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Next-generation gravitational wave detectors such as the Einstein Telescope and Cosmic Explorer will
have increased sensitivity and observing volumes, enabling unprecedented precision in parameter
estimation. However, this enhanced precision could also reveal systematic biases arising from waveform
modeling, which may impact astrophysical inference. We investigate the extent of these biases over a year-
long observing run with 105 simulated binary black hole sources using the linear signal approximation.
To establish a conservative estimate, we sample binaries from a smoothed truncated power-law population
model and compute systematic parameter biases between the IMRPhenomXAS and IMRPhenomD
waveform models. For sources with signal-to-noise ratios above 100, we estimate statistically significant
parameter biases in ∼3%–20% of the events, depending on the parameter. We find that the average
mismatch between waveform models required to achieve a bias of ≤ 1σ for 99% of detections with signal-
to-noise ratios ≥ 100 should be Oð10−5Þ, or at least one order of magnitude better than current levels of
waveform accuracy.
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I. INTRODUCTION

Gravitational wave (GW) astronomy is revolutionizing
our understanding of relativistic astrophysics through the
direct detection of double compact object (DCO) mergers.
The LIGO-Virgo-KAGRA GW detector network has
already observedOð100Þ binary black hole (BBH) mergers
[1], allowing us to chart the population of black holes in
the local universe for the first time. The number of such
observations is expected to increase dramatically with the
introduction of next-generation (XG) GW detectors such
as the Einstein Telescope (ET) [2] and Cosmic Explorer
(CE) [3]. The increased sensitivities and observing volumes
of these detectors will open the door to unprecedented
science, ranging from studies of DCO formation channels
and multimessenger astronomy to probes of physics beyond
general relativity, nuclear physics and dark matter [4–9].
These applications will rely upon accurate measurements

of the astrophysical parameters of DCOs, which in turn
depend on the waveform models used to analyze the GW
signals. Due to computational constraints, current wave-
form models are semianalytic approximations to two-body
solutions in general relativity, which are then calibrated to
numerical relativity (NR) simulations of DCO mergers.
This gap between NR waveforms and semianalytic models

can lead to systematic biases in the inferred binary
parameters [10]. The problem of biased parameter infer-
ence is likely to be worse in regions of the parameter space
where NR calibration points are sparse.
The limited signal-to-noise ratio (SNR) achievable in

current detectors leads to large enough statistical uncer-
tainties on binary parameters that systematic biases are
generally not significant. At the sensitivity level of the third
observing run of the LIGO-Virgo-KAGRA detectors (O3),
the systematic biases from using inadequately calibrated
waveform models are not particularly concerning (but see,
e.g., [11,12] for cases in the O3 catalog where different
waveform models produce inconsistent parameter posteri-
ors). Future ground-based GW detectors, however, are
expected to observe DCO coalescences with SNRs in
excess of Oð100Þ or even Oð1000Þ [13,14]. The statistical
uncertainties associated with such detections will be small
enough that any systematic biases due to waveform errors
could become significant.
Some of the existing literature estimates the impact of

waveform errors on a handful of loud binaries. Studies by
Owen et al. [15] and Read [16], among others, demonstrate
the possibility of significant systematic biases due to wave-
form errors, even as early as O4. Pürrer and Haster [17]
compute the expected parameter biases for a few high-SNR
binaries in CE/ET to be in excess of 100σ. They show,
albeit briefly, that waveform errors could also bias pop-
ulation model parameters. They further estimate that the
mismatch between two given waveform models must be
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improved by ∼3 orders of magnitude to ensure accurate
parameter estimation for the loudest binaries in XG detec-
tors. Hu and Veitch [12] also conclude that a 3–4 order of
magnitude improvement in waveform accuracy would be
required at the SNRs expected in future ground-based
detectors. Previous work has also shown that systematic
bias will play a crucial role for the high-SNR massive black
hole mergers observed by the Laser Interferometer Space
Antenna (LISA) [10,18,19], and that parametrized tests of
general relativity using high-SNR detections can produce
biased results due to waveform modeling errors [20–23].
In this work, we expand and complement these studies

by establishing a lower bound on the required waveform
accuracy improvement for XG detectors. To this end, we
consider the distribution of parameter biases across an
astrophysical population of stellar mass BBHs. We first
limit our focus to a pair of current waveform models from
the same waveform family (IMRPhenomD [24,25] and
IMRPhenomXAS [26]), conservatively quantifying the
impact that current waveform errors will have on a realistic
population of XG GW observations. As a second step, we
synthetically tune the accuracy of our chosen waveforms
to model future improvements in waveform calibration.
Using waveforms interpolated between IMRPhenomD
and IMRPhenomXAS, we estimate a minimum accuracy
requirement for future waveform models to produce con-
sistent parameter estimation across an astrophysically
motivated BBH population.
The plan of the paper is as follows. In Sec. II we discuss

how the Fisher information matrix formalism can be used to
estimate waveform errors and systematic biases through the
formalism developed by Cutler and Vallisneri [10], and we
introduce our waveform interpolation scheme. In Sec. III
we present our model of the astrophysical BBH population.
In Sec. IV we compute waveform errors within the Cutler-
Vallisneri formalism, and estimate the waveform accuracy
requirement for these systematic errors to be subdominant
with respect to statistical errors in XG detectors. In Sec. V
we compare these results against full Bayesian parameter
estimation calculations for selected binaries. In Sec. VI
we discuss the implications of our work and possible
directions for future research. In Appendix Awe generalize
the Cutler-Vallisneri calculation to a detector network, in
Appendix B we illustrate the importance of waveform
alignment in the calculation of the biases on luminosity
distance, in Appendix C we show how the choice of a
reference frequency parameter affects the behavior of
frequency-domain waveforms and of the bias, and in
Appendix D we show how the biases and statistical errors
change as a function of the interpolation parameter between
different waveforms.

II. STATISTICAL AND SYSTEMATIC ERRORS

In this section we discuss how to compute parameter
errors and the Cutler-Vallisneri parameter bias within the

Fisher information matrix formalism. We introduce the
mismatch between waveforms, and we present a waveform
interpolant that will be used in the rest of the paper to
quantify how close two waveforms should be in order to
achieve some desired maximum bias in the estimated
parameters.

A. Fisher information matrix

The Fisher information matrix for a detected waveform
hðθ⃗Þ which depends on a set of parameters θ⃗ ¼ fθig is
defined as

Γij ≡
�
∂h
∂θi

���� ∂h
∂θj

�
; ð1Þ

where the inner product between two waveforms in the
frequency domain is defined as

ðajbÞ≡ 4Re
Z

fmax

fmin

ãðfÞ · b̃ðfÞ�
SnðfÞ

df; ð2Þ

and SnðfÞ is the noise power spectral density for the given
detector. For a network of detectors, the network Fisher
matrix is given by

ΓNet ¼ ΣND
D¼1ΓD; ð3Þ

where the subscript D labels each detector in a network
made up of ND total detectors. In the linear signal
approximation and under the assumption of Gaussian
posteriors [27], the network’s covariance matrix is

ΣNet ¼ ðΓNetÞ−1: ð4Þ

The variances and covariances for each parameter are given
by the diagonal and off-diagonal elements of ΣNet, respec-
tively, such that

σθi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Σii;Net

p
: ð5Þ

We use the GWBENCH [28] code to compute Fisher
information matrices and waveform derivatives for our
simulated BBH population. The detector network consists
of one 40 km Cosmic Explorer detector in Idaho, USA and
one 20 km Cosmic Explorer detector in New South Wales,
Australia, plus one Einstein Telescope detector at design
sensitivity in Cascina, Italy (from now on, for brevity, a
“2CEþ ET” network). The specific locations and orienta-
tions of these detectors can be found in Table III of
Ref. [28] under the labels C, S, and E, respectively. The
power spectral densities (PSDs) adopted here correspond to
the 4020ET network of Ref. [8].
We set the minimum frequency for the detector response

to be 5 Hz, which is also the reference frequency used to
generate the waveforms.
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We compute the waveform derivatives and Fisher matri-
ces for the following parameters: chirp mass Mc, sym-
metric mass ratio η, components of the primary and
secondary dimensionless spins along the orbital angular
momentum χ1;z and χ2;z, luminosity distance DL, coales-
cence time tc, coalescence phase ϕc, binary inclination ι,
right ascension RA, declination DEC, and polarization
angle ψ . These parameters encapsulate all the degrees of
freedom in the waveform models considered for this study.
Although we compute derivatives with respect to all of

these parameters, in this study we only consider biases
on the intrinsic binary parameters and on the luminosity
distance DL. Our tests show that the posteriors for the
intrinsic parameters are generally well approximated by
Gaussian distributions, and so the Fisher formalism is better
suited to these parameters. To incorporate physical bounds
on the statistical errors (particularly for the spins) within the
Fisher matrix formalism, we crudely impose prior bounds
following Refs. [29–31], i.e., we rewrite the Fisher matrix
for each binary as

Γbounded ¼ Γþ Γð0Þ: ð6Þ

Here, Γ is the naïve output of the Fisher matrix compu-
tation, and Γð0Þ is the Fisher matrix corresponding to the
multivariate Gaussian prior imposed on the system. The
covariance matrix for the system can then be written as

Σbounded ¼ ðΓþ Γð0ÞÞ−1: ð7Þ

For simplicity, we only impose priors on χ1;z and χ2;z such
that their statistical uncertainties are bounded in the range
½−1; 1�. We find that imposing priors on other parameters
(such as Mc and η) does not significantly impact the
covariance, since the naïve error estimates for those
parameters are generally small compared to the prior range.

B. Cutler-Vallisneri bias

Consider the scenario where a DCO merger produces
some true gravitational waveform hTR, which we might
detect with our network of ground-based GW detectors. Let
us denote by hAP some hypothetical state-of-the-art wave-
form model approximant used to infer the binary param-
eters. Due to imperfect calibration of the approximate
waveform model, there will be regions of the parameter
space θ⃗ such that hTRðθ⃗Þ ≠ hAPðθ⃗Þ. The resulting system-
atic bias on the parameter θi is given by

Δθi ¼ �
Γ−1
AP;Net

�
ijΣND

D¼1

�
∂jðhAPÞDjðhTRÞD − ðhAPÞD

�
; ð8Þ

where ΓAP;Net is the network Fisher matrix defined in
Eq. (3) evaluated using the hAP waveform, and ðhAPÞD and
ðhTRÞD represent the responses of the approximate and true
waveforms in detector D, respectively.

To our knowledge, this bias was first computed in
Refs. [10,32]. The generalization to a detector network
given in Eq. (8) above can be found in Appendix A. From
now on, we will refer to Δθi as the Cutler-Vallisneri bias.
In practice, we do not have access to a perfect model for

the “true” waveform hTR. To emulate the effect of wave-
form modeling errors, we thus use two waveform models
from the IMRPhenom family of phenomenological GW
approximants. Specifically, we use IMRPhenomXAS [26]
to represent the “true” waveform hTR, and IMRPhenomD
[24,25] as the imperfectly calibrated waveform model hAP.
These are both frequency-domain models of the gravi-

tational radiation from nonprecessing BBHs which
include only the dominant (2, 2) spherical harmonic mode.
IMRPhenomXAS is an update to IMRPhenomD with
better calibration to reference waveforms with large mass
ratios and unequal spins [26]. As a result, any differences
between IMRPhenomXAS and IMRPhenomD should be
largest for volumes in the parameter space where the fewest
calibration waveforms exist. We use semianalytic wave-
form models, rather than NR waveforms, to represent the
true as well as the approximate waveforms so that we can
study waveform errors for a population of BBHs spanning a
large volume of the parameter space. Since our goal is to
estimate waveform accuracy at the order-of-magnitude
level, we deem these waveform models sufficient for this
study. We expect waveform errors to be larger between
models from different families and with different physics,
so our study represents a conservative estimate of the
resulting biases. We leave more detailed comparisons with
other waveform models to future work.

C. Waveform mismatch

The differences in waveform models can be quantified
by the relative disagreement, or mismatch, between the
waveforms at a given point in parameter space. The
mismatch M between an approximate waveform hAP
and the true waveform hTR can be computed as

M ¼ 1 − max
ϕc;tc;ψ

ðhAPðθ⃗;ϕc; tc;ψÞjhTRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhAPjhAPÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhTRjhTRÞ

p ; ð9Þ

where we maximize over the parameters that capture
differences in waveform convention. A mismatch of zero
corresponds to two exactly equivalent waveforms, while a
mismatch of unity indicates maximally distinct waveforms
in the frequency domain.

D. Interpolating waveform models

We are interested in not only quantifying systematic
biases between current waveform models, but also estimat-
ing the requirements on future waveform models to
mitigate these biases. To find these accuracy requirements
in practice, we would like to generate waveforms with
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arbitrary levels of calibration with respect to a reference
waveform model. To accomplish this, we first decompose
our true and approximate waveforms into an amplitude and
a phase:

hTRðfÞ ¼ ATRðfÞ exp½iϕTRðfÞ�; ð10Þ

hAPðfÞ ¼ AAPðfÞ exp½iϕAPðfÞ�: ð11Þ

We can now construct a new waveform

h0APðfÞ ¼ A0
APðfÞ exp½iϕ0

APðfÞ�; ð12Þ

where the amplitude and phase are obtained by linearly
interpolating between the two original waveforms as
follows:

A0
AP ¼ λATR þ ð1 − λÞAAP; ð13Þ

ϕ0
AP ¼ λϕTR þ ð1 − λÞϕAP: ð14Þ

This approach allows us to place waveforms anywhere
between two given waveform models, and thus to emulate
future levels of waveform mismatch. By construction,
the h0AP waveform is expected to be in better agreement
with hTR than the hAP waveform (see Appendix D). The
parameter λ is best interpreted as a perturbation around
hTRðfÞ, in the direction of hAPðfÞ, such that j1 − λj ≪ 0.
We avoid larger values of λ, which may lead to unphysical
parameter biasing artifacts.

III. ASTROPHYSICAL POPULATION OF BINARY
BLACK HOLES

The accuracy of available waveform models can vary
drastically as a function of the intrinsic parameters of the
binary (such as masses and spins), depending on the
availability and accuracy of NR calibration waveforms.
One of our goals is to understand what fraction of the BBH
systems observable with XG GW detectors would be
strongly impacted by these biases. To answer this question,
we will quantify the aggregate severity of waveform
calibration biases over simulated binary populations com-
patible with current LIGO-Virgo-KAGRA observations.
Our results are naturally sensitive to the chosen population
model, so it will be worth expanding the present analysis
using various parametric and nonparametric populations in
the future. Following Ref. [5], we assume that our detector
network will detect 105 BBH sources over a one year-long
observing run. We sample the masses, spins, orientations,
and sky locations of these BBHs from probability density
functions consistent with our astrophysical assumptions.
While the specific population model chosen for our study
may not precisely represent the true distribution of BBHs in
the Universe, it should provide a reasonable first estimate of

the distribution of systematic biases for some of the most
interesting binary parameters.
Masses. The mass distribution of our BBH population is

chosen to follow the TRUNCATED model of Ref. [33], with
some modifications at the low-mass end. For our popula-
tion of 105 BBH systems, the primary mass m1 is drawn
from a modified truncated power-law distribution

pðm1jα; η; m0; mmin; mmaxÞ ∝ mα
1 × hðm1jm0; ηÞ

× Bðm1jmmin; mmaxÞ: ð15Þ

The proportionality sign indicates that the final probability
density function should be normalized, but we omit the full
expression here for clarity. The first term of Eq. (15)
represents the usual power law with exponent α. The next
term is a high-pass Butterworth filter with roll-off mass
m0 ¼ 5M⊙ and sharpness parameter η ¼ 50, given by

hðm1jm0; ηÞ ¼
�
1þ

�
m0

m1

�
η
	
−1
: ð16Þ

This term is responsible for smoothing the lower end of the
primary mass distribution so that it remains continuous.
The last term is the boxcar function, used to enforce thatm1

is between the limits mmin and mmax, and given by

Bðm1jmmin; mmaxÞ ¼
(
1 if m1 ∈ ½mmin; mmax�;
0 otherwise:

ð17Þ

In our simulations, we fixmmin ¼ 3M⊙ andmmax ¼ 60M⊙.
The Butterworth filter and power law ensure that the peak
of the primary mass distribution is at 5M⊙. The secondary
mass m2 is then drawn uniformly between mmin and m1.
When computing the waveform responses and deriva-

tives, these masses are converted to chirp mass Mc ¼
ðm1m2Þ3=5ðm1 þm2Þ−1=5 and symmetric mass ratio η ¼
ðm1m2Þðm1 þm2Þ−2.
Due to the gravitational redshift, only the redshifted

masses of a binary are observable via GWs. To properly
emulate GW detections, the binary component masses
sampled above must be converted into detector-frame
redshifted masses such that mdet ¼ mð1þ zÞ, where the
redshift for each binary is sampled from a suitable
probability distribution. Similarly, we have Mc;det ¼
Mcð1þ zÞ.
Spins. The spin magnitude for each binary component χi

is independently drawn from a beta distribution

pðχija; bÞ ∝ χa−1i ð1 − χiÞb−1: ð18Þ

We choose a ¼ 2 and b ¼ 7, which generally reproduces
the DEFAULT spin model from Ref. [33]. The spin orienta-
tions are isotropically distributed on the sphere, such
that the polar angle θ obeys pðcos θÞ ¼ U½−1; 1� and the
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azimuthal angle ϕ is distributed as pðϕÞ ¼ U½0; 2π�. We
limit our study to waveform models with aligned spins, so
we consider only the χi;z ¼ χi cos θ component.
Sky position and orientation. The right ascension and

declination of the binaries are sampled uniformly on the
sphere:

pðRAÞ ∝ U½0; 2π�; ð19Þ

pðcosðΘÞÞ ∝ U½−1; 1�; ð20Þ

where Θ ¼ DECþ π=2. The inclination angle ι is sampled
uniformly in cos ι, where an angle of 0 (π=2) represents a
face-on (edge-on) binary. The polarization angle ψ is
sampled uniformly between 0 and 2π.
Coalescence time and phase. The coalescence time, tc,

and phase, ϕc, are arbitrarily set to zero for all binaries
in the population when evaluating hTR. These parameters
are extrinsic, and can be chosen freely for each wave-
form model such that the overlap with the GW signal is
maximized [34–36]. We therefore evaluate hAP at the
values of tc and ϕc that minimize the mismatch defined
in Eq. (9), to allow for differences in conventions between
the two waveform models. We became aware of the
importance of aligning the waveforms when computing
the bias formula from the authors of Ref. [34]. We therefore
evaluate hAP at the values of tc and ϕc that minimize the
mismatch defined in Eq. (9), to allow for differences in
conventions between the two waveform models. In prac-
tice, aligning IMRPhenomD and IMRPhenomXAS in
coalescence phase and time can lower the computed biases
by several orders of magnitude, as first derived by Dhani
et al. [34].
Redshift. The source redshifts are drawn from the Madau

and Fragos [37] probability distribution, given by

ΨðzÞ ¼ 0.01
ð1þ zÞ2.6

1þ ½ð1þ zÞ=3.2�6.2M⊙ yr−1 Mpc−3: ð21Þ

The range of possible redshifts is chosen to be z∈ ½0.02; 50�
to match the population in Ref. [14]. Wherever necessary,
the redshift is converted to DL (and vice versa) using the
Planck18 [38] cosmology. For simplicity, we assume that
the star formation redshift distribution is the same as the
merger redshift distribution, i.e., we do not explicitly model
the delay times. The effect of this assumption will likely be
to underestimate the significance of waveform biases, since
a more careful modeling of delay times will cause BBHs
to merge at lower redshifts, and thus produce smaller
statistical errors on average.
In Fig. 1 we show the redshift distribution of the

simulated observable population at various SNR thresh-
olds. The chosen detector network can detect simulated
BBHs with SNR of Oð100Þ out to z ∼ 3. The median SNR
across the entire population is about 22, and the maximum

SNR for a binary in our population is ∼4000. This SNR
distribution is in reasonable agreement with recent fore-
casts of the capabilities of XG detectors [39–41].

IV. RESULTS

In our estimates of statistical and systematic parameter
estimation errors, we will limit our attention to the loudest
BBH sources, i.e., those with SNR ≥ 100. These systems
(roughly 3000 binaries in our population model) are
particularly valuable for astrophysical applications due to
the small parameter uncertainties, and they are also most
affected by any systematic biases between different wave-
form models. The event posteriors of high-SNR BBHs are
also generally well approximated by Gaussian distribu-
tions, and so the Fisher information formalism used in this
work is expected to be a good approximation for these
events. For the same reason, we also expect the systematic
bias computed under the linear signal approximation to be
reliable for these binaries. Wherever necessary, we impose
a limit in postprocessing to ensure that the biases do not
exceed physical bounds.

A. Current waveform model accuracy

In Fig. 2 we show the distribution of Cutler-Vallisneri
biases between IMRPhenomXAS and IMRPhenomD, Δθ,
normalized to the statistical uncertainties obtained from the
Fisher analysis, σθ, for the following binary parameters:
m1;det, m2;det, χ1;z, χ2;z, and DL. Note that while both hTR
and hAP enter the calculation of Δθ through the inner
product of Eq. (8), the Fisher matrix is always computed
only in terms of the recovered signal hAP.
As a rule of thumb, we will say that a parameter is

unbiased (biased) if jΔθ=σθj ≤ 1 (jΔθ=σθj > 1, respec-
tively). The differences between IMRPhenomXAS and
IMRPhenomD can bias parameter values by at least 1σ

FIG. 1. Redshift distributions of the binaries observed at
various SNR thresholds by a 2CEþ ET network, as sampled
from the Madau and Fragos [37] distribution.
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for a few percent of this high-SNR population, with spin
being the most affected parameter.
Although not shown in this figure (but see Fig. 3), the

largest biases can reach ≥ 20σ for the masses, and ≥ 50σ
for the spins. Regardless, there are at least 2500 binaries in
our population with SNR ≥ 100 and unbiased intrinsic
parameters. The average mismatch between the two wave-
form models across the SNR ≥ 100 binaries is M ¼
2.6 × 10−4. Note that the parameters shown can be biased
in either direction, depending on the specific configuration
of the binary system. As such, the average values of the
biases are consistent with zero for most parameters when
we consider the entire population.
In Fig. 3 we show a few alternate visualizations of the

magnitudes of the normalized biases jΔθ=σθj for various
binary parameters.
The top panel of this plot displays a strong positive

correlation between the SNR of a binary and the signifi-
cance of the waveform biases. This is expected, as the
statistical uncertainties scale as SNR−1, while it can be
shown that the systematic uncertainties from Eq. (8) do not
depend on SNR.
The spin of a binary also seems to have some impact on

the magnitude of the biases: the second panel from the top
in Fig. 3 shows that large differences in spin magnitudes
are weakly correlated with larger biases. Although this is
not a particularly strong effect in the data, it aligns with the
differences in calibration between IMRPhenomD and
IMRPhenomXAS, with the former waveform model being
calibrated primarily to equal-spin binary simulations [25],
and the latter being calibrated to more unequal-spin
simulations [26]. As the spin parameter space gets explored
better in simulations, differences in calibration between
different waveform models will likely become more
apparent.

The significance of Cutler-Vallisneri biases for intrinsic
parameters is also somewhat positively correlated to the
binary mass ratio m1=m2 (third panel) and to the total
detector-frame mass (bottom panel). Compared to
IMRPhenomD, the IMRPhenomXAS waveform model
is calibrated to additional waveforms with large mass
ratios. Additionally, IMRPhenomD exhibits worse calibra-
tion to high-mass binaries than to low-mass binaries (see
Fig. 15 of [26]), which may explain the trends in Fig. 3.
Although not explored further in this study, other popula-
tion models allowed by the Gravitational Wave Transient
Catalog 3 (GWTC-3) [42] exhibit overdensities in the
primary mass spectrum around m1 ≈ 10M⊙ or higher. Our
assumed population is dominated by lower mass black
holes, and hence, our study is conservative in terms of the
assumed mass distribution. The median biases for the true
observed BBH population will likely be larger than our
estimates.

FIG. 2. Significance of waveform calibration biases between
IMRPhenomD and IMRPhenomXAS, for various parameters,
over the SNR ≥ 100 subpopulation. All the biases have been
normalized by the statistical uncertainties, such that the dashed
lines indicate the 1σ bias thresholds. The average mismatch
between the true and approximate waveforms computed across
this set of binaries is shown in the top left corner, and the
percentages of events with > 1σ bias are listed in the legend.

FIG. 3. The absolute value of Cutler-Vallisneri biases for
various parameters vs SNR (top), absolute difference between
spins (2nd from top), mass ratio (3rd from top), and detector-
frame total mass (bottom). Each dot is one binary from the
SNR ≥ 100 subpopulation, and the solid black line tracks the
rolling average of the bias for each parameter. Biases are
normalized to the statistical errors for each binary. The green
shaded region represents biases below 1σ.
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In Table I, we show the behavior of the median
magnitude of Cutler-Vallisneri biases for our population
of BBHs for subpopulations with various SNR thresholds,
with predictions for the threshold above which the median
biases would overcome statistical uncertainties. For each
parameter in the table, we present the median absolute
values of Cutler-Vallisneri biases, jΔθj, for three sets of
SNR cutoffs. The SNR ≥ 100 threshold is the fiducial
value adopted for Fig. 2.
The absolute parameter biases computed via the Cutler-

Vallisneri formalism are independent of SNR, and so these
values are largely constant across SNR thresholds. In
parentheses, we indicate how significant the biases are,
normalized by the statistical uncertainty in each of the
parameters (jΔθ=σθj). Since σθ scales inversely with SNR,
we find that the significance of the bias increases almost
linearly with the SNR cutoff. The final column of Table I
lists the SNR threshold, SNR1σ, above which the median
bias is expected to exceed 1σ. Due to lack of sufficient
statistics at higher SNR thresholds, we do not always find
subpopulations with jΔθ=σθj ≥ 1 for the listed parameters.
In those instances, we compute SNR1σ by extrapolating
from subpopulations with lower SNR cutoffs. Based on our
data, we find that parameter biases due to waveform errors
could start becoming significant around SNR ≥ 400 for a
typical binary from the specified population. In other
words, we expect half of the detected population with
SNR ≥ 400 to have at least one parameter that is signifi-
cantly affected by waveform modeling errors.

B. Estimating future accuracy requirements

Waveform models with better calibration to NR, and
subsequently smaller mutual mismatch across the param-
eter space, will be crucial to making optimal use of XG GW
detections. A natural question to ask is: how much better do
such waveform models need to be? One approach could be

to set a benchmark for the performance of these future
waveforms, say, a waveform calibration effort that results
in 99% of the expected detections to be biased by ≤ 1σ for
a few chosen parameters. We can use the formalism
described in Sec. II D to quantify the average mismatch
for which this condition will be met.
In Fig. 4, we show the distribution of systematic biases

between IMRPhenomXAS and various sets of interpolated
waveforms with selected values of the interpolation param-
eter λ. The precise percentage by which each parameter
is biased above the acceptable threshold depends on the
specifics of the interpolated waveform, and is merely
demonstrative. The general trend, however, is robust:
improving the agreement between two waveforms models
lowers the overall systematic bias between them. Note that
biases in DL have been omitted from the following
discussion, since they are particularly sensitive to the
interpolated waveforms and can be affected in unphysical
ways. However, as we showed in the previous section,
biases in the intrinsic parameters are typically larger than
biases in DL. As such, consideration of the intrinsic
parameters should be sufficient for determining the strong-
est constraints on the waveform accuracy threshold. See
Appendix D for an illustration of how the intrinsic
parameters vary with λ for a single binary.
Performing this analysis for a finer grid of interpolated

waveforms, we can develop a picture of how biased each
parameter is for a range of average waveform mismatches.
This result is shown in the left panel of Fig. 5. As the
average mismatch between waveform models decreases,
the percentage of events with SNR ≥ 100 and bias ≥ 1σ
decreases for every parameter. In the right panel of Fig. 5, we
show how this mismatch requirement varies over a range of
SNR cutoffs, and not just the fiducial SNR ≥ 100 threshold.
As one considers lower SNR binaries, the average mismatch
requirement for keeping 99% of the binaries unbiased
becomes less stringent across all parameters. On the other

TABLE I. Median magnitudes of the Cutler-Vallisneri biases, jΔθj (and their significance with respect to statistical
errors, jΔθ=σθj), for subpopulations above various SNR thresholds in the 2CEþ ET detector configuration. SNR1σ

denotes the approximate SNR threshold above which the median significance of the bias in each parameter is
expected to exceed unity. For parameters that never exceed a median bias of 1σ in our population due to limited
statistics, the SNR1σ thresholds are calculated by extrapolation, and are marked with an asterisk (*).

Median absolute bias jΔθj (jΔθ=σθj)
Parameter SNR ≥ 100 SNR ≥ 200 SNR ≥ 300 SNR1σ

m1;det 0.24M⊙ (0.1σ) 0.25M⊙ (0.2σ) 0.26M⊙ (0.4σ) ∼500*
m2;det 0.18M⊙ (0.1σ) 0.18M⊙ (0.3σ) 0.21M⊙ (0.4σ) ∼500*
m1 0.18M⊙ (0.1σ) 0.22M⊙ (0.3σ) 0.25M⊙ (0.4σ) ∼500*
m2 0.14M⊙ (0.1σ) 0.16M⊙ (0.3σ) 0.19M⊙ (0.4σ) ∼500*
χ1;z 0.07 (0.2σ) 0.12 (0.4σ) 0.14 (0.5σ) ∼400
χ2;z 0.10 (0.2σ) 0.16 (0.4σ) 0.19 (0.6σ) ∼400
DL 12.7 Mpc (0.1σ) 3.4 Mpc (0.2σ) 2.2 Mpc (0.3σ) ∼700*
z 1.9 × 10−3 (0.1σ) 6.1 × 10−4 (0.2σ) 4.4 × 10−3 (0.3σ) ∼700*
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hand, the average mismatch required is much lower for
subpopulations with higher SNRs.
Based on the SNR ≥ 100 results, the average mismatch

between the two given waveform models would need to
be ∼6 × 10−5 for the intrinsic parameters of 99% of the

population to remain unbiased. The mismatch requirement
can be as strict as 1 × 10−5 if we consider subpopulations
with larger SNRs. Recall that the default average mismatch
for the SNR ≥ 100 binaries was 2.6 × 10−4. Therefore,
the required mismatch is lower by nearly an order of
magnitude.
This statement is sensitive to several assumptions,

including the choice of population, the waveform models
in question, and even the parameters for which the bias
should be minimized. Also, we stress that this requirement
applies to the average mismatch across our population,
and not to individual binaries. Many low-SNR events in
specific regions of the parameter space may require less
demanding waveform accuracy, while louder binaries
may require even better waveform calibration. However,
the approach adopted here provides a reasonable and
conservative order-of-magnitude estimate for the mismatch
requirement across an expected population.

V. COMPARISON WITH FULL PARAMETER
ESTIMATION

We now validate our Fisher results and Cutler-Vallisneri
estimates by comparing them with full Bayesian parameter
estimation runs using BILBY [43,44]. To mimic the biases
from imperfect waveform modeling, we inject a GW signal
with the IMRPhenomXAS model and recover it with the
IMRPhenomD model.
In Fig. 6 we show a representative case belonging to the

subpopulation of binaries with SNR ≥ 100. This particular
BBH has a network SNR of ∼140. We compare the
parameter estimation results against Gaussian posteriors
centered at the biased value θi;biased ¼ θi þ Δθi, where θi
are the injected parameters, Δθi is the Cutler-Vallisneri
bias, and the covariance matrix is the inverse of the Fisher
matrix. Solid (dashed) black lines refer to the case in which
we do (or do not) impose Gaussian priors on the spin
components following the simple recipe of Eq. (6).

FIG. 5. Mismatch requirements to have unbiased parameters, computed using the interpolated waveform formalism. Left panel:
percentage of binaries that are biased by more than 1σ as a function of the average mismatch, for the SNR ≥ 100 subpopulation. The
dashed black line marks the threshold at which 1% of events are biased by at least 1σ, or equivalently, 99% of the binaries are biased by
at most 1σ. Right panel: average mismatch requirement for at most 1% of the binaries to be biased by ≥ 1σ, for various SNR thresholds.

FIG. 4. Significance of waveform calibration biases for the
SNR ≥ 100 subpopulation, between interpolated waveforms with
varying levels of simulated accuracy to IMRPhenomXAS. The
value of λ used to generate the approximate waveforms and the
average mismatch M across the chosen subpopulation is shown
in the top left corner of each panel. The dashed black lines mark
the 1σ bias threshold in either direction, and the percentage of
binaries with bias > 1σ is given in the legend for each parameter.
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We find that the biased estimates from Cutler-Vallisneri,
θi;biased, for all parameters relevant to this study are close to
the best-estimate parameters recovered with BILBY, whether
we do or do not impose priors. The Fisher errors σi;stat,
instead, tend to be larger than the corresponding intervals in
the 1D marginalized posteriors. For Mc;det, η, and DL (or
equivalently m1;det, m2;det, and z) the discrepancy between
Fisher errors and 1σ intervals in the marginalized posteriors
is within a factor of ≲2. If we do not impose a prior on the
spins, the Fisher errors on χ1;z and χ2;z (dashed black
contours) are larger by more than an order of magnitude
than the corresponding confidence intervals in the 1D
marginalized posteriors from BILBY. When we impose a
Gaussian prior (solid black contours), the disagreement
decreases to a factor of ≲3 for both spin components.

However, due to parameter degeneracies, imposing a prior
on the spins also affectsMc;det and η. ForMc;det, the Fisher
error goes from being ∼50% larger than the 1σ interval in
the marginalized posteriors to being ∼15% smaller. For η,
the Fisher error goes from ∼2 times larger to ∼40% smaller.
The discrepancy in the errors might lead us to under-

estimate the statistical significance of the biases with the
Cutler-Vallisneri formalism. To illustrate how this may
happen, in Fig. 7 we compare Fisher estimates and para-
meter estimation results for the “pessimistic” case of a BBH
for which the recovered parameters are significantly biased.
The corresponding signal has a network SNR of ∼350.
For this BBH, the Cutler-Vallisneri biases and the Fisher
matrix estimates of the errors on Mc;det, η, and DL are in
reasonable agreement with the best-estimate parameters

FIG. 6. Posterior distributions for a representative BBH in our population. The blue curves results from a full Bayesian parameter
estimation run. The black curves are estimated through the Cutler-Vallisneri formalism, with (solid lines) and without (dashed lines)
imposing a Gaussian priors on the spin components. The 2D contours correspond to 90% confidence levels. The red lines correspond to
the injected values. This particular BBH has the following true parameters:Mc;det ¼ 9.391M⊙, η ¼ 0.249, χ1;z ¼ −0.077, χ2;z ¼ 0.047,
DL ¼ 3665.092 Mpc, ι ¼ 0.631, RA ¼ 0.849, DEC ¼ 0.728, ψ ¼ 5.696.
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from full parameter estimation without imposing any
Gaussian prior. The Fisher errors on these parameters
agree within ≲50% with the 1σ intervals in the 1D
marginalized posteriors. However, the Fisher matrix esti-
mates of the errors on χ1;z and χ2;z are larger than the
parameter estimation results by a factor ∼40 without any
prior, while the Cutler-Vallisneri biases would far exceed
the physical range, thus we force them to take the boundary
values θχi;z;biased ∈ ½−1; 1�. This is a clear example of why
the spin priors are necessary. After imposing the prior, the
Cutler-Vallisneri biases agree with the best estimate from
parameter estimation within ∼30% for both spin compo-
nents, and the 1σ errors are now larger by a factor of ∼10
instead of ∼40. Still, the spin components recovered with
full parameter estimation are both biased at ∼10σ with
respect to the injected values, while they are barely biased
(at ∼1σ) when we use the Cutler-Vallisneri formalism.

Moreover, while the 1σ Fisher errors on the marginalized
distributions forMc;det, η and DL are only slightly affected
by the imposition of a spin prior, the Cutler-Vallisneri bias
on η changes significantly, now pushing this parameter to
hit the physical boundary of 0.25.
In general, we find that the combination of Fisher

and Cutler-Vallisneri formalism might perform poorly for
bounded parameters when the estimated uncertainty exceeds
the prior bound, as in Fig. 7. A more systematic comparison
of the Cutler-Vallisneri formalism with full parameter
estimation in the whole parameter space is clearly necessary,
but it is beyond the scope of this exploratory study.

VI. DISCUSSION

Our estimates suggest that, in order for 99% of the
intrinsic parameters of an astrophysical BBH population

FIG. 7. Same as Fig. 6, but now for a pessimistic case where the intrinsic parameters recovered from parameter estimation are strongly
biased. The BBH has the following true parameters:Mc;det ¼ 41.330M⊙, η ¼ 0.250, χ1;z ¼ 0.050, χ2;z ¼ 0.024,DL ¼ 3972.875 Mpc,
ι ¼ 0.733, RA ¼ 2.680, DEC ¼ −0.516, ψ ¼ 0.868.
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with SNR ≥ 100 to remain unbiased by waveform errors,
an order of magnitude improvement in the average mis-
match is required. Our estimate is meant to be a lower
bound, especially when considered alongside other work
where the authors study individual binaries with SNRs of
the orderOð1000Þ [12,17]. We stress that the mismatch and
waveform calibration requirements will ultimately depend
on the intended application. Over a population of binaries,
many systems will have insignificant biases in intrinsic
parameters due to either lower SNRs or the existing
calibration accuracy of specific waveform models. For
the loudest binaries observed in XG detectors, the biases
will be extremely significant, which may be particularly
relevant for applications such as dark siren cosmology or
tests of general relativity.
One relevant extension of this work would be to

investigate how waveform systematics over a population
could impact the inference of specific hyperparameters of a
given population model. The accuracy requirements for
ensuring unbiased population hyperparameters may differ
from the results presented here in nontrivial ways.
Additionally, the waveform models used in this study

both belong to the IMRPhenom family, and represent only
a subset of the models that may be used in a parameter
estimation campaign. Models with higher harmonics, spin
precession, etc. could produce different mutual biases,
and would likely require higher accuracy thresholds to
ensure consistent parameter inference. The interpolated
waveform formalism presented in this work (or general-
izations thereof) could be especially useful in guiding
the calibration efforts for these models. By varying wave-
form accuracy in specific parts of the parameter space, one
could deduce where to iteratively add BBH simulations to
most efficiently improve waveform accuracy with addi-
tional simulations. These applications are left for future
studies.
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APPENDIX A: WAVEFORM BIASES
IN A DETECTOR NETWORK

In this appendix we generalize the calculation of sys-
tematic parameter biases due to waveform errors from
Ref. [10] to a network of detectors. Let us assume that a
GW data stream can be modeled as a combination of some
true gravitational waveform and noise, such that

dðtÞ ¼ hTRðt; θ⃗trÞ þ nðtÞ; ðA1Þ

where the signal is a function of time t, and θ⃗tr represents
the set of true parameter values that we would like to infer.
In practice, this is done using an approximate waveform
model hAP, such that

hTRðt; θ⃗trÞ ≠ hAPðt; θ⃗trÞ: ðA2Þ

Parameter estimation involves minimizing the following
log-likelihood with respect to θ⃗ [45]:

logpðdjθ⃗Þ ¼−
1

2

�
dðtÞ−hAPðt; θ⃗ÞjdðtÞ−hAPðt; θ⃗Þ

�
: ðA3Þ

In the presence of multiple detectors, the various antenna
patterns and sky locations will give rise to detector-
dependent waveforms, such that parameter estimation
requires minimizing the following log-likelihood instead:

logpðdjθ⃗Þ ¼ ΣND
D¼1 −

1

2

�
dDðtÞ − hAP;Dðt; θ⃗ÞjdDðtÞ

− hAP;Dðt; θ⃗Þ
�
: ðA4Þ

The best-fit parameters θ⃗bf will thus satisfy

ΣND
D¼1

�
∂ihAP;Dðθ⃗bfÞjdDðtÞ − hAP;Dðθ⃗bfÞ

� ¼ 0; ðA5Þ

where here and below we omit the time dependence for
brevity, and the index i represents the components of θ⃗bf .
Using Eq. (A1), we can write

dDðtÞ − hAP;Dðθ⃗bfÞ ¼ nDðtÞ þ hTR;Dðθ⃗trÞ − hAP;Dðθ⃗trÞ
þ hAP;Dðθ⃗trÞ − hAP;Dðθ⃗bfÞ; ðA6Þ

where we have added and subtracted a term hAP;Dðθ⃗trÞ for
convenience. We can think of θ⃗bf as a perturbation around
the true parameters, such that

θ⃗bf ¼ θ⃗tr þ Δθ⃗: ðA7Þ

If Δθ⃗ is sufficiently small, the linear signal approximation
gives us
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hAP;Dðθ⃗trÞ − hAP;Dðθ⃗bfÞ ≈ ∂ihAP;Dðθ⃗bfÞΔθi: ðA8Þ

Therefore, we can rewrite Eq. (A6) as

dDðtÞ − hAP;Dðθ⃗bfÞ ≈ nDðtÞ þ δhDðθ⃗trÞ − ∂ihAP;Dðθ⃗bfÞΔθi;
ðA9Þ

where δhDðθ⃗trÞ≡ hTR;Dðθ⃗trÞ − hAP;Dðθ⃗trÞ is the waveform
residual.
Substituting this expansion back into Eq. (A5) and

redefining some indices, we obtain

ΣND
D¼1

�
∂ihAP;Dðθ⃗bfÞjnDðtÞ þ δhDðθ⃗trÞ

− ∂jhAP;Dðθ⃗bfÞΔθj
� ¼ 0: ðA10Þ

Expanding the inner product terms, we get

ΣND
D¼1

�
∂ihAP;Dðθ⃗bfÞjnDðtÞ

�þ ΣND
D¼1

�
∂ihAP;Dðθ⃗bfÞjδhDðθ⃗trÞ

�
¼ ΣND

D¼1

�
∂ihAP;Dðθ⃗bfÞj∂jhAP;Dðθ⃗bfÞ

�
Δθj ðA11Þ

The inner product on the right-hand side can be recognized
as the network Fisher information matrix of hAP;D, such that

ΣND
D¼1

�
∂jhAP;Dðθ⃗bfÞjnDðtÞ

�þ ΣND
D¼1

�
∂jhAP;Dðθ⃗bfÞjδhDðθ⃗trÞ

�
¼ Γij;NetΔθi; ðA12Þ

where we have used the symmetry of the Fisher matrix and
switched the i, j indices for convenience. The overall bias
on parameter θi can now be expressed as

Δθi ¼ �
Γ−1
Net

�
ijðθ⃗bfÞ

h
ΣND
D¼1

�
∂jhAP;Dðθ⃗bfÞjnDðtÞ

�
þ ΣND

D¼1

�
∂jhAP;Dðθ⃗bfÞjδhDðθ⃗trÞ

�i
: ðA13Þ

Each of the two terms on the right-hand side has a clear
interpretation: the first term represents the error contribu-
tion from noise, while the second is the systematic bias due
to waveform residuals. Isolating the systematic waveform
error term, we can write

Δθisys ≡
�
Γ−1
Net

�
ijðθ⃗bfÞΣND

D¼1

�
∂jhAP;Dðθ⃗bfÞjδhDðθ⃗trÞ

�
: ðA14Þ

Since in practice we do not have access to θ⃗tr, we can
instead evaluate the waveform residual at θ⃗bf to a good
approximation. This yields the final result:

Δθisys ¼
�
Γ−1
Net

�
ijðθ⃗bfÞΣND

D¼1

�
∂jhAP;Dðθ⃗bfÞjhTR;Dðθ⃗bfÞ

− hAP;Dðθ⃗bfÞ
�
: ðA15Þ

APPENDIX B: IMPACT OF WAVEFORM
ALIGNMENT ON LUMINOSITY

DISTANCE BIASES

Systematic errors due to different waveforms are of the
form

Δθi ¼ �
Γ−1
AP;Net

�
ij
�
∂jðhAPÞjhTR − hAP

�
: ðB1Þ

In the frequency domain, the overall amplitudes of hTR and
hAP are independent of systematic shifts in phase and time.
However, differences in the coalescence time and phase
affect the relative phases of the two waveforms. Since the
Cutler-Vallisneri bias formula depends on the difference
ðhTR − hAPÞ, the biases are also affected by the relative
phase between the two waveform models.
In Fig. 8 we illustrate the effect of changing one of these

parameters, ϕc. As shown in the bottom panel, the differ-
ence between the two waveforms can depend strongly on
their relative phase difference. Biases in luminosity dis-
tance have the primary effect of changing the relative
amplitude of the template waveform, which can cancel out
this effect. Therefore, biases in luminosity distance from
the Cutler-Vallisneri formalism can be unphysically large
if the waveforms are not aligned first.
As such, the alignment procedure alluded to in Sec. III

has a dramatic impact on the bias in DL.

FIG. 8. Top: GW strain amplitude for a chosen binary when
using various waveform models. The reference waveform gen-
erated using IMRPhenomXAS is shown in red. We also show
different versions of an IMRPhenomD waveform with the same
injected parameters and an additional phase shift in the range
[0; π] (curves ranging from green to blue). The waveform which
minimizes the mismatch with respect to the reference waveform
is plotted as a dashed black curve. Bottom: the same set of
waveforms, with the y-axis now showing the difference between
the given waveform and the IMRPhenomXAS reference
waveform.
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APPENDIX C: CHOICE OF REFERENCE
FREQUENCY

The waveforms for this study are generated using the
LALSuite library [46,47], which requires a parameter
“fRef” to set the reference frequency at which the phase
and orientation of a binary are defined. For this study we set
fRef to 5 Hz, which is the minimum frequency chosen for
the detector network. In Fig. 9 we show the effect of
varying fRef while keeping all other parameters constant,
for a specific binary.
Evidently, the choice of fRef can affect the behavior of

a frequency domain waveform in much the same way as an
additional phase factor, and in this sense it has a similar
effect as modifying the coalescence phase parameter ϕc.
Although the waveform alignment process alluded to in

Sec. III should generally account for variations in the
waveform phase, there may still be some minor effects on
the Cutler-Vallisneri bias as a result of different choices of
fRef. The tests shown in Fig. 10 demonstrate that the

choice of fRef has a minor impact on the parameter
biases. Using the biases at fRef=5 Hz as a reference,
changing the reference frequency only changes the nor-
malized biases by a few parts in a hundred.

APPENDIX D: BIASES USING INTERPOLATED
WAVEFORMS

Using the interpolation scheme described in Sec. II D,
we synthetically produce waveforms that vary mono-
tonically in mismatch between IMRPhenomD and
IMRPhenomXAS. In Fig. 11 we illustrate the modulation
of the statistical and systematic uncertainties from the
Fisher and Cutler-Vallisneri formalism, by focusing on a
single test binary. As expected, the magnitude of the
biases as well as the statistical uncertainties of the intrinsic
parameters can be seen changing from the value in
IMRPhenomD (λ ¼ 0) to the value in IMRPhenomXAS
(λ ¼ 1). This example shows that the interpolated wave-
form formalism can be trusted to produce qualitatively
sensible results for the intrinsic parameters considered
in Sec. IV B.

FIG. 9. Detector response of a given BBH from our population,
for various choices of fRef. The detector is set to the 40 km CE
in Idaho, and the BBH has the following parameters: Mc;det ¼
121.181M⊙, η ¼ 0.249, χ1;z ¼ 0.026, χ2;z ¼ 0.036, DL ¼
16215.376 Mpc, ι ¼ 2.709, RA ¼ 1.511, DEC ¼ 0.188,
ψ ¼ 2.049.

FIG. 10. Average deviations in parameter biases over a subset
of 100 binaries with SNR ≥ 100 from our population, for various
choices of fRef. The y-axis shows the deviation of the Cutler-
Vallisneri biases with respect to their respective values at
fRef ¼ 5 Hz, normalized to the statistical errors for each binary.
The dashed black line marks the location of fRef ¼ 5 Hz.

FIG. 11. Behavior of statistical and systematic errors for a
single BBH event, for various interpolated waveforms defined by
the parameter λ. The chosen BBH has the following parameters:
Mc;det ¼ 3.982M⊙, η ¼ 0.227, χ1;z ¼ 0.056, χ2;z ¼ −0.126,
DL ¼ 131.168 Mpc, ι ¼ 2.162, RA ¼ 5.575, DEC ¼ −0.654,
ψ ¼ 2.663.
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