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Astrophysical black holes do not exist in a vacuum, and their motion is affected by the galactic
environment. As a black hole moves it attracts stars and matter, creating a wake that, in turn, exerts an
effective friction slowing down the black hole. This force is known as dynamical friction and has significant
consequences, ranging from the formation of supermassive black hole binaries to modifications in the phase
of binary mergers. In this work we explore the motion of spinning black holes on a medium.We find that the
classical “drag” along thevelocity direction ismodified and twonovel forces appear: a rotational force,which
in the context of fluid dynamics is dubbed theMagnus force, and a lift, orthogonal to the direction of motion.
We develop a first-principles fully relativistic treatment of these spin-induced aerodynamic forces in two
types of environment: (i) collisionless corpuscularmatter and (ii) a light scalar field, exploring the differences
between both cases. In both cases we find that the total rotational force acts precisely in the opposite direction
as compared to the classical setup of a spinning ball moving through a fluid. Finally, we comment on the
consequences of these new effects for astrophysics and gravitational wave observations.

DOI: 10.1103/PhysRevD.109.104038

I. INTRODUCTION

When a small body passes by a more massive object it
can experience an acceleration, known as the sling-
shot effect, a purely gravitational phenomena. This net
transfer of momentum must then decelerate the massive
companion. If this process happens repeatedly, for exam-
ple, when a massive star moves through the galactic
medium, it produces significant friction on the motion of
the object. This effect was dubbed dynamical friction, since
the net result is a force parallel and in the opposite direction
of the velocity of the object [1,2]. An alternative viewpoint
is that in the frame of the massive object, it tends to pull the
smaller objects towards itself. However since this object is
moving, the smaller objects will cluster at some distance
behind the actual position of the object, forming a wake.
The gravitational pull that this wake exerts on the object is
directly related to the dynamical friction force [3–5].
The impact of dynamical friction on galactic dynamics is

ubiquitous [6–9]. It causes proto-planets growing in disks
to slow down and migrate towards the center of solar
systems. A similar effect happens in stellar clusters, forcing
the more massive stars towards the center. Black holes
(BHs) are also subject to this effect: in particular dynamical

friction could be the key to bringing together supermassive
BH binaries after galactic mergers, and could be a mecha-
nism used by unequal-mass binaries to “swim” across a
galaxy or accretion disk [7,10–13].
The occurrence of dynamical friction does not rely on

the specific properties of the medium. It exists whether the
medium is composed of collisionless particles (such as a
star moving through galactic gas, planets, and smaller
stars), a homogeneous dark matter halo made of axions
[14–20], or, generally, ultralight bosonic particles [21–23].
Thus, dynamical friction may provide a measurable imprint
of dark matter by affecting the emission of gravitational
waves in compact binary coalescences [24–29]. Moreover,
understanding dynamical friction in wavelike mediums is
of relevance to model the dynamics of BHs in accretion
disks (of another, potentially supermassive BH) [30–32], or
in dense clusters. For these reasons, characterizing dynami-
cal friction at all possible wavelengths, from the small
wavelength limit (point-particle case) to the regime where
the wavelength is comparable, or even larger than the BH
itself (ultralight dark matter), is crucial to model a variety of
astrophysical scenarios [33,34].
In recent years, there have been several attempts at

providing a first principle calculation of dynamical friction
in the fully relativistic, wavelike regime [19,20,25], as
well as efforts from the numerical relativity (NR) point of
view [35,36]. In this endeavor, good agreement has been
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obtained between both approaches [20,37] in those regimes
where they are expected to be comparable.
An important difference between BHs and other massive

objects such as stars or planets is that astrophysicalBHs have
relativistic spins which lead to an axially rather than
spherically symmetric gravitational potential. Indeed, astro-
physical BHs that grow through accretion might not only be
spinning, but potentially doing so very rapidly [38]. It stands
to reason thatwe should study carefully how the spin of aBH
affects dynamical friction. By breaking the cylindrical
symmetry of the problem, it is natural to expect novel
effects that appear when the spin of the BH is not aligned
with its direction of motion. In this workwewill explore this
in detail.
We will show that due to the breaking of cylindrical

symmetry, the momentum transferred to the BH will no
longer be necessarily parallel to the BHs velocity vector.
This spin-dependent force can be decomposed into an
orthogonal triad of forces, whichwewill refer to collectively
as the aerodynamic forces. The dominant contribution is the
well-studied drag force, whose direction is parallel to theBH
velocity. This is always the larger effect since objects that are
far away from the BH do not “feel” its rotation, but are still
sensitive to itsNewtonian gravitational pull. Second to this is
a force that is reminiscent of the Magnus effect in fluid
dynamics [39]: this force acts in a direction which is
orthogonal to the plane spanned by the BH velocity and
its direction of rotation.1 Finally, the BH also suffers a lift (or
a downforce) in a direction orthogonal to the direction of
motion, but that lies in the plane spanned by the BH spin and
velocity. Previous works [41,42] have analyzed the motion
of Kerr BH through massless scalar and electromagnetic
fields and slow-motion, weak-gravity descriptions were also
worked out [40,43]. In this work, we present an extensive,
self-consistent, and fully relativistic description of the forces
that arise in this setup. Moreover, we compute and compare
our results between two different regimes: one where the
medium is composed of collisionless massive particles, and
one where the medium is provided by an ultralight scalar
field, focusing on the case where the wavelength of the field
is comparable to the size of the BH.
The structure of the paper is as follows: Sections II

and III present the theory necessary for calculating the
aerodynamic forces in particle and wavelike mediums
respectively. In Sec. IVA we compare our methods for

calculating aerodynamic forces to previous results. We
discuss our results in Sec. IV, including the dependence of
the aerodynamic forces on the spin of the BH, its velocity,
and the incidence angle. Moreover we also provide
polynomial fits that accurately describe our results in
the low spin, low velocity regime. We comment on the
consequences of the spin dependence of the aerodynamic
forces in several astrophysically relevant scenarios in
Sec. V. Finally we conclude and summarize our results
in Sec. VI. In the following, we will make use of the
mostly plus signature for the metric, ηab ¼ ð−;þ;þ;þÞ,
lowercase Latin indices representing abstract spacetime
indices. A round bracket between a pair of indices denotes
symmetrization of said pair. Unless otherwise specified
we use geometric units where G ¼ ℏ ¼ c ¼ 1.

II. PARTICLELIKE ENVIRONMENTS

We begin by studying the motion of a spinning BH in a
medium of collisionless particles, with uniform density ρ,
composed of particles with a mass scalemp distributed on a
cloud with radius bmax.

2 In the BH rest frame this problem
is equivalent to scattering geodesics on that same BH
background. We first obtain closed-form expressions for
the transfer of momentum due to individual particles in
geodesic motion. We numerically integrate the total con-
tribution to the transfer of momentum due to each indi-
vidual geodesic to compute the total force that the BH
suffers. For this reason, although our approach is not fully
analytical, it is sensible to all the strong-field effects.
Further analytical developments can be carried within a
post-Minkowskian approach. Recently, expansions of the
scattering and inclination angles were obtained up to order
OðG3

Na
2Þ, providing a potentially simpler integration

scheme [44]. However, obtaining fully analytic formulas
for the drag, Magnus and lift forces in a slow-spinning
post-Minkowskian approach is out of the scope of
this work.

A. Geodesics in the Kerr metric

The exterior of a rotating BH is described by the Kerr
metric, which only depends on the BH massM and its spin
J ¼ a=M. In Boyer–Lindquist coordinates the line element
is given by

ds2 ¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2

þ Σdθ2 þ sin2θ
Σ

ðadt − ðr2 þ a2ÞdϕÞ2; ð1Þ

1Previous works have shown that given the total force
orthogonal to the spin and velocity vectors a division can be
made into individual terms, one of which taking the explicit form
J × S, which they argue is the appropriate quantity to refer to as
the Magnus force [40]. In addition, they also note that when this
term is separated out it carries the same characteristic sign as the
classical Magnus force. This is a subtle and interesting point of
which readers should be aware. In this work, however, we simply
define the Magnus to be the total force orthogonal to the spin and
velocity vectors, aligned with the direction of the classical
Magnus, disconnecting it somewhat from the classical picture.

2It is well known that the drag force is (logarithmically)
divergent when the cloud size is taken to infinity, bmax → ∞
[2,20], so imposing such a cutoff is necessary from the computa-
tional point of view.
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where

Σ ¼ r2 þ a2 cos2 θ; Δ ¼ r2 − 2Mrþ a2: ð2Þ

The geodesic equation for a massive particle, when para-
metrized by the Mino time λ (satisfying dλ ¼ Σdτ, where τ
is the proper time) [45], is given by

�
dr
dλ

�
2

¼ RðrÞ;�
dz
dλ

�
2

¼ ZðzÞ;

dt
dλ

¼ r2 þ a2

Δ
ðEðr2 þ a2Þ − aLÞ − a2Eð1 − z2Þ þ aL;

dϕ
dλ

¼ a
Δ
ðEðr2 þ a2Þ − aLÞ þ L

1 − z2
− aE; ð3Þ

with z ¼ cos θ and E, L, Q are the energy, the angular
momentum, and the Carter constants of motion (see [46,47]
and references therein for the construction of the geodesic
equations and their solutions in the bound and plunging
scenarios). The exact form of the radial and polar (or
angular) potentials R, Z are not relevant for this work, the
only important feature being that R is a polynomial of
degree 4, and Z ≡ Zðz2Þ is a polynomial of degree 2 in z2.
As a consequence, the radial potential has generically four
different roots, which we label ri with i ¼ 1;…; 4, ordered
in such a way that 1=ri ≤ 1=riþ1. Note that r1 is negative for
scattering orbits. Similarly we label the polar potential roots
by z1;2. Generic bound geodesics have two turning points
r1ð2Þ, which together with the polar turning point z1
uniquely define the trajectory [47]. For instance, they
directly define the eccentricy e, semilatus rectum p, and
maximum inclination xinc via

p ¼ 2r1r2
r1 þ r2

; ð4Þ

e ¼ r1 − r2
r1 þ r2

; ð5Þ

x2inc ¼ 1 − z21: ð6Þ

We are interested both in scattering geodesics3 and plung-
ing geodesics (which contribute through accretion onto the
BH) [50]. The separatrix between both cases occurs when
the second radial turning point becomes complex, r2 ¼ r3.
Equations (4)–(6) allow us to describe equivalently the
geodesic either knowing fp; e; x2incg, or the orbital

constants fE;L;Qg (the radial and polar roots can be
obtained analytically in terms of these, and vice versa).
In addition to the orbital constants, we need four initial

phases ðq0t ; q0r ; q0z ; q0ϕÞ to fully specify a geodesic [48].
Of these, we can always arrange q0t and q0ϕ to be zero,
by applying a time translation and rotation to the Kerr
background. We can also choose to always start our
Mino time parameter at the pericenter of the trajectory,
giving q0r ¼ 0. For generic bound geodesics, we could
have used ergodicity of the orbit to also set q0z ¼ 0 without
loss of generality. This, however, is not possible for
scattering geodesics, since they complete in a finite amount
of Mino time [49]. Different values of q0z lead to physically
different scattering orbits, and we will need to specify
its value.
In order to compute the momentum flux imparted on the

BH by an incoming particle, we make use of the scattering
angle and the difference between the final and initial
inclinations, which are [44,49]

cos θin=out ¼ z1sn
�
KðkzÞ

2

π

�
q0z ∓ ϒz

ϒr
qSr

�
jkz

�
;

kz ¼ a2ð1 − E2Þ z
2
1

z22
;

qSr ¼
π

KðkrÞ
F
�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − r1
r2 − r1

r
jkr

�
;

kr ¼
ðr1 − r2Þðr3 − r4Þ
ðr1 − r3Þðr2 − r4Þ

: ð7Þ

Here, ϒzðrÞ are polar (radial) frequencies given by

ϒr ¼
π

2KðkrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − E2Þðr1 − r3Þðr2 − r4Þ

q
;

ϒz ¼
πz2

2KðkrÞ
; ð8Þ

K is the complete elliptic integral of the first kind, sn the
Jacobi elliptic sine function, and q0z is the initial polar
phase. Similarly, the scattering angle can be obtained as

χ¼2qSr
ϒz

ϒr
−ϕrðqSr Þþϕz

�
q0zþqSr

ϒz

ϒr

�
−ϕz

�
q0z−qSr

ϒz

ϒr

�
;

ð9Þ

where the phases ϕrðzÞ are defined in Eqs. (27)–(35) of [48],
and for simplicity we set the initial radial phase to zero. We
compute these geodesic quantities using the Black Hole
Perturbation Toolkit [51].

B. Forces from scattering geodesics

We will now compute the force that is imparted to the
BH due to the absorption of particles of the medium

3These can be obtained via analytical continuation of the
analytic solutions for bound geodesics obtained in [48] as
explained in [49].

RELATIVISTIC AERODYNAMICS OF SPINNING BLACK HOLES PHYS. REV. D 109, 104038 (2024)

104038-3



(plunging geodesics) and conservation of linear momen-
tum, associated with the scattering of geodesics. We
consider a homogeneous medium composed of point-
particles of density ρ such that each individual mass
mp ≪ M. The BH is moving with some velocity v in a
direction which forms an angle β with its spin. For
simplicity, we assume that the BH spin is oriented along
the z axis; see Fig. 1 for a illustration of our setup. The only
free parameters in this case are the velocity v of the BH
and the angle β. In the BH frame, the motion of each
particle can be mapped to either a scattering or a plunging
geodesic. Each particle can be identified by the angle α
that it forms with the plane defined by the BH spin, and a
radial vector b∈ ½0; bmax� which can be understood as an
impact parameter. This is illustrated in Fig. 1. These
variables provide a useful parametrization, from which
we can define the particle’s asymptotic four-velocity and
impact vector as

uμ ¼ γ½1; 0; v sin β;−v cos β�;
bμ ¼ b½0; sin α;− cos β cos α; sin α; sin β cos α�: ð10Þ

Above, γ ¼ ð1 − v2Þ−1=2 is the Lorentz factor. From these
quantities, we can deduce the particle’s constants of
motion:

E ¼ γ;

L ¼ −γbv sin α sin β;

Q ¼ γv2

4
½2a2 − 3b2 þ ð2a2 − b2Þ cosð2βÞ

− 2b2 cosð2αÞsin2ðβÞ�: ð11Þ

As discussed previously, these three quantities define radial
and polar roots of the particle’s trajectory, which can be
obtained in closed form (see, e.g., [49]). Once we know the
roots, Eqs. (7)–(9) determine the initial and final inclination
angles, as well as the scattering angle χ. The expression for
the initial inclination angle is used to fix the initial phase q0z
such that θin ¼ β.
Plunging geodesics correspond to particles that get

accreted by the BH, and therefore, the total momentum
transfer due to plunging geodesics, δpμ

P, by conservation of
momentum, equals the initial momentum mpu

μ
P of the

plunging particles:

δpμ
P

mp
¼ uμP: ð12Þ

This implies that we need to distinguish between scattering
and plunging geodesics. As discussed above, the separatrix
is found when the second and third radial roots coincide
r2 ¼ r3. We solve numerically for this condition, building
the separatrix bcritðαÞ in the impact plane for each con-
figuration. Then, geodesics parametrized by some fb; αg
such that b ≤ bcritðαÞ plunge, whereas in the opposite case,
they correspond to scattering orbits.
In the scattering regime, the momentum transfer can be

directly computed once we know the final inclination θout
and the scattering angle χ. Indeed, conservation of momen-
tum yields

δpμ
S

mp
¼ γv

0
BBB@

0

sin θout sin χ

sin β − sin θout cos χ

− cos β − cos θout

1
CCCA; ð13Þ

where we remind the reader that we have chosen the initial
phase such that θin ¼ β. We are not interested in the
momentum transfer of each individual particle, but rather
on the total momentum transfer due to the BH moving
along a medium. We denote the total momentum transfer
per unit mass by Δp̃μ. This is given by

mpΔp̃μ ¼
Z

2π

0

dα
Z

bcritðαÞ

0

bdbδpμ
Pðb; αÞ

þ
Z

2π

0

dα
Z

bmax

bcritðαÞ
bdbδpμ

Sðb; αÞ: ð14Þ

In order to resolve accurately the second integral, the
behavior of geodesics that end up scattering away, but whirl
around the BH one or several times is crucial. In light of
this we found it convenient to change the coordinates to

b ↦ bcritðαÞ þ ½bmax − bcritðαÞ�eb̃; ð15Þ

and then integrate numerically between b̃∈ ½b̃min; 0�. We
want to be able to resolve geodesics to subpercent

FIG. 1. Diagram representing the motion of a geodesic (red)
and the coordinate system used to describe it, with z pointing in
the direction of the BH spin, and y such that the particle is
incoming along the ðy; zÞ plane. The particle is identified by its
impact parameter b and impact angle α, as shown in the blue
impact plane. We will extract the momentum flux at the outgoing
plane, represented in green.
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distance relative to the separatrix. Thus, we fix b̃min ¼
− logð10−γbmaxÞ, where γ is the desired accuracy. For
practical purposes we find that γ ¼ −3 is enough to extract
confidently the forces and achieve convergence. For con-
venience, we also change coordinates to resolve the plunge
integral, defining b ¼ b̃bcritðαÞ, so that the new variable is
b̃∈ ½0; 1�. From the momentum flux, the forces, as defined
in Fig. 2, can be computed directly as

FðPÞ
D ¼ γvρM2ðΔp̃z cos β − Δp̃y sin βÞ; ð16Þ

FðPÞ
M ¼ γvρM2Δp̃x; ð17Þ

FðPÞ
L ¼ γvρM2ðΔp̃y cos β þ Δp̃z sin βÞ; ð18Þ

where the γvM−1 factor is the dilation factor of the
comoving volume that the BH spans in a unit time.
Recovering the mass units from Δp̃μ involves multiplying
everything by the mass scale of the individual environment
particles mp ¼ ρM3, which combined with the above
yields the overall dimensionless ρM2 scaling factor. Our
numerical results for forces will always be given in units of
ρM2. Finally, FD;M;L denote the drag, Magnus, and lift
forces, respectively.
The drag force is the usual dynamical friction force,

which is antiparallel to the motion of the BH. The novel
forces that appear when considering spinning BHs moving
at an angle with respect to its spin axis are the Magnus and
the lift forces. The Magnus force is normal to the plane
defined by the BH spin and velocity directions. The lift
force, on the other hand, is orthogonal to both the BH

velocity vector and the Magnus force. This is represented
schematically in Fig. 2.
Already at this level we can observe that plunging

geodesics, i.e., those associated with particles that fall into
the BH, do not contribute to the Magnus or lift forces,
resulting only in a net contribution to the drag due to
accretion. Indeed, the force due to accretion is parallel to
the BH velocity, therefore, its only contribution is in the
usual dynamical friction [43].

III. WAVELIKE ENVIRONMENTS

We now wish to model the aerodynamic forces in a
wavelike medium. We begin by considering a minimally
coupled massive scalar field [52–54]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
8π

−
1

2
∇aΦ∇aΦ� −

1

2
μ2jΦj2

�
; ð19Þ

where μ is the mass of the scalar field Φ, and ∇ denotes the
covariant derivative. The equations of motion following
from the action are

□gΦ ¼ μ2Φ;

Rab −
1

2
Rgab ¼ 8πTab; ð20Þ

where □g is the d’Alembert operator associated with the
metric g, Rab is the Ricci tensor, and the stress-energy
tensor of the scalar field is given by

Tab ¼ ∇ðaΦ∇bÞΦ� −
gab

2
ð∇cΦ∇cΦ� þ μ2jΦj2Þ: ð21Þ

In the regime where the backreaction of the scalar field on
the metric is negligible, we can take gab to be the Kerr
metric. Then, substituting the solutions of Φ into Eq. (21)
we can use the stress-energy tensor to obtain asymptotic
quantities relating to forces.
We will approach this problem in the frequency domain,

and we expand the scalar field in spheroidal harmonics as

Φ ¼
X
lm

e−iωtϕlmðrÞSlmðθ;φ; ξÞ; ð22Þ

where Slmðθ;φ; γÞ are spheroidal harmonics with angular
numbers lm and spheroidicty ξ ¼ ik∞a, with J ¼ aM
being the angular momentum of the BH. Here we have
defined the asymptotic wavenumber of the scalar field to be

k∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

q
: ð23Þ

The radial equation governing ϕlm is [55]

FIG. 2. Schematic representation of the vector decomposition
of the drag, Magnus, and lift forces relative to the velocity and
spin directions. The viewing direction is set to be orthogonal to
the plane spanned by the spin vector of the BH and the velocity
vector of the scalar field. The Magnus force is defined to be
antialigned with this viewing direction (if the spin and velocity
vectors are aligned then the Magnus force vanishes due to the
symmetries of the system). The drag force is defined to be aligned
with the velocity vector. The lift vector is in the direction
perpendicular to the Magnus and drag vectors. Throughout this
work, a positive sign for drag, Magnus, and lift forces means they
are aligned with the corresponding vectors in the figure.
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Δ
d
dr

�
Δ
dϕlm

dr

�
þ ½ω2ðr2 þ a2Þ2 − 4aMmωr

þ ðmaÞ2 − ðλlm þ μ2ðr2 þ a2ÞÞΔÞ�ϕlm ¼ 0: ð24Þ

Solutions of the previous equation that are regularly
asymptotically far away from the BH take the form

ϕlm ∼
Ilme−ik∞r� þ Rlmeik∞r�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p ; ð25Þ

with r� ¼ rþ η log 2k∞r, and η≡Mðω2þk2∞
k2∞

Þ. The asymp-

totic form of the field defines two independent solutions,
Ilm corresponding to ingoing plane waves scattering
towards the BH from past null infinity, I−, and Rlm
corresponding to outgoing plane waves scattering off of
the Kerr potential towards future null infinity, Iþ.

A. Boundary conditions and field solution

In order to solve Eq. (24) and calculate asymptotic forces
on the Kerr BH, we first consider some fixed background
scalar field given by

Φ ¼ e−iμt: ð26Þ

This is a constant energy density solution to the Klein–
Gordon equation in flat space, whose oscillation frequency
is fixed by the mass of the field. It is also a valid solution
to (20) at large radii, which is the physically relevant case
for the cloud sizes we wish to consider here. By performing
a Lorentz boost into the BH frame, the background field
then takes the form

ΦBC ¼ e−iμγte−iγμvr
out� ðcos β cos θþsin β sin θ sin φÞ; ð27Þ

where rout� ¼ r�ðroutBCÞ, and routBC is fixed as the radius at
which we evaluate the plane wave boundary condition.
Here we have also defined v as the velocity of the BH, γ as
the Lorentz factor, and β as the inclination angle between
the velocity vector and the spin vector (which we fix to
be the z-axis). The boost also redshifts the frequency of the
field, fixing ω ¼ γμ, and k∞ ¼ γμv.
Wewish to set Eq. (27) as an outer boundary condition to

the piece of the field incoming from I− in Eq. (24). In
doing so we must first decompose Eq. (27) in spheroidal
harmonics. This is achieved through the following steps:
we first rotate our coordinate system to a frame where
β ¼ 0. Next, we decompose the simplified form of Eq. (27)
with β ¼ 0 in spherical harmonics. After doing so we make
use of the Wigner D-matrices to rotate back to the original
frame with β ≠ 0. Finally, we obtain the spheroidal modes
by summing the spherical decomposition from Eq. (27)
over spherical-spheroidal mixing coefficients. We will
begin with the spatial boundary condition in the rotated
frame

Φ̃BC ¼ e−ik∞rout� cos θ; ð28Þ

where the tilde denotes quantities defined in the rotated
coordinate system. In this rotated system there is no φ
dependence, meaning we will only obtain nonzero axi-
symmetric modes, i.e., modes with m ¼ 0.
Next, we project this expression onto spherical

harmonics,

W̃lm ¼
Z

Ylmðθ;φÞΦ̃BCdΩ

¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
δ0m

Z
1

−1
Φ̃BCPlðxÞdx; ð29Þ

with x ¼ cos θ. Using Rodrigues’ formula we obtain an
expression that can be integrated by parts l–times. All
corresponding boundary terms vanish, leaving us with

W̃lmðrÞ ¼ ðik∞rout� Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þπp

2lΓðlþ 1Þ δm0

×
Z

1

−1
e−ik∞rout� x½ðx2 − 1Þl�dx; ð30Þ

which can be conveniently written in terms of Bessel
functions as

W̃lm0 ¼ ð−iÞlπsgnðk∞rout� Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2lþ 1Þ
k∞rout�

s
Jlþ1

2
ðk∞rout� Þδm00: ð31Þ

Having obtained the decomposition in a simplified rotated
frame, we can then appeal to the Wigner D-matrices to
transform the spherical harmonics between different angu-
lar frames. Such that given W̃lm0 in a certain frame, then an
equivalent Wlm in a new rotated frame is given by

Wlm ¼
Xl

m0¼−l

Dl
mm0 ðα; β; γÞW̃lm0 ; ð32Þ

where α, β, and γ are the three Euler angles relating the two
frames. In the context of our problem, we only require the
m0 ¼ 0 matrix

Dl
m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞ!
ðlþmÞ!

s
Plmðcos βÞe−imα: ð33Þ

The Euler angle α corresponds to rotations along the
direction of the spin of the BH, which is an axis of
symmetry in our problem, thus we set α ¼ 0 without loss
of generality, yielding
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Wlm ¼ ð−iÞlþmπSignðk∞rout� ÞPlmðcos βÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2lþ 1Þðl −mÞ!
k∞rout� ðlþmÞ!

s
Jlþ1

2
ðk∞rout� Þ: ð34Þ

Here the m-mode dependence has now been reintroduced
to our problem through the Wigner matrices and the full
decomposition of the plane wave Eq. (27) is now given by

ΦBC ¼
X
l;m

WlmYlm: ð35Þ

We want to isolate the ingoing piece of the decomposition
and set this as the boundary condition for our field. This can
be achieved by separating the Bessel-J function into
constituent Hankel functions,

Jlþ1
2
ðk∞rout� Þ ¼

Hð1Þ
lþ1

2

ðk∞rout� Þ þHð2Þ
lþ1

2

ðk∞rout� Þ
2

: ð36Þ

Using this we can isolate Wlm into ingoing and outgoing
pieces respectively as

Wlm ¼ IðpÞlm þ RðpÞ
lm ð37Þ

with

IðpÞlm ¼ ð−iÞlþmπSignðk∞rout� ÞPlmðcos βÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl −mÞ!
2k∞rout� ðlþmÞ!

s
Hð2Þ

lþ1
2

ðk∞rout� Þ;

RðpÞ
lm ¼ ð−iÞlþmπSignðk∞rout� ÞPlmðcos βÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðl −mÞ!
2k∞rout� ðlþmÞ!

s
Hð1Þ

lþ1
2

ðk∞rout� Þ: ð38Þ

Notably, from these expressions it can be shown that

limr→∞ IðpÞlm is equivalent to Eq. (17) of [20].
The Klein–Gordon equation on a Kerr background does

not separate in spherical harmonics, but in spheroidal
harmonics. We can transform between both bases by using
spherical-spheroidal mixing coefficients [56], which for a
fixed spheroidicity ξ (as is the case here) we denote by
cαlmðξÞ. Then, a spheroidal harmonic is decomposed into
spherical harmonics as

Slmðθ;φ; ξÞ ¼
X
α≥jmj

cαlmðξÞYαmðθ;φÞ: ð39Þ

From this, we obtain the coefficients of the ingoing plane
wave component in terms of spheroidal harmonics as

JðpÞlm ¼
X
l0≥jmj

Cl0lmðik∞aÞIðpÞl0m: ð40Þ

B. Implementation of boundary conditions

We begin implementing the boundary conditions by
setting the purely ingoing condition on the horizon. Firstly
one should note that the radial Klein–Gordon equation (24)
can be mapped to the confluent Heun equation [57–59].
Thus, solutions that are regular at the horizon, and hence
ingoing, can be written in terms of confluent Heun
functions. We use this to set the inner boundary conditions
at a finite radius, away from the horizon, rinBC ≈ 5M.4 Next,
we integrate numerically the equation outwards up to large
radii for each spheroidal mode. At large radii we may then
assume the solution takes the form of Eq. (25). From the
numerical solution, we can then extract the coefficients of
the piece incoming from past null infinity, given by Ilm.
We now want to fix that asymptotically the coefficient of

the incoming piece from past null infinity corresponds to
the ingoing component of a plane wave, given by JðpÞlm (40).
In order to achieve this, it is sufficient to rescale the solution

by a factor JðpÞlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðroutBCÞ2 þ a2

p
=Ilm, in virtue of the linearity

of the problem. This then fixes the solution of the scalar
field in the full spacetime.
Individually, the equations in Eq. (38) are divergent

subsequences of Eq. (35). However, one can see that by
fixing routBC (choosing a cloud size) and analyzing the
asymptotic structure of the numerical solution, the ϕlm
modes with l > k∞rout� are exponentially suppressed,
yielding a converging sum.5 The field solution we obtain
represents a plane wave scattered by the BH potential
within some ball of radius rout� (outside this ball the field
sharply decays). Having a setup that converges in l such as
this allows for a direct method of calculating finite drag
forces without the need for any cutoff schemes like those
employed in previous works [19,20,37,60,61].
The goal here, however, is to calculate spin-induced

dynamical friction effects, which we expect to saturate and
not depend on cloud size. Hence in practice, we take
routBC ¼ 107, recovering the same boundary conditions
as [20], and then sum to an appropriate number of
l–modes such that the forces have converged. An analysis
of the convergence in l of the forces can be found in
Appendix.

C. Forces from the scalar field

Having obtained the solution for the scalar field, we can
now calculate momentum transfers between the field and

4Integrating numerically very close to the BH horizon in-
troduces numerical instabilities. However, evaluating the special
functions at very large distances is computationally very ex-
pensive. We found a fair tradeoff between these two issues by
setting the boundary conditions at rinBC ≈ 5M.

5This can be seen explicitly as in the M → 0 limit, setting IðpÞlm
as the ingoing piece one recovers Wlm as the full solution.
Through the Bessel-J function, Wlm has precisely this exponen-
tially convergence property.
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the BH. Due to asymptotic flatness, we are provided with
three translational Killing vectors (ξiμ ¼ δiμ), from which we
can define a rate of change of linear momentum,

Fi ¼ dPi

dt
¼ − lim

r→∞

Z
Sr

Trir2dΩ; ð41Þ

where it is important to note that, in the large r limit,

lim
r→∞

r2Tri → x̂irTrr; ð42Þ

given x̂i as the triad of cartesian unit vectors. The
expressions x̂i can be found analytically in terms of
spherical harmonics, meaning the integral over the sphere
becomes

Fx ¼
ffiffiffiffiffiffi
4π

6

r
lim
r→∞

Z
Sr

ðY1−1 − Y11ÞTrrr2dΩ;

Fy ¼ −
ffiffiffiffiffiffi
4π

6

r
i lim
r→∞

Z
Sr

ðY1−1 þ Y11ÞTrrr2dΩ;

Fz ¼
ffiffiffiffiffiffi
4π

3

r
lim
r→∞

Z
S2
Y10Trrr2dΩ: ð43Þ

At large radii we are now only required to calculate the (rr)
component of the stress-energy tensor,

Trr ¼
X
l;m

X
l0;m0

tl
0m0

lm SlmS�l0m0 ; ð44Þ

tl
0m0

lm ¼ 1

2
ð∂rϕlm∂rϕ

�
l0m0 þ k2∞ϕlmϕ

�
l0m0 Þ: ð45Þ

Expanding the spheroidal terms in Eq. (44) over spherical
harmonics, one can then appeal to the standard expressions
for the Wigner 3-j symbols [62] to compute the integrals in
Eq. (43) analytically. Finally, we bring these integrals
(including the sums over mixing coefficients) together
with the numerical interpolants for ϕlmðrÞ to obtain
radially oscillating functions of the forces. Analyzing the
asymptotic form of Eq. (25) it can be seen that, to leading
order, the forces behave as

lim
r→∞

F ¼ Aþ Be−2ik∞r� þ Ce2ik∞r� þ O

�
1

r

�
; ð46Þ

where A, B, and C are coefficients to be determined.
Including higher order terms in Oð1=rÞ we perform a
simple linear regression to extract the A coefficients. These
are then the values of fFx; Fy; Fzg for a given point in
fμ; a; v; βg parameter space. Finally, we apply a rotation to
the cartesian force vectors to obtain the drag, Magnus, and
lift forces,

FðWÞ
D ¼ Fz cos β − Fy sin β; ð47Þ

FðWÞ
M ¼ Fx; ð48Þ

FðWÞ
L ¼ Fy cos β þ Fz sin β: ð49Þ

IV. RESULTS

We have evaluated the aerodynamic forces (16)–(18)
and (47)–(49) semianalytically as described above in a grid
of Chebyshev points. The grid then covers the parameter
space given by the velocity v, the dimensionless spin a=M,
and the incidence angle β. From these points, we build a
Chebyshev interpolant so that we can explore parameter
space efficiently. Convergence of our results with the size
of the cloud and details of the implementation of the
interpolant (including the ranges in parameter space used to
build them) are given in Appendix. The data used to build
the interpolants can be found in [63].

A. Comparison with previous works

Our ultimate goal is to characterize the spin effects on
dynamical friction. However it is important to first check
that our semianalytical setups are consistent with previous
results found for BHs with no spin, but in the fully
relativistic regime [20,35,37]. For a particlelike medium,
analytical formulas for the dynamical friction force (for
Schwarzschild BHs) that allow for a direct comparison with
our work were given in Eq. (23) of [37]. In Fig. 3 we show

(a)
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FIG. 3. Top: Drag force (16) for particlelike environments, at
zero spin and almost head-on β ¼ 0.1 compared with the
analytical predictions obtained from Eq. (23) of [37]. Bottom:
Percent level of the relative difference between the values found
following our method and the analytical expression of [37]. It is
clearly seen that the relative difference between our results and
the analytical predictions is always subpercent.
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that the relative difference between the drag force (16) that
we obtain for nonrotating BHs and the analytical calcu-
lation is below 1%. The good accuracy of the comparison
serves as a benchmark of our semianalytical procedure
discussed above.
For a wavelike, scalar-field environment, when the

wavelength of the field is comparable to the size of the
BH γμM ∼Oð1Þ, the analytical work carried out for
Schwarzschild BHs in Ref. [20,37] is only an approxima-
tion. In particular, Ref. [37] found that the best match to
numerical results was obtained by combining the scattering
forces from the limit in which the scalar field is very light,
γμM ≪ 1, but the accretion effects in the limit of particles
(or very heavy scalars), γμM ≫ 1. In Fig. 4 we observe that
our results for the drag force (47) (the blue line) are
compatible and bracketed by the different approximations
discussed in Ref. [37]. In particular, for this comparison
we have set μ ¼ 0.2 (which is the mass that we cover
parameter space with), giving γμ∈ ð0.2; 0.45Þ on the range
v∈ ð0.1; 0.9Þ. These values of γμ lay outside the validity of
the approximations of [20,37]. In particular one should note
the nonuniform behavior for our results near v ¼ 0.7 in
Fig. 4. For this choice of μ it is approximately at this
velocity that the wavelength of the field in the BH frame
becomes comparable to the length scale of the innermost
stable circular orbit.
Finally, it is informative to observe the scalar field

density on an equatorial slice when the BH is moving in
a direction orthogonal to its spin, as shown in Fig. 5. For
Schwarzschild BHs, we know that the field develops a
cylindrically symmetric wake or an overdensity behind that

ultimately causes the drag force. Here we show for a rapidly
spinning BH that a wake develops, and moreover that the
field structure is asymmetric (c.f. Fig. 1 in [20]). While
the wake behind the BH gives a visual interpretation for
the origin of the drag force, this asymmetry is directly
responsible for the Magnus force.

B. Exploration of parameter space

Having compared our methods with previous results we
now focus our attention on understanding the large param-
eter space covered by the Chebyshev interpolants. Our
results are summarized in Figs. 6–8. It is important to note
that although we provide a direct comparison of results
between the particle and wavelike mediums there is not
a priori reason to expect these results to coincide with one
another. The limiting case in which we would expect
agreement to occur is in the geometric optics regime as
μ → ∞. This regime is not accessible to us with our
semianalytical approach due to slow convergence in the
l-mode sum as k∞ becomes large. Firstly, we highlight
that the overall variations of the drag with the spin and
incidence angle are relatively small, and in particular, they
are comparable to the other aerodynamic forces. For this
reason, we decide to study carefully the variation in drag
δFD, defined as

1000

1500

2000

2500

0.2 0.4 0.6 0.8

FIG. 4. Drag force (47) calculated for wavelike medium,
summed to lmax ¼ 15 with μ ¼ 0.2, β ¼ 0.001, and
a ¼ 0.0001M. Note here that Eqs. (21) and (23) have been
evaluated explicitly as given in [37] with R ¼ 4000. Here we find
that the particle and wave approximations from [37] bound our
values for the drag over the majority of the domain.

FIG. 5. Equatorial slice of the magnitude of the scalar field jΦj,
where μM ¼ 0.2, over a region close to the BH. Here ðr;φÞ
denote Boyer–Lindquist coordinates. The BH moves towards the
right with v ¼ 0.8, and its spin is along the axis pointing out
of the plain, in an anticlockwise direction, with magnitude
a ¼ 0.9M. We observe a wake of higher field density forming
behind the BH, and clear wavelike patterns. Moreover one can
notice that due to the spin of the BH, reflection along the
φ ¼ f0; πg axis is no longer a symmetry of the problem.
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δFDða; v; βÞ ¼ FDða; v; βÞ − FDð0; v; βÞ: ð50Þ

As shown in Appendix, this quantity does not depend on
the cloud size, making it a more suitable quantity to track
than the drag force itself, which grows logarithmically with
the size of the cloud.

1. Dependence on spin

Figure 6 shows the dependence of the aerodynamic
forces on the spin. The panel on the left (right) refers to a
particle (scalar-field) environment. We focus on a scalar
field with mass μM ¼ 0.2, such that as the velocity
increases we can study the transition from wave optics

FIG. 6. Left: The drag, Magnus, and lift forces for different BH velocities and spin, in particle environments. Results are scaled by
ρM2. We evaluate the forces at β ¼ π=8; π=4, and π=3. In the low-velocity regime, the Magnus force is negative and there is a clear
negative linear scaling with spin for all values of β tested. On the other hand, the drag and lift forces at small velocities are all positive
and increase with spin. Right: Spin scaling for the variation in drag, Magnus, and lift forces for the wave setup. Here all quantities are
evaluated equivalently to the particle case. Notice how in the low-velocity regime the spin scalings are the same as for the particle setup.

FIG. 7. Left: Dependence of forces for particlelike environments with incidence angle β for two different BH velocities, v ¼ 0.325 and
0.925. In the regions of parameter space tested, the Magnus force is always maximized when β ¼ π=2 (i.e., when the spin and velocity
vectors are orthogonal). Note also the development of additional maxima and minima that arise in the lift force. Right: Same, for scalar-
field environments, here with μM ¼ 0.2. Features are similar to those of particle environments, but now the Magnus force also develops
additional maxima and minima in the high velocity/spin regime.
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to the regime where the scalar field begins to probe the
strong-field substructure of the spacetime.
Due to the logarithmic divergence in the drag force, the

variation on drag is a small effect. In particular, the
magnitude of the drag force for parameters of Fig. 6 is
three orders of magnitude larger than δFD. Thus the plot
shows the small variations of the drag with the BH spin,
with an approximately quadratic dependence, at low spins.
We find that the Magnus force for particlelike environments
is always negative. It is an anti-Magnus force, in reality,
consistent with a post-Newtonian analysis in Ref. [43]. Our
results disagree with the conclusions of Ref. [40] regarding
the sign of the force, but we note a word of caution of
footnote 1, and also of Ref. [40], suggesting that force
estimates from fluxes may yield incorrect values. Evidently
from the figure, the Magnus force grows linearly with the
spin of the BH for a particlelike medium. This is also the
case for a wavelike medium, but only for low velocities.
Note also that for scalar-field environments, the Magnus
force can be positive even at low spins. Since the Magnus
force is ultimately a consequence of frame dragging, and

the horizon frequency is linear in the BH spin, it is natural
to expect that the Magnus force, at least in the low spin, low
velocities regime, becomes linear in a=M.
Both the lift and the variation in the drag force, on the other

hand, exhibit a quadratic scalingwith theBH spin at low spins
and lowvelocities.As canbe seen from the construction of the
aerodynamic forces in coordinates (43), the lift will “com-
pete” with the drag force. Therefore we observe that they
share some relevant features, such as the spin scaling. At large
spins and velocity, the drag force can be enhanced or
suppressed (relative to the nonspinning case).
Focusing on the high-velocity scenarios (represented by

lines with a darker color), we observe that the same generic
features as in the low velocity case persist for a particlelike
medium, albeit with corrections that become more impor-
tant for higher spins (see, e.g., the change of sign inFL). On
the other hand, for a wavelike medium, once the velocity
becomes v ∼ 0.7 the forces begin to oscillate, introducing
new features that are not present in the weak field. These
are a consequence of the wavelike nature of the scalar field,
which at v ¼ 0.7 has a wavelength λC ∼ 10M, comparable

FIG. 8. Left: Velocity dependence of the spin aerodynamic forces in the particle setup. Here we show the velocity scaling for a family
of differing spin values (increasing in spin with darkness) evaluated at β ¼ π=3. We find a transition from positive to negative variation
in the drag at relatively low velocities with negative Magnus and positive lift forces. Right: Velocity scaling of the spin aerodynamic
forces for the wave setup. Here all quantities are evaluated equivalently to the particle case, the insets run on the range v∈ ð0.05; 0.4Þ and
show explicitly in the low-velocity limit that the particle and wave cases have the same qualitative behavior. Returning to the full plot on
the range v∈ ð0.05; 0.9Þ one again sees a transition in the sign and an order of magnitude increase in the forces as the wavelength moves
to scales relevant for probing the strong field structure.
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to the length scale of the innermost stable circular orbit. We
leave a detailed characterization of the strong field effects
for future work.

2. Dependence on incidence angle

Figure 6 also shows that the aerodynamic forces have an
interesting structure depending on the incidence angle β. To
study this further, we show the overall angular structure of
the forces in Fig. 7. In order to better understand the
structure of the β dependence we perform a rescaling of the
forces of the form,

F̂iðβÞ ¼
Fðai; v0; βÞ

maxβFðamax; v0; βÞ
þ i
c0

; ð51Þ

where v0 ∈ f0.325; 0.925g, i indexes the individual lines of
different spin values in the subplots, and c0 is some constant
chosen to provide a clear separation between beta scalings
for different spin values in each particular subplot. This
arbitrary shift and the scaling of the forces in a given subplot
mean the magnitude of individual lines on a single plot may
be compared, however, we do not focus on the absolute
values between different subplots, but instead on the angular
pattern. It is evident that at low velocities the Magnus force
has a clear FM ∼ sin β behavior, whereas FL ∼ sinð2βÞ. The
variation in the drag has a more complex structure. Worth
remarking however is that the overall value in δFD is much
smaller at low velocities than it is at high velocities.
We find that the angular structure changes significantly

at high spins and at high velocities: the lift force, in
particular, develops an additional set of maxima and
minima between which new roots arise. Interestingly, we
have found these roots asymptote to π=4 and 3π=4 in the
limit a; v → 1 (which is the point where the lift forces are
maximized in the low-velocity limit). For the case where
the wavelength of the medium becomes comparable with
the size of the BH, the angular structure of the Magnus
force and δFD also changes. Thus, the angle at which each
of the aerodynamic forces is maximized depends sensi-
tively on the BH velocity and spin.

3. Dependence on velocity

Finally, we characterize the dependence of the aerody-
namic forces on the velocity in Fig. 8, where the forces are
shown at an angle π=3. A cursory inspection of this figure
confirms the qualitative agreement between the particle and
wave setups. We observe the same characteristic sign
change in the drag variation early in the velocity scaling.
One also finds at low velocities a lift force that is positive
for both setups. Additionally, at low velocities, we obtain
an anti-Magnus force driving the BH in the opposite
direction one would expect from the intuition provided
by classical aerodynamics.
As velocity increases we also observe an order of

magnitude increase in the forces for both the particle

and wave mediums (except for the particle lift force).
This can be thought of as a consequence of the BH
interacting with an increasingly dense environment due
to length contraction. In the wave setup we find that as the
velocity passes through v ≃ 0.7 there is a change in the sign
of the forces. In simulating these scalings to higher
velocities than is shown here (v ¼ 0.95), it can be seen
that this change in sign is characteristic of novel oscillatory
effects that arise in the high-velocity limit, as the system
transitions from the wave optics to geometric optics
regimes. An in-depth analysis of this transition and the
geometric optics limit of the scalar field is left as a task for
future work.

C. Polynomial fits

For convenience, we provide polynomial fits to the
aerodynamic forces in the weak field regime, which
describe well our numerical results. The procedure devel-
oped here follows closely the construction of hyperfits for a
ringdown model [64]. We provide fits for the range
a=M∈ ½0.1; 0.6� and v∈ ½0.15; 0.5� (for a particlelike
medium), and a=M∈ ½0.04; 0.6�, v∈ ½0.05; 0.5� (for a
wavelike medium with μM ¼ 0.2). In order to do so, we
first extract the expected scaling of the forces with
spin and angles, e.g., we define F̃M ¼ FM=ða sin βÞ, and
similarly F̃L ¼ FL=ða2 sinð2βÞ and ˜δFD ¼ δFD=a2. We
perform a linear regression fit on the rescaled forces for a
polynomial of degree N in the variables fa; ffiffiffi

v
p

; cos βg. We
fix the degree of the polynomial once the goodness of fit
measure achieves a certain minimum value. We use as a
goodness of fit the adjusted R squared measure, R̄2,
defined as

R̄2 ¼ 1 −
n − 1

n − p
R2; ð52Þ

where n is the total number of points used for the fit (1024
for a particle medium, and 4000 for a wave medium), p is
the number of parameters in the model, andR2 is the usual
linear regression coefficient. We compute this for poly-
nomials of different degrees, and stop at the degree N for
which R̄2 ≥ 0.999.6

Finally, since a polynomial of, e.g., degree N ¼ 3 in
three variables contains p ¼ 20 terms, we would like to
reduce the number of terms included in the polynomial. To
do this, we rank the contribution of each of the terms by
computing the mismatch of the model once we do not
include that given term. Then, we add one by one each
term, in the order in which they were ranked, until the
previous tolerance limit is achieved.

6Extracting the structure in the variations of the drag force
proves to be more challenging, so we relax the accuracy
requirement to R̄2 ≥ 0.99.
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The fits obtained are given by7:

δFðPÞ
D ¼ a2ð1.11 − 3.26vþ 0.74a − 1.07

ffiffiffi
v

p
a − 0.59 cos β þ 1.38

ffiffiffi
v

p
cos βÞ;

FðPÞ
M ¼ a sin βð2.55 − 31.81

ffiffiffi
v

p þ 69.81v − 59.15v3=2 − 0.12a
ffiffiffi
v

p
cos βÞ;

FðPÞ
L ¼ a2 sin 2βð0.82 − 2.60

ffiffiffi
v

p þ 5.06v − 3.79v3=2

þ 0.28aþ 1.28va − 0.26
ffiffiffi
v

p
a cos β þ 0.11a cos β − 1.22

ffiffiffi
v

p
a − 0.02 cos β þ 0.04

ffiffiffi
v

p
cos β þ 0.23

ffiffiffi
v

p
a2Þ;

δFðWÞ
D ¼ a2ð−16.45 − 30.84

ffiffiffi
v

p þ 316.40v − 296.10v3=2 þ 5.44cos2β − 23.92
ffiffiffi
v

p
cos2β þ 12.25

ffiffiffi
v

p
a2 − 9.16a2Þ;

FðWÞ
M ¼ a sin βð36.45 − 241.9

ffiffiffi
v

p þ 415.8v − 248.6v3=2Þ;
FðWÞ
L ¼ a2 sin 2βð−1.023463þ 58.2938v − 165.9078v3=2 þ 150.6706v2Þ: ð53Þ

For the Magnus force in particle environments, we can
compare to the post-Newtonian based calculations carried
out in Ref. [43]. The first correction in the zero-velocity
limit, in that case, would be ∼ − 2.5. Evaluating our fit at
the lowest velocity available v ¼ 0.15, and low spin,
returns FM ∼ −2.73, in close agreement with the results
of [43] (we remind the reader that low velocities v < 0.15
were not available to construct the fit, and hence evaluating
the fit provided above at exactly zero velocity would result
in large extrapolation errors).

V. DISCUSSION

In previous sections we studied and characterized the
way in which the dynamics of BHs moving in a nontrivial
environment is modified due to BH spin. We can identify
two candidate scenarios for which the spin dependence of
the aerodynamic forces leave an observational imprint:
(i) Isolated, supermassive BHs moving through the galactic
medium would have their trajectory curved due to the
Magnus and lift forces. Therefore observing a curvature on
the trail left by such a BH would be a smoking gun of the
interplay between its spin and the medium through which
the BH moves. (ii) Extreme mass ratio inspirals (EMRIs)
consist of binary systems formed by a solar mass BH and a
supermassive BH. These are a promising source of gravi-
tational waves for the upcoming Laser Interferometer Space
Antenna (LISA) which we expect to go online in the
coming decade [65], where they would emit long-lasting
signals that can be modeled very accurately. The presence
of a medium surrounding the central supermassive BH
would change the orbital dynamics of the companion,
resulting in a modified gravitational wave emission. We
consider these separately.

A. Isolated BHs

Supermassive BHs growing in active galactic nuclei (e.g.,
through consecutive mergers [66]) can be ejected from said
nuclei at relativistic velocities [67–72]. As it is kicked out, it
carries with it a significant amount of gas, that forms a wake
behind it. This leaves trails that can be observed in the
electromagnetic spectrum [73–75].8
Consider a simplified setup where the BH spin and its

velocity are orthogonal, i.e., β ¼ π=2. After a time T has
passed, a spinning BH moving through a medium would be
displaced by a distance d ¼ FMT2=ð2MÞ with respect to a
spinless BH (or one moving in vacuum), due to the Magnus
force. If trail formation is observed behind it, at an angular
distance DA, the angle that would be needed to resolve in
order to observe this deviation is θ ¼ d=DA, including
some significant numbers yields

jθj ∼ 8 × 10−20 arcsec
�

n
cm−3

��
T
kyr

�
2
�

M
108M⊙

��
Gyr
DA

�
;

ð54Þ

where we have assumed that the BH moves with v ¼ 0.15,
and a ¼ 0.5M. Therefore, hydrogen number densities of
n ∼ 1017 cm−3 over a scale of T ∼ kyr (equivalently,
spanning a range of ∼45 pc) are necessary in order to
observe a significant deviation, when observed at approx-
imately redshift z ¼ 1, assuming the resolution provided by
very large baseline interferometry, or by next generation
space telescopes. Dark matter spikes [79,80], for example,
are capable of clustering to much higher densities (close to
the density of water, n ∼ 1023 cm−3) in the vicinity of
supermassive BHs, but the density of the halo decreases
sharply at larger distances. Thus, it is unlikely to detect
such a deviation in realistic scenarios.

7Here we reiterate that a positive δFD refers to a variation that
enhances the drag force causing the BH to slow down faster.
Algebraic signs followconventions inFig. 2.ApositiveFM is one in
which the force is acting as in the standard classical fluidmechanics.
A positive FL force is one which is pushing the BH upwards along
the positive z-axis in the coordinate we define in Sec. II.

8Notice that some recent works argue that the observed trail
could be due to a bulgeless, edge-on galaxy [76–78].
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B. EMRI aerodynamics

EMRIs are a very interesting prospect to learn about the
geometry and the astrophysical environment very close to
supermassive BHs [81]. The smaller object, typically with a
mass a million times smaller than its companion, can orbit
for years at distances smaller than ten Schwarzschild radius
of the central BH. The prospect of observing gravitational
waves emitted from these systems with the space interfer-
ometer LISA motivates studying the impact of possible
environments (such as gas, accretion disks, or dark matter)
on their emission patterns [82,83].
In addition to gravitational wave emission, if there

is matter in the vicinity of the central BH, it will create
further dissipative channels that will affect the companion’s
orbital motion, whereby changing the trajectory, would also
modify the gravitational wave emission. Several studies
in recent years have discussed that this is a potential
opportunity to learn about said environments from the
GWobservations [12,27,84–89]. Here we consider whether
the coupling between the spin of the secondary BH and the
environment (through variations in the drag force, or the
Magnus and lift forces, for instance) could have an impact.
The spin-dependent aerodynamic forces that we have

discussed scale roughly as

FX ≡ Cq2
a
M

fðv; a; βÞ; C ¼ ρM2
SMBH; ð55Þ

where q ¼ M=MSMBH is the mass ratio between the mass
of the secondary, M and of the primary, MSMBH, fðv; a; βÞ
is a dimesionless quantity, of roughly order 1 [see the
leading term in Eq. (53)], and C is the (also dimensionless)
number that controls the overall strength of the interaction.
The spin-dependent aerodynamic forces on the smaller

body therefore appear at the same formal order as
the effective Matthison–Papapetrou–Dixon (MPD) force
[90–92] due to the secondary spin coupling to the back-
ground geometry. However, unlike the MPD force the spin-
dependent aerodynamic forces can act in a dissipative
manner on the binary, secularly changing the constants of
motion and appearing at leading order in the post-adiabatic
expansion of the EMRI dynamics in terms of the mass ratio.
Moreover, the dimensionless quantity that controls their
effect is not necessarily very small (C ∼ 10−6 for environ-
ments with the density of the water, and MSMBH ¼ 106).
This raises the prospect of the aerodynamic forces being the
dominant effect due to the spin of the smaller object,
potentially improving its detectability. A full assessment of
the impact of the coupling between the spin and the
environment in EMRIs will, however, require an in-depth
treatment of more realistic scenarios (including, e.g.,
understanding the aerodynamic forces in generic orbits,
and not in rectilinear motion). Furthermore, in any scenario
where the spin-induced aerodynamic forces are significant,
the regular component of the dynamical friction will be

even bigger. A firm handle on the modeling uncertainties in
the environment will therefore be paramount for any robust
inference.

VI. CONCLUSIONS

In this work, we have studied the impact of BH spin on
dynamical friction in the fully relativistic regime. When the
BH spin does not point along its direction of motion,
cylindrical symmetry of the problem is broken, and two
additional forces arise. These we dub Magnus and lift
forces. Therefore the motion of a spinning BH through a
medium will generically be curved out of its original plane
of motion, as it decelerates. Besides the spin-induced
aerodynamic forces, one would also expect the interaction
of the spin with the environment to induce an effective
torque on the spin itself [43]. We have not studied this effect
in this work. Nonetheless, the introduced methods are
amenable to such an enterprise.
We have considered two different kinds of environments,

representing very distinct physical regimes: on the one
hand, a medium composed of collisionless massive par-
ticles, and on the other hand, an ultralight scalar field, in the
regime where wave and strong field effects are most
important. In the first case, we provide a semianalytical
calculation of these forces using the properties of scattering
timelike geodesics on a Kerr background. In the second
case, we have implemented analytically the boundary
conditions corresponding to a plane wave scattering off
an angle of a Kerr BH, and solved the relevant equations
numerically. Our results agree with previous analytical
(and also numerical) calculations in the fully relativistic
regime in the case where the BH spin is aligned with its
velocity [20,37], as shown in Sec. IVA.
We have evaluated the forces on a grid of points in

parameter space, which we share publicly in [63] and use to
build rapid Chebyshev interpolants. From these we have
learned the general features of the aerodynamic forces,
including its spin scaling, angular structure, and depend-
ence on the velocity of the BH. We also provide polynomial
fits that are accurate in the regimes where the spin and the
velocity of the BH are small or intermediate. Exploring in
full detail the behavior of the aerodynamic forces in the
strong field regime, e.g., for very rapidly rotating BHs, is
left for future study.
Finally, we have also discussed two classes of astro-

physical systems in which the spin dependence of the
dynamical friction could be of relevance. We observe that if
runaway supermassive BHs move through dense enough
environments, they could form curved trails. More inter-
estingly, we argue that for an EMRI system the aero-
dynamic forces could be the dominant consequence of the
spin of the smaller object. Further exploration of the spin-
dependent aerodynamic forces in generic orbits, as well as
its impact on gravitational wave emission, will be necessary
to understand the full implications for EMRI observations.
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In the process of carrying out our work on the spin
aerodynamic forces, we became aware of a concurrent
endeavor to study the gravitational Magnus effect from the
perspective of numerical relativity [93]. This work makes
use of the GRDzadzha code-base [36,94,95] to calculate
the Magnus force up to high spin and intermediary relativist
velocities (with the spin vector fixed to be perpendicular to
the velocity). We see promising agreement between our
results but leave a full comparative analysis as a task for
future work.
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APPENDIX: CONVERGENCE

In this Appendix we provide additional numerical
evidence for the convergence of our results.
For the case of a particle–like medium, there are two

factors to take into account: On the one hand, we numeri-
cally integrate over a disc in the impact plane. That
numerical integration is performed on interpolants which
use N2 points. For each of those points the forces are
computed analytically as described in the main text.
Therefore, the only parameter controlling the numerical
convergence is given by N. Fig. 9 shows the aerodynamic
forces for three different resolutions. The insets for the
Magnus and Lift forces show that increasing the number of
points achieves convergence.
Ultimately we want to extract the values of the forces for

a cloud of a fixed size bmax where the quantities,
δFD; FM; FL should not depend on the cloud size (since
they appear due to the strong field region near the BH).
Fig. 9 shows that increasing bmax ≥ 1000 does not change
the aerodynamic forces significantly, allowing us to safely
perform the extraction at bmax ¼ 1500. The interpolant is
constructed using the highest resolution available, given
by N ¼ 64. It uses NCheb ¼ 163 points distributed in the
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FIG. 9. (a) Difference between the drag force evaluated at spin a=M ¼ 0.7 and at very low spin, a=M ¼ 0.01, keeping fixed the
velocity v ¼ 0.3 and the impact angle β ¼ π=4, for different numerical resolutions (different colors, as shown in the label), as a function
of the size of the cloud. We observe that this rapidly converges to a constant, showing that the spin-variation of the drag force is
independent of the cloud size. (b) Scaling of the Magnus force with the cloud size, for a BH spin a=M ¼ 0.7, and the rest of the
parameters equal to the previous panel. The inset panel shows the residual between the asymptotic value (obtaining by fitting the highest
resolution available to a series of the type Aþ c1=bmax þ c2=b2max) and the data points, in percent level. This shows that the higher
resolutions converge towards zero, achieving an accuracy of around percent level for the Magnus. (c) Same, but for the lift force.
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ranges a=M∈ ½0.05; 0.9�, β∈ ½0.05; 1.52� (reflection sym-
metry is later enforced, but has been checked separately),
and v∈ ½0.15; 0.925�.
For the wave–like environment, there are also two

convergence factors to consider. One being the accuracy
requirements of the shooting method in numerically solv-
ing for the radial component of the scalar field. The other is
the number of l-modes summed to obtain the result. The
accuracy of the numerical solver was found to be extremely
stable once an explicit Runge-Kutta method was imple-
mented and so was set with a precision goal of 16 and
allowed 32 digits of arbitrary precision arithmetic. The
more subtle factor in convergence however is the l-mode
sum. Following the same ethos as the cloud size in the
convergence check for the particle case. We show in Fig. 10
that for the case μ ¼ 0.2 we have rapid convergence in our
measured forces as a function of lmax (which has an
interpretation of cloud size here). In practice, we choose
lmax ¼ 15 as an appropriately converged number of
l-modes for the calculation of the nodes in the
Chebyshev interpolant. We have also additionally taken
the time to check that at the most extreme edges of our
Chebyshev grid (around a ¼ 0.9997, v ¼ 0.95) lmax ¼ 15
is also sufficient for convergence. The interpolant is
constructed using 20 nodes in the spin and angular

directions, in the ranges a=M∈ ½10−5; 0.9997� and
β∈ ½10−5; π − 10−5�, and 40 points in the velocity range
given by v∈ ½0.05; 0.95�.
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