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The early and precise localization of gravitational waves (GWs) is pivotal in detecting their
electromagnetic (EM) counterparts, especially for binary neutron stars (BNS) and neutron star-black hole
binaries (NSBH). In this letter, we pioneer the exploration of utilizing the higher harmonic modes induced
by the eccentricity of compact binaries to localize GWs with ground-based detectors even before the
quadrupole baseline l ¼ 2mode enters the detector band. Our theoretical analysis marks a first in proposing
a strategy for gaining the earliest possible warning and maximizing preparation time for observing pre and/or
postmerger EM counterparts. We simulate three typical binaries from GWTC-3 with eccentricities ranging
from 0.05 to 0.4. Our results reveal that the third-generation (3G) detectors (low-frequency cutoff
f0 ¼ 5 Hz) can accumulate sufficient signal-to-noise ratios through higher modes before the onset of
the baseline l ¼ 2 mode entry into the band. Notably, relying solely on the higher modes, the 3G detector
network ETþ 2CE achieves an average localization on the order of 1–102 deg2 around 1–1.8 hours before
the merger of a GW170817-like BNS, and 10–103 deg2 approximately 18–30 minutes prior to the merger of
a GW200115-like NSBH. A 100 deg2 localization is attainable even 2–4 hours prior to a BNS merger.
Moreover, in the near face-on orientations which are generally more favorable for EM counterpart detection,
the localization can be further improved.
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I. INTRODUCTION

Multimessenger observations of gravitational waves
(GWs) and their electromagnetic (EM) counterparts play
vital roles in cosmology, astrophysics, and fundamental
physics [1–9]. Notably, with the observations of EM
counterparts, the host galaxies of GWs and consequently
their redshifts can be readily identified, enabling the direct
measurement of the Hubble constant through GW standard
sirens [3,10–12] (for dark sirens with no EM counterparts
see e.g., [13–19]). However, the successful capture of EM
counterparts heavily relies on the precise and timely
localization of GW sources [20–23]. The early warning
and localization of GWs, as well as their implications for
multimessenger observations, have been explored from
various perspectives [24–41].

Eccentricity can aid not only in distinguishing between
isolated and dynamical binary black hole (BBH) formation
scenarios [42–45] but also in improving the parameter
estimation (including localization) of GWs [46–49]. In
particular, recent studies [50–52] demonstrate that the
eccentricity of long inspiraling compact binaries can dra-
matically enhance the accuracy of distance estimation
and source localization by several orders of magnitude
with space-based decihertz observatories. On the other
hand, neglecting eccentricity can introduce biases in param-
eter estimation and in testing general relativity with GWs
[53–57]. In current detections, GW190521 has been sug-
gested to favor nonzero eccentricities, and its effects on
parameter estimation have been investigated from various
perspectives [58–62]. These research findings suggest that
eccentricity is an indispensable factor to consider in GW
detection, data analysis, and practical applications.
One prominent feature of eccentric waveforms is

the presence of multiple harmonic modes induced by*Corresponding author: zjcao@bnu.edu.cn
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eccentricity [63–66]. In the quasicircular case, quadrupole
GWs exhibit only the baseline mode, l ¼ 2, whose
frequency is twice of the orbital frequency F (hereafter,
we refer to the l ¼ 2 mode as the baseline mode).
Eccentricity can induce higher harmonic modes, each with
a frequency flðtÞ ¼ lFðtÞ. This results in each mode
entering the detector band at a distinct time. Consequently,
the higher modes (l > 2) enter the detector band earlier
than the dominant baseline mode, affording an extended
period for the observation of these higher modes. This is
particularly beneficial for ground-based detectors that aim
to capture GWs at high frequencies, where the inspiral time
is very limited. For instance, consider the binary neutron
stars (BNS) GW170817 detected by LIGO as an example.
The in-band time of the baseline mode from 10 Hz to the
merger lasts approximately 17 minutes. However, before
the baseline mode enters the detector band, the higher
modes have already been in band for nearly 20 hours
(assuming we account for the higher modes up to l ¼ 10;
note that a larger eccentricity would shorten this period).
This extended observation window for the higher modes
enables the consideration of Earth’s rotation effects,
introducing a Doppler effect that can furnish additional
angular information regarding the sources. A nonvanishing
eccentricity can render the contribution of these higher
modes non-negligible even before the baseline mode
becomes observable. The early detection and localization
of these higher modes on their own have not been
considered in previous works. This raises the following
questions that we aim to address in this letter; Can we
observe these higher modes even before the baseline mode
becomes observable? More importantly, to what degree of
accuracy can we localize GW sources solely based on
these higher modes in the very early stage?
Previous works on the early warning of GWs have

focused on the time following the entry of the dominant
baseline mode into the band [25,29,30]. They aim at
comparing the circular case (only baseline mode) to the
eccentric case (baselineþ higher modes) [25], or the
quadrupole mode to the quadrupoleþ higher multipoles
[29,30]. In this letter, for the first time, we shift our focus to
the time preceding the baseline dominant mode’s entry.
This means we exclusively rely on the higher modes in the
very early stage. Localization based on these higher modes
allows for the earliest detection and warning of GWs and
EM counterparts, especially in the context of BNS and
neutron star-black hole (NSBH) binaries. This grants EM
telescopes much more preparation time, enhancing the
likelihood of capturing EM counterparts and particularly
aiding in the capture of potential premerger EM counter-
parts [67–70]. If there is a high likelihood that most NSBH
mergers will involve nondisruptive systems, premerger
signals might provide the sole avenue for EM observations
of these systems.

II. METHODOLOGY

To address the aforementioned questions, we turn to
simulations of typical compact binaries that have detected
by LIGO-Virgo-KAGRA Collaborations. We select three
representative binaries from the GWTC-3 catalog [71]; BNS
GW170817, NSBH GW200115, and binary black holes
(BBH) GW150914. We consider various detector network
scenarios, including the second-generation (2G) advanced
LIGO, advanced Virgo, KAGRA, and India-LIGO (HLVKI)
networks at their designed sensitivity, the third-generation
(3G) detector Einstein Telescope (ET) [72], and the
extended network ETþ 2CE, which combines ET with
two cosmic explorer detectors.1 The low-frequency cutoffs
for the 2G and 3G detector bands are set at 10 Hz and 5 Hz,
respectively. It’s worth noting that the lower limit of ET can
reach 3 Hz,2 which potentially yields more promising
results. In this study, we conservatively assume a uniform
lower limit of 5 Hz for all 3G detectors.
We adopt the nonspinning, inspiral-only, and frequency-

domain EccentricFD waveform approximant provided by
the LALSuite software package [73]. This waveform is
sufficient for our purposes, as we focus on the early stage
of the inspiral phase. The eccentric waveforms are gen-
erated using PyCBC [74]. The waveform can be expressed as
the sum of harmonics [64],

h̃ðfÞ ¼
X10
l¼1

h̃lðfÞ; ð1Þ

where h̃lðfÞ represents the contribution from the lth
harmonic. We modify LALSuite to extract each harmonic
h̃lðfÞ separately.
Given the relationship flðtÞ ¼ lFðtÞ, the time associated

with a fixed frequency varies for each mode. Accounting for
Earth’s rotation, the antenna pattern functions Fþ;× of the
detector become time dependent. Consequently, it’s crucial
to handle the antenna pattern function for each mode
individually, ensuring accurate representation of their
time-varying behavior. To establish the relationship between
time and frequency tðfÞ for eccentric binaries, we use the
baseline frequency f2 as a reference and numerically solve
the phase evolution of the eccentric orbits [63]. Then for
each mode h̃lðfÞ, the associated response functions are
Fþ;×ðtÞ, with the time tðf → 2f=lÞ. To assess the con-
tribution of higher modes at a particular time, such as during
the period before the baseline mode enters the band, each
mode in Eq. (1) must be truncated at its respective
frequency, which corresponds to the time when the baseline
mode starts to enter the band.
We adopt the approach of [50] and employ the Fisher

matrix technique for GWs [75] to estimate the uncertainty

1https://gwic.ligo.org/.
2https://apps.et-gw.eu/tds/?content=3&r=17196.
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and covariance of the waveform parameters. The Fisher
matrix is defined as Γij ¼ ð∂ih; ∂jhÞ, where ∂ih ¼ ∂h=∂Pi
and Pi represents a parameter in the waveform (refer
to [50,51] for details). The inner product is defined as

ða; bÞ ¼ 4

Z
fmax

fmin

ã�ðfÞb̃ðfÞ þ b̃�ðfÞãðfÞ
2SnðfÞ

df; ð2Þ

where fmin is the low-frequency cutoff of the detector, SnðfÞ
is the noise power spectral density. Then the signal-to-noise
ratio (SNR) is ρ ¼ ðh; hÞ. The sky localization error is given
by ΔΩ ¼ 2πj sinðθÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CθθCϕϕ − C2

θϕ

q
[76], with the covari-

ance matrix of the parameters as Cij ¼ ðΓ−1Þij. We need to
note the limitations of the Fisher matrix in the parameter
estimation of GWs, especially for low SNRs [77]. We
incorporate Gaussian priors Γp

ii ¼ 1=ðδPiÞ2 into the Fisher
information matrix, where δPi represents the maximum
permissible variation in the parameter [53,54,75,78]. The
Fisher matrix approach, with the incorporation of Gaussian
priors, has demonstrated consistency with the more com-
putationally intensive Markov chain Monte Carlo (MCMC)
method [54,78].
To account for the different locations of the detectors

and the effects of Earth’s rotation, we use a geocentric
coordinate system to derive the time-dependent antenna
pattern functions of the detectors. Then, based on the
relation tðfÞ for each harmonic mode, we finally obtain
the frequency-dependent antenna pattern functions (refer
to [51,52,79] for the similar technical details). The positions
and orientations of the arms for the 2G detector network
HLVKI are detailed in Table I of [48]. However, the exact
locations and orientations of the 3G detectors ET and CE
have not been finalized. In our study, we assume ET is
situated in the Netherlands, while the two CE detectors
share the same locations and orientations as LIGO Hanford
and Livingston.3

For each typical binary, we maintain the component
masses (m1, m2), redshift z, and luminosity distance dL
consistent with the median values of the actual events.4 For
angular parameters Pang, such as the inclination angle ι, sky
location (θ, ϕ), polarization angle ψ , and longitude of
ascending nodes axis β, we generate 1000 random sets from
a uniform and isotropic distribution. Given the validated use
of this eccentric waveform for initial eccentricities up to
0.4 [64], we consider four discrete initial eccentricities;
e0 ¼ 0.05, 0.1, 0.2, and 0.4. It is important to note that e0 is
defined at f0 ¼ 10 Hz for 2G detectors and f0 ¼ 5 Hz for
3G detectors. Given that eccentricity is roughly inversely
proportional to frequency [63], the same eccentricity value

in the 3G detector context is more conservative than in the
2G detector scenario. Without loss of generality, we set the
coalescence time and phase as tc ¼ ϕc ¼ 0.

III. RESULTS

Figure 1 shows the average SNR and localization,
provided exclusively by the higher modes (l > 2), just
before the dominant baseline mode (l ¼ 2) enters the band.
We utilize two averaging strategies; first, by averaging
across all 1000 Pang samples, and second, by averaging the
Pang samples that meet the condition j cos ιj ≥ 0.9. We
define the condition j cos ιj ≥ 0.9 (equivalently, jιj ≤ 25° or
j180° − ιj ≤ 25°) as near face-on orientations. These ori-
entations are optimal for achieving both a higher SNR and
enhanced localization of the GWs. Furthermore, if we detect
the EM counterparts of BNS and NSBH, they are more
likely to be observed in near face-on orientations [80–82]. It
is worth noting that the inclination angle of GW170817 was
roughly 160° [3,7,83].
For the 2G detector network HLVKI, the average SNR

from the higher modes, before the baseline mode enters the
detector band, falls below the threshold SNR ρth in all cases.
Only in near face-on orientations does the average SNR for
BNS and BBH with e0 ¼ 0.4 meet the threshold. In
contrast, all cases under the 3G detector scenarios not only
surpass the SNR threshold but also achieve values on the
order of 102 for BNS and BBH. This underscores that the
2G detector network lacks the requisite sensitivity to detect
higher harmonic modes before the baseline mode enters the
detector band. On the other hand, 3G detectors can amass a
substantial SNR, enabling the easy detection of these
higher modes.
For localization, we discard cases where the average

localization exceeds 104 deg2. In the HLVKI scenario, as
expected, the early localization from the higher modes is
poor and carries limited significance. However, the land-
scape changes dramatically with the 3G detectors. Using a
single ET, the higher modes of BNS can secure an average
localization that varies from 600 deg2 at e0 ¼ 0.05 to
20 deg2 at e0 ¼ 0.4, all before the baseline mode enters
the band. Notably, in near face-on orientations, the locali-
zation is further enhanced, achieving an order of magnitude
of Oð1Þ deg2 at e0 ¼ 0.4.
The inclusion of two CE detectors in conjunction with

ET forms a network that can significantly enhance the
localization of the higher modes. As depicted in the right
panel of Fig. 1, the early localization solely from higher
modes in nearly all cases is superior to 103 deg2. For BNS,
the average localization is 144.8 deg2, 34.5 deg2, 7.5 deg2,
and 1.4 deg2 for e0 values of 0.05, 0.1, 0.2, and 0.4,
respectively. In near face-on orientations, these localiza-
tions sharpen further to 38.5 deg2, 9.3 deg2, 2.0 deg2, and
0.34 deg2, respectively. For NSBH, the average localiza-
tion spans from 22.4 deg2 to 2477.8 deg2 and refines to a

3The exact detector location and orientation are not critical for
this study and will not affect our results, as we simulate binaries
uniformly distributed across the sky, aiming for average results.

4https://gwosc.org/eventapi/html/GWTC/.
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range between 4.4 deg2 and 461.4 deg2 in near face-on
orientations. The results for BBH align closely in scale with
those of BNS.
To assess how early the higher modes enable us to detect

and localize the source, we show the evolution of average
SNR and localization against time to merger for the three

typical binaries within the ETþ 2CE network scenario in
Fig. 2. We calculate the SNR and localization right before
f2 reaches 15 distinct values ranging from 1.5 Hz to 50 Hz
(note the baseline mode enters the band at f2 ¼ 5 Hz, so
the results for this particular point just correspond to the
right panel of Fig. 1). We then translate f2 into the time to

FIG. 2. The average SNR and localization that can be achieved before the time to merger in the ETþ 2CE scenario. The luminosity
distances for BNS, NSBH, and BBH are 40 Mpc, 290 Mpc, and 440 Mpc, respectively. The solid line represents the average of all 1000
Pang samples, while the dashed line corresponds to the average with j cos ιj ≥ 0.9 (near face-on orientations). Stars indicate f2 ¼ 5 Hz,
marking the point where the dominant baseline mode begins to enter the band.

FIG. 1. The average SNR and localization provided exclusively by the higher harmonic modes just before the baseline mode enters the
band. The luminosity distances for BNS, NSBH, and BBH are 40 Mpc, 290 Mpc, and 440 Mpc, respectively. The solid line represents
the average of all 1000 Pang samples, while the dashed line corresponds to the average with j cos ιj ≥ 0.9 (near face-on orientations). The
dotted lines in the upper panel indicate the threshold SNR, ρth ¼ 8. Only cases with ΔΩ < 104 deg2 are shown.
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merger tc − t, to obtain the evolution of SNR and locali-
zation against the time to merger. We place particular
emphasis on the period preceding the entry of the baseline
mode into the band. As illustrated in Fig. 2, in general, a
larger eccentricity results in a higher SNR and better
localization at a given time. For BNS, with eccentricities
ranging from 0.05 to 0.4, the higher modes can achieve the
threshold SNR between 4.5–7.5 hours prior to the merger.
This is notably earlier than the entry of the baseline mode
into the band. Localization of 100 deg2 can be achieved
around 2–4 hours prior to the merger, derived solely from
the higher modes before the quadrupole mode’s entry into
the band (except for e0 ¼ 0.05, which is slightly after the
baseline mode enters the band). In the case of NSBH,
the threshold SNR can be obtained 0.5–1.3 hours before the
merger. Solely relying on the higher modes, a localization
of 100 deg2 can be achieved 30 minutes before the merger
when e0 ¼ 0.4. The results of BBH are similar to that of
BNS, though with a significantly shorter time to merger;
1.3–2.2 minutes for the threshold SNR and 30–50 seconds
for a 100 deg2 localization. In near face-on orientations,
the results above can be further improved.

IV. DISCUSSION

In this paper, we aim to check the idea that whether the
higher harmonic modes of eccentric compact binaries can
make a significant contribution to the SNR and localiza-
tion of the sources, even before the dominant baseline
mode enters the detector band. Consequently, these higher
modes could offer the earliest alert and localization,
thereby optimizing preparation time for both pre and
postmerger EM counterpart observations. Our findings
hold significance not only for the EM counterpart obser-
vations of BNS and NSBH but also for the potential EM
followups of BBH [84–86].
We fixed the distances of the three typical binaries to

match the median values of the true events. However, our

methodology can easily be extended to other distances, as
there is a relationship in our calculation of SNR and
localization; ρ ∼ 1=dL and ΔΩ ∼ 1=ρ2 ∼ d2L.
The rate of eccentric binaries remains a topic of active

research [87–90]. These estimates crucially depend on the
unknown astrophysics of these classes of compact binaries.
For BNS, which are the most promising and sought-after
early warning candidates, the rate of eccentric events could
be rare [87]. However, the detection of even a single such
event would be highly significant. The methodology pro-
posed in our paper could provide the maximum preparation
time for observations, thereby significantly increasing the
likelihood of successful joint GW and EM observations.
Given the extreme rarity of EM counterparts in current GW
detections, a very early warning of a potential GWþ EM
signal could be of great interest to both the GW community
and EM follow-up teams. Our approach offers a promising
avenue to enhance the detection and understanding of these
rare and valuable events.
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