parametric model to describe waveform phenomenology.
This gives the model a strong underlying physical structure
for example, the frequency of nonspinning BBHs is mon-
otonic. A physical constraint such as this is not necessarily
imposed in a nonparametricmodel (however, it is possible to
impose such constraints). In fact due to the specifics of our

TABLE I. Numerical relativity simulations used. We used q∈ f1; 2; 5; 6; 10; 18g for training and the rest for testing.

# q Name Code # q Name Code # q Name Code

1 1.00 RIT-eBBH-1090-n100 LazEv 20 2.25 GT0757 Maya 39 7.0 RIT-BBH-0416-n140 LazEv
2 1.00 RIT-BBH-0112-n100 LazEv 21 2.35 GT0380 Maya 40 8.0 q8a0a0_T_96_504n512 BAM
3 1.00 SXS_BBH_0180_Res4 SpEC 22 2.41 RIT-BBH-0139-n140 LazEv 41 8.0 q8a0a0c05_T_80_420 BAM
4 1.00 SXS_BBH_0180_Res2 SpEC 23 2.50 GT0565 Maya 42 8.0 q8a0a0_T_112_588n768 BAM
5 1.00 SXS_BBH_0180_Res3 SpEC 24 3.00 GT0453 Maya 43 10.0 SXS_BBH_0303_Res4 SpEC
6 1.18 RIT-BBH-0084-n100 LazEv 25 4.00 GT0454 Maya 44 10.0 RIT-BBH-0978-n144 LazEv
7 1.20 GT0898 Maya 26 4.00 SXS_BBH_0167_Res5 SpEC 45 10.0 SXS_BBH_0303_Res5 SpEC
8 1.25 GT0738 Maya 27 4.00 q4a0_T_80_320 BAM 46 10.0 SXS_BBH_0303_Res3 SpEC
9 1.33 RIT-eBBH-1241-n100 LazEv 28 4.00 RIT-eBBH-1133-n100 LazEv 47 10.0 q10c25e_T_112_448 BAM
10 1.50 GT0477 Maya 29 4.00 SXS_BBH_0167_Res3 SpEC 48 15.0 RIT-BBH-0957-n084 LazEv
11 1.75 GT0727 Maya 30 4.00 q4a0_T_96_384 BAM 49 15.0 RIT-BBH-0373-n140 LazEv
12 1.82 RIT-BBH-1020-n144 LazEv 31 4.00 q4a0_T_112_448 BAM 50 15.0 RIT-BBH-0942-n120 LazEv
13 2.00 SXS_BBH_0169_Res3 SpEC 32 5.00 SXS_BBH_0107_Res3 SpEC 51 18.0 q18a0a0c025_96_fine BAM
14 2.00 SXS_BBH_0169_Res4 SpEC 33 5.00 RIT-BBH-0152-n120 LazEv 52 18.0 q18a0a0c025_120 BAM
15 2.00 SXS_BBH_0169_Res5 SpEC 34 5.00 GT0577 Maya 53 18.0 q18a0a0c025_144 BAM
16 2.00 RIT-eBBH-1200-n100 LazEv 35 5.00 SXS_BBH_0107_Res4 SpEC 54 32.0 RIT-BBH-1025-n100 LazEv
17 2.00 GT0446 Maya 36 5.00 SXS_BBH_0107_Res5 SpEC 55 32.0 RIT-BBH-0792-n120 LazEv
18 2.05 GT0378 Maya 37 6.00 GT0604 Maya
19 2.20 GT0379 Maya 38 6.00 RIT-BBH-0090-n100 LazEv
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model, if the errors in the coefficients are large then this
monotonicity can be broken; however, this should be in
regions where the model uncertainty is also large. We then
switch to using a nonparametric model to fit the coefficients
of the parametric models as a function of the physical
parameters. A nonparametric approach is optimal here
because we have less physical intuition about the phenom-
enology of how these coefficients should behave and we can
leverage the power of a method like GPR which is a flexible
model (i.e., can typically fit the data well) and naturally
provides a local measure of uncertainty.

V. PARAMETRIC MODEL

A. Collocation method

For our parametric model we use the collocation method
to solve our linear regression problem. In standard least-
squares regression the practitioner proposes an Ansatz with
N coefficients (θ) which are determined by minimizing the
least-squares error between the model and data. In the
collocation method we solve the same problem of fitting an
Ansatz to the data; however, we have more control over
properties of the solution, for example, we can additionally
constrain the value of the derivative of the Ansatz at
particular times. For an Ansatz with N coefficients we
first specify a set of N collocation points, fPg. Second, we
evaluate the data and/or the nth derivative of the data at the
collocation points which we call the set of collocation
values fVg. The coefficients of the Ansatz are computed by
solving the following linear system of equations

Iθ ¼ V; ð4Þ

where we define I as the information matrix. Its elements
are the values of the variables (also called indeterminates)
of the Ansatz evaluated at each of the collocation points. We
implemented our collocation method using the SymPy

PYTHON library [55] to perform symbolic differentiation.
We illustrate this method with a simple 1D regression

example. Suppose our discrete data are fXi; Yig and we
have approximated this data with an interpolating function
yðxÞ. For our Ansatz we use a quartic polynomial.

fðx; θÞ ¼
Xi≤4
i¼0

θixi: ð5Þ

We select as our collocation points p ¼ f0; 0.5; 1g, p0 ¼
f0; 1g and define P ¼ p ∪ p0, we use a prime on the
variable to represent the derivative order at which the
collocation points should be evaluated at. These collocation
points represent constraining the value of the Ansatz and its
first derivative at the boundaries and then constraining the
Ansatz at the midpoint. The collocation values are therefore
v ¼ fyð0Þ; yð0.5Þ; yð1Þg and v0 ¼ fdydx ð0Þ; dydx ð1Þg. From
this we collect together the collocation values into a vector

V ¼ v ∪ v0. If we explicitly write out the matrix equation
for [Eq. (4)] for this system, then we get

2
6666664

1 0 0 0 0

1 1=2 1=4 1=8 1=16

1 1 1 1 1

0 1 0 0 0

0 1 2 3 4

3
7777775

2
6666664

θ0

θ1

θ2

θ3

θ4

3
7777775¼

2
6666664

V0

V1

V2

V3

V4

3
7777775: ð6Þ

We solve this system of equations for θ at the time of
inference. In Fig. 2 we compare the least squares approach
with the collocation method for a simple toy function
yðxÞ ¼ x2 sinð4xÞ. Note that we show x ∉ ½0; 1� to illus-
trate how this particular model extrapolates outside the
training set. Over the training set the least squares fit has the
smallest error; however, it does not necessarily match
the boundary well which is most easily seen at x ¼ 0.
On the other hand, the collocation method, with zeroth and
first derivative constraints at the boundaries is guaranteed to
fit the data within the numerical accuracy used. We also
show how we can easily perturb the V vector around their
true value in an interpretable way to produce samples.
Specifically, to each element of V we add a random sample
from a N ðμ ¼ 0; σ ¼ 0.1Þ distribution to simulate uncer-
tainty in our fit of the V vector. The equivalent method for
least squares is to add perturbations according to the
covariance matrix for fit.

B. Frequency model

In what follows we use a caret (b·) to indicate a fitted
quantity. We split the frequency into three regions which we
call the inspiral ωIðtÞ∈ ½−700;−100�M, merger ωMðtÞ∈
½−100; 0�M, ringdown ωRðtÞ∈ ½0; 87�M. The times define
the regions used for fitting and testing the model.
The inspiral model is written as a correction to the

TaylorT3 approximant. We generate the ðl;mÞ¼ð2;2ÞGW
angular frequency, denoted as ω22ðtÞ, using a 3.5 PN order
accurate expression for nonspinning binaries [56,57]
written as

ω22ðtÞ ¼ ωNðtÞ
X7
k¼0

ωkΘk; ð7Þ

ωorbðtÞ ¼ ω22ðtÞ=2: ð8Þ

Where ΘðtÞ ¼ ð η
5M ðtc − tÞÞ−1=8, ωk are expansion coef-

ficients [57] and the leading order Newtonian term is given
ωNðtÞ ¼ Θ3ðtÞ=8. tc is the time which the TaylorT3
expansion formally diverges in what follows we set this
value to tc ¼ 0. Additionally, ωorbðtÞ is the orbital angular
frequency which is an input for the inspiral amplitude
model.
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We model the residual between the PN and NR GW
angular frequency, factoring out ωN

ωresðtÞ ¼
ωNRðtÞ − ω22ðtÞ

ωNðtÞ
: ð9Þ

The residual ωresðtÞ is evaluated at the following collo-
cation points TI

ω ¼ f−700;−300;−100gM. Our Ansatz to
fit this model is given by the next three terms in the PN
series and therefore extending the PN model to pseudo-5
PN order given by

ω̂resðtÞ ¼
Xi⩽2
i¼0

θωres
i Θ8þi: ð10Þ

The model prediction for the inspiral is therefore

ω̂IðtÞ ¼ ω22ðtÞ þ ωNðtÞω̂resðtÞ: ð11Þ

We call the region between the end of the inspiral and the
beginning of the ringdown the merger. We found the Ansatz
proposed in [39] to be accurate and adopt it here, as well as
for the amplitude model in the next section. The collocation
points for this region are TM

ω ¼ f−100;−12; 0gM. The
merger Ansatz is a power series in arcsinh with a fixed
width of 1=τ (where τ is the damping time of the remnant
black hole) given by

ω̂MðtÞ ¼
Xi⩽2
i¼0

θωM
i arcsinhiðt=τÞ: ð12Þ

To model the ringdown portion of the waveform we
found that a power series in tanh with a fixed width of 1=τ

works well. The tanh function has a logistic shape which
matches the phenomenology of the ringdown frequency
well. An improvement would be to explicitly include
the ringdown frequency prediction from perturbation
theory in a similar way to how the damping time τ is
included. We use the following collocation points TRD

ω ¼
f−10; 0; 10; 40gM and the Ansatz is given by

ω̂RDðtÞ ¼
Xi⩽3

i¼0

θωRD
i tanhiðt=τÞ: ð13Þ

In summary, the following set of frequency coefficients
need to be fit as a function of mass ratio θω ¼ fθωres ∪
θωM ∪ θωRDg where there is some redundancy because the
same collocation point is at the boundary between regions.
The final inspiral-merger-ringdown angular frequency
function is defined piecewise as

ω̂IMRðtÞ ¼

8>><
>>:

ω̂IðtÞ −700M ⩽ t < −100M
ω̂MðtÞ −100M ⩽ t < 0M

ω̂RDðtÞ 0M ⩽ t

: ð14Þ

C. Amplitude model

We split the amplitude into four regions which we
call the inspiral AIðtÞ∈ ½−700;−300�M, merger AMðtÞ∈
½−300; 0�M, early ringdown (ERD) AERDðtÞ∈ ½0; 30�M and
late ringdown (LRD) ALRDðtÞ∈ ½30; 87�M. For the merger
and early ringdown regions we scale the amplitude by 1=η
which approximately removes the variability in the peak
amplitude. We decided to split the ringdown into an early
and a late region to allow us to use linear models and will be
discussed below.

FIG. 2. Toy example to illustrate collocation method. We compare the least-squares approach (blue) and the collocation point
approach (black/gray) when applied to the task of modeling the data (red). For the collocation point method with specify the value and
the first derivative at x ¼ 0 and x ¼ 1 as well as a collocation point at x ¼ 0.5. To generate samples from the collocation point method
we perturb the fitted collocation point values with a N ð0; 0.1Þ distribution.

SEBASTIAN KHAN PHYS. REV. D 109, 104045 (2024)

104045-6



The inspiral model is written as a correction to the
TaylorT3 approximant. The amplitude of the ðl; mÞ ¼
ð2; 2Þ mode is expressed as a function of the PN parameter
x, which is related to the orbital angular frequency by the
following relationship

xðtÞ ¼ ω2=3
orb ðtÞ: ð15Þ

It is important to use the inspiral frequency model
described in the previous section to estimate ωorb because
the PN approximation can become negative at late times
causing x to become complex. x is therefore given by
xðtÞ ¼ ðω̂IðtÞ=2Þ2=3. The TaylorT3 PN inspiral amplitude
is given by

APNðtÞ ¼ ANðtÞĤ22ðtÞ; ð16Þ

ANðtÞ ¼ 2η

ffiffiffiffiffiffiffiffi
16π

5

r
xðtÞ: ð17Þ

Where Ĥ22ðtÞ is an expansion up to 3.5PN [58,59] and
where we have defined an analogous Newtonian amplitude
prefactor ANðtÞ which we will use to scale inspiral
amplitude residuals by. We first generate the TaylorT3
amplitude and construct the residual between that and the
NR data, scaled by AN

AresðtÞ ¼
ANRðtÞ − APNðtÞ

ANðtÞ
: ð18Þ

Similarly to the inspiral frequency model we define our
amplitude inspiral Ansatz as an extension of the PN model
up to 4.5 PN order given by

ÂresðtÞ ¼
Xi⩽1
i¼0

θAres
i xð8þiÞ=2ðtÞ: ð19Þ

We only use two collocation points TI
A ¼

f−700;−100gM as we find that the majority of the
amplitude data is explained well by our inspiral frequency
model cωI . The inspiral amplitude model is given by

ÂIðtÞ ¼ APNðtÞ þ ANðtÞÂresðtÞ: ð20Þ

For the amplitude merger region, contrary to [39] who
chose an Ansatz based on the sech function, we use a power
series in arcsinh with a width of 1=τ

ÂMðtÞ ¼
Xi⩽3
i¼0

θAM
i arcsinhiðt=τÞ; ð21Þ

with collocation points given by TM
A ¼ f−100;−50;

−10; 0gM.
The behavior of the waveform after the peak of the

amplitude is typically called the ringdown region; however,

it is an active area of research to determine the correct
physics to describe the transition the merger to the ring-
down [60–63]. In recent years time domain waveform
models tend to use the nonlinear model presented in [64] to
model the ringdown region from the peak amplitude
onwards. However, because the standard collocation point
method we use requires linear Ansätzewe are unable to use
this ringdown parametrization. Instead, we have introduced
an “early ringdown” region to bridge the gap between the
peak amplitude and the start of the ringdown region which
we loosely define to be the times that can be accurately
approximated by black hole perturbation theory. Motivated
by the similarity between the onset and falloff of the
waveform around the peak we model the early ringdown
with the same Ansatz that we use for the merger amplitude.
The early ringdown Ansatz is

ÂERDðtÞ ¼
Xi⩽4
i¼0

θAERD
i arcsinhiðt=τÞ: ð22Þ

The collocation points are tERD ¼ f0; 5; 20; 30gM with
an additional collocation point evaluating the derivative of
the peak amplitude t0ERD ¼ f0gM. The full set of colloca-
tion points is therefore, TERD

A ¼ tERD ∪ t0ERD. As we expect
the derivative at the peak to be 0 we enforce this manually
instead of fitting the collocation values for the collocation
point t0ERD.
The late-ringdown Ansatz is simply exponential decay

with a decay constant equal to the damping frequency of
the remnant black hole 1=τ.

ÂLRDðtÞ ¼ βLRDe−t=τ: ð23Þ

The constant βLRD is fixed by enforcing C(0) continuity
and is defined as

βLRD ¼ ÂERDðt0Þet0=τ: ð24Þ

The matching time is a constant value of t0 ¼ 30M.
Defining a time after the peak amplitude where the system
can be fully described by perturbation theory is an active
area of research. For our purposes we need an approximate
time after which we can accurate transition to a purely
exponential decay model.
In summary the following set of amplitude coeffi-

cients need to be fit as a function of mass ratio θA ¼
fθAres ∪ θAM ∪ θAERDg. The final inspiral-merger-ringdown
amplitude function is defined piecewise as

ÂIMRðtÞ ¼

8>>><
>>>:

ÂIðtÞ −700M ⩽ t < −100M

ÂMðtÞ −100M ⩽ t < 0M

ÂERDðtÞ 0M ⩽ t < 30M

ÂLRDðtÞ 30M ⩽ t

: ð25Þ
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VI. NONPARAMETRIC MODEL

In this section we describe our nonparametric model for
the parameter space fits needed to go from a discrete set of
data samples to a continuous model over the parameter
space.
The target data is the set of all collocation values for both

the amplitude and frequency models described in the
previous section. We gather the collocation values together
as θ ¼ fθA ∪ θωg. For each collocation value we will
construct a nonparametric model as a function of the mass
ratio, i.e., gθðqÞ. To do this we will use the Gaussian
process regression algorithm. The GPR algorithm begins
by placing a Gaussian process prior over the quantity of
interest written as

gθðqÞ ∼ GPðmθðqÞ; kθðq; q0ÞÞ; ð26Þ

with mean mθðqÞ and covariance function kθðq; q0Þ for the
θ collocation point. Here, the GP model is simply multi-
dimensional Normal distribution with a covariance matrix
constructed from the training set according to a prescribed
covariance function kðq; q0Þ. We choosemθðqÞ ¼ 0 and for
the covariance function we use the Matérn kernel (with
smoothness parameter ν ¼ 5=2) [65].
The kernel hyperparameters were determined by numeri-

cally optimizing the log marginal likelihood of the GP. We
use the SCIKIT-LEARN [66] implementation of Gaussian
process regression in our prototype model. A production-
ready model would require either; a more computationally
efficient GPR implementation, fast approximations such as
sparse-variational, random fourier features [67,68] or
hardware accelerators such as GPUs.
We found it necessary to transform the target variable to

enforce the model to make predictions that could not
change sign, this could happen when the target values
are close to zero. For the amplitude and frequency data this
is a physical constraint. To constrain the model to only
predict positive values we exponentiate its predictions and
therefore we define the transformed target variable as z
through the following equation:

z ≔ logðjyjÞ; ð27Þ

where y is the target variable (i.e., collocation point values).
We can reverse this transformation as long as we keep track
of the original sign of y. Additionally, we also found that
modeling logðqÞ helped to improve the extrapolation
behavior of the GP.
Next we discuss two types of uncertainty that our method

accounts for. For the purposes of our fit of the collocation
points we consider the variance between collocation values
at the same mass ratio as the statistical (also called aleatoric
or data) uncertainty and the variance in regions devoid of
training data is called the systematic (also called epistemic
or model) uncertainty of the waveform model.

The statistical uncertainty is quantified by measuring the
accuracy of NR solutions (for example via a numerical
convergence series) and can be reduced by producing more
accurate NR solutions. The systematic uncertainty is a
measure of how well the model fit is constrained by the
training data. To reduce the systematic uncertainty new NR
simulations can be performed at regions where the model
predicts large systematic uncertainty. From the perspective
of NR it is known that simulations of high mass ratio and/or
rapidly rotating BHs are typically much harder, numerically
speaking, to simulate and therefore, it is conceivable to
expect the NR error to be larger in these regions of
parameter space. In lieu of a full convergence series for
each NR simulation in our training set we take a
conservative approach and assume each simulation is
equally accurate. We use a homoskedastic noise model
assuming a constant noise variance which is an additional
hyperparameter informed by the measured variance in the
training data.
The systematic uncertainty in GPR models can be

controlled by the kernel function. Our choice of using a
stationary kernel such as the Matérn endows the model with
a notion of distance from the training set and as such can
produce models with the desired property that have larger
uncertainty for points outside the training set.
Figure 3 shows the GPR fit for the peak amplitude

(collocation point at t ¼ 0M). The blue and orange points
are the training and test sets, respectively. The red line is the
GPR mean, the red shaded region is the 2σ predictive
interval. As we extrapolate the GP model towards mass
ratio 32∶1 (the largest mass-ratio simulation in the test set)
we find that the mean prediction agrees well; however, the
uncertainty also grows.

FIG. 3. Example GPR fit for the amplitude merger model. We
show the data and fit for the collocation point at time t ¼ 0M. The
training and test set are shown as blue and orange points. The
mean GP fit is the red line and the red shaded region is the 2σ
prediction interval.
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VII. FINAL MODEL

As a reminder, we model the amplitude and angular
frequency of the h22 complex multipole using a set of linear
Ansätze. The free parameters (collocation point values) are
modeled independently as a probability distribution that
depends on the mass ratio using GPR. We denote the GP fit
to collocation point value θ belonging to either the
amplitude (A) or angular frequency (ω) as gθ½A=ω� ðqÞ.
Using this, we define the final model for the complex
multipole as

pðĥ22jt; qÞ≡ pðĥ22jt; gθðqÞÞ; ð28Þ

¼ ÂIMRðt;gθAðqÞÞexp½−iϕ̂IMRðt;gθωðqÞÞ�: ð29Þ

The model for the GW phase ϕ̂IMR is obtained by
generating ω̂IMR first and then numerically integrating it
however, an analytic expression could be derived. ÂIMR and
ω̂IMR are given by Eqs. (25) and (14), respectively.
The GPR method provides an analytic expression for the

mean of the GP which we will denote as θðqÞ. The mean
prediction (which could also be called the best-fit predic-
tion) is obtained when we use the mean of each GP fit as the
estimate for the collocation values. We define this as

h22ðt; qÞ≡ pðĥ22jt; gθ̄ðqÞÞ: ð30Þ

The model can produce independent waveform realiza-
tions, denoted by h̃, by drawing a random sample from the
posterior probability for each θ. We define this as

h̃ ∼ pðĥ22jt; gθðqÞÞ: ð31Þ

The ability to draw waveform samples can be utilized in
Bayesian parameter estimation of GW events in order to
marginalize the posterior over waveform systematic and
statistical uncertainty.

VIII. MODEL VALIDATION

To assess the accuracy between two real-valued time-
domain waveforms h1 and h2 we use the noise-weighted
inner product

hh1; h2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df: ð32Þ

Where SnðfÞ is the noise power spectral density of the
detector. The match is defined as the inner product between
normalized waveforms ðĥ ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffihh; hip Þmaximized over a
relative time and phase shift between h1 and h2. Our main
accuracy metric is the mismatch M defined as

Mðh1; h2Þ ¼ 1 −max
t0;ϕ0

hĥ1; ĥ2i: ð33Þ

Because the NR data are relatively short (when the total
mass is scaled to 100M⊙ the start frequency ranges from
20–30 Hz) we choose to compute the white-noise mis-
match. We do not wish to introduce uncertainty into our
results due to the inability of the NR data to fill the
detectors sensitivity band at a given total mass [69] or
introduce an ambiguity into which part of the waveform is
responsible for the error. In what follows we generate
waveforms with a sample rate of 4096 Hz scaled to a total
mass of 100M⊙.
Figure 4 shows the results of the mismatch calculation.

We compute the mismatch between the mean PPM wave-
form and every NR solution in the train (circle) and test
(filled circle) set. The points are colored with respect to the
NR code used to generate them.
The median mismatch across the test set is 0.13% (a

match of 99.87%). The worst mismatch over the test set is
11% (a match of 89%) which occurs for the 32∶1
simulation. As this simulation is far away from any training
data and we have not specifically tuned how the model
should extrapolate it is not surprising that the error is large.
The next worst mismatch is 0.32% (a match of 99.68%)
which occurs for mass ratio 3∶1. A baseline accuracy
threshold of 1% mismatch error is typically used for which
the PPM model passes for mass ratios less than 18∶1.
To illustrate the uncertainty in the NR waveforms we

compute the mismatch between a reference NR waveform
and all other NR waveforms at the same mass ratio, these
are shown as black circles. This estimate for the NR error
tends to give error estimates with larger variances when
there are more than one NR code available to compare. For
example, simulations at mass ratios 8∶1 and 18∶1 are only
available with the BAM NR code. This estimate should be
treated with caution as it assumes all the NR waveforms
used in the comparison are of comparable numerical
accuracy which is not true. For instance, we have included
NR waveforms from the same code but performed at
different numerical resolutions. Future NR simulations
available at multiple resolutions that permit a convergence
test would alleviate this issue.
Our PPM can be used to empirically estimate its own

uncertainty. We call this the predicted mismatch distribu-
tion pM and it is computed as the distribution of the
mismatch between the mean PPM waveform (h̄PPM) and
1000 samples (h̃PPM) from the PPM model:

pM ¼ Mðh̄PPM; h̃PPMÞ: ð34Þ

In Fig. 4 we show the median of pM as a solid blue line
as well as the 50th, 90th and 99th percentile widths as
shaded blue regions. The results show that the model
predicts its error to be relatively constant between mass

PROBABILISTIC MODEL FOR THE GRAVITATIONAL WAVE … PHYS. REV. D 109, 104045 (2024)

104045-9



ratios 1∶1 and 10∶1 at the level of 0.019þ0.039
−0.015%. The

behavior between 10∶1 and 18∶1 suggests that the uncer-
tainty estimate for the 18∶1 is too small resulting in a GP
model that is too heavily constrained in the vicinity of the
18∶1 data and can cause the observed high variance
predictions. Using our prediction for the expected mis-
match we state that we expect the PPM model to likely (at
the 99th%) still be accurate at approximately the 1% level
when extrapolated to mass ratio 20∶1. In the next section
we will quantify the accuracy of this estimate.
There are a number of simulations in the test set, at low

mass ratio between 1∶1 and 4∶1, that have unusually high
mismatches when compared with the PPM mean model as
well as lie outside the predicted mismatch distribution.
Simulations at nearby mass ratios are available from
different NR codes and the difference seen suggests that
the Maya simulations in this region and the BAM 4∶1
simulations have numerical errors larger than the other NR
codes in our dataset. This highlights the potential benefits
from constructing training sets from multiple NR codes to
avoid building models that inherit potential systematic
biases from particular NR simulations.
Next we compare the PPM model predictions with NR

waveforms in the test set to illustrate how the diversity in
waveform predictions under different levels of uncertainty.
Figure 5 shows the hþ waveform from NR (black, dashed)
and predictions from PPM (blue). Both the mean and three
samples from PPM are shown as well as the minimum and
maximum values from 1000 samples are shown as the

shaded region. From top to bottom we show mass ratios
4∶1, 8∶1, 15∶1 and 32∶1, the mismatch between the mean
PPM prediction and NR is 0.18%, 0.016%, 0.032% and
11%, respectively. The self-mismatch error for 4∶1 and 8∶1
are both 0.05% (worst mismatch at 90th percentile), this
level of variance in mismatch corresponds to practically
indistinguishable predictions between PPM samples on this
scale. As the mass ratio increases visible differences begin
to be noticeable at mass ratio 15∶1where the self-mismatch
error gets to the 0.5% (worst mismatch at 90th percentile)
level. For mass ratio 32∶1 the samples from the PPMmodel
are very diverse which gives rise to a large mean predicted
mismatch (28%) and a wide distribution with mismatches
reaching up to 57% (worst mismatch at 90th percentile) for
the predicted mismatch distribution.

IX. UNCERTAINTY CALIBRATION

In the previous section we have shown how probabilistic
models can be used to estimate their uncertainty with the
use of the predicted mismatch distribution. However,
having the ability to generate waveform samples does
not guarantee that the resulting distribution of waveforms
will accurately represent the true uncertainty of the model.
In this section we quantify the accuracy of our uncertainty
prediction.
We compare the estimated uncertainty with the true

uncertainty of the model at the train and test locations to
quantity the accuracy of the uncertainty estimate. For the

FIG. 4. The mismatch between various objects as a function of the mass ratio. The black error bars are an estimate of the NR
uncertainty obtained by computing the mismatch between NR waveforms at the same mass ratio. The mismatch between PPM mean
prediction and NR simulations in the training set (open circles) and the test set (filled circles), which are colored based on the NR code,
represent the typical accuracy metric of waveform models. The solid blue curve is the median of the predicted mismatch distribution
[Eq. (34)] and the shaded blue regions show the 50th, 90th and 99th percentile widths.
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true uncertainty we use the mismatch between NR wave-
forms and the PPM mean waveform. We summarize the
results with a metric we call the calibration score C defined
as the ratio between the true uncertainty and the estimated
uncertainty (both measured in terms of the mismatch)

C ¼ True Uncertainty
Estimated Uncertainty

: ð35Þ

For the estimated uncertainty we use the predicted
mismatch distribution pMðqÞ [Eq. (34)] from the previous
section to obtain a distribution for the calibration score

pCðqÞ ¼
Mðh̄PPM; hNRÞ

pMðqÞ : ð36Þ

A perfectly calibrated model will have C ¼ 1. A model
that is underestimating the uncertainty and is therefore
overconfident will have C > 1, here samples from the PPM
will be closer to the mean prediction than they should be. A
model that is overestimating the uncertainty and is therefore
underconfident will have C < 1, here samples from the
PPM will be further from the mean prediction than they
should be.
A previous study [33] that also used GPR in waveform

modeling proposed to use the maximum mismatch between

the mean waveform and waveform samples to estimate the
true uncertainty, i.e., maxpM. This typically results in
estimates of the calibration score that are biased towards
being underconfident.
The calibration score as a function of the mass ratio is

shown in Fig. 6. For each mass ratio where we have more
than one NR simulation we aggregate the results and show
the median as well as the 90% width of the predicted
mismatch distribution. These results are shown as blue and
orange points for the train and test sets, respectively. We
also show C for each individual NR simulation computed
using the median value of the predicted mismatch distri-
bution. These results are shown as circles and filled circles
for the train and test sets, respectively.
For the train set we find that the calibration score is

consistent with 1 at the 90% level for all mass ratios except
the 18∶1 simulations. Here the model is overconfident in its
predictions by a factor of 5 on average. For the test set we
find our model produces calibrated uncertainties for all
cases at the 90% level except the mass ratio 4∶1 and all
Maya simulations between mass ratio 1∶1 and 4∶1. For
these cases the model is consistently overconfident in its
uncertainty estimate.
Our calculation for the calibration score is potentially

corrupted due to data quality issues with the NR data. In
this work we have attempted to control for this by including

FIG. 5. In each panel we compare our model with representative NR simulations at mass ratios 4∶1. 8∶1, 15∶1 and 32∶1 from the test
set. The NR is shown as a solid black line. We generate 1000 samples and the mean prediction from our PPM model and optimally align
them with the NR waveform over a time and phase shift. We show the minimum and maximum range of values from the 1000 samples as
the shaded region and explicitly plot the mean as well as three samples.
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as many NR simulations from different codes as possible
however, there simply is not enough data. For example,
waveforms in the test set for q > 1 and q < 4 are mainly
from the Maya NR code that could potentially be a cause of
systematic bias in our estimates. Also we are treating NR
solutions with different numerical resolutions as being
equally accurate.
We hypothesize that the main source of error that is

reducing the ability of our model to accurately predict the
true uncertainty is due to data quality issues which violates
our assumption that the NR data are of sufficient and
comparable accuracy.1 The evidence for this can be seen in
Fig. 4 where the Maya q∈ ð1; 4� and the BAM q ¼ 4
simulations have higher mismatch errors then the other NR
simulations when compared with the PPM model.
Typically these simulations would not be included in the
data set due to data quality concerns however, without a full
convergence series for an NR simulation it is difficult to
quantify the errors in a simulation. However, if the errors in
a simulation are quantified appropriately then these sim-
ulations may still add valuable information but their
influence will be downweighted.

X. CONCLUSIONS

In this paper we address the increasingly important issue
of uncertainty quantification in waveform modelling. We
have presented a new methodology to build PPMs. The key
aspects of our work are these: (i) employing linear Ansätze
so we can use the collocation fitting method and gain

interpretability, (ii) using a probabilistic fitting method
(such as Gaussian process regression) for the parameter
space fits and (iii) using estimates for the NR uncertainty to
inform those fits. PPMs extend current phenomenological
methods with the ability to not only generate the best-fit
point estimate but also explicit waveform samples that can
be used to marginalize over waveform model errors in GW
Bayesian parameter estimation.
The model presented here is a proof of concept. It only

covers a small portion of the waveform (∼800M in
duration) and does not model spinning binaries. It should
be relatively straightforward to adapt current methodology
used to build deterministic phenomenological models, that
model precessing binaries with higher order multipoles,
and turn them into probabilistic phenomenological models.
NR solutions of these more complete descriptions of binary
coalescence typically have larger numerical errors and
therefore stand to benefit the most from a probabilistic
treatment.
Some interesting technical challenges have the potential

to appear when increasing the size of the dataset and/or
including more physics. For example, the noise model
assumption may need to be revised if the data show sign of
heteroskedasticity. Another assumption is the independ-
ence of the phenomenological coefficients. Future models
will likely continue using nonlinear Ansätze that are more
physically motivated. If the coefficients of these models
have significant correlation then our method of sampling
the coefficients independently could result in unphysical
waveforms. In such a case then modeling algorithms that
can jointly model the coefficients will have to be explored.
The most important issue that needs to be resolved is to

improve the error estimates in NR simulations as this is a
crucial ingredient in modeling. We have experimented with

FIG. 6. Calibration score distribution as defined by Eq. (36). We show the median value and the 90% width of the predicted mismatch
distribution for the train (blue) and test (orange) sets. We also show the individual results for each NR simulation compared with the
median value of the predicted mismatch.

1Recall that we have intentionally included NR simulations
from older catalogs and as such they are not necessarily
representative of the accuracy of current NR codes.

SEBASTIAN KHAN PHYS. REV. D 109, 104045 (2024)

104045-12



using the difference between NR solutions from different
NR codes to estimate the NR error; however, this is not
reliable. Where possible we recommend NR groups publish
detailed uncertainty estimates that are functions of time
along with their waveforms.
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Jiménez Forteza, and A. Bohé, Phys. Rev. D 93, 044006
(2016).

[35] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J.
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