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In this work, the analysis of some new static black hole solutions of Lovelock gravity with nonconstant
curvature transverse section is presented. It will be shown that the finiteness of the charges and the action
principle rely on the existence of constraints on the geometry of the transverse sections. Finally, in this
context, some new sound solutions with nonconstant curvature transverse sections that deviate from the
previously known geometries are discussed.
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I. INTRODUCTION

There is no doubt that during the last decades the study
of asymptotically AdS spaces, their corresponding con-
formal infinities, and conformal field theory have been
mainstream topics in theoretical physics and mathematics.
For some recent examples see Ref. [1]. The main motiva-
tion of this has been the AdS/CFT correspondence [2], or
holography in general [3,4]. For this work, however, the
specific motivation is to establish the conditions satisfied
by proper (asymptotically locally) AdS spaces [5,6] whose
conformal infinities could be representatives of equivalent
classes of conformal (differential) manifolds, given the
evidence that nontrivial (conformal) geometry play a
fundamental role in the study of conformal theories and
their anomalies [7–10]. It is worth to emphasize that this is
not in conflict with the existence of static spaces, nor, in
principle, with the Fefferman-Graham expansion [11] for
asymptotic Einstein spaces. However, this indeed requires
the extension of Birkhoff’s theorem [12].
To continue, it is worth mentioning that, as is known,

not any theory of gravity has second-order EOM, and
thus causality is not protected in general. This is usually
puzzled out by merely ruling out the noncausal solutions.
Furthermore, in the case of asymptotic AdS solutions are
usually only considered those that are asymptotically
Einstein spaces. However, this is not the final word, and
one can indeed further extend the spectrum of proper
solutions by recalling the existence of other theories
of gravity with second-order EOM, and thus to include
solutions that do not converge into an Einstein space

asymptotically. See Refs. [13–15] and references therein
for examples of these geometries. Finally, it must be
noticed that the presence of some particular matter fields,
such as scalar fields, could modify that asymptotic behavior
and yet yield proper solutions. See for instance [16] or [17].
For the vacuum solutions with constant curvature trans-
verse sections, this scenario can be visualized by using
Schwarzschild coordinates,

ds2 ¼ −fðrÞ2dt2 þ 1

fðrÞ2 dr
2 þ r2ðḡijdyidyjÞ; ð1Þ

where ḡijdyidyj stands for the line element of a transverse
section of constant curvature Σγ (with γ ¼ �1, 0). In order
to Eq. (1) be an asymptotically locally AdS (ALAdS) space
it must be satisfied that

lim
r→∞

fðrÞ2 ∼ γ þ r2

l2
−
C2

ra
;

with a > 0. For what follows it is worth to mention that
Lovelock gravity [18] is the simplest case where the general
statement above can be confirmed. In this case [14,15],

lim
r→∞

fðrÞ ∼ γ þ r2

l2
−
�

C2

rd−2k−1

�
1=k

: ð2Þ

To finish it is worth recalling that extending the spectrum
of proper solutions is not usually straightforward. This is
because, on-shell, any proper solution must define a finite
action principle and satisfy suitable boundary conditions
that yield a well-defined variation principle. Furthermore,
its associated conserved charges must be finite as well. The
crux for any ALAdS space is that a regularization process
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must be introduced to attain these three conditions.
Moreover, satisfying those conditions is mandatory to
achieve a dual CFT interpretation within the AdS/CFT
conjecture. Obviously, given the relevance of this pro-
blem, nowadays there are several different approaches to
attain a regularized action principle. Among them, see for
instance [19–21] and more recently [22–25].
In the next sections this work will analyze some

new black hole solutions of Lovelock gravity with non-
constant curvature transverse section and the conditions
under which the finiteness of the action principle and the
conserved charges could be attained. Because of its general
appliance, this work will follow the method of regulariza-
tion described in [20,26,27].

A. Gravity

Among the many possible theories of gravity that are
worth consideration, Lovelock gravities have a substantial
role due to retaining in higher dimensions the essential
features GR has. For instance, their equations of motion are
second-order differential equations. The action principle on
d-dimensional manifold ðM; gÞ is given by

L ¼
X½d−12 �

p¼0

αpLp ð3Þ

where [X] stands for the integer part of X and

Lp ¼ 1

2p
δ
μ1…μ2p
ν1…ν2p R

ν1ν2
μ1μ2…R

ν2p−1ν2p
μ2p−1μ2p

ffiffiffi
g

p
;

with Rν1ν2
μ1μ2 the Riemann tensor and fαpg a set of arbitrary

constants.
For shortness the Lovelock Lagrangian in Eq. (3) can be

written in terms of the Riemann two-form of curvature,
Rab ¼ dωab þ ωa

cω
cb, and the vielbein ea. See for in-

stance [28]. In this formalism, the Lovelock action reads

L ¼
Xn−1
p¼0

αpϵa1…a2n

�
ðRÞp

�
e
l

�
2n−2p

�
a1…a2n

; ð4Þ

where�
ðRÞp

�
e
l

�
2n−2p

�
a1…a2n ¼ Ra1a2 ∧ …Ra2p−1a2p ∧ e

l
a2pþ1

∧ … ∧ e
l
a2n :

The analysis of the corresponding equations of motion is
depicted in Appendix A. Unfortunately, it is straightfor-
ward to show that the action principle above, either in even
or odd dimensions, is ill defined on an ALAdS space and
thus it must be supplemented by a suitable boundary term
Ω to attain a proper action principle. A suitable formalism

in odd dimensions for the construction of Ω is described in
Appendix B. See Refs. [20,26,27]. In even dimensions, this
is much simpler and suffixes the addition of the corre-
sponding Euler density [29].
To continue, the form of the Noether current, associated

with the invariance under diffeomorphisms x → xþ ξ, is
given by

�Jξ ¼ −dðIξwabτab þ IξΩÞ; ð5Þ
where

τab ¼
∂L
∂Rab :

B. Horizon, Killing vectors and boundary conditions

Let M be a static black hole geometry of topology
R × Σ. Being M a black hole geometry it must have an
internal boundary to accommodate the presence of a
horizon, i.e., ∂M ¼ ∂M∞ ⊕ ∂MH. For simplicity, it will
be assumed that ∂Σ ¼ ∂Σ∞ ⊕ ∂ΣH, which denotes the
spatial infinity and the event horizon respectively. The
boundary of M is therefore given by

∂M ¼ ∂Σ ×R ¼ ∂ΣH × R ∪ ∂Σ∞ × R:

As mentioned above, �Jξ can be constructed for any ξ.
However, to define a physical conserved charge some
conditions must be satisfied. First, it is necessary that
M, has, at least asymptotically, a timelike symmetry.
Second, ξ must generate an isometry, namely a Killing
vector. Furthermore, ξ must be compatible with preser-
ving the boundary conditions. With all this in mind,
following [30–32], ξ will be considered the null generator
of the event horizon [33]. This implies, in first-order
formalism, that

Iξωa
bξ

bj
∂ΣH

¼ κξaj
∂ΣH

ð6Þ
where κ ¼ 4πT is the surface gravity with T the temper-
ature of the horizon. Notice that fixing ωab at the horizon
fixes T. Furthermore, it must be stressed that fixing ωab is a
suitable boundary condition at the horizon and equivalent
to fixing the second fundamental form or the extrinsic
curvature on the horizon. See Ref. [34].
Now, considering the asymptotic region, any asymptoti-

cally local AdS space satisfies

lim
x→∂M∞

Rμν
αβ → −

1

l2
δμναβ; ð7Þ

where l represents an effective AdS radius.
To continue with the discussion, let be a Schwarzschild

ansatz with coordinate system xμ ¼ ðt; r; yiÞ,

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðĝijdyidyjÞ; ð8Þ
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where ĝijdyidyj is the line element of an arbitrary trans-
verse section Σ. It is straightforward to observe that fðrÞ ≥
0 determines a well-defined region, being ξ ¼ ∂t the null
generator of the horizon due to ξ · ξ ¼ −fðrÞ. In this way,
∂ΣH, is defined by a radius r ¼ rþ subjected to fðrþÞ ¼ 0.
If fðrÞ has more than one root, it will be assumed that
r ¼ rþ is the largest one.
The asymptotic region is defined by r → ∞ and would

be considered an asymptotically locally AdS. The con-
dition (7) determines, to leading orders, that

lim
r→∞

fðrÞ ∼ Γþ r2

l2
þOðr−aÞ; ð9Þ

where a > 0 and Γ a universal constant to be deter-
mined [11].

C. Beyond the constant curvature

To study spaces with nonconstant curvature transverse
sections Σ, it is convenient to define the set of constants
cðqÞ [12]

cðqÞ ¼
Z
Σ

ðd− 2q− 2Þ!
2q

δ
i1…i2q
i1…i2q

R̂i1i2
j1j2

…R̂
i2q−1i2q
j2q−1j2q

ffiffiffî
g

p
dd−2y

ð10Þ

¼
Z
Σ
εa1…ad−2R̂

a1a2…R̂a2q−1a2q êa2qþ1…êad−2 ð11Þ

where q ¼ 0;…½ðd − 2Þ=2� and R̂i1i2
j1j2

stands for the
Riemann tensor of Σ. Firstly, it can be noticed that

cð0Þ ¼ ðd − 2Þ!VolðΣÞ with VolðΣÞ finite:

II. GAUSS-BONNET GRAVITY

As an introduction to the analysis, this section will
address the solutions of Gauss-Bonnet gravity with non-
constant transversal curvature. This was original presented
in [5]. It is worth it to mention that in the construction of
these solutions was introduced a set of bðnÞ coefficients
which differ from the cðqÞ in Eq. (10) by a normalization
factor. As new results, in this section, it will be computed
the Noether charge for d ¼ 5 and the necessary conditions
to have a finite Noether charge and action principle
for d > 5.
Einstein-Gauss-Bonnet (EGB) gravity is defined by

arbitrary αp for p ¼ 0, 1, 2 and αp ¼ 0 ∀ p > 2. For
the constant transversal curvature case, as was discussed
in [13,14], this theory has ALAdS solutions provided
certain conditions are satisfied. The solution, for d ≥ 5,
is given by

fðrÞ ¼ bð1Þ
bð0Þ þ

α1
2α2

r2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α22ðbð1Þ2 − bð2Þbð0ÞÞ þ bð0Þ2ðα21 − 4α0α2Þr4 þ 8mα2bð0Þ

rd−5

q
2bð0Þα2

: ð12Þ

which coincides with Ref. [5] for bð0Þ ¼ α1 ¼ 1 and

bð1Þ ¼ ðd − 4Þ!
2ðd − 2Þ!

Z
R̂

ffiffiffî
g

p
dd−2y and bð2Þ ¼ ðd − 6Þ!

4ðd − 2Þ!
Z

δi1…i4
i1…i4

R̂i1i2
j1j2

R̂i3i4
j3j4

ffiffiffî
g

p
dd−2y;

respectively.
The asymptotic form Eq. (12) for d ≥ 5 is given by

lim
r→∞

fðrÞ ¼ bð1Þ
bð0Þ þ

α1
α2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

α0α2
α21

r �
r2 −

0
B@�bð1Þ

bð0Þ
�

2 α2
α1

ðbð2Þbð0Þ − bð1Þ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4 α0α2

α2
1

q
1
CA 1

r2

−
2m

bð0Þα1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4 α0α2

α2
1

q 1

rd−3
þ… ð13Þ

Here, if this solution is to describe an ALAdS space, it
becomes mandatory that α21 > 4α0α2. This yields an effec-
tive AdS radius given by

1

l2eff
¼ 1

l2
¼ α1

α2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

α0α2
α21

r �
:

One can also notice that bð1Þ=bð0Þ had replaced the
value of the constant curvature of the transverse section in
Eq. (2) [14].
Continuing, the general behavior mentioned of Eq. (9) is

satisfied by Eq. (13), as expected. Next, beyond the first
two terms, one can also notice the presence of a term of
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Oðr−2Þ, and one of Oðr3−dÞ, the later the one expected for
the Schwarzschild solution in d dimensions. This hints that
the term Oðr−2Þ must be removed for d > 5. To confirm
this, the charges and action principle will be evaluated on
this solution.

A. Five dimensions

As mentioned above, in d ¼ 5 the asymptotic form, see
Eq. (13), does match the asymptotia of GR, but also
bð2Þ ¼ 0. The conserved charge associated with ξ ¼ ∂t
is finite and given by

Qð∂tÞ ¼ E ¼ mþ bð1Þ2
8bð0Þ2 ð2α2 − l2effα1Þ: ð14Þ

Here, one can notice that E corresponds to the mass m
plus the would-be vacuum energy of the solution. This is
the generalization of the result obtained in [35] in the case
of a constant curvature transversal section. The action
principle is also finite and given by

Ireg ¼ −
bð1Þ2
4bð0Þ l

2
effð2l2effα0 þ 1Þ: ð15Þ

This shows that for d ¼ 5 the finiteness of both action
principle and charges, for the EGB solution with non-
constant transversal curvature, can be attained for any
bð1Þ∈R as expected due to the asymptotic form (13) does
indeed match the asymptotia of GR.

B. More than five dimensions

In d > 5 bð2Þ ≠ 0 and the Noether charge Qð∂tÞ,
computed following Eq. (9), diverges as

lim
r→∞

Qð∂tÞ ≈ ðbð2Þbð0Þ − bð1Þ2Þrd−5 þ finiteþ…: ð16Þ

By computing the action principle it can be checked that
this also diverges by a term proportional to bð2Þbð0Þ−
bð1Þ2. Therefore, a proper action principle can be attained
provided

bð2Þ ¼ bð1Þ2
bð0Þ : ð17Þ

This condition is trivially yielded by any constant curvature
transverse section.

It must be noticed that Eq. (17) represents a nontrivial
constraint for any nonconstant curvature manifold. This
also confirms that the term of Oðr−2Þ for d > 5 represents
an obstruction to be removed to have sound and meaningful
solutions.

III. HIGHER ORDER LOVELOCK GRAVITIES

To continue the analysis of the EOM, and to address the
higher-order Lovelock gravities, it is necessary to unveil a
different structure of the EOM. Firstly, it is necessary to
manifest the presence of the cðqÞ mentioned above.
Second, one can notice that the EOM, for αp ¼ 0 for
p > q, can be expressed in the pseudopolynomial fashion

ðEq
dÞαβ ¼ αqδ

αν1…ν2q
βμ1…μ2q

ðRμ1μ2
ν1ν2 þ β1δ

μ1μ2
ν1ν2 Þ

…ðRμ2q−1μ2q
ν2q−1ν2q þ βqδ

μ2q−1μ2q
ν2q−1ν2q Þ ¼ 0; ð18Þ

where q∈ ½1…½ðd − 1Þ=2�� depends on the particular
Lovelock gravity considered. It must be stressed that βi’s
coefficients cannot be obtained from the αp’s in general for
d ≥ 9 [36]. Fortunately, see below, the cases of interest can
be analyzed without much ado until 8 dimensions.
Before proceeding it is worth to stress that among the

trivial/ground state solutions of Eq. (18), namely
Rμν

αβ ¼ −βiδ
μν
αβ, only the subset βi > 0 is of interest in

this work, as those are locally AdS spaces. βi < 0 and
βi ¼ 0, represent the locally de Sitter and flat solutions.
Unfortunately, their analyses cannot be extrapolated from
the one presented here. On top of that, there are also
potentially (trivial) nonphysical solutions to Eq. (18), since
starting from ∀ αp ∈R, in general, some of the βi’s might
be complex numbers with nonvanishing imaginary parts.

IV. HIGHER ORDER ADS EQUATIONS

In order to simplify the analysis it will set βi ¼ l−2 > 0
to have the familiar form

lim
x→∂M∞

Rμν
αβ → −

1

l2
:δμναβ: ð19Þ

In general, some of the βi can be repeated and thus EOM
can present degeneration around an AdS ground state. This
has been studied previously in a different way in [14] for
spaces with constant curvature transversal sections. To
address this situation is useful to reshape the EOM into
the form

ðEðq;kÞ
d Þαβ ¼ αq

�
Rþ δ

l2

�
μ1…μ2k

ν1…ν2k

 Xq−k
j¼0

Kj

�
ð2Þ2ðq−k−jÞδαν1…ν2kþ2j

βμ1…μ2kþ2j
Rμ2kþ1μ2kþ2
ν2kþ2ν2kþ2

…R
μ2kþ2j−1μ2kþ2j
ν2kþ2j−1ν2kþ2j

��
¼ 0; ð20Þ

where fKjg is a set of dimensional constants and
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�
Rþ δ

l2

�
μ1…μ2k

ν1…ν2k

¼
�
Rμ1μ2
ν1ν2 þ

1

l2
δμ1μ2ν1ν2

�
…

�
Rμ2k−1μ2k
ν2k−1ν2k þ

1

l2
δμ2k−1μ2kν2k−1ν2k

�
:

It can be noticed that the degeneration and the AdS asymptotia of the solutions are both manifest in Eq. (20). It is worth
mentioning that, unlike for the set fβg, see Ref. [37], there is a well-defined relation between αp and Ki given by

αp ¼ αq
1

d − 2p

X½d=2�−k
i¼0

�
k

p − i

�
Ki: ð21Þ

for p ≤ q and αp ¼ 0 for p > q.

A. The static ansatz

The use of the static ansatz displayed above, see Eq. (8), simplifies the equations significatively. For instance, this implies
that Lp, Eq. (3), can be written as

Z
Lp ¼

Z
dt ∧ dr

�
d2

dr2
Xp
q¼0

�
p

q

�
ð−fÞp−qcðqÞ

�
r
l

�
d−2p

�

¼
Z

dt

�
d
dr

Xp
q¼0

�
p

q

�
ð−fÞp−qcðqÞ

�
r
l

�
d−2p

�				rmax

r¼rþ

; ð22Þ

with the cðqÞ are given by Eq. (10). Since it is satisfied by definition that fðrþÞ ¼ 0 then

�
d
dr

Xp
q¼0

�
p

q

�
ð−fÞp−qcðqÞ

�
r
l

�
d−2p

�				
r¼rþ

¼ cðp − 1ÞpdfðrþÞ
dr

�
rþ
l

�
d−2p

þ cðpÞ d − 2p
l

�
rþ
l

�
d−2p−1

This result gives rise to the operational definition of

PðrþÞ ¼ β
X½ðd−2Þ=2�

p¼0

cðp − 1ÞpdfðrþÞ
dr

�
rþ
l

�
d−2p

þ cðpÞ d − 2p
l

�
rþ
l

�
d−2p−1

¼
X½ðd−2Þ=2�

p¼0

4πcðp − 1Þp
�
rþ
l

�
d−2p

þ βcðpÞ d − 2p
l

�
rþ
l

�
d−2p−1

where β ¼ 4πðdfðrþÞdr Þ−1 is the Euclidean period. cð−1Þ ¼ 0 by definition.
The equations of motion (20) can be also written in a relatively simple form. For instance,

ðEðq;kÞ
d Þ00 ∼ αq

Xq−k
i¼0

Ki

�Xk
s¼0

Xi
t¼0

cðsþ tÞ
�
i

t

��
k

s

�
d
dr

��
r2

l2
− fðrÞ

�
k−s

ð−fðrÞÞi−t
�
r
l

�
d−2k−2i−1

��
: ð23Þ

The rest of the components present a similar, and compatible, structure. Direct integration of these EOM yields

αq
Xq−k
i¼0

Ki

 Xk
s¼0

Xi
t¼0

cðsþ tÞ
�
i

t

��
k

s

���
r2

l2
− fðrÞ

�
k−s

ð−fðrÞÞi−t
�
r
l

�
d−2k−2i−1

�!
¼ C; ð24Þ

with C an arbitrary integration constant.
A noteworthy feature of these equations (24) is that

their higher power can only increase each time a new odd
dimension is reached [38]. Therefore, the highest power on

fðrÞ, see Eq. (24), of this equation in even dimensions must
coincide with one of the odd dimensions below.
Naively it seems that obtaining fðrÞ would only require

solving Eq. (24). Unfortunately, fðrÞ can only be obtained
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algebraically if the order of Eq. (24) is lower than 5, i.e., if
and only if q ≤ 4. This restricts the general case to
dimensions lower than 9. It must be emphasized that
this does not mean the lack of solutions for d ≥ 9, but
that solution can only be obtained for particular sets of
coefficients. Because of this, in what follows, only the five
and seven-dimensional cases, and some of their extensions,
will be discussed in detail. The even dimensional d ≤ 8
cases will be omitted because they are direct from the odd-
dimensional cases for d ≤ 7. As mentioned above, this is
due to their corresponding equations, see Eq. (24), which
contain the same powers in fðrÞ and only differ in the
power of r.

V. FIVE DIMENSIONS

Before continuing it could be useful to recall that in
d ¼ 5 there are three Lovelock theories to consider. Their
corresponding equations of motion are given by

K0α1δ
αν1ν2
βμ1μ2

�
Rμ1μ2
ν1ν2 þ

1

l2
δμ1μ2ν1ν2

�
¼ 0 ð25Þ

α2δ
αν1…ν4
βμ1…μ4

�
Rμ1μ2
ν1ν2 þ

1

l2
δμ1μ2ν1ν2

�
ðK1R

μ3μ4
ν3ν3 þ K0δ

μ3μ4
ν3ν4 Þ ¼ 0

ð26Þ

K0α2δ
αν1…ν4
βμ1…μ4

�
Rμ1μ2
ν1ν2 þ

1

l2
δμ1μ2ν1ν2

��
Rμ3μ4
ν3ν4 þ

1

l2
δμ3μ4ν3ν4

�
¼ 0

ð27Þ

Here Eq. (25) are the EOM of 5d general relativity. The
Eq. (26) correspond to the case EH action plus a general
Gauss-Bonnet term, already discussed in Sec. II. Finally, it
can be also recognized that the Eq. (27) are the EOM of
Chern-Simons gravity [39].
As mentioned before, the intention is to analyze

the solutions along the branches whose asymptotic behav-
ior is given by Rμ1μ2

ν1ν2 → − 1
l2 δ

μ1μ2
ν1ν2 for nonconstant curvature

transverse sections. As discussed previously, in d ¼ 5
Eq. (12) is the solution to Eq. (26) with the desired
asymptotia,

lim
r→∞

fðrÞ ∼ cð1Þ
cð0Þ þ

r2

l2
−
C
r2
;

but has no restrictions on the values of cðqÞ in d ¼ 5 due to
cðqÞ ¼ 0 for q > 1. As was computed above, the energy for
this case is given by equation (14).

A. Chern Simons

Equation (27) represents d ¼ 5 Chern Simons gravity,
see Ref. [13]. This an independent case not covered by the

discussion in Sec. II. To our knowledge this has not
been discussed so far in the literature for nonconstant
transversal curvature. This solution can be obtained from
the relation (24) which in this case is given by

�
r2

l2
− fðrÞ

�
cð1Þ þ 1

2

�
r2

l2
− fðrÞ

�
2

cð0Þ ¼ M; ð28Þ

whereM is an integration constant. The solution is given by

fðrÞ ¼ cð1Þ
cð0Þ þ

r2

l2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cð1Þ
cð0Þ

�
2

−
2M
cð0Þ

s
: ð29Þ

The process of regularization to compute the energy can
be carried out following the standard procedure depicted in
Appendix B. The result is given by

Qð∂tÞ ¼ K0Ml2 − K0

cð1Þ2
2cð0Þ l

2 ¼ Ml2 þ Evacuum; ð30Þ

where the mass,Ml2, and the energy of the vacuum Evacuum
has been split. The presence of vacuum energy is a known
fact of AdS gravity. See Ref. [35].
It must be stressed that, as previously mentioned for GR

and GB-GR, neither the regulation process nor the finite-
ness of the energy, impose any restriction on the values of
cð1Þ and cð0Þ.

VI. SEVEN AND HIGHER DIMENSIONS

In seven dimensions there are a significantly larger
number of cases to consider. These are

K0α1δ
αν1ν2
βμ1μ2

�
Rμ1μ2
ν1ν2 þ

1

l2
δμ1μ2ν1ν2

�
¼ 0 ð31Þ

α2δ
αν1…ν4
βμ1…μ4

�
Rμ1μ2
ν1ν2 þ

1

l2
δμ1μ2ν1ν2

�
ðK1R

μ3μ4
ν3ν3 þ K0δ

μ3μ4
ν3ν4 Þ ¼ 0

ð32Þ

K0α2δ
αν1…ν4
βμ1…μ4

�
Rμ1μ2
ν1ν2 þ

1

l2
δμ1μ2ν1ν2

��
Rμ3μ4
ν3ν4 þ

1

l2
δμ3μ4ν3ν4

�
¼ 0

ð33Þ

α3δ
αν1…ν6
βμ1…μ6

�
Rμ1μ2
ν1ν2 þ

1

l2
δμ1μ2ν1ν2

�
ðK2R

μ3μ4
ν3ν4R

μ5μ6
ν5ν6 þ K1R

μ3μ4
ν3ν4 δ

μ5μ6
ν5ν6

þ K0δ
μ3μ4
ν3ν4 δ

μ5μ6
ν5ν6 Þ ¼ 0 ð34Þ

α3δ
αν1…ν6
βμ1…μ6

�
Rμ1μ2
ν1ν2 þ

1

l2
δμ1μ2ν1ν2

��
Rμ3μ4
ν3ν4 þ

1

l2
δμ3μ4ν3ν4

�
× ðK1R

μ5μ6
ν5ν6 þ K0δ

μ5μ6
ν5ν6 Þ ¼ 0 ð35Þ
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K0α3δ
αν1…ν6
βμ1…μ6

�
Rμ1μ2
ν1ν2 þ

1

l2
δμ1μ2ν1ν2

��
Rμ3μ4
ν3ν4 þ

1

l2
δμ3μ4ν3ν4

�

×

�
Rμ5μ6
ν5ν6 þ

1

l2
δμ5μ6ν5ν6

�
¼ 0 ð36Þ

Here Eq. (31) corresponds to general relativity in d ¼ 7,
as Eq. (25) does in d ¼ 5. Equations (32) and (33)
correspond to the EGB gravity with different couplings,
with Eq. (32) representing the GB gravity already discussed
in Sec. II. Finally, Eqs. (34)–(36) correspond to cubic
gravities with different coupling constants. In particular
Eq. (36) represents Chern Simons gravity in seven dimen-
sions. These were initially discussed for constant trans-
versal curvature in [13].
Before returning to the discussion of the solutions with

nonconstant curvature transverse sections, it is worth
recalling that for solutions with constant curvature trans-
verse sections is known that

(i) the three Eqs. (31), (32) and (34) share a branch
satisfying Eq. (19) and whose solutions agree up to
order Oðr−4Þ. This will be called the EH branch or
the k ¼ 1 case, and

(ii) Equations (33) and (35) have solutions that share a
branch, of second order, satisfying Eq. (19) and have
the same asymptotic behavior up to order Oðr−1Þ.
This corresponds to the k ¼ 2 solution discussed in
[14] for constant transversal curvature.

In what follows the analysis of the nonconstant cur-
vature transverse sections will be discussed. Specifically,
some new solutions will be classified according to their
degeneration on their effective cosmological constants.
Afterward, the constraints on the cðiÞ’s necessary to ensure
sound action principles for each of the solutions will be
studied.

A. Einstein-like solutions

First, the solutions that share the asymptotic behavior
of general relativity in d ¼ 7 will be analyzed. These will
be nicknamed Einstein-like solutions and the correspond-
ing EOM are (32) and (34) respectively. Later, it will be
determined the constraints for these solutions to have sound
action principles.

1. Gauss Bonnet in seven dimensions

The solution to Gauss-Bonnet gravity, Eq. (32), sharing
one branch with EH can be extracted from the algebraic
expression Eq. (24), i.e.,

K0

�
cð0Þ

�
r2

l2
− fðrÞ

�
þ cð1Þ

�
r4

l4

þ K1

�
−cð0Þ

�
r2

l2
− fðrÞ

�
fðrÞ

þ cð1Þ
�
r2

l2
− 2fðrÞ

�
þ cð2Þ

�
r2

l2
¼ M:

The solution has already been discussed in Sec. II and
therefore there is not much ado but to recall that this
solution only has finite conserved charges and action
principle provided cð1Þ2 ¼ cð2Þcð0Þ is satisfied. As men-
tioned in Sec. II this constraint is also mandatory for higher
dimensions solutions of GB gravity as well.

2. Cubic gravity in seven dimensions

In d ¼ 7 one can consider as well Eq. (34), which
corresponds to q ¼ 3, a cubic gravity that shares one
branch with EH. As before, the solution can be extracted
from Eq. (24), yielding the cubic equation for fðrÞ,

K0

�
cð0Þ

�
r2

l2
− fðrÞ

�
þ cð1Þ

�
r4

l4
þ K1

�
−cð0Þ

�
r2

l2
− fðrÞ

�
fðrÞ þ cð1Þ

�
r2

l2
− 2fðrÞ

�
þ cð2Þ

�
r2

l2

þ K2

�
cð0Þ

�
r2

l2
− fðrÞ

�
fðrÞ2 − 2cð1Þ

�
r2

l2
−
1

2
fðrÞ

�
fðrÞ þ cð2Þ

�
r2

l2
− 3fðrÞ

�
þ cð3Þ

�
¼ M:

It is noteworthy to mention that the integration constant has been split intoM and K2cð3Þ. In d ¼ 7 this is merely an artifact
that maintains the general form of d > 7 where K2cð3Þ has real meaning.
In this case, even though the exact expression of fðrÞ can be obtained explicitly that will be omitted because that is

cumbersome and shed no light on the discussion. Fortunately, the asymptotic form of fðrÞ contains enough information to
address the problem of finiteness. That asymptotic form is given by

lim
r→∞

∼
cð1Þ
cð0Þ þ

r2

l2
þ ðcð1Þ2 − cð2Þcð0ÞÞ A

r2
þ B
r4

þ… ð37Þ

Here B is a constant depending on Ki’s. A is proportional to M and a function of cðiÞ’s and Ki’s.
One can observe that order r−2 spoils the corresponding EH asymptotia, namely rd−3 ∼ r−4, unless cð1Þ2 ¼ cð2Þcð0Þ.

This constraint is reinforced by checking that the conserved charges
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lim
r→∞

Qð∂tÞ ≈ ðcð1Þ2 − cð0Þcð2ÞÞ
�
−cð0ÞðKð0Þ − Kð1Þ þ Kð2ÞÞAþ l2ð3Kð0Þ − 7Kð1Þ þ 11Kð2ÞÞ

cð0Þ2
�
r3

−Mcð0ÞðKð0Þ − Kð1Þ þ Kð2ÞÞ þ cð1Þl4ð−3Kð0Þ þ 7Kð1Þ − 35Kð2ÞÞð3cð0Þcð2Þ − 2cð1Þ2Þ
24cð0Þ2

and the action principle,

I ¼ lim
r→∞

βðcð1Þ2 − cð0Þcð2ÞÞ
�ðKð0Þ − Kð1Þ þ Kð2ÞÞl2

4cð0Þ
�
r2

−
3βl4

��
− 2Kð0Þ

3
þ 14Kð1Þ

9
− 22Kð2Þ

9

�
cð1Þ3 þ cð0Þcð2Þ

�
Kð0Þ − 7Kð1Þ

3
þ 11Kð2Þ

3

�
cð1Þ þ 8cð3Þcð0Þ2Kð2Þ

3

�
8cð0Þ2 − PðrþÞ;

are both finite provided cð1Þ2 ¼ cð2Þcð0Þ.
To finish this discussion it must be emphasized that in this case there is no restriction on cð3Þ, as occurred for cð2Þ

in d ¼ 5.

3. Higher dimensions

The higher dimensional (d > 7) extension of the solution above can be done directly from Eq. (24). Its asymptotic form,
for d > 7, is given by

lim
r→∞

fðrÞ ∼ cð1Þ
cð0Þ þ

r2

l2
þ ðcð1Þ2 − cð2Þcð0ÞÞ A

r2
þ
�
cð3Þ − cð1Þ3

cð0Þ2
�
B
r4

þ D
rd−3

þ… ð38Þ

It can be observed that this expression differs from the
expected EH behavior ðr−ðd−3ÞÞ by two terms. This first
one cð1Þ2 − cð2Þcð0Þ ¼ 0 is the same as in d > 5. The
second, for d > 7, is cð3Þcð0Þ2 ¼ cð1Þ3. It is direct, but
cumbersome, to check that the finiteness of the conserved
charges and action principle requires cð1Þ2 ¼ cð2Þcð0Þ and
cð3Þcð0Þ2 ¼ cð1Þ3.

4. Final comments

It is worth noticing that each of the conditions men-
tioned above is trivially satisfied if a constant curvature
transverse section were considered. Furthermore, it is not
clear that any other than a constant curvature manifold can
satisfy them.
The generality of the constraints cð1Þ2 ¼ cð2Þcð0Þ and

cð3Þcð0Þ2 ¼ cð1Þ3, being valid for GR-GB and cubic
gravity in d ¼ 7 may be foreseen, within the Einstein
branch, the rise of further constraints as the higher order on
R in the Lovelock theory increases. In this way, quartic
gravity would require a constraint of cð4Þ for d > 9, and so
on. Unfortunately, in general, this cannot be confirmed
analytically because the equation for fðrÞ cannot be solved
for powers higher than four.

B. Second order degenerated solutions

Solutions presenting a second-order degeneration on
the ground state, i.e., the solutions of (33) will be called

second-order degenerated solutions. Before proceeding it is
worth recalling in the case of a constant curvature trans-
verse section the slope is given by Oðr−1Þ [14].

1. Seven dimensions

The static solution to Eq. (33) can be obtained, see
Eq. (24), by solving the algebraic relation

K0

�
cð0Þ

�
r2

l2
− fðrÞ

�
2

þ 2cð1Þ
�
r2

l2
− fðrÞ

�
þ cð2Þ

�
r2

l2

¼ M: ð39Þ

The physical solution is given by

fðrÞ ¼ cð1Þ
cð0Þ þ

r2

l2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ml2

K0cð0Þr2
þ 1

cð0Þ2 ðcð1Þ
2 − cð2Þcð0ÞÞ

s

ð40Þ

This solution presents two clear cases, cð1Þ2 ¼ cð2Þcð0Þ
and cð1Þ2 ≠ cð2Þcð0Þ.

(i) For cð1Þ2 ¼ cð2Þcð0Þ the solution is given by

fðrÞ ¼ cð1Þ
cð0Þ þ

r2

l2
−
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ml2

K0cð0Þ

s
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which shares the slope r−1 of the constant curvature
transverse section solution [14,15]. The conserved
charge is finite and given by

Qð∂tÞ ¼ Ml4 þ l4
K0cð1Þ3
6cð0Þ2 ; ð41Þ

connecting M, the integration constant, with the
mass/energy of the solution. In the same fashion, it is
direct to check that the action principle is also finite
and given by

I ¼ β

�
l4
K0cð1Þ3
6cð0Þ2

�
− PðrþÞ;

where PðrþÞ is finite and β is the inverse of the
Euclidean period.

(ii) The case cð1Þ2 ≠ cð2Þcð0Þ presents some unique
features that can observed in

lim
r→∞

fðrÞ ∼ cð1Þ
cð0Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

cð0Þ2

s
þ r2

l2

−
M
r2

l2

2K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

p
þM2

C4

r4
þ…:; ð42Þ

where C4 is a constant depending on ðcð1Þ2−
cð2Þcð0ÞÞ−3=2. One can notice that the leading order
Oðr−1Þ has been replaced by Oðr−2Þ, however this
does not affect the existence of a finite conserved
charge Qð∂tÞ, which is given by

Qð∂tÞ ¼ Ml2 þ Ev; ð43Þ

with

Ev ¼ K0l4

3cð0Þ2 ðcð1Þ
2 − cð2Þcð0ÞÞ32

þ K0l4

6cð0Þ2 cð1Þð3cð2Þcð0Þ − 2cð1Þ2Þ

establishing that M, the integration constant in
Eq. (39), is related with the mass/energy of the
solution. Furthermore, Ev has a soft limit to the
previous case. The action principle is finite as well
and is given by

I ¼ β

�
K0l4

3cð0Þ2 ðcð1Þ
2 − cð2Þcð0ÞÞ32

þ K0l4

6cð0Þ2 cð1Þð3cð2Þcð0Þ − 2cð1Þ2Þ
�

− PðrþÞ ð44Þ

2. Higher dimensions

In dimensions d > 7, one can observe the same basic
features observed in 7 dimensions, with the sole exception
that the coefficients cðiÞ, with i > 2, play a role in the
renormalization processes. The general solution is given by

fðrÞ ¼ cð1Þ
cð0Þ þ

r2

l2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mld−5

K0cð0Þrd−5
þ 1

cð0Þ2 ðcð1Þ
2 − cð2Þcð0ÞÞ

s

As before, the asymptotic behavior splits according
cð1Þ2 ¼ cð2Þcð0Þ or not.

(i) For cð1Þ2 ¼ cð2Þcð0Þ the solution is given by

fðrÞ ¼ cð1Þ
cð0Þ þ

r2

l2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mld−3

K0cð0Þrd−3

s
;

which matches the asymptotia of the constant
curvature transverse section case. For this solution,
though it is a bit long, it can be demonstrated that it
has a finite conserved charge

Qð∂tÞ ¼ Ml2 þ ld−3K0cð1Þðd−1Þ=2
2ðd−1Þ=2cð0Þðd−3Þ=2

The action principle is also finite and given by

I ¼ β
ld−3K0cð1Þðd−1Þ=2
2ðd−1Þ=2cð0Þðd−3Þ=2 − PðrþÞ:

where β is the Euclidean period. These results only
confirm, as expected, that cð1Þ2 ¼ cð2Þcð0Þ yields an
analogous situation as the corresponding constant
curvature constant transverse section solution in [15].

(ii) The case cð1Þ2 ≠ cð2Þcð0Þ has the different asymp-
totic behavior given by

lim
r→∞

fðrÞ ¼ cð1Þ
cð0Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

cð0Þ2

s
þ r2

l2

−
M

2K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

p �
ld−5

rd−5

�

þM2Cd−2

�
ld−3

rd−3

�
þ…:

Regardless of this completely different behavior, still
the associated conserved charge is finite providing
some relations between the cðiÞ, i > 2, are satisfied.
Remarkably, these relations cannot be satisfied by a
constant curvature transverse section, and therefore
these solutions represent a completely new family of
well-defined solutions. If those restrictions are
satisfied then the conserved charge is given by
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Qð∂tÞ ¼ Mld−3 þ Ev

where Ev is a finite, but cumbersome, function of cð1Þ and cð2Þ. For instance, in d ¼ 11 the finiteness requires that

cð3Þ ¼ −
2cð0Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2−cð2Þcð0Þ

cð0Þ2
q

cð2Þ − 2cð1Þ2cð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2−cð2Þcð0Þ

cð0Þ2
q

− 3cð1Þcð0Þcð2Þ þ 2cð1Þ3
cð0Þ2 cð4Þ

¼
−8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2−cð2Þcð0Þ

cð0Þ2
q

cð2Þcð1Þ − 3cð2Þ2
cð0Þ þ

4cð1Þ2
�
2cð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2−cð2Þcð0Þ

cð0Þ2
q

þ 3cð2Þ
�

cð0Þ2 −
8cð1Þ4
cð0Þ3

which yields

Ev ¼
��

−
15cð1Þ
32cð0Þ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

p
8cð0Þ2

�
cð2Þ2

þ
�
5cð1Þ3
4cð0Þ3 −

7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

p
cð1Þ2

8cð0Þ3
�
cð2Þ

−
3cð1Þ5
4cð0Þ4 þ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

p
cð1Þ4

4cð0Þ4
�
Kð0Þl8

By the same token, in d ¼ 11 the action principle is
also finite and given by

I ¼ β

��
−

15cð1Þ
32cð0Þ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

p
8cð0Þ2

�
cð2Þ2

þ
�
5cð1Þ3
4cð0Þ3 −

7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

p
cð1Þ2

8cð0Þ3
�
cð2Þ

−
3cð1Þ5
4cð0Þ4 þ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

p
cð1Þ4

4cð0Þ4
�
Kð0Þl8

− PðrþÞ

C. Second order-like solutions
in seven dimensions

It will be understood by second order-like degenerated
solutions those with the same asymptotic behavior of
second-order degeneration, namely the previous case, but
whose equations of motion have R3, or higher, powers on
the Riemann tensor (i.e., at least cubic gravity) and have
nonconstant transversal curvature. This case is described by
the Eq. (35). This can occur only for d ≥ 7. On the other
hand, unfortunately, in general, the exact expression of fðrÞ
cannot be obtained for d > 8, leaving only d ¼ 7, 8 as
sound options. In this section only cubic gravity with k ¼ 2
in d ¼ 7 will be explored as d ¼ 8 with k ¼ 2 essentially
has the features. In d ¼ 7 the solution satisfies the algebraic
equation, see Eq. (24),

K0

�
cð0Þ

�
r2

l2
− fðrÞ

�
2

þ 2cð1Þ
�
r2

l2
− fðrÞ

�
þ cð2Þ

�
r2

l2

þ K1

�
−cð0Þ

�
r2

l2
− fðrÞ

�
2

fðrÞ

− 2cð1Þ
�
r2

l2
− fðrÞ

�
fðrÞ þ cð1Þ

�
r2

l2
− fðrÞ

�
2

þ cð2Þ
�
2
r2

l2
− 3fðrÞ

�
þ cð3Þ

�
¼ Z0: ð45Þ

As in some previous cases, here the integration constants
have been split into K1cð3Þ and Z0 just to preserve the form
of the solution for d > 7. It must be emphasized that the
solution exists for d > 8 provided the higher power of the
Riemann tensor is not increased.
Unfortunately, the exact form of fðrÞ, in this case, is

remarkably cumbersome and thus does not provide
any hindsight. However, its asymptotic form provides
enough information to perform the analysis. As previously,
there is a split between the cases cð1Þ2 ¼ cð2Þcð0Þ and
cð1Þ2 ≠ cð2Þcð0Þ.

(i) For cð1Þ2 ¼ cð2Þcð0Þ the asymptotic form is given
by

lim
r→∞

fðrÞ∼cð1Þ
cð0Þþ

r2

l2
−
�
l
r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

cð0ÞðKð0Þ−Kð1ÞÞ

s !

þ… ð46Þ

It is direct to check that this asymptotic form yields a
finite action principle and finite conserved charge.One
can notice that the presence of cð3Þcð0Þ2 − cð1Þ3,
previously noticed in subsection VI A as a con-
straint to ensure an Einstein-like behavior, in this
case however it only shifts the value of the effective
mass as

Qð∂tÞ ¼ Ml4 þ ðKð0Þ − 7Kð1ÞÞl4cð1Þ3
6cð0Þ2 ð47Þ
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The action principle is given by

I ¼ β

�ðcð1Þ3ðKð0Þ − Kð1ÞÞ − 6cð3Þcð0Þ2Kð1ÞÞl4
6cð0Þ2

�
− PðrþÞ ð48Þ

It is direct to notice that this reproduces the features
of the constant curvature transverse section
solution.

(ii) For cð1Þ2 ≠ cð2Þcð0Þ the asymptotic form is given
by

lim
r→∞

fðrÞ ∼ cð1Þ
cð0Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ2 − cð2Þcð0Þ

cð0Þ2

s
þ r2

l2

þ
�
l
r

�
2

C2ðM; cðiÞ; KiÞ

þ
�
l
r

�
4

C4ðM; cðiÞ; KiÞ… ð49Þ

where

C2ðZ0; cðiÞ; KiÞ ¼
1

2κ2
ffiffiffiffiffiffiffiffiffi
cð0Þp �

ϒþ Z0

2Ξ3

�
2

ð50Þ

with

κ ¼ K1 − K0;

Ξ4 ¼ cð2Þ − cð1Þ2
cð0Þ ; and

ϒ ¼ Ξ2ffiffiffiffiffiffiffiffiffi
cð0Þp −

3

2

�
Ξ −

cð1Þ
cð0ÞΞ3

�
:

In Eq. (49), C4ðZ0; cðiÞ; KiÞ is also a function
depending on the constants Z0; cð0Þ; cð1Þ; cð2Þ;
K0, and K1. In this case, the conserved charge is
given

Qð∂tÞ ¼ Ml4 þ Ev ð51Þ

with

M ¼ ð2ϒΞ3Kð1Þ þ Z0Þ2
4κΞ4

:

One can notice, see Eq. (45), that definingM can be
done in general and adjusted by fine tuning Z0. Here,

Ev ¼
�
−

cð2Þl4
3
ffiffiffiffiffiffiffiffiffi
cð0Þp þ cð1Þ2l4

3cð0Þ32
�
Ξ2

þ cð1Þcð2Þl4
2cð0Þ −

cð1Þ3l4
3cð0Þ2

I ¼ β

 
l6ðcð2Þcð0Þ− cð1Þ2Þ2Kð0Þ2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4Kð0Þ2ðcð1Þ2 − cð2Þcð0ÞÞ

p
cð0Þ2

þ
�
3cð0Þcð1Þcð2Þ

2
− cð1Þ3

�
l4Kð0Þ

3cð0Þ2
!
−PðrþÞ: ð52Þ

D. Chern-Simons in seven dimensions

Besides the two cases above, in d ¼ 7 a cubic
Lagrangian could correspond to Chern-Simons gravity.
In this case, the EOM is given by Eq. (36) which reduces
the static ansatz to

�
r2

l2
− f

�
3

cð0Þ þ 6

�
r2

l2
− f

�
2

cð1Þ þ 6

�
r2

l2
− f

�
cð2Þ

¼ C · cð0Þ; ð53Þ

where Ccð0Þ is an integration constant related with the
energy of the solution. This yields

fðrÞ ¼ cð1Þ
cð0Þ þ

r2

l2
− C2: ð54Þ

The exact form of C2 ¼ C2ðcðqÞ; CÞ is not illustrative, but
can be reckoned from solving

−
�
cð1Þ
cð0Þ − C2

�
3

cð0Þ þ 6

�
cð1Þ
cð0Þ − C2

�
2

cð1Þ

− 6

�
cð1Þ
cð0Þ − C2

�
cð2Þ ¼ Ccð0Þ:

Equation (54) essentially can be cast as a generalization of
the constant curvature case discussed in [14]. It can be
inferred that for Chern Simons gravity in d ¼ 7 there are no
constraints so that the solution with nonconstant transversal
curvature has finite value for its conserved charge due to its
energy being related to C2 and consequently for its action.

VII. DISCUSSION

In this work it has been shown some new proper
asymptotically AdS static black hole solutions with non-
constant curvature transverse sections. The analysis was
carried out by establishing the conditions that yield the
finiteness of the conserved charges, associated with the
time symmetry, and the corresponding action principle.
These solutions satisfy Lovelock gravities EOM given by
Eq. (20), whose form can be sketched as

�
Rþ e2

l2

�
k
�Xq−k

s¼0

KðsÞRs

�
e
l

�
2ðq−k−sÞ�

¼ 0;
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with q < ½ðd − 1Þ=2�. Here q represents the highest power
of the Riemann tensors in the Lagrangian, and d the
dimension. Part of the analysis revealed that the solutions
can be classified according to their degeneration around the
AdS ground state, given by k in the equation above. In
particular, solutions with the degenerations up third order
are discussed in detail for d ≤ 7. The results can be
summarized as follows

(i) For Chern-Simons gravity, namely d ¼ 2nþ 1 and
ðk ¼ q ¼ nÞ, the situation is essentially identically
to the constant curvature transverse section case with
no constraint on the cðqÞ0s. The effect considering
nonconstant curvature transverse sections is a modi-
fication in the mass/energy by a function of the
corresponding cð0Þ; cð1Þ;…cðn − 1Þ.

(ii) For ðk; qÞ ¼ ð1; 1Þ, namely the solutions of general
relativity, it is only required to know cð0Þ and cð1Þ,
and thus no further constraints on the values of cðqÞ,
for q > 2 arises. This grants GR a singular statuswhere
transverse sections are essentiallyunconstrained.This is
a very appealing condition in the context of the AdS/
CFT conjecture, as mentioned above.

(iii) For k ¼ 1 and 1 < q < ½d=2� (called Einstein-like
solutions), meaning theories with higher power
of the Riemann tensor that have branches with a
solution that could share the asymptotia of general
relativity, the finiteness of the conserved charges and
the action principle impose an increasing number
conditions, with q, on the cðpÞ0s. For instance,
q ¼ 2 it is required that

cð1Þ2 ¼ cð2Þcð0Þ

in d > 5. In the same fashion, for d ≥ 9 and q ≥ 3 it
is also required that

cð3Þcð0Þ2 ¼ cð1Þ3:

These two conditions are satisfied by any constant
curvature transverse sections. For higher orders in q
andhigher dimensions, one can foresee the rise of a set
of conditions of the same fashion to be trivially satis-
fied by any constant curvature transverse sections.

(iv) For ðk ¼ 2; q ¼ 2Þ, called second order degenerated
solutions, the solutions split into the two disjointed
cases cð1Þ2 ¼ cð2Þcð0Þ and cð1Þ2 ≠ cð2Þcð0Þ. In
the first case, the slope agrees with the one given by
considering the constant curvature transverse section
case and no further constraints arise.
Remarkably, for cð1Þ2 ≠ cð2Þcð0Þ both the

charges and action principle can be finite, but the
slope of the solutions differ from the constant
curvature transverse section case. This introduces
a new family of solutions whose extension, for
instance to stationary solutions, can yield some

interesting new results. This will be explored
elsewhere.

(v) For k ¼ 2 and 2 < q < ½d=2�, (called second-
order like solutions) the behavior of ðk; qÞ ¼
ð2; 2Þ is recovered completely. For instance, the
split between the behaviors of cð1Þ2cð2Þcð0Þ and
cð1Þ2 ≠ cð2Þcð0Þ cases is reproduced.

To finish it is worthmentioning just a few interesting open
questions. The analysis of the thermodynamics requires
addressing if it is possible to have vanishing temperature
solutions and if some constrains on the cq coefficients rise.
Unfortunately, this requires determining the specific form of
fðrÞ which, as mentioned before, is not possible in general
for d > 8. This is not an easy task as even the constant
curvature transverse section solutions ofGBgravity require a
thorough discussion [40]. Finally, as mentioned before, in
this work only a particular method of regularization was
used, and thus it is also an open question if another method
could yield different constraints on the cðqÞ or any at all.
This work has discussed the physical viability of spaces

with nonconstant curvature, prompting consideration of
potential future applications. In this regard, it is known,
for example, that by employing the Kerr-Schild ansatz,
rotating solutions can be obtained. This approach involves
applying a perturbation to a seed spacetime. Thus far, such
seed spaces have primarily featured constant curvature in the
literature. For instance, in Refs. [41,42], rotating solutions in
EGB gravity were obtained by perturbing an AdS (and also
flat [41]) spacetime in ellipsoidal coordinates. See also
Refs. [43,44]. This raises the question of whether in a future
study, a mechanism analogous to Kerr-Schild could be
designed where the seed possesses nonconstant curvature.
However, the latter seems to be a very difficult task, and a
comprehensive analysis is necessary to propose an ansatz for
stationary geometries. The Kerr-Schild ansatz big advantage
is to allow visualizing Killing vectors, both lightlike and
spacelike manifestly, and thus to implement the axial
symmetry beforehand. See for instance [45] for a review.
Unfortunately, the expression of the fundamental equations
in this work, Eq. (18), in terms of a Kerr-Shield ansatz does
not seem to be trivial, or generic, seeming to need to be
studied case by case (n, k). Even though this is a promising
line of study, it is certainly beyond this work’s scope.
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APPENDIX A: LOVELOCK EQUATIONS
OF MOTION

The variation of Eq. (4) is given by,

δ0L ¼ Gfδ0ef þDðδ0wabÞτab ðA1Þ
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where

τab ¼
∂L
∂Rab ¼ κ

Xn−1
p¼0

pαpϵaba3…a2n

�
ðRÞp−1

�
e
l

�
2n−2p

�
a3…a2n

:

ðA2Þ

and

Gf ¼ ∂⃖L
∂ef

¼ κ
Xn−1
p¼0

ð2n − 2pÞαpϵa1…a2n−1f

×

�
ðRÞp

�
e
l

�
2n−2p−1

�
a1…a2n−1 ðA3Þ

Using the Stoke theorem the second term in Eq. (A1) can be
split such that obtaining the second field equationDðτabÞ ¼
0 and the boundary term

Θðδ0wabwabedÞ ¼ κ
Xn−1
p¼0

pαpϵa1…a2n

×

�
δ0wðRÞp−1

�
e
l

�
2n−2p

�
a1…a2n

: ðA4Þ

It is worth mentioning that for general αp, Ta ¼ dea þ
wa

beb ¼ 0 is the only solution for DðτabÞ ¼ 0, thus this
formalism is equivalent to the metric formalism. However,
for the special case of Chern-Simons, although Ta ¼ 0 is a
solution, it is not the most general one. See for instance [46].

APPENDIX B: REGULARIZATION

The renormalization process of Lovelock gravity in even
dimensions (d ≥ 4) is direct and can be accomplished by
adding the corresponding Euler density with a suitable
unitless constant. See for instance [29,47]. Because of this,
and for simplicity, only the renormalization process in odd
dimensions will be sketched. For further details, see,
[20,27,35,48]. Unlike even dimensions, in this case, the
regulation process must be carried by a suitable boundary
term at the asymptotic AdS region. For the horizon, as no
divergencies can arise, no additional term is necessary to
attain finiteness.
The variation of the Lovelock action on the shell can be

written as:

δ0ILL ¼
Z
∂M

l2n−1
�Xn

p¼0

pð−1Þ2n−2pþ1αp

�
δ0ωRn−1: ðB1Þ

From this, it is straightforward to realize, as mentioned
above, that there is not a proper set of boundary conditions
that define δILL ¼ 0 as R diverges in the asymptotically
AdS region. This can be amended by the addition of the
boundary term given by [27,49]:

IR ¼
Z
∂M∞

B2n

¼ κ

Z
∂M∞

Z
1

0

Z
t

0

�
Ke

�
R̃þ t2ðKÞ2 þ s2

e2

l2

�
n−1�

dsdt

ðB2Þ

where R̃ and K stand for the Riemann two-form and
extrinsic curvature one-form respectively of the boundary
∂M∞ ¼ R × ∂Σ∞. One must recall the Gauss Codazzi
decomposition:

R̃ab þ ððKÞ2Þabj
∂M∞

¼ Rabj
∂M∞

ðB3Þ

where Rab is the Riemann two form of M. κ in Eq. (B2)
stands for a constant to be determined. The variation of
Eq. (B2) yields:

δ0IR ¼ κ

Z
∂M∞

Z
1

0

ðeδ0K − δeK0Þ

×

�
R̃þ t2ðKÞ2 þ t2

e2

l2

�
n−1

dt

þ κn
Z
∂M∞

Z
1

0

�
eδ0K

�
R̃þ ðKÞ2 þ t2

e2

l2

�
n−1�

dt

ðB4Þ

For an asymptotically local AdS space, as the boundary is
approached, it is satisfied that eδ0K − δ0eK → 0 and
δK → δωj

∂M. The fundamental key for the computation,
however, is the fact that e2 → −l2R. Finally, these con-
ditions allow us to express variation as:

δ0IR ¼ κn
Z
∂M∞

eδ0KRn−1
�Z

1

0

ð1 − t2Þn−1
�
dt: ðB5Þ

In this way, the variation of I ¼ ILL þ IR:

δ0I ¼
Z
∂M∞

�
δ0K

�
e
l

�
Rn−1

�

×

�
l2n−1

Xn
p¼0

pð−1Þ2n−2pþ1αp þ nlκ
ΓðnÞ ffiffiffi

π
p

2Γðnþ 1
2
Þ
�
þ…

ðB6Þ

here, … stands for the integral of Eq. (B1) on the horizon.
This defines:

κ ¼ 2l2n−2

n

�Xn
p¼0

pð−1Þ2n−2pαp
�
Γðnþ 1

2
Þ

ΓðnÞ ffiffiffi
π

p ðB7Þ

In doing this now, there is a proper action principle. The
Noether charge, in this case, is given by:
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QðξÞ∞ ¼
Z
∂Σ∞

�
Iξω

�Xn
p¼0

pαpRp−1e2ðn−pÞþ1

�
þ κIξ

�Z
1

0

Z
t

0

Ke

�
R̃þ t2ðKÞ2 þ s2

e2

l2

�
n−1�

dsdt

�
ðB8Þ

The direct evaluation of this expression for ξ ¼ ∂t on the static spaces considered yields the final result.
To conclude this section, it is convenient to express the presymplectic form in terms of the regularized Noether charge and

the variation of the action defined by the boundary term in Eq. (B2). This yields:

δ̂GðξÞj∞ ¼
Z
∂Σ∞

δ̂QðξÞ∞ þ Iξ

�
κ

Z
1

0

ðeδ̂K − δ̂eKÞ
�
R̃þ t2ðKÞ2 þ t2

e2

l2

�
n−1

dt

þ 2κðn − 1Þδ̂l
Z

1

0

Z
1

0

K

�
e
l

��
R̃þ t2ðKÞ2 þ s2

e2

l2

�
n−1

dsdt

− 2κðn − 1Þδ̂l
Z

1

0

Z
1

0

K

�
e
l

�
3
�
R̃þ t2ðKÞ2 þ s2

e2

l2

�
n−3

dsdt

�
: ðB9Þ
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