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In this work, we study the impact of the environment around a black hole in detail. We introduce
nonvanishing radial pressure in a manner analogous to compact stars. We examine both isotropic and
anisotropic fluid configurations with and without radial pressure respectively. Our focus extends beyond
just dark matter density to the vital role of the energy condition and sound speed in the spacetime of a black
hole immersed in matter. In cases of anisotropic pressure with vanishing radial pressure, all profiles violate
the dominant energy condition near the BH, and the tangential sound speed exceeds light speed for all dark
matter profiles. In our second approach, without assuming vanishing radial pressure, we observe similar
violations and superluminal sound speeds. To rectify this, we introduce a hard cutoff for the sound speed,
ensuring it remains subluminal. As a consequence, the energy condition is also satisfied. However, this
results in increased density and pressure near the BH. This raises questions about the sound speed and its
impact on the density structure, as well as questions about the validity of the model itself. With the matter
distribution, we also compute the metric for different configurations. It reveals sensitivity to the profile
structure. The metric components point toward the horizon structure.
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I. INTRODUCTION

Substantial evidence firmly supports the presence of dark
matter within the central regions of the galaxies [1–4].
Apart from its established gravitational interaction, the
exact nature of dark matter remains enigmatic. Unraveling
the properties of dark matter within the framework of the
“Standard Model” of particle physics remains a significant
scientific endeavor. Despite persistent efforts to identify
potential, albeit minuscule, interactions between the dark
matter and the standard model, these pursuits have thus far
not yielded definitive results. Nonetheless, the quest to
detect these interactions will persist with great vigor in the
years ahead [5,6].
Alongside, probing the dynamics of the accreting bar-

yonic matter in the galactic centers is crucial for astro-
physics. Astrophysical compact sources, including binary
systems, do not exist in isolation but evolve within complex
environments comprising plasma, electromagnetic fields,
along with the dark matter (DM) [7–13]. With the advent of
gravitational wave (GW) astronomy [14,15] and very-long

baseline interferometry [16,17], the era of the multimessen-
ger astronomy revolution has already begun. These observa-
tories are specifically designed to investigate compact
objects, including black holes (BHs). In time it will revo-
lutionize our ability to study the invisible universe [18–22].
In light of these advancements, we can ask how the dark and
baryonic matter around an inspiraling binary impacts the
binary evolution.
Dark matter, which may cluster at the center of galaxies

and close to BHs [23,24], could significantly impact the
dynamics of compact binaries and how GWs or electromag-
netic waves propagate [8,18,25–28]. This prompts the
question of how the existence of surrounding matter impacts
the generation and transmission of GWs, as well as the
electromagnetic characteristics of BHs. To answer this
question, the knowledge of motivated matter distributions
and corresponding spacetime geometry will be extremely
useful.
Gaining insights into how the distribution of matter

influences the behavior of merging binary systems and
discerning the resulting impact on GW production and
propagation mechanisms necessitates comprehensive relativ-
istic solutions that describe BHs within a medium. These
environmental effects offer a new route to determine funda-
mental astrophysical properties, such as the distribution of
dark and baryonicmatter surroundingmassive objects, as well
as shedding light on accretion phenomena [25,26,29–33].
Currently, existing research has predominantly gravi-

tated toward Newtonian methodologies. These approaches
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often rely on the slow-motion quadrupole formula for
estimating GW emission and dynamics [34,35], or they
focus on Newtonian dynamical friction [24,33,36,37].
While certain studies have ventured into modeling effects
like gravitational redshift or peculiar motion by invoking
Doppler-like waveform adjustments [38], a first-principle
derivation is still required.
Nevertheless, recent efforts have emerged to enhance the

analysis by incorporating certain relativistic effects, high-
lighting their potential to substantially influence the con-
clusions concerning detectability and parameter estimation.
Ref. [39] has introduced spacetime geometry generated by
a nonspinning BH within a core of matter, offering a first
step toward studying BH physics in realistic dense envi-
ronments for a specific choice of matter distribution. In
Refs. [40–42] generic matter profiles were considered.
They explore the influence of various families of DM
halos on the geometry of BHs and their associated geodesic
structures. Recently it has also been extended to worm-
holes [43]. These profiles have been used to compute the
impact of DM profiles on the GW fluxes from extreme mass
ratio inspirals immersed in such environment [39,41,44].
Nonetheless, several aspects remain to be explored. First,

previous works assumed the radial pressure to be negli-
gible. In our present study, we take into account a nonzero
radial pressure. Second, it becomes evident that the matter
structures examined in prior works and our current work,
exhibit unphysical sound speeds and, in specific instances,
diverging anomalies. We address and mitigate some of
these issues, examining their effects on the matter distri-
bution and as a consequence, on the geometry.
In Sec. II, we delve into the structural aspects of the

matter profiles under consideration. Section III provides a
comprehensive analysis of the pressure equation solutions,
focusing on issues associated with sound speed and the
measures taken to address these problems. The results of
these mitigations are presented. Moving forward, Sec. IV
explores the computation of the metric using the derived
density and pressure profiles, shedding light on its structure
in the vicinity of the black hole (BH) horizon. In Sec. V, we
direct our attention to density profiles that exhibit vanishing
characteristics in the vicinity of the BH. Lastly, Sec. VI
wraps up the discussion, drawing conclusions and offering
final remarks on our findings and their implications.
In the work, we take the geometrized unit and set

G ¼ c ¼ 1. All the length and mass scales are expressed
in terms of the mass of the BH, namely MBH. Throughout
the paper, we set MBH ¼ 1, except when it is required to
explicitly show MBH.

II. GENERAL STRUCTURE FOR INDIVIDUAL
DISTRIBUTION

We begin the work by taking established density dis-
tribution from the literature. First, we take the following
density structure as Ref. [41],

ρðrÞ ¼ ρ0

�
r
a0

�
−γ
�
1þ

�
r
a0

�
α
�ðγ−βÞ=α

ð1Þ

The dependence of the density profile on the coefficients
ðα; β; γÞ in Eq. (1) offers a rich spectrum of profiles to
explore. These coefficients play distinct roles in shaping the
profile: β and γ govern its behavior at both small and large
scales, while α controls the transition’s sharpness, making it
a versatile tool for modeling various astrophysical systems.
Notably, the slope of the profile experiences a notable
transition over a characteristic spatial scale defined by a0.
In our analysis, we delve into two fundamental models
extensively used for understanding the distribution of DM,
the Hernquist model and the Navarro-Frenk-White (NFW)
model. While we provide a detailed examination of the
Hernquist model here, the NFW model is discussed in
Appendix A. The Hernquist profile (Hern) corresponds to
specific coefficient values ðα; β; γÞ ¼ ð1; 4; 1Þ [45]. For the
Hernquist profile, the density takes the following form,

ρHern ¼ ρ0

�
r
a0

�
−1
�
1þ

�
r
a0

��
−3
: ð2Þ

The profile described in Eq. (1) has a quite generic
structure allowing sufficient freedom to model the density
by varying the parameters. However, we will not go into
such details in the current work. We will rather consider a
different profile, namely, the Einasto model (Ein) [46–49].
The profile has a different structure from that of in Eq. (1),
given by:

ρðrÞEin ¼ ρe exp

�
−dn

��
r
re

�
1=n

− 1

��
; ð3Þ

with n ¼ 6, dn ¼ 3n − 1=3þ .0079=n [48,49], and ρe
representing the density at the radius re, which defines a
volume containing half of the halo mass. To make the paper
easy to understand wewill rename re and ρe as re → a0 and
ρe → ρ0. For a given density we define MHalo as,

MHalo ¼
Z

107

2

4πr2ρðrÞdr; ð4Þ

A density profile therefore is completely determined if
a0 and ρ0 are known.MHalo is then known in terms of these
two parameters. However, we will choose MHalo to be the
free parameter of a profile rather than ρ0. Hence, in the
current work, we will set the value of ρ0 for all the density
profiles by setting the total halo mass up to a certain radius.
For this purpose, we use the following,

ρ0 ¼
MHaloR

107

2 4πr2ðρðrÞ=ρ0Þdr
; ð5Þ

The properties of a profile are therefore solely deter-
mined by setting the values for ða0;MHaloÞ. In the plots,
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these numbers are demonstrated as ða0;MHaloÞ. The rel-
evant quantity to focus on is ða0=MBH;MHalo=MBHÞ. Since
we have set MBH ¼ 1 our labels will be ða0;MHaloÞ.
However, it should always be kept in mind that these
values are relative to black hole mass.

III. ENERGY CONDITION
AND SOUND SPEED PROBLEM

Our motivation is to investigate in detail the effect of
dark matter on black hole geometry. However, the matter
distribution itself depends on the nature of the geometry. In
this section, we will model the matter contribution through
a single-component ideal fluid energy-momentum tensor.
The mass density will be identified with the dark matter
density. To model the pressure two approaches will be
taken. In general, the anisotropic fluid energy-momentum
tensor can be expressed as,

Tμ
ν ¼ diagð−ρ; pr; pt; ptÞ: ð6Þ

We will limit ourselves to different limits of this more
general energy-momentum tensor.1 Following the previous
works first, we will take pt ≠ 0, pr ¼ 0. In the second
approach, we will consider isotropic pressure similar to the
considerations taken for the pressure in compact stars, i.e.
pt ¼ pr ≠ 0. We will demonstrate that there is a problem
with the dominant energy condition and sound speed in
both cases.

A. Effect of matter for vanishing radial pressure

In this section, we provide a concise summary of the
fundamental equations governing a static, spherically sym-
metric black hole spacetime situated in a medium with a
generic density profile ρðrÞ with vanishing radial pressure.
These results are similar to that in Refs. [39,41], which
originally applied this framework to investigate binary
systems evolving inside a Hernquist-type matter distribution
[12,41].Our approach utilizes theEinstein cluster framework
to model a stationary black hole, which is surrounded by a
collection of gravitatingmasses [50].Within this framework,
the energy-momentum tensor is represented by,

Tμ
ν ¼ diagð−ρ; 0; pt; ptÞ ð7Þ

Using the Energy momentum conservation equation, the
solution for tangential pressure can be found to be,

ptðrÞ ¼
1

2

ρðrÞmðrÞ
r − 2mðrÞ : ð8Þ

The knowledge of density profiles provides us with mass
profiles. Using them the tangential pressure profile can be
computed. From the radial profile of tangential pressure pt
and density ρ, we can define a tangential sound speed as
follows,

c2st ¼
dpt=dr
dρ=dr

: ð9Þ

In Fig. 1 we plot c2st and pt=ρ for Einasto and Hernquist
profile. The dominant energy condition imposes ρ ≥ pt. As
can be seen from the pt=ρ plot the dominant energy
condition is violated in the near region for all the configu-
rations. It is also noteworthy that in all the cases the sound
speed becomes larger than the speed of light around
r ≤ 3.5–5, depending on the profile. This also explains
the violation of the energy condition which is connected
to the sound speed. This implies that the model starts
becoming unphysical near the BH. This problem is not
related to the vanishing radial pressure as it persists even in
the presence of the nonvanishing radial pressure. In the next
section, we will investigate this aspect and how some of the
nature of the problem changes if radial pressure is taken
into account.

B. Effect of matter for isotropic pressure

For a matter configuration with isotropic pressure, the
energy-momentum tensor takes the following form,

Tμ
ν ¼ diagð−ρ; p; p; pÞ ð10Þ

Using the energy-momentum conservation equation the
governing equation for the radial pressure can be found,
which is similar to the Tolman-Oppenheimer-Volkoff
(TOV) equation [51],

−
dp
dr

¼ ðρþ pÞðmðrÞ þ 4πr3pÞ
rðr − 2mðrÞÞ

dmðrÞ
dr

¼ 4πr2ρ: ð11Þ

Given a density profile, it is straightforward to obtain the
mass function by integrating the second equation in
Eq. (11) from rBH ¼ 2 to radius r with the boundary
condition,

Z
m

MBH¼1

dm ¼
Z

r

rBH¼2

4πr2ρdr: ð12Þ

Given the mass function obtained above, one integrates
the first equation in Eq. (11) for the pressure. Since the
equation is first order, it requires the specification of a
single boundary condition to provide a unique solution. At
a large radius r ∼ 107 we expect the pressure to be very
small. However, due to a lack of knowledge of the equation

1It remains to be seen if this approach is appropriate for the
collisionless dark matter at least in the phenomenological sense.
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of state of the matter, particular consistent values are
unknown. To get a consistent value we will use the
boundary condition that the value of the radial pressure
at r ¼ 107 is exactly equal to the value of tangential
pressure described by Eq. (8). Therefore we impose,

pðr ¼ 107Þ ¼ ptðr ¼ 107Þ; ð13Þ

where for ptðrÞ we use Eq. (8). With the boundary
condition, it is possible to find the numerical solution of
p. With this solution, we define sound speed as,2

c2s ¼
dp=dr
dρ=dr

: ð14Þ

We will show later that the solution found in this way
will result in a similar problem to the case of tangential
pressure. The sound speed will become larger than the

speed of light. To address this issue we will solve a set of
equations simultaneously,

−
dp
dr

¼ ðρþ pÞðmðrÞ þ 4πr3pÞ
rðr − 2mðrÞÞ ð15Þ

dρðrÞ
dr

¼ RðrÞ ð16Þ

dmðrÞ
dr

¼ 4πr2ρ: ð17Þ

The function RðrÞ is defined as,

RðrÞ ¼
8<
:

dρEin=HernðrÞ
dr ; if

��� dρEin=HernðrÞdr

��� ≥ 3
��� dpðrÞdr

���
3
dpðrÞ
dr ; otherwise

ð18Þ

The reason behind such imposition is to keep the sound
speed subluminal as well as satisfy the virial theorem, i.e.
c2s ≤ 1=3, which will make the solution satisfy the dom-
inant energy condition. However, this condition will create

FIG. 1. In this figure we consider pr ¼ 0. In the left column, we show the behavior of the dominant energy condition with respect to
the radius, down to r ¼ 2.001, for both the Einasto and Hernquist profiles. The condition is violated near the BH. In the right column, we
show the behavior of tangential sound speed with respect to the radius for both the Einasto and Hernquist profiles. Near the BH the
sound speed becomes faster than light. In the subplot, the region where the sound speed becomes unity is demonstrated.

2This definition corresponds to adiabatic perturbations and
assumes the adiabatic index governing the perturbations is the
same as the adiabatic index governing the equilibrium pressure-
density relation [52].
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a kink in the sound speed profile which must be addressed
in the future. Note, that this is the key innovation of the
current work. This approach is completely different from
previous approaches. As will be demonstrated later this
innovation makes the sound speed physical.
The boundary condition of pressure is taken to be the

same as before, while the boundary condition of density is
taken such that at a large distance density profile matches
that of Hernquist or Einasto,

pðr ¼ 107Þ ¼ ptðr ¼ 107Þ; ð19Þ

ρðr ¼ 107Þ ¼ ρEin=Hernðr ¼ 107Þ: ð20Þ

The solutions found in this way are labeled as corrected
solution (C) while the solutions from the previous approach
are labeled as not corrected solution (NC), where not
corrected refers to the not corrected energy condition and

FIG. 2. In this figure we consider pr ¼ pt ¼ p. In the first row the density and in the second row the pressure solution of the TOV
equation is demonstrated. In the last row, the behavior of the dominant energy condition across the radius is demonstrated. For a given
ða0;MScaleÞ both the C and NC solution is demonstrated. Near the BH the condition gets violated for NC solutions. However, the C
solutions do not violate it. All the main plots are demonstrated from r ¼ 2.1 to r ¼ 106 while in the subplot down to r ¼ 2.001
is plotted.
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sound speed. In Fig. 2 we plot both the C and NC solutions.
We also plot p=ρ. As it can be noticed, p=ρ violates the
dominant energy condition for NC solutions, whereas for C
solutions the energy condition is satisfied. Interestingly the
density and pressure for C solutions increase more with
decreasing radius compared to the NC solutions. Therefore
a matter profile that is consistent with causality seems to
prefer an increased density near a BH rather than a decrease
in density after reaching maxima near the BH. This aspect
will be discussed more in later sections.
In Fig. 3 we show the behavior of the sound speed for

both the C and NC solutions. The sound speed for NC
solutions for all the profiles becomes larger than the speed
of light in the near region. The C solution though does not
violate physicality, it demonstrates a kink. This kink arises
solely from the hard-cut off. A better cutoff needs to be
found to address this issue. However, the key point is that
by imposing a physical condition on the sound speed the
resulting density structure in the near horizon zone
becomes quite larger which is contrary to the expectation
that the density should vanish in the near zone. This aspect
will be discussed in more detail in later sections.

IV. METRIC SOLUTIONS WITH DM PROFILE

In the last sections, we studied the matter profiles in
detail for both the vanishing and nonvanishing radial
pressure. We also explored the properties of sound speed
and the impact of making it physical. With the density and
pressure profile at hand, we compute the metric compo-
nents in this section. We will focus only on the case where
the radial pressure does not vanish. The results for
vanishing radial pressure can be found in Ref. [41].

A. Metric solutions

A static spherically symmetric metric can be described in
the following manner,

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ ð21Þ

Using the metric and the energy-momentum tensor in the
Einstein equation it can be shown,

dν
dr

¼ −
2

ρþ p
dp
dr

: ð22Þ

FIG. 3. In the above figure the sound speed for both the C solution and NC solution is demonstrated. For comparison c2s ¼ 1; 1=3 is
also plotted. For the NC solution near the BH, the sound speed becomes larger than the speed of light. Due to the condition imposed for
the C solutions, the sound speed does not cross the speed of light but there is kink in the radial profile. All the plots are demonstrated
from r ¼ 2.001 to a larger radius.
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eλ ¼ r
r − 2mðrÞ : ð23Þ

To find the solution for νðrÞ for a given matter profile we
require a boundary condition. We impose that eνð107Þ ¼ 1.

With the boundary condition, it is straightforward to find
the solution for the metric. In the case of Schwarzschild BH
in vacuum eνðrÞ ¼ 1–2=r. In the presence of matter, the
metric solution should deviate from the vacuum solution.
To quantify this deviation we define,

FIG. 4. In the above figures the solution of the metric is demonstrated. In the first row metric component gtt is shown. All the metric
plots are demonstrated from r ¼ 2.001 to r ¼ 106 to demonstrate the structure for individual profiles. However, in the right subplots
from r ¼ 6 to r ¼ 106 is shown and in the left subplots from r ¼ 2.001 to r ¼ 2.1 is shown. In the second row, the deviation function
fðrÞ is shown. All the deviation function plots are demonstrated from r ¼ 2.05 to r ¼ 106 while in the subplot, from r ¼ 2.001 to
r ¼ 2.05 is shown. In all the cases the metric goes to zero rapidly near r ∼ 2. The deviation function increases near r ∼ 2. The increase is
more for the C solution compared to the NC solution. Despite this increase, the gtt component takes a small value near r ∼ 2. In the final
row 1 − gttgrr has been plotted. For a Schwarzschild BH even near the horizon, gttgrr stays equal to unity. In the current case, although
this factor deviates from the BH value of 1, the deviation is not extremely large.

BLACK HOLES IMMERSED IN DARK MATTER: ENERGY … PHYS. REV. D 109, 104042 (2024)

104042-7



fðrÞ ¼ eνðrÞ

ð1 − 2=rÞ : ð24Þ

In Fig. 4 we demonstrate the metric solutions gtt ¼ eνðrÞ.
Notably in all the cases near r ∼ 2 the metric rapidly falls
off to small values, which implies the existence of a horizon
where the metric component gtt → 0. We also plot the
deviation function fðrÞ in the second row. Note, that the
deviation function seems to increase near the horizon.
The increase is more prominent for the C solutions
compared to the NC solutions. However, despite the
increase in the deviation function the metric component
gtt as a whole decreases with decreasing radius.

B. Coordinate singularity makes radial
derivatives diverge

For a vacuum BH, r ¼ 2 is known to host a coordinate
singularity where gtt goes to zero and grr diverges. From the
metric solutions demonstrated earlier similar behavior is
demonstrated in the presence of the matter also. It may

therefore imply that dp=dr should diverge due to the
denominator in Eq. (11) at r ¼ 2mðrÞ. This as a result can
have an impact on the sound speed calculations. However,
we would argue that the singularity in Eq. (11) is just a
coordinate singularity. Hence, similar to the vacuum BH
space-time it is also not physical singularity. One should
note that as we are outside a BH we should expect r
coordinate to be pathological at r → 2mðrÞ. However, if we
take the equivalent of the Tortoise coordinate, dr

�
dr ¼ e−νðrÞ,

the equation simplifies to,

−
dp
dr�

¼ ðρþ pÞðmðrÞ þ 4πr2pÞ
r2

eνðrÞeλðrÞ ð25Þ

Note that the divergence in the derivative of pressure
arises solely from eλðrÞ term above. In vacuum BH case
eðνðrÞþλðrÞÞ ¼ 1. In the third row of Fig. 4 we show that in
the current case also eðνðrÞþλðrÞÞ ∼ 1. Which again implies
the singularity is just a coordinate singularity. Hence, the
pressure derivative with respect to the tortoise radius does

FIG. 5. Here we show the results of scaling different density profiles by ð1 − 2=rÞ. In the first row of the above plots, we demonstrate
how the dominant energy condition varies across the radius for the density profiles which vanishes near the BH. The condition is clearly
violated in the near zone. In the last row, we show the behavior of the magnitude of the tangential sound speed. We show the magnitude
as c2st becomes negative below the divergence point. All the profiles show diverging behavior in the near BH region. This feature is
unique to this kind of density profile where the density has a maxima.
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not diverge. Notably, the values of sound speed therefore
stay unaffected even if defined with respect to r� as,

c2s ¼
dp=dr�

dρ=dr�
¼ dp=dr

dρ=dr
: ð26Þ

Therefore the unphysical nature of the sound speed
described in the earlier sections is not due to the coordinate
singularity. The unphysical nature solely arises from the
description of the matter distribution.

V. IMPACT OF NEAR HORIZON MAXIMA
OF DENSITY PROFILES

In the previous sections, we considered Einasto and
Hernquist profiles and studied thematter distribution, energy
conditions, sound speed, and metric structure. We also
demonstrated that the physical sound speed condition intro-
duces an increased overdensity region near the black hole.
With both the Newtonian and relativistic analyses it has

been found that the density profiles with a BH at their core
exhibit a vanishing density at the horizon and develop a
cusp with a lengthscale determined by the BH’s mass

[23,24]. The specific mathematical form of the profile
determines the detailed nature of the profiles (i.e., the slope,
maximum value, etc.), which could have implications for
accurately modeling the GW signals emitted by coalescing
binaries [33]. To assess the impact of the vanishing density
near BH we introduce rescaling the density profile accord-
ing to ρðrÞ → ρðrÞð1 − 2=rÞ, following the results of
[10,41] (check Appendix B for a different scaling).
In this section, we will demonstrate that such profiles

have even more severe sound speed problems compared to
the “normal” Hernquist and Einasto profiles. The density
for Einasto is,

ρEin;S ¼
�
1 −

2

r

�
ρe exp

�
−dn

��
r
re

�
1=n

− 1

��
: ð27Þ

For the Hernquist profile we take the mass function
described in Ref. [39],

mHern;S ¼ MBH þ Mr2

ða0 þ rÞ2
�
1 −

2MBH

r

�
2

; ð28Þ

FIG. 6. In the first row we plot c2st and we zoom in the diverging region. For all the profiles, below a certain radius c2st becomes
negative. In the second row, we plot the derivative of the density function with respect to the radius. We find that in most of the range of
radius, the derivative is negative and in the near zone it becomes positive. The point when it becomes zero corresponds to the maxima of
the density function. As a consequence c2st blows up at that point and becomes negative for a smaller value of radius. This indicates that
the maxima of the density is directly connected to the unphysical behavior of the sound speed.
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where the label S creates a distinction with the original
corresponding distribution from these distributions where
densities are scaled to make it vanish near BHs.

A. Matter distribution

With the density and mass function at hand, it is
straightforward to compute tangential pressure and corre-
sponding tangential sound speed [Eqs. (8) and (9)] when
radial pressure is assumed to be vanishing. In Fig. 5 in the
first row we demonstrate pt=ρ which violates the dominant
energy condition like before. In the second row, we
demonstrate the behavior of jc2stj. We find a divergent
nature that is unique to these density structures. In the first
row of Fig. 6 we show c2st near the divergent region. With
decreasing radius sound speed starts to grow and diverge.
For even smaller values of radius, the square of the sound
speed becomes negative.
The origin can be understood by noticing the final row in

Fig. 6. In the final row, we plot dρ=dr. Although in most of
the region it stays negative, eventually it starts to go toward

the positive direction. In this region, as the derivative is
negative the c2st stays positive. Eventually, dρ=dr vanishes
when the density reaches the maxima and afterward, the
derivative becomes positive rendering c2st negative. At the
point where the maxima are reached (say rm) c2st blows up
as the dρ=dr is in the denominator. However as r → rmþ the
derivative is a negative number and as r → rm− it is a
positive number (where rm− ¼ rm − ϵ and rmþ ¼ rm þ ϵ
with ϵ → 0) making c2st take respectively the positive and
negative values. Therefore the divergence arises solely from
the maxima of the density function. The negative values of
c2st arise because after r ¼ rm the density starts to decrease.
Divergent behavior is present for all the profiles considered.
Similarly, for all the profiles the density derivative crosses
through the zero value. It points toward the possibility that
under the single component ideal fluid description of DM,
outside a BH density cannot reach a maxima, otherwise,
sound speed will become unphysical. It may also imply that
the assumed energy-momentum structure is inappropriate
for the DM. This needs further investigation.

FIG. 7. In the first row of the above we demonstrate the pressure profile found by solving the TOV equation with the scaled density
solution. Pressure in the C solution shows a steeper growth compared to the NC solution. In the second row, we demonstrate the density
profile for the same. NC solutions show a maxima and decaying structure of density. The C solutions demonstrate an increase in density
profile which is significantly different from the NC solution.
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In Fig. 7 we demonstrate the C solution of the TOV
equations along with the NC solutions of density and
pressure. It is very prominent here that the C solutions do
not allow a decreasing density. On the contrary, it makes the
density grow near the BH. It is understandable as the
maxima of the density profile is directly connected with the
diverging sound speed. Therefore the imposition of 0 <
c2s < 1=3 does not allow either the maxima or the decrease
in density after the maxima.
In the first row of Fig. 8 we show the behavior of the

magnitude of the pressure and density derivatives for a
ð104; 100Þ configuration for both the scaled Einasto and
scaled Hernquist profile. We show both the C and NC
solutions. From the structure, the behavior of sound speed
is understandable. In the bottom row, we show the
dominant energy condition and sound speed behavior.
The other ða0;MScaleÞ configurations also show similar
behavior. For brevity, we are not showing them here. Note,
C solutions satisfy the energy condition and the sound

speed stays physical. Whereas the NC solutions violate the
energy condition and the sound speed becomes unphysical.
For NC solutions we have plotted jc2s j as it becomes
negative for lower values of radius.

B. Structure of metric solutions

With the computed density and pressure we calculate the
metric components. The governing equation used is
Eq. (22). Like before we set the boundary condition to
be eνð107Þ ¼ 1. From the computed metric component gtt we
compute the deviation function fðrÞ defined in Eq. (24). In
the absence of matter fðrÞ ¼ 1.
In Fig. 9 we plot gtt and fðrÞ. For all the profiles gtt tends

to zero for values close to r ¼ 2. In the near region, the
deviation function for NC solutions becomes almost flat,
although different from unity. For the C solution fðrÞ starts
to grow for the lower value of the radius as was also found
in the not scaled density profiles.

FIG. 8. In the first row of the above figure we show the behavior of the magnitude of the pressure and density derivative for a
ð104; 100Þ configuration for both the scaled Einasto and scaled Hernquist profile. We show both the C and NC solutions. From the
structure, the behavior of sound speed is understandable. In the bottom row, we show the dominant energy condition and sound speed
behavior. For NC solutions we are showing the magnitude of the sound speed as it becomes negative in the near BH region. Although for
the NC solution, both the dominant energy condition and the sound speed are unphysical, for the C solution they both are physical. The
kink (in green) in the sound speed requires further investigation. This green curve merges with the NC sound speed (magenta dashed
curve) for a larger radius and merges with the brown dot-dashed line representing c2s ¼ 1=3 for the smaller radial values.
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VI. DISCUSSION AND CONCLUSION

The current work is a step forward toward a general
relativistic description of compact objects immersed in a
nontrivial environment. We went beyond previous analysis
where the current problem was addressed either analyti-
cally or numerically [10,41]. In this work for the first time,
we considered nonvanishing radial pressure in the analo-
gous manner of a compact star. We discussed both isotropic
fluid configuration as well as anisotropic fluid with
vanishing radial pressure.
Using this we studied the impact of different DM

distributions on the BH spacetime. We demonstrated that
the metric is sensitive to the DM profile structure. However,
the crucial aspect of the work is the energy condition and
the sound speed. We showed that in the anisotropic case
where the radial pressure vanishes, all the profiles violate
the dominant energy condition near the BH. By defining
the tangential sound speed we demonstrated that the
tangential sound speed becomes faster than light. This
feature is present for all the DM profiles considered.

In the second approach, where we do not assume the
radial pressure to be vanishing we find similar behavior like
the anisotropic pressure. The dominant energy condition is
violated near the BH. The sound speed also becomes faster
than light. To make the sound speed behave physically we
put up a hard condition for sound speed, such that it never
goes beyond 1=3. We solved the TOVequation under such
conditions. We found that the newly found solution does
not violate the dominant energy condition nor does the
sound speed become faster than light. However, as a
consequence, we found that the density and pressure
become larger near the BH. We computed the metric with
the newly found configuration and found that it is sensitive
to the profile structure. The gtt component of the metric
goes to very small values near r → 2 pointing toward a
possible horizon structure. We defined a deviation function
that captures the deviation in gtt component compared to a
vacuum BH. We found the deviation function shows a
growth near the horizon. Despite that, the gtt component
shows a structure that is not inconsistent with a horizon
description.

FIG. 9. In the above figures the solution of the metric is demonstrated for density profiles that vanish near the BH. In the left column
metric component gtt is shown. All the metric plots are demonstrated from r ¼ 2.001 to r ¼ 106 to demonstrate the structure for
individual profiles. However, in the subplot, from r ¼ 6 to r ¼ 106 is shown. In the right column, the deviation function fðrÞ is shown.
All the deviation function plots are demonstrated from r ¼ 2.05 to r ¼ 106, while in the subplot from r ¼ 2.001 to r ¼ 2.05 is shown. In
all the cases gtt goes to zero rapidly near r ∼ 2. The deviation function increases near r ∼ 2. The increase is more for the C solution
compared to the NC solution. Despite this increase, the gtt component rapidly goes to vanishingly small value near r ∼ 2.
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In Refs. [23,24] it was demonstrated that the DM density
near BH vanishes. Based on this, previous works had scaled
the density profile to make the density vanish in the near
zone. We followed the same for the latter half of our work.
We took these modified density profiles. We found before
imposing the sound speed condition that these profiles have
more pathologies. Not only does the dominant energy
condition and the tangential sound speed become super-
luminal but also the square of sound speeds becomes
diverging and negative in the near region. By plotting the
radial derivative of density we demonstrated these diver-
gences and the negative values are connected to the maxima
of the density profile. Once we put the physical sound
speed condition we find the pathologies are resolved and
rather than a maxima and decaying density structure the
density starts to grow. This points toward the possibility
that the physical sound speed under the current modeling
does not allow the density to decrease or demonstrate a
vanishing structure. It therefore contradicts the notion that
the density should reach maxima and then vanish near BH.
It remains to be seen how the possible contradiction with
Refs. [23,24] be addressed. It can have a connection with
the “Cusp-Core” problem. It is also important to investigate
in detail if the current modeling is appropriate for the DM
energy-momentum tensor. It requires further detailed
investigation.
Refs. [23,24] considered the BH to be growing

adiabatically inside the DM halo, which resulted in the
density maxima near the horizon. On the other hand, in
Refs. [53,54] it has been shown that the regularity of
TμνTμν near horizon for a time-dependent spherically
symmetric metric, i.e. ðgtt; grrÞ, requires nonzero Trt
component. Since the vanishing density near the horizon
comes from the calculations that assume adiabatic time
evolution of the BH, it is important to investigate whether
modeling such a DM profile as a diagonal energy-
momentum tensor is appropriate. The origin of the
violation of the energy condition and the ill-behaved
sound speed could also be the diagonal form of the
energy-momentum tensor, at least partially. Hence, it
boils down to investigating the accuracy of the
assumption that the DM profile is a static structure
and the resulting metric is time independent too. These
aspects must be investigated in the future.

Notably, we have not assumed the solution to be a BH
apriori. Along with the energy-momentum tensor model,
we have only assumed the metric to be spherically
symmetric and asymptotically flat. From the behavior of
grr we know that it diverges at r≳ 2 since mðrÞ > 1. From
the solution of gtt, we indeed find that gtt → 0 as r → 2.
However, this does not imply apriori that the points where
gtt ¼ 0 and grr ¼ 0 are the same point. Hence, it requires
further investigations focusing on the near zone to establish
if it is indeed a BH or a wormhole or shows some other
structure. This needs more investigation.
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APPENDIX A: NFW

One density profile that we did not discuss in the main
text for brevity is the Navarro-Frenk-White (NFW) profile.
We scale the NFW density profile to make the density
vanish near the BH. The NFW distribution can be obtained
by fixing ðα; β; γÞ ¼ ð1; 3; 1Þ [55]

ρNFW;S ¼
�
1 −

2

r

�
ρ0

�
r
a0

�
−1
�
1þ

�
r
a0

��
−2

ðA1Þ

The NFW model is well-known for predicting a mass
function that diverges logarithmically as r approaches
infinity. To address this divergence, we introduce a radial
cutoff rc such that MHaloðr > rcÞ ¼ 0 similar to that of
Ref. [41]. We set it to be rc ¼ 5a0. With the density at
hand, we plot pt=ρ, tangential sound speed as well as
dρNFW;S=dr in Fig. 10. We label individual profile by
ða0;MScale; rc=a0Þ. It can be seen from the plots, that the
NFW profile also demonstrates the previously discussed
pathologies. For brevity, we are not showing NC or C
solutions of the corresponding TOV equations. We found
them to demonstrate features similar to the other profiles.
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APPENDIX B: SADEGHIAN-FERRER-WILL
(SFW) TYPE PROFILE

In the main text along with the actual density profiles, we
also showed the results of scaled density profiles. However,
the scaling was done in a manner so that the density
vanishes at the horizon, i.e. r ¼ 2. Reference [24] studied
what will be the density profile of a halo if a black hole is
grown adiabatically within a preexisting halo. They found
the density to vanish rather at r ¼ 4. The disappearance of
particle density at r ¼ 4 is understood in terms of stable
circular orbits. This value corresponds to the radius of
the unstable circular orbit within the Schwarzschild
geometry for a particle on the verge of escaping, charac-
terized by energy per unit mass E ¼ 1 and having an
angular momentum per unit mass L ¼ 4. A particle with
L ≥ 4 and E ≤ 1 has an inner turning point at r ≥ 4.
Consequently, any particle managing to approach r ¼ 4
inevitably falls into the black hole. Therefore, the particle
density vanishes at r ≤ 4. For further details see [24].
For this reason, here we show the result for such

kind of vanishing density. Here we take ρHern=NFW→
ð1−4=rÞρHern=NFW. From the study in the main text, we
showed that the vanishing of density implies there is a

maximum in the density and the density decreases after-
ward. We demonstrated that this is the region where the
sound speed behaves unphysically, precisely because of the
density structure. Therefore having a different scaling will
not change the qualitative features. The region of diver-
gences will just get shifted.
In the first row of Fig. 11we plot c2st andwe zoom in on the

diverging region. For all the profiles, below a certain radius,
c2st becomes negative even for the current scaling. In the
second row, we plot the derivative of the density function
with respect to the radius.We find that inmost of the range of
radius, the derivative is negative and in the near zone it
becomes positive. The point when it becomes zero corre-
sponds to the maxima of the density function. As a
consequence c2st blows up at that point and becomes negative
for a smaller value of radius. These features are exactly
similar qualitatively to the ð1 − 2=rÞ scaling we discussed in
the main text. In the current scaling, the density vanishes
everywhere r < 4, unlike the previous casewhere it vanishes
at the horizon. As a result, in the current case, the region
of divergence is shifted to a larger radius compared to the
ð1 − 2=rÞ scaling. This bolsters the point that the maxima of
density is the reason behind the unphysical behavior of
sound speed.

FIG. 10. The results for the NFW profile are shown here. In the first row, we show the behavior of the dominant energy condition and
the c2st. At the bottom, we show jc2stj and the derivative of density with respect to the radius. The connection between the vanishing ρ0 and
the diverging sound speed is present here also. The profile is qualitatively similar to all the other profiles. Therefore, all the findings in
the previous part of the current work are qualitatively valid for the NFW profile.
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Interestingly for this scaling, in the region with the radius
smaller than that of the divergence points, there exists a
patch where sound speed can be physical. In the subplot of
Fig. 11 this region is shown. Below the divergence point,
the sound speed becomes negative similar to the other
scaling. However, later it starts to grow and around r ∼ 5.5,
it reaches zero. From ∼5.5 to r ¼ 4 it becomes positive and
subluminal. We are not showing the region below r ¼ 4, as

the density vanishes in that region. This result implies that
depending on the scaling, below the divergence points
physical sound speed can exist in certain patches. However,
it cannot resolve the divergences and the negative sound
speed. Therefore the maxima of the density is bound to
create these pathologies. However, depending on how and
where the density reaches maxima, physical sound speed
patches can form near the BHs.
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