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We obtain a Palatini-type formulation for the Galilei and Carroll expansions of general relativity, where
the connection is promoted to a variable. Known versions of these large and small speed of light expansions
are derived from the Einstein-Hilbert action and involve dynamical Newton-Cartan or Carroll geometry,
along with additional gauge fields at subleading orders. The corresponding Palatini actions that we obtain
in this paper are derived from an appropriate expansion of the Einstein-Palatini action, and the connection
variable reduces to the Galilei- or Carroll-adapted connection on shell. In particular, we present the Palatini
form for the next-to-leading-order Galilean action and recover the known equations of motion. We also
compute the leading-order Palatini-type action for the Carrollian case and show that, while it depends on
the connection variable, it reduces on shell to the known action of electric Carroll gravity, which only
depends on extrinsic curvature.
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I. INTRODUCTION

Recent years have witnessed a resurgence of interest in
both the large and the small speed of light expansion of
general relativity, which lead to nonrelativistic or Galilean
and ultralocal or Carroll approximations, respectively.
These developments have been fueled in part by a deeper
understanding and revival [1–3] of non-Lorentzian geom-
etry and its diverse connections to field theory [4–7],
holography, and string theory [8–10].1 In particular, a
covariant, off-shell large speed of light expansion of
general relativity was obtained in [15–17] describing, in
principle, the dynamics of gravity at any particular order
in an expansion of 1=c2, with c the speed of light. This
expansion leads to a novel “type II” Newton-Cartan
geometry, which turns out to be essential to construct an
action for Newtonian gravity in terms of dynamical
geometry. The actions obtained from the large speed of
light expansion also go beyond Newtonian gravity, since
we are not necessarily performing a weak-field expansion.

Furthermore, a key observation has been to emphasize the
role of torsion in Newton-Cartan geometry. While this
quantity is zero for Newtonian physics, corresponding to
absolute time, it does not need to be zero in general, and
thus torsional Newton-Cartan geometry can describe gravi-
tational time dilation even in the nonrelativistic regime.
Using similar methods, the corresponding Carrollian
or ultralocal expansion for a small speed of light was
developed in [18], making contact with earlier work on
Carroll limits and expansions of gravity in [19–22].
There are by now ample reasons to consider such

expansions, of which we mention here just a few. For
the Galilean case, they include covariant formulations of
post-Newtonian physics [23–25], understanding the cou-
pling of nonrelativistic quantum matter to geometry [26],
the relation to low-energy effective actions in nonrelativ-
istic string theory [27–30], non-Lorentzian supergravity
(see the review [31]), and numerous additional ones
summarized in the review [11]. Likewise, for Carrollian
gravity there are interesting relations to cosmology [32],
applications to black holes [18,33–37], and suggestive
simplifications of the 3þ 1 formulation of general rela-
tivity [18] (see Refs. [38–58] for further related aspects of
Carroll gravity and geometry).
In principle, the work of [16–18] allows us to obtain both

the nonrelativistic and ultralocal expansions of the action
and equations of motions (EOMs) of general relativity
(GR) to any order. Furthermore, there is an understanding
of the underlying symmetry principle at any given order,
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1For more references and background see the recent reviews on
nonrelativistic gravity [11], non-Lorentzian geometry [12], non-
relativistic string theory [13], and nonrelativistic field theory [14].
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based on a truncation of an appropriate Lie algebra
expansion of the Poincaré algebra [16,17,59,60].
However, developing this geometric expansion in the

speed of light becomes increasingly challenging at higher
orders. So far, the study of the action and EOMs has
primarily been done in terms of what one could call a
second-order formalism for the geometrical variables, using
non-Lorentzian geometric fields that are the analog of the
metric in Lorentzian geometry and a particular connection
compatible with this structure. In this language, explicit
expressions for the complete expanded actions only exist
up to next-to-next-to-leading order in the nonrelativistic
case [17] and next-to-leading order in the ultralocal
case [18]. On the other hand, in GR we know that several
computations simplify somewhat in a first-order or Palatini
formulation, where the connection is promoted to a dynami-
cal variable which reproduces the Levi-Civita connection
on shell.
A natural question is therefore whether there exists an

alternate, and perhaps more efficient, Palatini-type formu-
lation for the Galilean and Carrollian expansions of GR,2

and some work on this has already been done [21,61–64].
In particular, in [63] a novel Palatini-type formulation of
GR was obtained where the connection EOM reproduces
the Galilean-compatible connection suitable for the non-
relativistic expansion. In the process, this work elucidated
and emphasized the appearance of torsion in the non-
relativistic expansion of the connection, which was missed
in early work on Carroll and Galilei limits [21] (but see [54]
for recent work on limits incorporating torsion).
In this paper, we will take the next step and obtain a

Palatini-type formulation relevant to both the nonrelativ-
istic as well as the ultralocal expansion of GR. We will thus
obtain Palatini actions for the Galilei and Carroll expan-
sions of gravity. Building on [63] we explicitly show that
we can recover the appropriate connections from the
equations of motions. Our main motivation is the expected
simplification of the computation of EOMs at higher order,
and we therefore also demonstrate that our novel Palatini
actions allow us to recover known second-order metric
equations of motion after putting the connection on shell. In
addition, we expect this formulation to aid in the study of
various physical applications, including the construction of
boundary charges, as mentioned in the Discussion.
Relatedly, since constructing further subleading actions

is still cumbersome using our Palatini-type actions, one
may wonder whether such actions can instead be obtained

by an algebraic procedure, using the known symmetry
principle mentioned above. This was considered in several
works, especially for Carroll limits, but these approaches
often fail to reproduce what we would call the leading-order
(or “electric”) Carroll action [21,49,52], which again is
related to the importance of torsion (see also [54]). Since
this is relatively novel territory, the explicit forms of the
Palatini-type actions for next-to-leading-order Galilean
gravity and leading-order Carroll gravity are by themselves
a useful milestone, and comprise one of our main results.
Perhaps surprisingly, we will find that the leading-order
Palatini action for Carroll gravity depends on the con-
nection, even though its known second-order form only
depends on the extrinsic curvature and is hence indepen-
dent of the connection.
A brief outline and summary of the paper is as follows.

In Sec. II we review the Palatini description of Einstein
gravity. Treating the connection as an independent variable,
the solution of its equation of motion gives the metric-
compatible torsion-free Levi-Civita connection, up to a
one-form ambiguity. We then show that there is a slightly
different approach in which one shifts the connection
degree of freedom using the Levi-Civita connection, which
will be used later on. In Sec. III we first review the pre-
nonrelativistic (PNR) and pre-ultralocal (PUL) decompo-
sition of GR following [17,18]. This is essentially a
rewriting for GR in which time and space are split
covariantly, in anticipation of the large/small speed of light
expansion. It involves a decomposition of the metric
separating timelike and spacelike directions along with
an appropriate decomposition of the Levi-Civita connec-
tion, the details of which depend on whether one considers
a large or a small speed of light. This procedure is what
defines for us the PNR/PUL connection, adapted to the
Galilean or Carrollian structures that emerge in the large/
small speed of light expansions. We can use this to mimic
the Palatini procedure for the PNR/PUL actions, which is
what we obtain next in Sec. IV. We show that one can solve
the PNR and PUL connection from its equation of motion
in these actions. For the Galilean case, we will then write
down the resulting leading-order (LO) and next-to-leading-
order (NLO) actions, while for the Carroll case we will
confine ourselves to presenting the leading-order action.
Then in Sec. V we put our Palatini formulation to the test by
computing the metric equations of motion from the NLO
Galilean action using the action obtained in the previous
section. We end in Sec. VI with an outlook. In Appendix A
we list conventions and geometric identities that will be
used in the main text. Finally, Appendix B gives further
computational details of the solution of the general con-
nection equations of motion in the Einstein-Palatini action.

II. EINSTEIN-PALATINI REVIEW

We first review the description of general relativity using
the Einstein-Palatini action,

2For the case of Einstein gravity, the Palatini action is in fact
also a first-order action. In general, however, the Palatini actions
we will develop in this work (by treating the metric and
connection as independent degrees of freedom) are not neces-
sarily fully first-order in derivatives on the metric due to terms
related to the torsion. Using the term “first-order” actions in this
context can thus be a slight abuse of language, and we will mainly
avoid it in favor of “Palatini” or “Palatini-type” actions.
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SEP½g;Γ� ¼
1

2κ

Z
ddx

ffiffiffiffiffiffi
−g

p
gμνRμν: ð2:1Þ

This action can be obtained from the Einstein-Hilbert action
by promoting the Levi-Civita connection to an independent
variable Γρ

μν, so that in particular the Ricci tensor Rμν

depends on the connection but not on the metric.
Sometimes the connection variable is assumed to be sym-
metric, so that its torsion always vanishes. We will not
impose such a restriction in order to make the comparison
with our non-Lorentzian discussion belowmore obvious, as
in those cases torsion is generically nonzero.
Using our definitions and conventions in Appendix A,

and in particular the variation of a general Ricci tensor
obtained from Eq. (A9), the variation of this action is

δSEP¼
1

2κ

Z
ddx

ffiffiffiffiffiffi
−g

p �
Rμν−

1

2
gμνR

�
δgμν

þ 1

2κ

Z
ddx

ffiffiffiffiffiffi
−g

p
gμνð−∇μδΓ

ρ
ρνþ∇ρδΓ

ρ
μν−Tλ

μρδΓ
ρ
λνÞ:

ð2:2Þ

As we will discuss below, the resulting connection equa-
tions of motion can be solved to obtain the Levi-Civita
connection. With the connection on shell, the metric
equations of motion then reproduce the Einstein equations.
However, before we show how to solve the connection
equation of motion, let us emphasize a few key points.
First, as we already mentioned, the Einstein-Palatini

action has exactly the same form as the usual Einstein-
Hilbert action, with the only difference between the two
being that the connection is a variable in the former.
However, this is not generic. Promoting the connection to
a variable in for example a higher-derivative theory of
gravity typically does not lead to connection equations of
motion that can be solved to obtain the Levi-Civita
connection and to recover the original action [65]. In
the following, we will introduce reparametrizations of
general relativity using variables that are adapted to the
nonrelativistic or ultralocal expansions. As we will see, the
corresponding reparametrizations of the Einstein-Palatini
action are not just obtained by allowing the connection in
the reparametrization of the Einstein-Hilbert action to
vary, but they contain additional terms. In total, this
allows us to solve the actions for the corresponding
connection and reproduce the correct actions with the
connection on shell.
Relatedly, the metric equations of motion coming from

the Einstein-Palatini action in (2.2) are already of the same
form as the metric equations of motion of the Einstein-
Hilbert action. All that remains to recover the Einstein
equations is specifying the connection used in the Ricci
tensor. This is related to the fact that the variation of theRicci
tensor produces a boundary term when the connection is on

shell, whichwill no longer be the case in our Galilei-adapted
and Carroll-adapted variables below. Instead, the terms
coming from varying the Ricci tensor are reproduced by
the variation of the additional terms in the corresponding
reparametrizations of the Einstein-Palatini action.

A. Solving for the connection directly

Now let us return to obtaining and solving the con-
nection equation of motion from the variation (2.2) of the
standard formulation of the Einstein-Palatini action. We
first rewrite the terms involving a derivative of the con-
nection variation using a total covariant derivative, which
gives

δΓSEP ¼
1

2κ

Z
ddx½−∇αð

ffiffiffiffiffiffi
−g

p
gανδμρδΓρ

μνÞ

þ∇ρð
ffiffiffiffiffiffi
−g

p
gμνδΓρ

μνÞ þ δΓρ
μνðδμρ∇λ½

ffiffiffiffiffiffi
−g

p
gλν�

−∇ρ½
ffiffiffiffiffiffi
−g

p
gμν� − ffiffiffiffiffiffi

−g
p

gσνTμ
σρÞ�: ð2:3Þ

The terms on the first line involve a total covariant
derivative of a weight one vector density. We can rewrite
these using Eq. (A13), which leads to

δΓSEP ≈
1

2κ

Z
ddx½δΓρ

μνð− ffiffiffiffiffiffi
−g

p
Tβ

βαgανδ
μ
ρ þ ffiffiffiffiffiffi

−g
p

Tα
αρgμνÞ

þ δΓρ
μνðδμρ∇λ½

ffiffiffiffiffiffi
−g

p
gλν� −∇ρ½

ffiffiffiffiffiffi
−g

p
gμν�

−
ffiffiffiffiffiffi
−g

p
Tμ

αρgανÞ�: ð2:4Þ

Here and in the following, we use “≈” to denote that two
quantities are equal up to boundary terms. From this, we
obtain the following connection equation of motion:

0¼ δμρ∇αð
ffiffiffiffiffiffi
−g

p
gανÞ−∇ρð

ffiffiffiffiffiffi
−g

p
gμνÞ

−
ffiffiffiffiffiffi
−g

p
Tα

αβgβνδ
μ
ρþ ffiffiffiffiffiffi

−g
p

Tα
αρgμν−

ffiffiffiffiffiffi
−g

p
Tμ

αρgαν: ð2:5Þ

This can be interpreted as an equation for the “metricity
density” ∇ρð ffiffiffiffiffiffi−gp

gμνÞ and the torsion tensor Tρ
μν. As

detailed in Appendix B, it determines the connection to be

Γρ
μν ¼ Γ

ðLCÞ
ρ
μν þ δρνAμ: ð2:6Þ

Here, the first term is the usual Levi-Civita connection,

Γ
ðLCÞ

ρ
μν ¼ gρλ

2
ð∂μgνρ þ ∂νgρμ − ∂ρgμνÞ; ð2:7Þ

and the second term is an ambiguity [66–68] parame-
trized by a one-form Aμ, which, however, drops out of
the action (2.1) entirely. One can exclude this ambi-
guity by assuming zero torsion from the start, as in for
example [69]. Although they may in principle affect the
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coupling to matter, we will ignore such ambiguities that
drop out of the action for our present purposes.3

B. Solving for the connection using a shift

While the connection equation of motion obtained from
the variation of the action (2.1) can be solved directly in that
form, it is easier to take a slightly different approach.
Instead of varying with respect to Γρ

μν, we introduce a
change of variables

Γρ
μν ¼ Γ

ðLCÞ
ρ
μν þ Sρμν; ð2:8Þ

in terms of the Levi-Civita connection (2.7) and an
arbitrary tensor Sρμν. Of course, this change of variables
contains some hindsight, but since Sρμν is general it is
without loss of generality. Using Eq. (A5), we can then
rewrite the action (2.1) as

SEP-S½g; S� ¼ SEP

�
g;Γ ¼ Γ

ðLCÞ
þ S

�
ð2:9Þ

¼ 1

2κ

Z
ddx

ffiffiffiffiffiffi
−g

p
gμν

�
R

ðLCÞ
μν − ∇

ðLCÞ
μSρρν

þ ∇
ðLCÞ

ρSρμν − SρμλSλρν þ SρρλSλμν

�

≈ SEH½g� þ
1

2κ

Z
ddx

ffiffiffiffiffiffi
−g

p
gμνð−SρμλSλρν

þ SρρλSλμνÞ; ð2:10Þ

where we have dropped two total derivatives. The first
term on the last line is just the Einstein-Hilbert action. The
freedom in the connection variable, which is now para-
metrized by Sρμν through (2.8), is thus entirely captured by
the last term, which is quadratic and tensorial. Varying it
gives rise to the equation of motion

0 ¼ −gμλSνρλ − gνλSμλρ þ δμρSναβgαβ þ gμνSλλρ: ð2:11Þ

As detailed in Appendix B, we can solve this to obtain

Sρμν ¼ δρνAμ: ð2:12Þ

Together with (2.8), this reproduces precisely the solu-
tion (2.6) above. Again, the ambiguity Aμ drops out of the
action (2.10), and we recover the Einstein-Hilbert action
upon putting the connection on shell.

Obtaining and solving the connection equation of motion
is more straightforward in this approach, and we will see
below that it carries over nicely to the Galilei and Carroll
reparametrizations and expansions. However, the variation
of the action (2.10) with respect to the metric is equivalent
to the metric variation of the Einstein-Hilbert action. As
such, this reparametrization of the Palatini action does not
provide any potential benefit for determining the metric
equations of motion, in contrast to the original form of the
action in (2.1) where the Ricci tensor was independent of
the connection. For the Galilei and Carroll reparametriza-
tions and expansions of the Einstein-Palatini action, we will
therefore start from (2.1), and we derive the metric
equations of motion from the resulting actions in that
form. Meanwhile, for the connection equations of motion
we will perform a change of variables such that we end up
with the Galilei or Carroll equivalent of the form of the
Palatini action in (2.10).

III. PRE-NONRELATIVISTIC AND
PRE-ULTRALOCAL PALATINI ACTION

As briefly mentioned in the Introduction, the Galilean
and Carrollian expansion of general relativity proceeds in
two steps. First, the Einstein-Hilbert action is rewritten
using variables adapted to the nonrelativistic and ultralocal
symmetries that will emerge in the corresponding expan-
sion. This change of variables is known as the PNR [16,17]
and the PUL [18] parametrization, respectively. At this
point, the resulting PNR and PUL parametrizations of the
Einstein-Hilbert action are still equivalent to the Einstein-
Hilbert action, only written in different variables. We will
generalize these reparametrizations to the Einstein-Palatini
action in the present section. The next section will then
describe the nonrelativistic and ultralocal Galilei and
Carroll expansion using the adapted PNR and PUL
variables.
As a first step in both parametrizations, we rewrite the

Lorentzian metric as

gμν ¼−c2TμTνþΠμν; gμν¼−
1

c2
VμVνþΠμν: ð3:1Þ

The Tμ and Vμ are timelike vielbeine, while the Πμν and
Πμν act roughly as spatial metrics. These variables are
assumed to be analytic in 1=c2 or c2, and they satisfy the
following orthonormality relations:

VμTμ ¼−1; VμΠμν¼ 0; TμΠμν ¼ 0;

δμν ¼−VμTνþΠμρΠρν: ð3:2Þ

In addition to general diffeomorphisms, these variables
transform under local Lorentz boosts, which will become
local Galilei or Carroll boosts plus subleading corrections
in the respective expansions. Finally, the integration

3Note that it has been argued in [67,68] that the connection
ambiguity (2.6) does not affect the Einstein equation, nor does it
physically affect the point particle coupling. It would be very
interesting to see if similar results hold for the additional
connection gauge symmetries that we obtain in the Galilean
and Carrollian expansions below.
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measure becomes
ffiffiffiffiffiffi−gp ¼ cE where we have E2 ¼

− detð−TμTν þ ΠμνÞ.
Previously, this decomposition was applied to the

Einstein-Hilbert action. Depending on how we interpret
the resulting decomposition of the Levi-Civita connection,
we can obtain a connection that is adapted to either the
Galilei or the Carroll structure that emerges in the c → ∞
or c → 0 expansion, respectively. We will first treat the
PNR case with emerging Galilei structure in Secs. III A
and III B. The PUL case with an emerging Carroll structure
then proceeds similarly and is discussed in Sec. III C.

A. Pre-nonrelativistic decomposition
of the Palatini action

In the PNR case, the Levi-Civita connection is decom-
posed as

Γ
ðLCÞ

ρ
μν ¼ c2 C

ð−2Þ
ρ
μν þ Čρ

μν þ C
ð0Þ

ρ
μν þ

1

c2
C
ð2Þ

ρ
μν; ð3:3Þ

Here, we have collected powers of c that appear due to the
metric decomposition (3.1). Additionally, we obtain from
the c0 terms a connection Čρ

μν that is adapted to the Galilean
structure that emerges at leading order in the c → ∞
expansion,

Čρ
μν ¼−Vρ

∂μTνþ
1

2
Πρσð∂μΠνσþ∂νΠσμ−∂σΠμνÞ: ð3:4Þ

This means in particular that the corresponding covariant

derivative ∇
ðČÞ

ρ satisfies

∇
ðČÞ

ρTμ ¼ 0; ∇
ðČÞ

ρΠμν ¼ 0: ð3:5Þ

Additionally, we have

∇
ðČÞ

ρVμ ¼−ΠμνKνρ; ∇
ðČÞ

ρΠμν ¼−2TðμKνÞρ;

T
ðČÞ

ρ
μν ¼ 2Čρ

½μν� ¼−VρTμν: ð3:6Þ

Here, Tμν ¼ 2∂½μTν� is the exterior derivative of the clock
one-form and Kμν ¼ − 1

2
LVΠμν is the extrinsic curvature.

The remaining terms in (3.3) are tensorial and are given by

C
ð−2Þ

ρ
μν ¼ −TðμΠρσTνÞσ; ð3:7aÞ

C
ð0Þ

ρ
μν ¼ VρVσTðμTνÞσ þ

1

2
VρTμν; ð3:7bÞ

C
ð2Þ

ρ
μν ¼ −VρKμν: ð3:7cÞ

Total covariant derivatives using the ∇
ðČÞ

ρ connection
satisfy

∇
ðČÞ

μXμ ¼ 1

E
∂μðEXμÞ − VμTμνXν; ð3:8Þ

which we will use frequently when integrating by parts.

1. Pre-nonrelativistic Einstein-Hilbert decomposition

Using the decomposition of the Levi-Civita connection,
its Ricci scalar can then be decomposed in terms of the
curvature of the Galilean connection (3.4) together with
other tensorial terms,

ffiffiffiffiffiffi
−g

p
gμν R

ðLCÞ
μν ≈ cE

�
c2

4
ΠμνΠρσTμρTνσ þ Πμν R

ðČÞ
μν

þ 1

c2
ðKμνKμν −K2Þ

�
; ð3:9Þ

which holds up to total exterior derivatives, corresponding
to boundary terms in the action. From this, we obtain the
PNR rewriting of the Einstein-Hilbert action [17],

SPNR½T;Π� ¼
c4

2κ

Z
ddxE

�
c2

4
ΠμνΠρσTμρTνσ þ Πμν R

ðČÞ
μν

þ 1

c2
ðKμνKμν −K2Þ

�
: ð3:10Þ

As we will discuss in Sec. IVA, this action is now rewritten
in a form where each term can be Taylor expanded to obtain
a Galilean action plus subleading corrections.

2. Pre-nonrelativistic Einstein-Palatini decomposition

In the above, we rewrote the Einstein-Hilbert action in
terms of the Galilean-adapted connection (3.4) that was
constructed from the decomposition (3.3) of the Levi-Civita
connection. Motivated by this decomposition, to obtain the
corresponding reparametrization of the Einstein-Palatini
action (2.1), we similarly rewrite its general connection
variable Γρ

μν as

Γρ
μν ¼ c2 C

ð−2Þ
ρ
μν þ Cρ

μν þ C
ð0Þ

ρ
μν þ

1

c2
C
ð2Þ

ρ
μν: ð3:11Þ

Here, the first and the two last terms are still the known
tensors in (3.7). On the other hand, Cρ

μν is now an arbitrary
connection variable. As we will see in Sec. III B, it will be
fixed to be the Galilean connection Čρ

μν in (3.4) by its own
equation of motion.
Under the change of variables (3.11), the Ricci tensor

transforms following the general rule (A5), which gives
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Rμν¼c4 R
ð−4Þ

μνþc2 R
ð−2Þ

μνþ R
ð0Þ

μνþ
1

c2
R
ð2Þ

μνþ
1

c4
R
ð4Þ

μν; ð3:12Þ

where we grouped terms by their powers of c,

R
ð−4Þ

μν ¼ − C
ð−2Þ

ρ
μλ C

ð−2Þ
λ
ρν þ C

ð−2Þ
ρ
ρλ C

ð−2Þ
λ
μν; ð3:13aÞ

R
ð−2Þ

μν ¼ −∇
ðCÞ

μ C
ð−2Þ

ρ
ρν þ ∇

ðCÞ
ρ C
ð−2Þ

ρ
μν − T

ðCÞ
λ
μρ C

ð−2Þ
ρ
λν

− C
ð−2Þ

ρ
μλC

ð0Þ
λ
ρν þ C

ð−2Þ
ρ
ρλC

ð0Þ
λ
μν − C

ð0Þ
ρ
μλ C

ð−2Þ
λ
ρν

þ C
ð0Þ

ρ
ρλ C

ð−2Þ
λ
μν; ð3:13bÞ

R
ð0Þ

μν ¼ R
ðCÞ

μν − ∇
ðCÞ

μC
ð0Þ

ρ
ρν þ ∇

ðCÞ
ρC
ð0Þ

ρ
μν − T

ðCÞ
λ
μρC

ð0Þ
ρ
λν

− C
ð−2Þ

ρ
μλC

ð2Þ
λ
ρν þ C

ð−2Þ
ρ
ρλC

ð2Þ
λ
μν − C

ð2Þ
ρ
μλ C

ð−2Þ
λ
ρν

þ C
ð2Þ

ρ
ρλ C

ð−2Þ
λ
μν − C

ð0Þ
ρ
μλC

ð0Þ
λ
ρν þ C

ð0Þ
ρ
ρλC

ð0Þ
λ
μν; ð3:13cÞ

R
ð2Þ

μν ¼ −∇
ðCÞ

μC
ð2Þ

ρ
ρν þ ∇

ðCÞ
ρC
ð2Þ

ρ
μν − T

ðCÞ
λ
μρC

ð2Þ
ρ
λν

− C
ð2Þ

ρ
μλC

ð0Þ
λ
ρν þ C

ð2Þ
ρ
ρλC

ð0Þ
λ
μν − C

ð0Þ
ρ
μλC

ð2Þ
λ
ρν

þ C
ð0Þ

ρ
ρλC

ð2Þ
λ
μν; ð3:13dÞ

R
ð4Þ

μν ¼ −C
ð2Þ

ρ
μλC

ð2Þ
λ
ρν þ C

ð2Þ
ρ
ρλC

ð2Þ
λ
μν: ð3:13eÞ

Using the orthonormality properties (3.2) as well as the
fact that VμKμν ¼ 0, and using the definitions (3.7) for the

C
ðnÞ

ρ
ρνterms that do not involve the connection, we get

R
ð−4Þ

μν ¼
1

4
TμTνΠαρΠβσTαβTρσ; ð3:14aÞ

R
ð−2Þ

μν ¼ ∇
ðCÞ

ρ C
ð−2Þ

ρ
μν − T

ðCÞ
λ
μρ C

ð−2Þ
ρ
λν

þ 1

2
TμVρΠσαTρσðTαν þ TνTαβVβÞ; ð3:14bÞ

R
ð0Þ

μν ¼ R
ðCÞ

μν − ∇
ðCÞ

μC
ð0Þ

ρ
ρν þ ∇

ðCÞ
ρC
ð0Þ

ρ
μν − T

ðCÞ
λ
μρC

ð0Þ
ρ
λν

þ ΠρσKρðμTνÞσ þ TðμKνÞρΠρσTσαVα; ð3:14cÞ

R
ð2Þ

μν ¼ ∇
ðCÞ

ρC
ð2Þ

ρ
μν − T

ðCÞ
λ
μρC

ð2Þ
ρ
λν; ð3:14dÞ

R
ð4Þ

μν ¼ 0: ð3:14eÞ

We can simplify this further after contracting the Ricci
tensor. In particular, the Einstein-Palatini action (2.1) splits
into powers of c as follows:

SEP ¼
c3

2κ

Z
ddx

ffiffiffiffiffiffi
−g

p
gμνRμν

¼ c4

2κ

Z
ddxE

�
−

1

c2
VμVν þ Πμν

�
Rμν ð3:15Þ

¼ 1

2κ

Z
ddxE

"
c6 L

ð−6Þ
þc4 L

ð−4Þ
þc2 L

ð−2Þ
þ L

ð0Þ
#
: ð3:16Þ

Using the expressions in (3.14) and now also working out
the terms involving the covariant derivative and torsion, we
then obtain

L
ð−6Þ

¼ 1

4
ΠαρΠβσTαβTρσ; ð3:17aÞ

L
ð−4Þ

¼ Πμν R
ðCÞ

μν þ ∇
ðCÞ

ρðΠρνVσTνσÞ þ ΠρνVσ ∇
ðCÞ

ρTνσ

þ ΠρσVμ T
ðCÞ

λ
μρðδνλ − TλVνÞTνσ

þ VμVνΠρσTνσ

�
Tρμ − T

ðCÞ
α
ρμTα

�
; ð3:17bÞ

L
ð−2Þ

¼ −VμVν R
ðCÞ

μν −Πμν∇
ðCÞ

ρðVρKμνÞ þΠμν T
ðCÞ

λ
μρVρKλν;

ð3:17cÞ

L
ð0Þ

¼ 0: ð3:17dÞ

As it turns out, the leading-order term in the rewriting of
the Einstein-Palatini action is independent of the connec-
tion. Furthermore, the final term (corresponding to

VμVνR
ð2Þ

μν) vanishes identically. It would be interesting to
understand these results from an algebraic perspective,
classifying all possible curvature invariants including also
torsion. We will return to this question in the Discussion in
Sec. VI below. For now, we see that the pre-nonrelativistic
Einstein-Palatini action is

SPNR-P½T;Π;C�

¼ c4

2κ

Z
ddxE

�
c2

4
ΠαρΠβσTαβTρσ

þΠμν R
ðCÞ

μνþ ∇
ðCÞ

ρðΠρνVσTνσÞþΠρνVσ∇
ðCÞ

ρTνσ

þVμVν∇
ðCÞ

ρðΠρσTμTνσÞþΠμνVρVσTνσ∇
ðCÞ

ρTμ

−Πμν∇
ðCÞ

μðVρTρνÞþ
1

c2
ð−VμVν R

ðCÞ
μν−Πμν∇

ðCÞ
ρðVρKμνÞ

þΠμν T
ðCÞ

λ
μρVρKλνÞ

�
: ð3:18Þ
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This action is equivalent to the Einstein-Palatini action (2.2)
and is written in terms of variables that are adapted to the
nonrelativistic c → ∞ expansion with an emerging Galilei
structure. Specifically, the action depends on the metric
variables Tμ and Πμν introduced in (3.1), as well as the
arbitrary connection variable Cρ

μν introduced in (3.11).

B. Solving for the Galilean connection

The form of the PNR parametrization of the Einstein-
Palatini action (3.18) differs significantly from the form of
the PNR parametrization of the Einstein-Hilbert action
(3.10). In particular, in contrast to the Einstein-Palatini
action (2.1), it is not obtained simply by promoting the
connection in the PNR Einstein-Hilbert action to a variable.
Nevertheless, we will now show that the PNR Einstein-
Palatini action (3.18) reproduces the PNR Einstein-Hilbert
action (3.10) after solving for the connection.
One way to proceed is by directly varying the action with

respect to the connection, as we did for the connection
variable Γρ

μν in the original Einstein-Palatini action in
Sec. II A. However, it is much easier to first perform a
second field redefinition, similar to what we subsequently
did in Sec. II B above. For this, we take

Cρ
μν ¼ Čρ

μν þ Sρμν; ð3:19Þ

which involves the Galilean-adapted connection Čρ
μν given

in (3.4) and where Sρμν is an arbitrary tensor. Combining
this with the redefinition (3.11), we get

Γρ
μν¼

�
c2 C

ð−2Þ
ρ
μνþ Čρ

μνþ C
ð0Þ

ρ
μνþ

1

c2
C
ð2Þ

ρ
μν

�
¼ Γ

ðLCÞ
ρ
μνþSρμν:

ð3:20Þ

In total, these two field redefinitions thus precisely repro-
duce the change of variables (2.8) that we performed in
Sec. II B. Consequently, after using (3.19), the PNR
Palatini action (3.18) just becomes

SPNR-P½T;Π; C� ≈ SPNR½T;Π�

þ c4

2κ

Z
ddxE

�
−

1

c2
VμVν þ Πμν

�
× ð−SρμλSλρν þ SρρλSλμνÞ: ð3:21Þ

This corresponds to the PNR decomposition of the
Einstein-Palatini action in the form (2.10). The combina-
tion in square brackets in the second term is nondegenerate,
so we can solve the Sρμν equations of motion in exactly the
same way as in Sec. II B, raising and lowering indices just
as we did with gμν there. The equations of motion again
lead to [63]

Sρμν ¼ Aμδ
ρ
ν; ð3:22Þ

setting the shift tensor almost completely to zero, up to an
ambiguity which drops out of the action (3.21). We can
therefore solve for the connection in the PNR Einstein-
Palatini action (3.18), obtaining the Galilean connection
Čρ
μν in (3.4) and reproducing the PNR Einstein-Hilbert

action (2.10) with the connection on shell.
So far, we have only focused on the connection variable

and its equation of motion. Indeed, while it is well-suited
for that purpose, we do not want to use the action (3.21) for
deriving the metric equations of motion, as this would just
be equivalent to using the Einstein-Hilbert PNR action.
Instead, to obtain the metric equations of motion through a
different path, we should take the variation directly in the
PNR Palatini action (3.18). We will do so explicitly in
Sec. V B below for the metric equations of motion of the
next-to-leading-order action in the Galilei expansion,
which we construct in Sec. IVA.

C. Pre-ultralocal Palatini action
and Carroll connection

Having obtained the Galilean PNR form of the Palatini
action in the previous sections, we now turn to the PUL
parametrization which is adapted to the emerging Carroll
symmetries. For this, we use the same metric variables as
defined in Eqs. (3.1) and (3.2). However, instead of the
PNR decomposition of the Levi-Civita connection in (3.3),
we now use

Γ
ðLCÞ

ρ
μν ¼ 1

c2
B

ð−2Þ
ρ
μν þ C̃ρ

μν þ B
ð0Þ

ρ
μν þ c2B

ð2Þ
ρ
μν: ð3:23Þ

Here, the c0 terms are now split into a tensor B
ð0Þ

ρ
μν and

C̃ρ
μν¼−Vρ

∂ðμTνÞ−VρTðμLVTνÞ

þ1

2
Πρλ½∂μΠνλþ∂νΠλμ−∂λΠμν�−ΠρλTνKμλ; ð3:24Þ

which is a connection that is adapted to the Carrollian
structure that emerges in the ultralocal c → 0 expansion.

Correspondingly, its covariant derivative ∇
ðC̃Þ

ρ satisfies

∇
ðC̃Þ

ρVμ ¼ 0; ∇
ðC̃Þ

ρΠμν ¼ 0; ð3:25Þ

as well as

∇
ðC̃Þ

ρTμ ¼
1

2
Tμν − VρTρðμTνÞ;

∇
ðC̃Þ

ρΠμν ¼ −VðμΠνÞσTσλ½δλρ − VλTρ�; ð3:26Þ

T
ðC̃Þ

ρ
μν ¼ 2ΠρλT ½μKν�λ: ð3:27Þ
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Finally, the tensors in (3.23) are given by

B
ð−2Þ

ρ
μν ¼ −VρKμν; ð3:28aÞ

B
ð0Þ

ρ
μν ¼ ΠρλTνKμλ; ð3:28bÞ

B
ð2Þ

ρ
μν ¼ −TðμΠρσTνÞσ: ð3:28cÞ

Note that B
ð−2Þ

ρ
μν ¼ C

ð2Þ
ρ
μν from (3.7) and B

ð2Þ
ρ
μν ¼ C

ð−2Þ
ρ
μν

from (3.7c), with the powers labeled differently because the
expansions are opposite. Finally, we have

∇
ðC̃Þ

μXμ ¼ 1

E
∂μðEXμÞ −KTμXμ; ð3:29Þ

for total covariant derivatives using the ∇
ðC̃Þ

ρ connection. The
resulting PUL reparametrization of the Einstein-Hilbert
action is [18]

SPUL½V;Π� ≈
c2

2κ

Z
ddxE

�
ðKμνKμν −K2Þ

þ c2Πμν R
ðC̃Þ

μν þ
c4

4
ΠμνΠρσTμρTνσ

�
; ð3:30Þ

which again holds up to total derivative terms.
Following the PNR discussion around (3.11), we can

now similarly decompose the general connection Γρ
μν

entering in the Einstein-Palatini action (2.1) as follows:

Γρ
μν ¼ 1

c2
B

ð−2Þ
ρ
μν þ Cρ

μν þ B
ð0Þ

ρ
μν þ c2B

ð2Þ
ρ
μν; ð3:31Þ

whereCρ
μν is again an arbitrary connection. Using (A5), this

change of connection variables then leads to the following
decomposition of the Ricci tensor:

Rμν ¼
1

c2
R

ð−2Þ
μν þ R

ð0Þ
μν þ c2R

ð2Þ
μν þ c4R

ð4Þ
μν; ð3:32Þ

Consequently, the PUL Palatini action becomes

SPUL-P½V;Π;C� ¼
1

2κ

Z
ddxE

"
c2L

ð2Þ
þc4L

ð4Þ
þc6L

ð6Þ
#
; ð3:33Þ

where each term is given by

L
ð2Þ

¼−VμVν R
ðCÞ

μν−VμVν∇
ðCÞ

ρðΠρλTνKμλÞþVμVν∇
ðCÞ

μðKTνÞ

−Πμν∇
ðCÞ

ρðVρKμνÞþ2 T
ðCÞ

λ
μρVρKλνΠμνþK2−KμνKμν;

ð3:34Þ

L
ð4Þ

¼ Πμν R
ðCÞ

μν þ ðΠμλΠνρKρλ − ΠμνKÞ∇
ðCÞ

μTν

þ VμVν∇
ðCÞ

ρðTμΠρσTνσÞ − VμVν T
ðCÞ

λ
μρΠρσTðλTνÞσ;

ð3:35Þ

L
ð6Þ

¼ 1

4
ΠαρΠβσTαβTρσ: ð3:36Þ

To see that this reduces to the PUL action (3.30) after
solving for the connection, we can follow Section III B and
perform a second change of variables,

Cρ
μν ¼ C̃ρ

μν þ Sρμν; ð3:37Þ

which involves the Carroll-adapted connection C̃ρ
μν given

in (3.24) and where Sρμν is again an arbitrary tensor.
Combining (3.31) and (3.23), the total change of variables
with respect to the Einstein-Palatini action (2.1) is then

Γρ
μν ¼ 1

c2
B

ð−2Þ
ρ
μν þ C̃ρ

μν þ B
ð0Þ

ρ
μν þ c2B

ð2Þ
ρ
μν ¼ Γ

ðLCÞ
ρ
μν þ Sρμν;

ð3:38Þ

as in Eq. (3.20) for the PNR case. As a result, the total
reparametrization of the Einstein-Palatini action is

SEP½g;Γ� ≈ SPUL½V;Π�

þ c4

2κ

Z
ddxE

�
−

1

c2
VμVν þ Πμν

�
× ð−SρμλSλρν þ SρρλSλμνÞ: ð3:39Þ

The second line can again be solved to obtain Sρμν ¼ Aμδ
ρ
ν,

which then drops out of the action. Also in the PUL Carroll
reparametrization, we thus see that we can obtain the PUL
Einstein-Palatini action which reduces to the PUL Einstein-
Hilbert action (3.30) after solving for the connection.

IV. EXPANDING THE PALATINI ACTIONS

In the previous section, we have constructed the PNR
and PUL parametrizations of the Einstein-Palatini action.
Just as the PNR and PUL parametrizations of the Einstein-
Hilbert action, they are adapted to the Galilean or
Carrollian structures that emerge in the c → ∞ and c →
0 expansions, respectively. As we showed in Sec. III B for
the PNR Palatini action and in Sec. III C for the PUL
Palatini action, their connection equations of motion lead to
the desired result, and they reproduce the desired actions
with the connection on shell.
We now focus on expanding the PNR and PUL Palatini

actions, where both the metric and connection variables are
expanded in powers of 1=c2 and c2, respectively. As we
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will see, the leading-order Galilean action resulting from
the PNR action is independent of the connection. The next-
to-leading order does depend on the connection, and we
solve the corresponding equation of motion to show that it
reproduces the known next-to-leading-order action for the
metric variables. In the PUL case, the leading-order Carroll
action already depends on the connection, and we similarly
show that it reduces to the correct result once the con-
nection is put on shell.

A. Leading-order and next-to-leading-order
Galilei actions

As a first step in the Galilean c → ∞ expansion, we must
expand the PNRmetric variables that we introduced in (3.1),
which we parametrize as [16,17]

Tμ ¼ τμþ
1

c2
mμþ��� ; Vμ ¼ vμþ�� � ; ð4:1Þ

Πμν ¼ hμνþ
1

c2
Φμνþ�� � ; Πμν ¼ hμνþ�� � : ð4:2Þ

The LO fields ðτμ; hμνÞ together with the NLO fields
ðmμ;ΦμνÞ define what is known as type II Newton-Cartan
geometry.4 Further fields that appear beyond leading order
are considered as additional gauge fields living on this
geometry. Thevielbein determinantE ¼ eþ � � � is expanded
accordingly, where we have e2 ¼ − detð−τμτν þ hμνÞ.
From the orthonormality relations (3.2) for the PNR varia-
bles, we get

vμτμ ¼ −1; vμhμν ¼ 0; τμhμν ¼ 0;

δμν ¼ −vμτν þ hμρhρν: ð4:3Þ

We have not introduced explicit notation for subleading
variables in Vμ andΠμν, since they can be solved in terms of
mμ and Φμν using the subleading terms obtained from the
orthonormality relations (3.2). Additionally, we expand the
connection variable,

Cρ
μν ¼ γρμν þ � � � : ð4:4Þ

In the following, our goal will be to solve for the leading-
order connection γρμν and check thatwe recover the expansion
of the PNR Einstein-Hilbert action (3.10) when we plug the
on-shell connection back into the action. The expansion of
the PNR Einstein-Hilbert action gives

SPNR½T;Π� ¼ c6SG-LO½τ; h� þ c4SG-NLO½τ; h; m;Φ� þ � � � :
ð4:5Þ

The leading-order and next-to-leading-order actions in the
c → ∞ expansion are [16,17]

SG-LO½τ; h� ¼
1

2κ

Z
ddx e hμρhνστμντρσ; ð4:6Þ

SG-NLO½τ;h;m;Φ� ¼ 1

2κ

Z
ddxe½hμνŘμν−2Gμ

τmμ−Gμν
h Φμν�;

ð4:7Þ

where τμν ¼ 2∂½μτν� and Řμν is the Ricci tensor of the
connection resulting from the leading-order term γ̌ρμν in
the expansion of the PNR connection Čρ

μν in (3.4),

γ̌ρμν ¼ −vρ∂μτν þ
1

2
hρσð∂μhνσ þ ∂νhσμ − ∂σhμνÞ: ð4:8Þ

As summarized in Appendix A 3, this connection has the
samemetricity and torsion properties as Čρ

μν, now formulated
in terms of the leading-order metric variables ðτμ; hμνÞ.
Additionally, Gμ

τ and Gμν
h denote the τμ and hμν equations

of motion coming from the leading-order action (4.6),
respectively. Consequently, we see that the equations of
motion of the next-to-leading-order fieldsmμ andΦμν in the
next-to-leading-order action (4.7) precisely reproduce the
equations ofmotion of their leading-order counterparts in the
leading-order action (4.6). This pattern extends to arbitrary
orders [70].
We now want to consider the similar Galilean c → ∞

expansion of the PNR Palatini action that we obtained
in (3.18) above. This leads to

SPNR-P½T;Π;C� ¼ c6SGP−LO½τ;h;γ�
þ c4SGP−NLO½τ;h;m;Φ;γ�þ � � � : ð4:9Þ

At leading order, we obtain the action

SGP−LO½τ; h� ¼
1

2κ

Z
ddx e hμρ hνστμντρσ; ð4:10Þ

which turns out to be independent of the connection and
directly reproduces (4.6). After that, we get the following
NLO Galilean Palatini action,

4Note that the fields hμν and Φμν transform under local
Galilean boosts, which arise from the expansion of local Lorentz
boosts as mentioned at the start of Sec. III. As discussed in. for
example. [18], it can still be convenient to take this set of fields as
the metric variables in the action in order to explicitly keep track
of this boost symmetry.
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SGP−NLO½τ; h; m;Φ; γ�

¼ 1

2κ

Z
ddxe

�
hμνR

ðγÞ
μν − 2Gμ

τmμ − Gμν
h Φμν

þ ∇
ðγÞ

ρðhρνvστνσÞ þ hρσvμT
ðγÞ

λ
μρðδνλ − τλvνÞ

þ hρνvσ∇
ðγÞ

ρτνσ þ vμvνhρστνσ

�
τρμ − T

ðγÞ
α
ρμτα

��
: ð4:11Þ

Here, R
ðγÞ

μν and T
ðγÞ

ρ
μν are the Ricci tensor and the torsion of

γρμν, the leading-order connection variable. This action is
not of the same form as the Galilean NLO action (4.7), but
we will now show that the two agree once we have solved
for the connection.
To obtain the connection equation of motion, we can

vary the action (4.11) directly with respect to the con-
nection variable, as we did for the Einstein-Palatini action
in Sec. II A. However, following our discussion for the
Einstein-Palatini action in Sec. II B and subsequently for
the PNR Einstein-Palatini action in Sec. III B, it is easier to
use the change of variables

γρμν ¼ γ̌ρμν þ sρμν; ð4:12Þ

where γ̌ρμν is the leading-order Galilean connection (4.8)
and sρμν is an arbitrary “shift” tensor. After this substitu-
tion, the Galilean NLO Palatini action (4.11) becomes

SGP−NLO½τ; h; m;Φ; γ� ≈ SG-NLO½τ; h;m;Φ�

þ 1

2κ

Z
ddxe hμνð−sρμλsλρν

þ sρρλsλμνÞ; ð4:13Þ

which corresponds to the next-to-leading-order action (4.7)
plus a term involving the shift tensor. The latter term only
contains a contraction using the degenerate spatial metric
hμν, and we will therefore be able to solve for fewer
components of the shift tensor than before. However, all of
the resulting ambiguities will still drop out of the action.
The equation of motion of sρμν coming from (4.13) is

0 ¼ −hμλsνρλ − hνλsμλρ þ δμρsναβhαβ þ hμνsλλρ: ð4:14Þ

To solve this, we use the orthonormality relations (4.3) to
note that the tensors

hαμ ¼ hαρhρμ; −vατμ; ð4:15Þ

square to themselves and sum to the identity. As a result,
they can be used to split the tangent bundle in “timelike”
and “spacelike” components. We denote timelike projec-
tions with a 0 and spacelike projections with a dotted index,
so that we have

Xμ̇ ¼ hαμXα; X0¼ vαXα; Y μ̇ ¼ hμαXα; Y0 ¼ ταXα;

ð4:16Þ

for a one-form Xμ and a vector Yμ. In this way, we can
decompose a given index in timelike and spacelike indices,

Xμ¼δαμXα¼−τμX0þhαμXα̇; Yμ¼ δμαYα¼−vμY0þhμαY α̇:

ð4:17Þ

Using these projections, the shift tensor sρμν is split into
eight components,

sρμν ¼ hργ̇h
α̇
μh

β̇
νsγ̇ α̇ β̇−vρhα̇μh

β̇
νs0α̇ β̇−hργ̇ τμh

β̇
νsγ̇0β̇−hργ̇h

α̇
μτνsγ̇ α̇0

þvρτμh
β̇
νs00β̇þvρhα̇μτνs0α̇0þhργ̇ τμτνs

γ̇
00−vρτμτνs000:

ð4:18Þ

We can then solve for most of these components by taking
the timelike and spacelike projections of the μν indices of
the equation of motion (4.14). In total, this leads to

sρμν ¼ δρνAμ − hρντμsα̇α̇0 þ τμsν̇ρ̇0 − τνsρ̇μ̇0 þ τμτνsρ̇00:

ð4:19Þ

The first term is just the ambiguity we already saw in
Secs. II and III B above, and the other terms are additional
ambiguities. However, all of them still drop out of the
Galilean NLO Palatini action (4.13). After putting
the connection on shell, we therefore recover precisely
the Galilean NLO action (4.7) as desired.

B. Leading-order Carroll action

We now turn to the Carroll case, restricting for simplicity
to the leading-order action. Similar to what we did for the
Galilean case we must expand the PUL metric variables.
We write the leading-order terms in the c → 0 expansion of
the variables in (3.1) as

Tμ ¼ τμ þ � � � ; Vμ ¼ vμ þ � � � ; ð4:20Þ

Πμν ¼ hμν þ � � � ; Πμν ¼ hμν þ � � � ; ð4:21Þ

where the dots now denote terms of Oðc2Þ. Although the
notation is similar, the leading-order fields now define a
Carroll geometry and transform under local Carroll boosts,
which descend from local Lorentz boosts. Again, the
vielbein determinant is expanded as E ¼ eþ � � �, where
e2 ¼ − detð−τμτν þ hμνÞ, and the orthonormality relations
(3.2) for the PUL variables lead to

vμτμ ¼−1; vμhμν¼ 0; τμhμν ¼ 0;

δμν ¼−vμτνþhμρhρν: ð4:22Þ
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Expanding the PUL Einstein-Hilbert action (3.30) to
leading order gives

SPUL½V;Π� ¼ c2SC-LO½v; h� þ � � � ; ð4:23Þ
where the leading-order Carroll gravity action is [18]

SC-LO ¼ 1

2κ

Z
ddxeðKμνKμν − K2Þ; ð4:24Þ

and Kμν ¼ − 1
2
Lvhμν is the leading-order extrinsic curva-

ture. This action is also known as the “electric” Carroll
gravity action, and it has appeared in various forms
throughout the literature [19,22,39].
We now want to recover this action from the leading-

order term in our PUL Einstein-Palatini action (3.33). For
this, we also expand the connection variable,

Cρ
μν ¼ γρμν þ � � � ; ð4:25Þ

so that we get the expansion

SPUL-P½V;Π; C� ¼ c2SCP−LO½v; h; γ� þ � � � ; ð4:26Þ
where the leading-order Carroll Palatini action is

SCP−LO½v;h;γ�¼
1

2κ

Z
ddxe

�
−vμvνR

ðγÞ
μν−vμvν∇

ðγÞ
ρ½hρλτνKμλ�

þvμvν∇
ðγÞ

μ½Kτν�−hμν∇
ðγÞ

ρ½vρKμν�

þ2T
ðγÞ

λ
μρvρKλνhμν−KμνKμνþK2

�
: ð4:27Þ

To obtain its connection equation of motion, we again use a
change of variables,

γρμν ¼ γ̃ρμν þ sρμν; ð4:28Þ
where sρμν is an arbitrary tensor and γ̃

ρ
μν is the leading-order

Carroll connection from the expansion of the PUL con-
nection C̃ρ

μν in (3.24),

γ̃ρμν ¼ −vρ∂ðμτνÞ − vρτðμLvτνÞ

þ 1

2
hρλ½∂μhνλ þ ∂νhλμ − ∂λhμν� − hρλτνKμλ: ð4:29Þ

This connection inherits the torsion and Carroll metric-
compatibility properties,

∇̃ρvμ ¼ 0; ∇̃ρhμν ¼ 0; ð4:30Þ

∇̃ρτμ ¼
1

2
τμν−vρτρðμτνÞ; ∇̃ρhμν ¼−vðμhνÞστσλ½δλρ−vλτρ�;

ð4:31Þ

T̃ρ
μν ¼ 2hρλτ½μKν�λ: ð4:32Þ

After the change of variables (4.28), the Carroll LO Palatini
action (4.27) becomes

SCP−LO½v; h; γ� ≈ SC-LO½v; h�

þ 1

2κ

Z
ddxe vμvνð−sρμλsλρν þ sρρλsλμνÞ;

ð4:33Þ

which corresponds to the leading-order term in the expan-
sion of the PUL Einstein-Hilbert action in the form (3.39).
The resulting equation of motion for sρμν is now

0¼−vμvλsνρλ−vνvλsμλρþδμρsναβvαvβþvμvνsλλρ; ð4:34Þ

whichwe can solve in the language introduced around (4.18)
to find

sρμν ¼ δρνAμ þ vρτμs00ν̇ − vρs0μ̇ ν̇ þ Fρ̇
μ̇ ν̇ −

1

3
hρμFλ̇

λ̇ ν̇;

ð4:35Þ

whereFλ̇
μ̇ ν̇ is an arbitrary spatial tensor that is traceless over

its first and last indices. Again, we recover the ambiguityAμ

that we already saw in Secs. II and IVA. Furthermore, due to
the degenerate vμvν tensor entering in the action we
get additional ambiguities, which nevertheless still drop
out of the action. Remarkably, even though the leading-
order Carroll Palatini action (4.27) depends quite non-
trivially on the connection, we still recover precisely the
connection-independent leading-order electric Carroll
gravity action (4.24) after putting the connection on shell.
This result could perhaps help evade the claimed “no-go”
theorem for constructing the electric Carroll gravity action
from a gauging procedure [49]; see also the Discussion in
Sec. VI below.

V. METRIC EQUATIONS OF MOTION
FROM NLO GALILEI ACTION

In the previous sections, we showed how to systemati-
cally obtain a Palatini-type action for both the Galilean and
Carroll expansions of general relativity. We also checked
that the resulting actions reduce to the known expressions
once the connection variables are on shell. Up to now,
however, we have not yet considered the metric equations
of motion.
As we briefly reviewed in Sec. II, the Einstein-Palatini

action has the remarkable feature that it is of exactly the
same form as the Einstein-Hilbert action, the only differ-
ence being that the connection is promoted to a variable in
the former. The derivation of the metric equation of motion
is almost exactly the same in both actions, as the variation
of the Ricci tensor only contributes a boundary term.
However, as we saw above, the form of the Palatini actions
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for the Galilean and Carrollian expansion of GR are
significantly different from the actions that they reduce
to once the connection is on shell. As a result, while they
still reduce to the correct answer with the connection on
shell, the form of the metric equations of motion coming
from the Palatini action will now be significantly different.
We illustrate this with a concrete example from the

Galilean expansion. As we saw in Sec. IVA, the leading-
order Galilean Palatini action turns out to be independent of
the connection. We therefore consider the next-to-leading-
order Palatini action (4.11),

SGP−NLO½τ; h; m;Φ; γ�

¼ 1

2κ

Z
ddx e

�
hμνR

ðγÞ
μν − 2Gμ

τmμ − Gμν
h Φμν

þ ∇
ðγÞ

ρðhρνvστνσÞ þ hρσvμT
ðγÞ

λ
μρðδνλ − τλvνÞ

þ hρνvσ∇
ðγÞ

ρτνσ þ vμvνhρστνσ

�
τρμ − T

ðγÞ
α
ρμτα

��
: ð5:1Þ

As we saw previously, using this action we can solve for the
connection γρμν, and plugging the answer back in reproduces
the Galilean NLO action (4.7),

SG-NLO½τ;h;m;Φ� ¼ 1

2κ

Z
ddxe½hμνŘμν−2Gμ

τmμ−Gμν
h Φμν�:

ð5:2Þ

Wenow consider thevariation of both actionswith respect to
the metric data. First, in Sec. VA we review the known
variation of (5.2), where the Ricci tensor depends on the
metric data through the fixed Galilean connection γ̌ρμν given
in (4.8). In contrast, when varying the action (5.1), the Ricci
tensor is independent of the metric data and only depends on
the connection variable. The same holds for the torsion
tensors and covariant derivatives entering in the action. The
resultingmetric equations ofmotion are derived in Sec. V B,
and we show that they reduce to the equations derived
directly from the second-order action once the connection is
put on shell. This demonstrates that our Palatini approach
provides an alternative path to the metric equations of
motion, which is especially useful for the spatial hμν
equations of motion.

A. From the second-order action

Let us first review the metric equations of motion that
were obtained from varying the second-order action (5.2)
in [17]. First, note that Gμ

τ and Gμν
h , which correspond to

the τμ and hμν equations of motion of the leading-order
action (4.6), do not depend on the connection. Their
explicit form is given in [17], but they turn out to be
equivalent to

hμρhνστρσ ¼ 0; ð5:3Þ

which is also known as the twistless torsionalNewton-Cartan
(TTNC) condition. Geometrically, this implies that τμ can be
used to define equal-time surfaces. Following the general
pattern of nested actions and equations of motion mentioned
in Sec. IVA, we see that themμ andΦμν equations of motion
in the next-to-leading-order action (5.2) are equivalent to the
same condition (5.3).
Next, we consider the τμ and hμν equations of motion.

They contain several different types of contributions,

2κδLG-NLO ¼ δe½hμνŘμν − 2Gμ
τmμ −Gμν

h Φμν�
− eð2δGμ

τmμ þ δGμν
h ΦμνÞ þ eδhμνŘμν

þ ehμνδŘμν: ð5:4Þ

The terms on the first line of this expression lead to the
same result whether the connection is allowed to vary or
not. Therefore, our interest is mainly in the term on the last
line, as this will not be present in the metric equations of
motion if the connection is an independent variable. In the
present case, we can use the variation of the connection γ̌ρμν
from Eq. (A21) together with the identity

hμνδŘμν ¼ −∇̌μðhμνδγ̌ρρνÞ þ ∇̌ρðhμνδγ̌ρμνÞ þ hμνvλτμρδγ̌
ρ
λν:

ð5:5Þ

Note that the first two terms are not simply boundary terms
due to the identity (A20) for a total covariant ∇̌μ derivative.
In total, we obtain

hμνδτŘμν ≈ vρτραðKαβ − KhαβÞδτβ; ð5:6aÞ

hμνδhŘμν ≈ ðhμρhνσ − hμνhρσÞvαðvβταμτβν þ ∇̌νταμÞδhρσ;
ð5:6bÞ

where we have used the TTNC condition (5.3) from the mμ

andΦμν equations of motion to simplify the expressions. In
the following, our goal will be to obtain these variations
from the additional terms that appear in the Palatini NLO
Galilean action (5.1).

B. From the Palatini action

We can write the Palatini next-to-leading-order Galilean
action (5.1) as

SGP−NLO½τ; h; m;Φ; γ� ¼ 1

2κ

Z
ddxe

h
hμνR

ðγÞ
μν

− 2Gμ
τmμ −Gμν

h Φμν þ Σ
i
; ð5:7Þ

where the additional terms compared to the form of the
Galilean NLO action (5.2) are
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Σ ¼ ∇
ðγÞ

ρðhρνvστνσÞ þ hρσvμT
ðγÞ

λ
μρðδνλ − τλvνÞ

þ hρνvσ∇
ðγÞ

ρτνσ þ vμvνhρστνσ

�
τρμ − T

ðγÞ
α
ρμτα

�
: ð5:8Þ

Again, varying with respect to the next-to-leading-order
metric data mμ and Φμν just returns the leading-order
equations of motion Gμ

τ ¼ 0 and Gμν
h ¼ 0 which are

equivalent to the TTNC condition (5.3). Varying the
leading-order metric data τμ and hμν gives

2κδLGP−NLO ¼ δe
h
hμνR

ðγÞ
μν − 2Gμ

τmμ − Gμν
h Φμν

i

− eð2δGμ
τmμ þ δGμν

h ΦμνÞ þ eδhμνR
ðγÞ

μν

þ δeΣþ eδΣ: ð5:9Þ
Upon putting the connection on shell, we see that the
first line of this variation reproduces the first line of the
variation (5.4) in the second-order action.
Our goal now is therefore to check that the second line

of (5.9) is equivalent to the variations (5.6a) and (5.6b) of
the Ricci tensor from δLG-NLO. Using (A16), the first term
gives

δeΣ ¼ eð2vρδτρ − hρσδhρσÞhμνvαðvβταμτβν þ ∇̌νταμÞ:
ð5:10Þ

Here and in the following, we have taken the connection to
be on shell after performing the variation. Then let us focus
on the eδτΣ variation. Note that we can write

δττμν ¼ 2∇
ðγÞ

½μδτν� þ T
ðγÞ

ρ
μνδτλ: ð5:11Þ

With this, the τμ variations of the individual terms in Σ give

δτ

�
∇
ðγÞ

ρðhρνvστνσÞ
�
≈ −Khμρvντμνδτρ − vμvνhρσ∇̌μτνσδτρ

− vρvνhμστνσ∇̌μδτρ; ð5:12Þ

δτ

�
hρνvσ∇

ðγÞ
ρτνσ

�
≈ −vμKρστμσδτρ − vμvνhρσ∇̌μτνσδτρ

þ vμvνhρστμσ∇̌νδτρ; ð5:13Þ

δτ

�
vμvνhρστνσ

�
τρμ − T

ðγÞ
α
ρμτα

��

¼ −ðvμvνhρσ þ hμνvρvσÞτνσ∇̌μδτρ; ð5:14Þ

δτ

�
hρσvμT

ðγÞ
λ
μρðδνλ − τλvνÞτνσ

�

¼ −2ðvμvνhρσ þ hμνvρvσÞτνσ∇̌μδτρ: ð5:15Þ

We have integrated by parts using (A20) in the first two
terms. Together, this sums to

eδτΣ ≈ −2evρhμνvαðvβταμτβν þ ∇̌νταμÞδτρ
þ evρτραðKαβ − KhαβÞδτβ; ð5:16Þ

after additional integration by parts. Together with the
contribution from (5.10) this precisely reproduces the
remaining contributions (5.6a) from the τμ equation of
motion above. Next, the individual terms in the eδhΣ
variation give

eδh

�
∇
ðγÞ

ρðhρνvστνσÞ
�
≈ −evμvνhραhσβτμρτνσδhαβ; ð5:17Þ

eδh

�
hρνvσ∇

ðγÞ
ρτνσ

�
¼ −ehραhσβvν∇̌ρτσνδhαβ; ð5:18Þ

eδh

�
vμvνhρστνσ

�
τρμ − T

ðγÞ
α
ρμτα

��
¼ 0; ð5:19Þ

eδh

�
hρσvμT

ðγÞ
λ
μρðδνλ − τλvνÞτνσ

�
¼ 2evμvνhραhσβτμρτνσδhαβ;

ð5:20Þ

where we have used the TTNC condition (5.3). These
variations add to

eδhΣ ¼ hμρhνσvαðvβταμτβν þ ∇̌νταμÞδhρσ: ð5:21Þ

Together with the contribution from (5.10), we see that we
reproduce the desired result (5.6b) to get the correct hμν
equations of motion.
We have therefore verified that the metric equations of

motion for the next-to-leading-order Galilean Palatini
action (5.7) indeed reproduce the equations of motion
from the corresponding second-order action (5.2) once the
connection is put on shell.

VI. DISCUSSION AND OUTLOOK

We conclude the paper with a brief discussion of some
open problems.
First of all, it would be interesting and important to

further compare our approach and results with related
“first-order”methods in the literature [21,49,52,54], includ-
ing the application of the gauging procedure. In particular,
it seems the gauging procedure misses terms in the action
that correspond to torsion. For both the Galilean and
Carrollian cases these are the LO terms in the expansion,
which we have seen are captured by our method. This may
thus point at a way in which to circumvent the no-go result
for obtaining the leading-order or electric Carrollian theory
from a gauging procedure [49], and similarly for the
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leading TTNC term of the Galilean case. Additionally, it
would be interesting to check if the ambiguities we found in
solving for the Galilean and Carrollian connection variables
not only drop out of the action but also do not affect
the corresponding point particle geodesics, as was argued
in [67,68] for the ambiguity resulting from the Einstein-
Palatini action.
Subsequently, we would like to be able to use such a

gauging procedure to systematically obtain subleading
actions in the nonrelativistic and ultralocal expansions of
general relativity. Relatedly, a natural next step would be to
use the approach in this paper to obtain the NNLO term for
the Galilean Palatini action and the NLO term for the
Carroll Palatini action, respectively. For the Galilean NLO
theory, we saw a simplification in the Palatini approach to
computing the metric equations of motion. However, for
the Carroll LO theory, the computation would actually be
more involved than the variation of the original action.
While obtaining and understanding the equations of motion
of the full Carroll NLO theory (completing the magnetic
truncation already considered in [18]) remains an important
open problem, it is therefore uncertain if our Palatini
approach is truly helpful for this.
In addition, there are a number of direct applications of

the Palatini formalism developed here. For the NLO
Galilean case, obtained in this paper, it would be interesting
to use the Palatini form to compute the charge (mass) of the
strong-coupling Schwarzschild solution [15,71,72] which
is a solution of nonrelativistic gravity with nonzero torsion.
For the Carroll case, an extra motivation to determine the
NLO equations of motion is to further elucidate the
appearance of mass in the Carroll black hole solution.
These solutions were observed [18,35] in a particular
truncation of the NLO theory, known as the magnetic
Carroll theory, but understanding them in the full NLO
theory would be useful. Additionally, it would be interest-
ing to see how they are connected to the black holelike
solutions with angular and linear momentum (but no mass)
that were observed in the LO theory [18]. Another direction
connects to the fact that the Schwarzschild geometry close
to the singularity is described by a LO Carroll solution that
is of Kasner type [36,73]. One could therefore hope to
apply the NLO Carroll theory and beyond to shed further
light on the near-singularity dynamics of general relativity,
providing subleading corrections in the Belinski-
Khalatnikov-Lifshitz limit [74].
It would also be nice to explore the connection to the

more general “geometrical trinity” description of general
relativity, using torsion, nonmetricity or curvature (see, for
example, [75]) as well as its nonrelativistic version [76].
Finally, we emphasize that the expansions considered in
this paper are done in terms of even powers of the speed of
light, which is a consistent subsector of GR. It could be
interesting to consider a generalization to odd powers
following [77].

ACKNOWLEDGMENTS

We are thankful to Francesco Alessio and Benjamin
Knorr for useful discussions, and to Jelle Hartong for useful
discussions and helpful comments on an early version of this
paper. J. M. thanks Nordita and N. O. thanks Edinburgh
University for hospitality. The work of N. O. and G. O. is
supported in part by Vetenskapsrådet Project Grant
No. 2021-04013. The work of N. O. is also supported by
the Villum Foundation Experiment Project No. 00050317,
“Exploring the wonderland of Carrollian physics: Extreme
gravity, spacetime horizons and supersonic fluids.” Nordita
is supported in part by Nordforsk. The work of G. O. is also
supported by the Royal Society URF of Jelle Hartong
through the Research Fellows Enhanced Research
Expenses 2022 (RF\ERE\221013).

APPENDIX A: CONVENTIONS AND
USEFUL GEOMETRIC IDENTITIES

Belowwe list somedefinitions andwegive some identities
that will be useful in several parts of the main text. Unless
otherwise specified, the following holds for arbitrary con-
nections. Our conventions follow those of [17,18].

1. General connection and curvature

For an arbitrary covariant derivative ∇μ, we define its
curvature using

½∇μ;∇ν�Xρ ¼ −Rμνσ
ρXσ − Tσ

μν∇σXρ; ðA1aÞ

½∇μ;∇ν�Yσ ¼ Rμνσ
ρYρ − Tρ

μν∇ρYσ: ðA1bÞ

In terms of the connection components Γρ
μν, the Riemann

curvature tensor and the torsion tensor are given by

Rμνσ
ρ ¼ −∂μΓ

ρ
νσ þ ∂νΓ

ρ
μσ − Γρ

μλΓλ
νσ þ Γρ

νλΓλ
μσ; ðA2Þ

Tρ
μν ¼ 2Γρ

½μν�: ðA3Þ

These definitions hold for any connection, independent of
its metricity or torsion properties. In particular, they do not
assume the existence of a Riemannian metric.
Connection shift. We often want to transition from a

given connection Γρ
μν to another connection Γ0ρ

μν using
relations of the form

Γρ
μν ¼ Γ0ρ

μν þ Sρμν: ðA4Þ

Here, the shift Sρμν between the two connections is a tensor.
The Riemann tensor, the torsion tensor and the covariant
derivative of a tensor Xμ

ν transform as

Rμνσ
ρ ¼ R0

μνσ
ρ −∇0

μSρνσ þ∇0
νSρμσ − T 0λ

μνSρλσ

− SρμλSλνσ þ SρνλSλμσ; ðA5Þ
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Tρ
μν ¼ T 0ρ

μν þ 2Sρ½μν�; ðA6Þ

∇ρXμ
ν ¼ ∇0

ρXμ
ν þ SμρσXσ

ν − SσρνXμ
σ; ðA7Þ

where R0
μνσ

ρ, ∇0
μ, and T 0ρ

μν are the Riemann curvature,
covariant derivative, and torsion tensor of the Γ0ρ

μν connec-
tion. Of course, the transformation of the covariant derivative
of Xμ

ν can be extended to arbitrary tensors by linearity.
Connection variation. We also often consider variations

in the connection,

Γρ
μν → Γρ

μν þ δΓρ
μν: ðA8Þ

The resulting variations of the Riemann tensor, torsion
tensor, and covariant derivative are then

δRμνσ
ρ ¼ −∇μδΓ

ρ
νσ þ∇νδΓ

ρ
μσ − Tλ

μνδΓ
ρ
λσ; ðA9Þ

δTρ
μν ¼ 2δΓρ

½μν�; ðA10Þ
δð∇ρXμ

νÞ ¼ δΓμ
ρσXσ

ν − δΓσ
ρνXμ

σ; ðA11Þ
which corresponds to the linear terms of the expressions for
a general shift in (A5)–(A7).
Derivative of tensor densities. For a tensor density zμν of

weight w, we have

∇ρzμν ¼ ∂ρzμν þ Γμ
ρσzσν − Γσ

ρνzμσ − wΓσ
ρσzμν; ðA12Þ

which again extends linearly to tensors with other index
structures. In particular, for a vector density jμ of weight
þ1 we have

∇μjμ ¼ ∂μjμ þ Γμ
μαjα − Γα

μαjμ ¼ ∂μjμ þ Tα
αμjμ; ðA13Þ

which we will use in several places in the main text.

2. Properties of the Galilean
and Carrollian metric variables

As we briefly review at the beginning of Sec. III, we
obtain Galilean and Carrollian metric variables from the
leading-order terms in the corresponding expansion of the
Lorentzian metric. In both cases, the resulting metric data
can be described using ðτμ; hμνÞ and their inverse ðvμ; hμνÞ,
which satisfy the orthonormality relations

vμτμ¼−1; vμhμν¼0; τμhμν¼0; δμν¼−vμτνþhμρhρν:

ðA14Þ

The corresponding integration measure is given by
e2 ¼ detðτμτν þ hμνÞ. These metric variables will transform
under local Galilean or Carrollian boost transformations
(which follow from the corresponding limits of the local
Lorentz boosts), but we will not need the details of this for
purposes of this paper.

Instead, let us list the relations between the variations of
the metric data,

δvμ ¼ vμvρδτρ − hμρvσδhρσ;

δhμν ¼ 2vðμhνÞρδτρ − hμρhνσδhρσ; ðA15aÞ
δτμ ¼ τμτρδvρ − hμρτσδhρσ;

δhμν ¼ 2τðμhνÞρδvρ − hμρhνσδhρσ; ðA15bÞ
which can be obtained directly from (A14). Additionally,
we have

δe ¼ e

�
−vμδτμ þ

1

2
hμνδhμν

�
¼ e

�
τμδvμ −

1

2
hμνδhμν

�
;

ðA16Þ

for the variation of the integration measure. We will mostly
vary our expressions with respect to the variables ðτμ; hμνÞ,
and the above expressions (A15) then allow us to express
the corresponding variations of their inverse metric objects
in terms of ðδτμ; δhμνÞ.

3. Properties of the Galilean connection

We collect some properties of the Galilean connection
γ̌ρμν introduced in Eq. (4.8),

γ̌ρμν ¼−vρ∂μτνþ
1

2
hρσð∂μhνσþ∂νhσμ−∂σhμνÞ: ðA17Þ

Its metricity properties and its torsion tensor are given by

∇̌ρτμ ¼ 0; ∇̌ρhμν ¼ 0; ∇̌ρvμ ¼−hμνKνρ;

∇̌ρhμν ¼−2τðμKνÞρ; ðA18Þ

Ťρ
μν ¼ −vρτμν: ðA19Þ

Here, Kμν ¼ − 1
2
Lvhμν is the extrinsic curvature and

τμν ¼ 2∂½μτν�. The corresponding total exterior derivative
satisfies

∇̌μXμ ¼ 1

e
∂μðeXμÞ − vμτμνXν: ðA20Þ

All this is equivalent to the leading-order terms in the
expansion of the properties of the pre-nonrelativistic con-
nection Čρ

μν listed in Sec. III A. Finally, we get

δτγ̌
ρ
μν ¼ −vρ∇̌μδτν þ Kμνhρλδτλ; ðA21aÞ

δhγ̌
ρ
μν ¼ hρλ

2
½∇̌μδhνλ þ ∇̌νδhλμ − ∇̌λδhμν�

þ hραταðμvβδhνÞβ þ
1

2
hρατμνvβδhαβ; ðA21bÞ
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upon varying the connection with respect to the metric
variables.

APPENDIX B: SOLVING THE CONNECTION
FOR THE EINSTEIN-PALATINI ACTION

In this appendix, we give some computational details for
our brief review of the Einstein-Palatini action in Sec. II. In
particular, following Sec. III A, we first solve the con-
nection equation of motion that is obtained by varying the
connection directly, following the discussion in Sec. 21.2
of [69] (which we extend here to nonzero torsion). We then
solve the equation of motion for the shift tensor introduced
in Sec. II B, which provides an easier path to the same
answer, following, for example, [67]. As always, we
assume that our connection variables are completely gen-
eral to begin with, so in particular we do not require
vanishing torsion or metricity.
Solving the EOM obtained by varying directly. In

Sec. II A, we varied the Einstein-Palatini action with
respect to the connection variable Γρ

μν and obtained the
equation of motion (2.5),

0¼ δμρ∇αð
ffiffiffiffiffiffi
−g

p
gανÞ−∇ρð

ffiffiffiffiffiffi
−g

p
gμνÞ

−
ffiffiffiffiffiffi
−g

p
Tα

αβgβνδ
μ
ρþ ffiffiffiffiffiffi

−g
p

Tα
αρgμν−

ffiffiffiffiffiffi
−g

p
Tμ

αρgαν: ðB1Þ

Roughly speaking, we can interpret this as an equation for
the torsion Tρ

μν ¼ 2Γρ
½μν� and the nonmetricity, which is

defined as

Qρμν ¼ ∇ρgμν: ðB2Þ

As is well known, these two tensors together fully
determine a given connection Γρ

μν,

Γρ
μν ¼ Γ

ðLCÞ
ρ
μν þ Kρ

μν þ Lρ
μν; ðB3Þ

where the first term is the usual Levi-Civita connection, and
the two other terms are known as the contorsion and
disformation tensors,

Γ
ðLCÞ

ρ
μν ¼ gρσ

2
½∂μgνσ þ ∂νgσμ − ∂σgμν�; ðB4Þ

Kρ
μν ¼ −

1

2
½Tμν

ρ − Tν
ρ
μ − Tρ

μν�;

Lρ
μν ¼ −

1

2
½Qμν

ρ þQν
ρ
μ −Qρ

μν�: ðB5Þ

Note that we are lowering and raising indices using the
Lorentzian metric and its inverse. To be precise, the
equation of motion (B1) is an equation for the torsion
tensor and the inverse “metricity density”

qρμν ¼ ∇ρðEgμνÞ: ðB6Þ

It is convenient to introduce the following notation for their
traces:

aμ¼ETμ
ρ
ρ¼0; bμ¼ETρμ

ρ; cμ¼ETρ
ρ
μ¼−bμ; ðB7Þ

Aμ ¼ qμρρ; Bμ ¼ qρμρ; Cμ ¼ qρρμ ¼ Bμ: ðB8Þ

Note that these are all one-form densities of weight one.
Using this notation and raising the ρ index, the equation of
motion (B1) becomes

0 ¼ gμρBν − qρμν þ bνgμρ − bρgμν − ETμνρ: ðB9Þ

We first want to solve for as many of the traces as possible.
By contracting the equation over μν and μρ we get

Bμ ¼−
ðd−2Þ
ðd−1Þbμ; Aμ ¼−

dðd−2Þ
ðd−1Þ bμ: ðB10Þ

Then (B9) gives the metricity density in terms of the torsion
and its traces,

qρμν ¼ −gμρ
ðd − 2Þ
ðd − 1Þ b

ν þ bνgμρ − bρgμν − ETμνρ: ðB11Þ

Antisymmetrizing this over μν and subtracting and adding
the cyclic permutations, this expression allows us to solve
for the torsion tensor

Tρ
μν ¼

E−1

ðd − 1Þ ½δ
ρ
νbμ − δρμbν� ¼ δρνAμ − δρμAν;

Aμ ¼
E−1

ðd − 1Þ bμ: ðB12Þ

Plugging this back into (B11), we obtain the nonmetricity
density

qρμν ¼ ð2 − dÞEAρgμν; ðB13Þ

or equivalently the (inverse) nonmetricity tensor
∇ρgμν ¼ 2Aρgμν. Following the general identity (B3) deter-
mining a connection in terms of its nonmetricity and torsion
tensors, this leads to

Γρ
μν ¼ Γ

ðLCÞ
ρ
μν þ δρνAμ; ðB14Þ

as claimed in Eq. (2.6) in the main text.
Solving the EOM obtained from a shift. In Sec. II B we

first used a change of variables from the arbitrary con-
nection variable Γρ

μν to the Levi-Civita connection and an
arbitrary shift tensor Sρμν,
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Γρ
μν ¼ Γ

ðLCÞ
ρ
μν þ Sρμν: ðB15Þ

From this, we obtained the following equation of motion
for Sρμν:

0 ¼ −gμλSνρλ − gνλSμλρ þ δμρSναβgαβ þ gμνSλλρ: ðB16Þ

We can solve this using a similar strategy as we used
for (B1) above, and the computation is a bit more
straightforward. First, let us define the traces

aμ ¼ Sμρρ; bμ ¼ Sρμρ; cμ ¼ Sρρμ; ðB17Þ

where we have reused some of the variable names in (B7)
to ease notation. This allows us to rewrite the equation

of motion (B16) as

0 ¼ −Sνρμ − Sμνρ þ gμρaν þ gμνcρ: ðB18Þ

Taking the trace over μρ and μν in this equation, we find

cρ ¼ aρ; bρ ¼ daρ: ðB19Þ

With this, we can solve the equation of motion (B18) by
subtracting and adding two symmetric permutations, which
leads to

Sρμν ¼ δρνAμ; ðB20Þ

after setting Aμ ¼ aμ, in agreement with Eq. (2.12).
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