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We use the distribution formalism to derive the complete set of junction conditions for general local
rotationally symmetric (LRS) spacetimes in the 1þ 1þ 2 covariant formalism. We start by developing a
parametric framework encompassing timelike, spacelike, or null hypersurfaces. We then introduce
the distribution formalism in the 1þ 1þ 2 framework and obtain the necessary conditions to preserve the
regularity of the 1þ 1þ 2 equations at the separation hypersurface. Using these results, we can deduce
some general prescriptions on the junction of LRS spacetimes and the properties of the shell in the
nonsmooth cases. As examples of the application of the junction conditions, we use this formalism to
perform the matching necessary to obtain well-known solutions, e.g., the Martinez thin shell, the
Schwarzschild constant-density fluid star, and the Oppenheimer-Snyder collapse.
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I. INTRODUCTION

When dealing with astrophysically and cosmologically
relevant spacetimes in the context of general relativity, one
often faces the problem that global exact solutions cannot
easily represent such spacetimes. This is particularly true in
the case of the solution of relativistic compact stars, for
which only a few approximated instances, e.g., the Vaidya
spacetime, are known.
A way to overcome this hurdle is to separate the

complete spacetime into two or more subregions and then
connect those regions. How this connection is performed
was proposed for the first time by Darmois [1],
Lichnerowicz [2,3], and Israel [4] (see also the works
of Choquet–Bruhat [5] and Taub [6]). The most com-
monly used of these formulations is undoubtedly the Israel
junction conditions, which have the advantage of being
formulated in terms of tensorial conditions. However,
even if the solution to the problem is generally considered
well established, much research is still being pursued on
approaches that can overcome the limitations of the
distributional approach [7,8] like, e.g., the variational
definition of the junction conditions [9,10].
In general relativity (GR), junction conditions were

proven useful in accounting for a wide range of astrophysical

phenomena, e.g., the existence of fluid stars [11] and the
Oppenheimer-Snyder collapse [12]. More recently, this
formalism was also used in the context of exotic compact
objects to derive stable and physically relevant solutions for
black-hole mimickers [13–15]. However, the set of junction
conditions depends on the theory of gravity used as a
framework. Thus, several works have also derived these
conditions in extended theories of gravity, e.g. theories
with additional scalar degrees of freedom [16–27], tele-
parallel theories of gravity [28], Einstein-Cartan theories of
gravity [29], and metric-affine gravity [30], with applications
in wormhole physics [31–33].
The aim of this paper is to provide a new formulation of

junction conditions for locally rotationally symmetric (LRS)
spacetimes [34,35]. This formulation is covariant, as the
Israel-Darmois conditions, but it differs because of its
primary focus: the existence of continuous congruences
of worldlines crossing the boundary surface. Such a differ-
ent point of view is ascribed to the primary approach used to
describe these conditions: the so-called covariant approach.
This approach is based on the seminal work of Ehlers [36],
further developed by Ellis and other authors [37–39]. These
methods rely on the threading of the spacetimes by means of
specific vector fields associated with the motion of a given
observer.
There are two different realizations of the covariant

approach. The first, called 1þ 3 covariant approach, is
useful in the context of exact relativistic (and Newtonian)
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cosmological models [40,41]. A second one, which is also
an extension of the 1þ 3 covariant approach, is the 1þ
1þ 2 covariant approach [42–46], which can be employed
for the analysis of spacetimes of astrophysical interest
[47–53].
Since junction conditions are primarily employed in

astrophysics, in this work, we use the 1þ 1þ 2 approach.
In addition, as the 1þ 3 formalism is entirely contained in
the 1þ 1þ 2 one, using the latter results in no loss
generality for our treatment. We show that other than
complementing the work in [47,48,52,53] on the covariant
formulation of the Tolman-Oppenheimer-Volkoff (TOV)
equations, the relations we derive prove particularly useful
in understanding some general properties of the junction
conditions and in the analysis of junction conditions in
modifications of general relativity. Our work is not the first
to present such an attempt. For example, junction conditions
were given in the case of LRS-II spacetime using the 1þ
1þ 2 approach in [54]. In other words, e.g., the junction
conditions are derived for specific cases/models (see, e.g.,
[47–49]). However, in this work, we take a slightly different
approach in that we derive the general junction conditions
directly from the distribution formalism and the 1þ 1þ 2
equations, extending our analysis to general LRS space-
times and considering the case of non-comoving observers.
This paper is organized as follows. Section II introduces

the 1þ 1þ 2 formalism and the respective equations. In
Sec. III, we develop a parametric formalism to describe
several geometrical quantities, namely the metrics, hyper-
surfaces, and extrinsic curvature in the cases of timelike,
spacelike, and null boundaries. In Sec. IV, we introduce the
formalism of distribution functions to derive a first set of
junction conditions and the singular equations from which
the remaining junction conditions arise. In Sec. V, we solve
the singular equations and formulate the covariant junction
conditions for LRS spacetimes. In Sec. VI, we provide
applications of the previous framework to some interesting,
well-known cases in GR. Finally, we trace our conclusions
and future perspectives in Sec. VII.

II. THE 1+ 1 + 2 FORMALISM IN LRS
SPACETIMES

In this section, we introduce the 1þ 1þ 2 formalism for
LRS spacetimes. The 1þ 1þ 2 formalis is particularly
advantageous in these spacetimes as all vector and tensor
1þ 1þ 2 quantities vanish. For brevity, in the following,
we define and employ only those scalar 1þ 1þ 2 poten-
tials, referring the reader to [40,43,44] for additional
details.

A. 1 + 1 + 2 quantities and equations

We start by defining two threading vector fields, ua and
ea. The first is timelike, i.e., uaua ¼ −1, and represents the
four-velocity of an observer describing the spacetime. The

second is spacelike, i.e., eaea ¼ 1, which singles out a
spatial direction for this observer. Using ua and ea, we can
define two projection tensors

hab ¼ gabþuaub; haa ¼ 3;

Na
b ¼ hab − eaeb ¼ gabþuaub− eaeb; Na

a ¼ 2; ð1Þ

where gab is the four-dimensional spacetime metric, hab
represents the metric of the three spaces orthogonal to ua,
and Na

b represents the metric of the two spaces orthogonal
to both ua and ea.1

Any tensorial object may be split according to the
foliations given in Eq. (1) into a set of quantities defined
on these subspaces [47]. For example, the covariant
derivative ∇a can be split into the covariant time derivative,
the orthogonally projected covariant derivative, and the hat
derivative and δ derivative:

Ẋa::b
c::d ≡ ue∇eXa::b

c::d;

DeXa::b
c::d ≡ haf…hbghpc…hqdhre∇rXf::g

p::q;

X̂a::b
c::d ≡ efDfXa::b

c::d;

δeXa::b
c::d ≡ Na

f…Nb
gNi

c…Nj
dNe

pDpXf::g
i::j:

Using the operators given above, one can define the
following relevant quantities for LRS spacetimes:

A ¼ eau̇a; ð2aÞ

ϕ ¼ δaea; ð2bÞ

θ ¼ Daua; ð2cÞ

Σ ¼ 1

3
Daubð2eaeb − NabÞ; ð2dÞ

Ω ¼ 1

2
εabδ½aub�; ð2eÞ

ξ ¼ 1

2
εabδaeb; ð2fÞ

E ¼ Cab
cduaudebec; ð2gÞ

H ¼ 1

2
εadeCdeb

cuceaeb; ð2hÞ

where εabc ¼ ηdabcud and εab ≡ εabcec are the volume
elements of the hypersurfaces perpendicular to ua and to

1To be precise hab and Nab are not the induced metrics, but
rather tensors defined in the whole manifold and that, on the
surface, coincide with the induced metric. We use an index H to
distinguish the general tensors from the ones at the boundary. The
same holds for all other quantities: Index H indicates their value
at the boundary.
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both ua and ea, respectively, ηabcd is the Levi-Civita tensor,
Cabcd is the Weyl tensor, round parenthesis denote index
symmetrization, and square parenthesis denote index anti-
symmetrization; i.e.,

XðabÞ ¼
1

2
ðXab þ XbaÞ; ð3Þ

X½ab� ¼
1

2
ðXab − XbaÞ: ð4Þ

Following the same projection procedure, the energy-
momentum tensor Tab can be decomposed in the form

Tab ¼ μuaub þ peeaeb þ pNNab þ 2QuðaebÞ; ð5Þ

where

pe ¼ pþ Π;

pN ¼ p −
1

2
Π ð6Þ

represent pressures along and orthogonal to ea, respec-
tively, and we have defined

μ ¼ Tabuaub;

p ¼ 1

3
Tabðeaeb þ NabÞ;

Π ¼ 1

3
Tabð2eaeb − NabÞ;

Q ¼ −Tabeaub: ð7Þ

In the above equations, μ is the energy density, p is the
isotropic pressure, Π represents the scalar component of
the anisotropic pressure, and Q represents the scalar part
of the heat flux. Notice that in the previous equations, we
are considering a geometrized unit system for which
8πG ¼ c ¼ 1.
From the point of view of observers comoving with the

fluid (if any2) and that chooses ea to represent at each point
the axes of symmetry of the metric, LRS spacetimes filled
with a perfect fluid are naturally divided into three classes
named LRS-I, LRS-II, and LRS-II. We call these observers
“comoving LRS observers.”

In LRS-I spacetimes, vorticity is absent from the
spacelike congruence; i.e., ξ ¼ 0. We call this quantity
“twist” to differentiate it from its counterpart Ω associated
with the timelike congruence. These spacetimes do not
expand and are shearless; i.e., θ ¼ 0, and Σ ¼ 0. The only
nonzero quantities are thus ϕ, A, and Ω. In LRS-II
spacetimes, the vorticity terms, and the magnetic part
of the Weyl tensor vanish; i.e., Ω ¼ 0, ξ ¼ 0, and H ¼ 0.
Every other scalar quantity may be nonzero. In the
particular case of static and spherically symmetric
LRS-II spacetimes, one also has θ ¼ 0, and Σ ¼ 0, and
the dot derivative of every scalar vanishes. Finally, in
LRS-III spacetimes, vorticity is absent from the timelike
congruence, i.e., Ω ¼ 0, and the only nonzero scalars are
A, θ, Σ, ξ, E, and H. Further details of these metrics’
structure and the solutions they encompass can be found in
Appendix A and [34,35]. Naturally, one can consider the
case in which matter is not a perfect fluid, and the
geometry is still one of the LRS subclasses. However,
it is not necessarily true that the spacetime belongs
globally to that LRS subclass. In the following, we assume
that, for the cases we consider, the spacetime can always
be characterized as LRS-I, LRS-II, or LRS-III regardless
of the thermodynamics of the matter.
Any LRS spacetime can be fully described in terms of

the following equations [44–46], which we refer to as the
“1þ 1þ 2 equations”:

Evolution

ϕ̇þ
�
Σ −

2

3
θ

��
A −

1

2
ϕ

�
− 2ξΩ ¼ Q; ð8Þ

Σ̇ −
2

3
θ̇ −

1

2

�
Σ −

2

3
θ

�
2

þAϕþ E þ 2Ω2

¼ 1

3
ðμþ 3pÞ þ 1

2
Π; ð9Þ

Ė −
1

3
μ̇þ 1

2
Π̇¼ 3

2

�
Σ−

2

3
θ

�
Eþ 1

4

�
Σ−

2

3
θ

�
Π

þ 3Hξþ 1

2
ϕQ−

1

2
ðμþpÞ

�
Σ−

2

3
θ

�
;

ð10Þ

Ḣ −
3

2

�
Σ −

2

3
θ

�
Hþ 3Eξ ¼ QΩþ 3

2
Πξ; ð11Þ

ξ̇ − 2

�
Σ −

1

6
θ

�
ξ ¼ 0; ð12Þ

Ω̇ − ðΣ −
2

3
θÞΩ −Aξ ¼ 0: ð13Þ

2In the absence of sources, i.e., in vacuum spacetimes, ua
remains undetermined, and, strictly speaking, the classification
above does not apply. An exception is the (exterior of) Schwarzs-
child spacetime, which is empty but in which the observer’s
motion can be characterized in terms of the motion with respect to
the central mass/event horizon. Indeed, in Schwarzschild’s
spacetime, a static observer is also a moving observer, and
therefore, we can classify it as LRS-II. For a general definition of
observers and observables, we refer the interested reader to [55]
and references therein.
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Propagation

ϕ̂þ 1

2
ϕ2 −

�
Σ −

2

3
θ

��
Σþ 1

3
θ

�
þ E − 2ξ2

¼ −
2

3
μ −

1

2
Π; ð14Þ

Σ̂ −
2

3
θ̂ þ 3

2
ϕΣþ 2ξΩ ¼ −Q; ð15Þ

Ê −
1

3
μ̂þ 1

2
Π̂ ¼ 3HΩþ 1

2

�
Σ −

2

3
θ

�
Q

−
3

2
ϕE −

3

4
ϕΠ; ð16Þ

Ĥþ 3

2
ϕHþ 3EΩ ¼ −

�
μþ p −

1

2
Π
�
Ω −Qξ; ð17Þ

ξ̂þ ϕξ −
�
Σþ 1

3
θ

�
Ω ¼ 0; ð18Þ

Ω̂ − ðA − ϕÞΩ ¼ 0: ð19Þ

Mixed

Âþ ðAþ ϕÞA − θ̇ −
1

3
θ2 −

3

2
Σ2 þ 2Ω2

¼ 1

2
ðμþ 3pÞ; ð20Þ

μ̇þ Q̂þ ð2Aþ ϕÞQþ θðμþ pÞ þ 3

2
ΣΠ ¼ 0; ð21Þ

Q̇þ p̂þ Π̂þAðμþ pþ ΠÞ þ 3

2
ϕΠ

þ
�
Σþ 4

3
θ

�
Q ¼ 0: ð22Þ

Constraint

3ξΣ − ð2A − ϕÞΩ −H ¼ 0: ð23Þ

Finally, the Gauss curvature K can be defined in
terms of the 1þ 1þ 2 quantities as

K ≔
1

3
μ − E −

1

2
Πþ 1

4
ϕ2 −

1

4

�
Σ −

2

3
θ

�
2

þ ξ2 −Ω2;

ð24Þ
and it satisfies the evolution and propagation equations

K̇ ¼ −
�
2

3
θ − Σ

�
K; ð25Þ

K̂ ¼ −ϕK; ð26Þ

respectively. These two equations are not independent
of the 1þ 1þ 2 system but are potentially valuable as
auxiliary equations in several contexts, e.g., the covar-
iant TOV equations [47,48,52,53].
Finally, for any scalar quantity X in a LRS space-

time, the following condition applies:

εab∇a∇bX ¼ 0 ð27Þ

which in turn implies

ΩẊ ¼ ξX̂: ð28Þ

Upon replacing all the 1þ 1þ 2 scalar potentials into
the equation above, one verifies that for only three of
these scalars, one generates nontrivial results, which
imply the following three additional constraints:

3ϕξþ Ωð3Σ − 2θÞ ¼ 0;

Qðξ2 þ Ω2Þ − ðpþ Πþ μÞξΩ ¼ 0;

3

2
ξΣϕþ ξQ − 2Ω3 þ Ω

�
1

2
Πþ 1

3
μþ p − E þ ξ2

−Aϕþ 1

2

�
2

3
θ − 3Σ

�
2
�
¼ 0: ð29Þ

In the following, we deduce the junction conditions in
an entirely covariant form in terms of the quantities
defined in Eq. II A.

III. A PARAMETRIC FORMALISM

In order to obtain the general junction conditions, we
now proceed to construct a parametric formalism for
junction conditions. In particular, we provide a unified
definition of the metric, the induced metric, and the
extrinsic curvature of the separation hypersurface that
characterizes the junction of two spacetimes for the time-
like, spacelike, and null cases.

A. Normal vectors and induced metric

Let us start by stating the geometrical quantities we want
to obtain for each relevant case.
Since the covariant approaches are based on foliations, it

is convenient to construct, whenever possible, the junction
conditions so that the separation hypersurface coincides with
the foliation induced by the choice of ua and ea. In this way,
when one deals with timelike or spacelike hypersurfaces, it
is sufficient to make use of the projected two-metric Nab,
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and the projection vectors ua and ea defined previously in
Eq. (1). In this way, for the case of a timelike normal, the
induced metric reads3

qab ¼ hab ¼ Nab − uaub; ð30Þ

whereas, in the case of spacelike normal,

qab ¼ Nab þ eaeb: ð31Þ

If one is interested in null hypersurfaces, instead, the four-
metric gab can be decomposed into the two-metric Nab and
the null vectors la and l̄a as

gab ¼ Nab − lal̄b − l̄alb; ð32Þ

where both the unit vectors la and l̄a are null and satisfy the
following properties:

la ¼
ffiffiffi
2

p

2
ðua þ eaÞ; l̄a ¼

ffiffiffi
2

p

2
ðua − eaÞ; ð33Þ

lala ¼ 0; l̄al̄a ¼ 0; lal̄a ¼ −1: ð34Þ

For null hypersurfaces and the metric decomposition
described above, the induced metric qab on the hypersurface
is the same as the two-metric Nab, i.e.

qab ¼ gab þ lal̄b þ l̄alb ¼ Nab; ð35Þ

and both the vectors la and l̄a are orthogonal to the
hypersurface.
With these relations in mind, and as it is explained in

detail in Appendix B, the normal vector na to the hyper-
surface can be written in general as

na ¼ τua þ ςea; ð36Þ

in such a way that

8>><
>>:

τ ¼ 1 ς ¼ 0 ⇒ spacelike hypersurfaces;

τ ¼ 0 ς ¼ 1 ⇒ timelike hypersurfaces;

τ ¼
ffiffi
2

p
2

ς ¼ �
ffiffi
2

p
2

⇒ null hypersurfaces:

ð37Þ

It would be tempting to assume, at this point, to consider τ
and ς as generic functions. However, this would lead to

boundary hypersurfaces with a mixed character, which we
do not consider in this work.
The choice of Eq. (36) presents a great generality insofar

as the formalism is covariant and, therefore, there is no real
constraint on the choice of the vectors ua and ea. This is
also true for the case of null boundary hypersurfaces.
However, additional care is required to introduce vorticity
and/or twist. For an LRS-I spacetime, for example, since
the ua associated with the comoving observers possesses a
solenoidal part, it cannot be aligned to the normal vector to
a boundary surface. A similar problem arises with ea in
LRS-III with spacelike surfaces. Therefore, it is impossible
in these cases to choose a normal aligned to ua or ea. Due to
this issue, tn the following, we restrict our analysis to the
cases of spacelike surfaces in LRS-I and LRS-II, timelike
surfaces in LRS-II and LRS-III, and null surfaces in
LRS-II only.

IV. DISTRIBUTION FUNCTIONS IN THE 1+1 + 2
FORMALISM

Another cornerstone of our construction is the distribu-
tion formalism (see, e.g., Ref. [19,56,57]), which we now
summarize briefly to use as a framework on which to derive
the junction conditions.

A. Type I junction conditions

Consider a spacetime V divided into two parts, an
exterior region Vþ described by a metric gþab, and an
interior region V− described by a metric g−ab. The two
regions V� are separated by a three-dimensional hyper-
surface H described by an induced metric qHab. The
projection vectors from the four-dimensional spacetime
V to the hypersurface H can be obtained directly from the
induced metric qHab as ðqHÞab. The displacement from H is
measured along curves tangent to the vector field na normal
to H and is locally parametrized by an affine parameter l
by the relation

na ¼ ε∂al: ð38Þ

Without loss of generality, we choose l to be zero at H,
negative in the region V−, and positive in the region Vþ.
Any tensorial quantity in this setting can be generalized

to the following distribution4

Xa…
b… ¼ ðXa…

b…ÞþΘðlÞ þ ðXa…
b…Þ−Θð−lÞ

þ X̄a…
b…δðlÞ; ð39Þ

where ðXa…
b…Þ� represents the quantity Xa…

b… in the
region V�,ΘðlÞ and δðlÞ are the Heaviside and Dirac delta

3Here, the same discussion of footnote 1 holds. The tensor qab
is not strictly the induced metric but coincides with it on the
separation surface. The same happens for the extrinsic curvature.
However, as is well known [56], the projection operators
associated with the pullback are continuous across the boundary,
and, thus, the junction conditions can also be given in terms
of qab.

4For a more formal definition of the passage between tensorial
functions and distributions, we refer the reader to [17].
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distributions, respectively, and X̄a…
b… is the singular

hypersurface component. We also denote, as customary,
the discontinuity of a quantity X across H and the surface
value of X as, respectively,

½Xa…
b…�� ¼ ðXa…

b…ÞþH − ðXa…
b…Þ−H: ð40Þ

hXa…
b…i ¼ 1

2
½ðXa…

b…ÞþH þ ðXa…
b…Þ−H�: ð41Þ

The quantity ½Xa…
b…�� is usually referred to as the “jump

of Xa…
b…”. Taking the partial derivative of Eq. (39), one

obtains, using the fact that Θ0ðlÞ ¼ δðlÞ,

∂rðXa…
b…Þ ¼ ð∂rXa…

b…ÞþΘðlÞþ ð∂rXa…
b…Þ−Θð−lÞ

þ ϵnr½Xa…
b…��δðlÞþ ∂r½X̄a…

b…δðlÞ�: ð42Þ

Junction conditions can only be defined if the boundaries
between the two spacetimes are correctly identified. We
then identify the points of the hypersurfaceH requiring that
the normal vector field is continuous across H

½na�� ¼ 0: ð43Þ

This condition is also necessary for constructing a con-
sistent reference frame across H, a requirement for the
construction of the 1þ 1þ 2 junction conditions as well as
for the Israel-Darmois conditions. At the same time, we
have to ensure that the tangent spaces of the two spacetimes
are correctly identified. It has been shown, in general (see
[7]), that this is possible if Eq. (43) holds together with

½qab�� ¼ 0: ð44Þ

We dub the above relation with the condition in Eq. (43),
type I junction conditions. These are mandatory conditions
in any metric theory of gravity, and they arise directly from
applying the distribution formalism. The remaining junction
conditions, which we call type II conditions, are obtained by
applying the same procedure to the 1þ 1þ 2 evolution,
propagation, mixed, and constraint equations.
Let us start considering the consequences of these

requirements on the 1þ 1þ 2 quantities. As qab is obtained
by the combination of the orthogonal quantities Nab and the
tensor product of a vector orthogonal to na, the type I
junction conditions imply that

ua ¼ ðuaÞþΘðlÞ þ ðuaÞ−Θð−lÞ;
ea ¼ ðeaÞþΘðlÞ þ ðeaÞ−Θð−lÞ;

Nab ¼ ðNabÞþΘðlÞ þ ðNabÞ−Θð−lÞ: ð45Þ

In addition, Eq. (44) applied to the definitions of the
variables associated with the electric and magnetic part
of the Weyl tensor shows that they are all well-defined in

terms of distributions. This can be seen explicitly noting that
Eq. (44) implies that the Christoffel symbols Γc

ab are well
defined in a distributional sense and that E and H are
functions of Γc

ab, u
a, ea, and Nab. This result shows the

actual reason why the Israel junction conditions work, even
if there is no direct mention of the conformal structure of the
spacetime. Equation (44) is enough to guarantee that no
pathologies arise in the Weyl tensor.
The rest of the 1þ 1þ 2 potentials are expressed in

terms of the derivatives of the quantities defined in Eq. (45).
Let us then look at how these can be well defined in terms
of distributions. Since Eq. (44) also implies that Γ does not
have a singular part, we can apply the principle of general
covariance to Eq. (42). Furthermore, using the properties of
the derivatives of the Dirac-δ distribution (see Appendix C
for details), one obtains

∇rðXa…
b…Þ ¼ ð∇rXa…

b…ÞþΘðlÞ þ ð∇rXa…
b…Þ−Θð−lÞ

þ δðlÞðϵnr½Xa…
b…�� þ∇rX̄a…

b…

− ϵnrhKiX̄a…
b…Þ þ X̄Δa…

rb…ðlÞ; ð46Þ

where K is the trace of the extrinsic curvature Kab (see
Appendix D 1 for details on its form in the 1þ 1þ 2
approach), and Δa…

rb…ðlÞ is a double gravitational layer
distribution term associated with X̄a…

b… [17,19]. Then,
Eq. (43) implies, for any quantity Xa…

b…,

Ẋa…
b… ¼ ðẊa…

b…ÞþΘðlÞ þ ðẊa…
b…Þ−Θð−lÞ

þ δðlÞðτ½Xa…
b…�� þ ˙̄Xa…

b…

− τhKiX̄a…
b…Þ þ urX̄Δa…

rb…ðlÞ; ð47Þ

X̂a…
b… ¼ ðX̂a…

b…ÞþΘðlÞ þ ðX̂a…
b…Þ−Θð−lÞ

þ δðlÞðς½Xa…
b…�� þ ˆ̄Xa…

b…

− ςhKiX̄a…
b…Þ þ erX̄Δa…

rb…ðlÞ; ð48Þ

δrXa…
b… ¼ ðδrXa…

b…ÞþΘðlÞ þ ðδrXa…
b…Þ−Θð−lÞ

þ δrX̄a…
b… þ Nr

qX̄Δa…
qb…ðlÞ: ð49Þ

Using the above results, one can prove that many of the
1þ 1þ 2 scalars do not have a singular part. For example,
in the case of ϕ, we have

ϕ ¼ δaea ¼ Nab∇aeb

¼ ðNab∇aebÞþΘðlÞ þ ðNab∇aebÞ−Θð−lÞ
þ ϵNabna½eb��δðlÞ: ð50Þ

Since Nabeb ¼ 0 in H, one concludes that the term
proportional to δðlÞ in ϕ vanishes independently of the
form of na, and ϕ does not have a singular part. In the case
of θ, one has
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θ ¼ Daua ¼ hab∇aub

¼ ðhab∇aubÞþΘðlÞ þ ðhab∇aubÞ−Θð−lÞ
þ ϵhabna½ub��δðlÞ: ð51Þ

Since we have habub ¼ 0 in H by construction, the term
proportional to δðlÞ in θ vanishes, and this quantity is
regular. Similar arguments can be carried out for the
variables A, Σ, Ω, and ξ. We then conclude that of all
the 1þ 1þ 2 quantities, only the matter variables μ, p, Q
and Π and E,H (and therefore K), can have a singular part.
We then denominate μ̄, p̄, Π̄, Q̄, Ē, H̄, and K̄ the singular
parts of these quantities.
The singular terms for matter can be associated with the

presence of a thin shell of matter at the separation hyper-
surface, described by a stress-energy tensor Sab. Indeed, the
distributional form of the stress-energy tensor Tab of the
matter sector can be written as5

Tab ¼ Tþ
abΘðlÞ þ T−

abΘð−lÞ þ δðlÞSab; ð52Þ

where Sab represents the energy-momentum tensor of the
shell. The matter quantities of the thin shell, i.e., the
singular parts of the matter quantities, are thus connected
to Sab by the following relations:

Sab ¼ μ̄uaub þ ðp̄þ Π̄Þeaeb
þ 2Q̄uðaebÞ þ

�
p̄ −

1

2
Π̄
�
Nab; ð53Þ

or

μ̄ ¼ Sabuaub;

p̄ ¼ 1

3
Sabðeaeb þ NabÞ;

Π̄ ¼ 1

3
Sabð2eaeb − NabÞ;

Q̄ ¼ 1

2
Sabeaub; ð54Þ

and, naturally, Sabnb ¼ 0.
Writing the stress-energy tensor in the form of Eq. (52)

and taking a covariant derivative using Eq. (46), one
obtains

∇aTab ¼ ð∇aTabÞþΘðlÞ þ ð∇aTabÞ−ΘðlÞ
þ ðϵna½Tab� þDaSabÞδðlÞ: ð55Þ

The singular part of this equation is thus

DaSab þ ϵna½Tab� ¼ 0; ð56Þ

which represents the (non)conservation laws of matter on
the boundary. Notice that the above equation shows that the
tensor Sab is not necessarily conserved, and therefore, in
general, the boundary can itself be dynamic.

B. Singular equations and constraints: Type II
junction conditions

In analogy with the classical Israel derivation, we now
deduce conditions for which the 1þ 1þ 2 equations are
regular in the presence of a boundary surface. This is
accomplished by determining and setting to zero the
singular parts proportional to δðlÞ and ΔaðlÞ, separately.
We then obtain the following relations, from which the
“type II junction conditions” can be extracted. For the terms
proportional to δðlÞ, we obtain
Evolution

τ½ϕ�� ¼ Q̄; ð57Þ

τ

�
½Σ�� −

2

3
½θ��

�
þ Ē ¼ 1

3
ðμ̄þ 3p̄Þ þ 1

2
Π̄; ð58Þ

τ

�
½E�� −

1

3
½μ�� þ 1

2
½Π��

�
−
3

2

�
hΣi− 2

3
hθi

�
Ē

¼ −3H̄hξi þ
�
hΣi− 2

3
hθi

��
1

4
Π̄−

1

2
ðμ̄þ p̄Þ

�
þ 1

2
hϕiQ̄;

ð59Þ

τ½H�� −
�
hΣi− 2

3
hθi

�
H̄þ 3Ēhξi ¼ hΩiQ̄þ 3

2
hξiΠ̄; ð60Þ

τ½ξ�� ¼ 0; ð61Þ

τ½Ω�� ¼ 0: ð62Þ

Propagation

ς½ϕ�� þ Ē ¼ −
2

3
μ̄ −

1

2
Π̄; ð63Þ

ς

�
½Σ�� −

2

3
½θ��

�
¼ −Q̄; ð64Þ

ς

�
½E�� −

1

3
½μ�� þ 1

2
½Π��

�
þ 3

2
hϕiĒ − 3H̄hΩi

¼ 1

2

�
hΣi − 2

3
hθi

�
Q̄ −

3

4
hϕiΠ̄; ð65Þ

5We note that, in general, the stress-energy tensor Tab may
feature additional nontangential singular terms associated with
the double gravitational layer and external fluxes and tensions
[16,17,19]. Nevertheless, since we will assume matter to be an
incoherent fluid and work in general relativity, we have excluded
these terms from our definition of the stress-energy tensor.
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ς½H�� þ 3

2
hϕiH̄þ 3ĒhΩi ¼ −hΩi

�
μ̄þ p̄ −

1

2
Π̄
�
− hξiQ̄;

ð66Þ

ς½ξ�� ¼ 0; ð67Þ

ς½Ω�� ¼ 0: ð68Þ

Mixed

ς½A�� − τ½θ�� ¼ 1

2
ðμ̄þ 3p̄Þ; ð69Þ

τð½μ�� þ ˙̄μÞ þ ςð½Q�� þ ˆ̄QÞ

¼ −hθiðμ̄þ p̄Þ − 3

2
hΣiΠ̄ − ð2hAi þ hϕiÞQ̄; ð70Þ

τð½Q��þ ˙̄QÞþςð½p��þ½Π��þ ˆ̄pþ ˆ̄ΠÞ

¼−Aðμ̄þ p̄Þ−
�
hAiþ3

2
hϕi

�
Π̄−

�
hΣiþ4

3
hθi

�
Q̄: ð71Þ

Constraints

H̄ ¼ 0: ð72Þ

On the other hand, for the terms proportional to ΔaðlÞ,
we obtain Evolution

τ

�
Ē −

1

3
μ̄þ 1

2
Π̄
�

¼ 0; ð73Þ

τH̄ ¼ 0: ð74Þ

Propagation

ς

�
Ē −

1

3
μ̄þ 1

2
Π̄
�

¼ 0; ð75Þ

ςH̄ ¼ 0: ð76Þ

Mixed

τμ̄þ ςQ̄ ¼ 0; ð77Þ

τQ̄þ ςðp̄þ Π̄Þ ¼ 0: ð78Þ

We also provide, for completeness, the evolution and
propagation equations for the Gauss curvature K, given in
Eqs. (25) and (26). The singular parts of these equations
proportional to δðlÞ become, in this formalism,

τ½K�� þ ˙̄K ¼
�
hΣi − 2

3
hθi

�
K̄ þ τhKiK̄; ð79Þ

ς½K�� þ ˆ̄K ¼ −hϕiK̄ þ ςhKiK̄; ð80Þ

whereas the singular parts proportional to ΔaðlÞ immedi-
ately set

K̄ ¼ 0: ð81Þ

As a consequence of Eq. (81), one finds that also ˙̄K ¼
ˆ̄K ¼ 0 which, upon replacing back into Eqs. (79) and (80),
immediately imply that the Gauss curvature must be
continuous across H, i.e.,

½K�� ¼ 0; ð82Þ

independently of the character of the junction hypersurface.
Furthermore, taking the singular part of Eq. (24) and using
the fact that K̄ ¼ 0, one obtains the following constraint on
the quantities μ̄, Π̄ and Ē:

Ē ¼ 1

3
μ̄ −

1

2
Π̄: ð83Þ

The constraints in Eqs. (72) and (83) guarantee that the
evolution and propagation equations proportional to ΔaðlÞ,
i.e., Eqs. (73) and (76), are identically satisfied. On the other
hand, from the mixed equations proportional to ΔaðlÞ, i.e.,
Eqs. (77) and (78), one must have μ̄ ¼ Q̄ ¼ 0 for spacelike
hypersurfaces, Q̄ ¼ p̄þ Π̄ ¼ 0 for timelike hypersurfaces,
and μ̄ ¼ p̄þ Π̄ ¼ �Q̄ for null hypersurfaces. Notably, the
conditions on the thermodynamical quantities μ̄, p̄, Π̄, and
Q̄ also follow directly from Eqs. (57)–(71), although such a
result is not obvious due to the larger complexity of the
equations, which implies that Eqs. (73)–(78) provide
redundant information.
The type II junction conditions we have derived show that

junction conditions can be (and maybe ought to be) seen in a
new perspective. By expressing the junction conditions in
terms of the 1þ 1þ 2 potentials, we have, in fact, obtained
conditions for which two specific congruences in two
different spacetimes can be joined to be continuous across
the boundary. As these congruences are associated with
specific observers in the covariant formalism, the equations
above reveal that junction conditions are generally only
valid for a particular class of observers. In the standard
formulation of junction conditions, the choice of an
observer is intrinsic to the choice of the coordinate system
in the two spacetimes, and this might lead to the idea that,
upon using the junction conditions, one simply matches two
geometries. Our results imply that the underlying idea of the
junction conditions is that one matches geometries as seen
by two specific observers.
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C. Propagation of constraints

Because of the structure of the 1þ 1þ 2 scalars, the
algebraic constraints in Eqs. (23), (24), and (29) seem not to
contribute to the junction conditions. Nevertheless, the dot
and hat derivative of such constraints might still contain
some relevant conditions.
It turns out that all the derivatives of the constraints

Eq. (24) and Eq. (29) lead to an identity, upon using the
1þ 1þ 2 equations to eliminate the jumps of the quantities
that appear upon differentiating. However, taking the
covariant derivative of Eq. (23), expanding these deriva-
tives in terms of the dot and hat derivatives, using Eqs. (47)
and (48) to write the results in terms of the jumps of the
potentials, and keeping only the singular terms proportional
to δðlÞ [the singular terms proportional to ΔaðlÞ vanish
identically due to Eq. (72)], one obtains

ðτua þ ςeaÞ½3hξi½Σ�� þ 3hΣi½ξ�� − ½H��
−ð2hAi − hϕiÞ½Ω�� þ hΩið2½A�� − ½ϕ��Þ� ¼ 0: ð84Þ

This equation must be satisfied for any τ and ς. If τ ¼ 1,
which implies that ς ¼ 0, one can use the evolution
equations from Eqs. (57) –(62) to replace the jumps of
the geometrical quantities and obtain the additional con-
straint

ð2½θ�� þ 3p̄ − μ̄Þhξi − 2hΩi½A�� ¼ 0: ð85Þ

On the other hand, for the case of ς ¼ 1, and consequently
τ ¼ 0, one uses instead the propagation equations from
Eqs. (63)–(68), as well as the mixed equation in Eq. (69), to
cancel the jumps of the geometrical quantities and obtain
the additional constraint

ð½θ�� − Q̄Þhξi − ðp̄þ Π̄ÞhΩi ¼ 0: ð86Þ

Finally, for the cases of outgoing and ingoing null hyper-
surfaces with τ ¼ 1=

ffiffiffi
2

p
and ς ¼ �1=

ffiffiffi
2

p
, both of the

projections of Eq. (84) in ua and ea are independently
nonzero. A combination of the two procedures described
above for τ ¼ 1 and ς ¼ 1 has to be followed. In this case,
each of the projections contributes with an additional
constraint, which are

ð2½θ�� þ
ffiffiffi
2

p
ð3p̄þ μ̄ÞÞðhξi ∓ hΩiÞ ¼ 0; ð87Þ

ð½θ�� ∓ ffiffiffi
2

p
Q̄Þhξi ∓ ð½θ�� þ

ffiffiffi
2

p
ðp̄þ Π̄ÞÞhΩi ¼ 0; ð88Þ

where the upper and lower signs correspond to outgoing
and ingoing null hypersurfaces, respectively.
For LRS-II spacetimes, these constraints do not influ-

ence the junction conditions since these spacetimes have
ξ ¼ Ω ¼ 0, and thus, Eqs. (85)–(88) are automatically
satisfied. However, for LRS-I and LRS-III spacetimes,

for which Ω ≠ 0 and ξ ≠ 0, respectively, these equations
might constrain the junction conditions or even contribute
with additional junction conditions to the system, and thus,
they must be taken into account simultaneously with the
singular equations obtained in the previous subsection.

V. PROPERTIES OF JUNCTIONS OF LRS
SPACETIMES

In this section, we use the formalism and equations
derived in the previous section to deduce some general
prescriptions on the junction conditions in LRS spacetimes.

A. Comoving observers

We start with junction conditions valid for comoving
LRS observers. As a first observation, we note that some
junction conditions can be derived independently of the
type of hypersurface considered. From Eqs. (67) and (61),
one verifies that, independently of the value of the
parameters τ and ς, the jump ½ξ�� is always forced to
vanish. The same applies to the jump ½Ω�� if one considers
instead Eqs. (68) and (62). One thus obtains

½ξ�� ¼ 0; ð89Þ

½Ω�� ¼ 0: ð90Þ

For instance, (comoving observers in an) LRS spacetime
can be joined only if they have zero vorticity or twist or if
these quantities match at the boundary. However, the 1þ
1þ 2 equations indicate that if those two quantities are zero
in an event, they must be zero everywhere. Consequently,
for comoving LRS observers, LRS-II spacetimes cannot be
matched to LRS-I or LRS-III spacetimes.
The remaining junction conditions for different hyper-

surfaces can now be extracted from these equations by the
selection of a normal vector, i.e., by choosing the values of
τ and ς among the choices available in Eq. (37). We shall
consider separately the cases of LRS-I, LRS-II, and LRS-
III spacetimes, excluding the combinations between nor-
mal, vorticity, and twist mentioned at the end of Sec. III.
The junction conditions obtained by the resolution of the
system of Eqs. (64)–(71) are summarized in Tables I–III.
The first noteworthy result from the tables above is that,

depending on the type of boundary surface, there are
different key variables characterizing the junctions. For
example, for timelike surfaces, an important role is played
by the jump of the expansion and the shear,6 while for
spacelike surfaces, the prominent role is played by the jump
of the acceleration and the expansion of the spacelike
congruence. This is consistent with the idea that the type II
junction conditions are connected to the jump of the

6See also [58] for the role of the expansion in junction
conditions in coordinates.
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extrinsic curvature. We explicitly connect those quantities
with the extrinsic curvature in Sec. D 1 of Appendix D.
Another interesting feature concerns timelike hypersur-

face (Table I). In such a case, our results indicate that a thin
shell presents a zero energy density but nonzero pressure
terms. This result shows that in joining, e.g., expanding
cosmologies (or an overdensity of matter in a cosmological
background), a special surface between the two geometries
exists, generated by the difference in the expansion rate and
shear of the two spacetimes. This surface cannot be
interpreted as a proper matter shell but rather as a “frontier”
which, at least in specific cases, could be associated with
the concept of “turnaround radius” in nonhomogeneous
cosmologies (see, e.g., [59]). Indeed, the existence of
turnaround surfaces was shown to exist in the context of

McVittie spacetimes [60–62], one of the few examples of
analytical inhomogeneous spacetimes. In addition, the
component of the pressure orthogonal to the surface is
not zero, suggesting this type of boundary should have
some form of dynamics.
In the case of spacelike surfaces, instead, the presence of

a thin shell is controlled by the jump of the variables ϕ and
A. It is clear that the radial pressure of the thin shell is
always zero and that, therefore, such shells are not dynamic
objects. Indeed, differently from the case of timelike
surfaces, they can be represented by a matter distribution.
These are the typical shells that describe compact stars or
more exotic objects like gravastars.
In the case of a null boundary, one observes, as expected,

a mixture of the conditions of the two cases above. The

TABLE II. Junction conditions for matching two spacetimes along a timelike hypersurface for LRS
spacetimes. The entry “ind.” indicates that the quantity is an independent parameter.

LRS-I LRS-II

μ̄ −½ϕ�� −½ϕ��
p̄ 1

3
½ϕ�� þ 2

3
½A�� 1

3
½ϕ�� þ 2

3
½A��

Π̄ − 1
3
½ϕ�� − 2

3
½A�� − 1

3
½ϕ�� − 2

3
½A��

Q̄ 0 0
½ϕ�� ind. ind.
½A�� ind. ind.
½θ�� 0 ind.
½Σ�� 0 2

3
½θ��

½E�� 1
3
½μ�� − 1

2
½Π�� þ 1

2
hϕi½ϕ�� 1

3
½μ�� − 1

2
½Π�� þ 1

2
hϕi½ϕ��

½H�� hΩið½ϕ�� − 2½A��Þ 0
½μ�� ind. ind.
½p�� −½Π�� þ ½ϕ��ðhAi þ 1

2
hϕiÞ þ hϕi½A�� −½Π�� þ ½ϕ��ðhAi þ 1

2
hϕiÞ þ hϕi½A��

½Π�� ind. ind.
½Q�� 0 1

6
½ϕ��ð4hθi þ 3hΣiÞ þ ½A��ðhΣi − 2

3
hθiÞ

TABLE I. Junction conditions for matching two spacetimes along a spacelike hypersurface for LRS
spacetimes. The entry “ind.” indicates that the quantity is an independent parameter.

LRS-II LRS-III

μ̄ 0 0
p̄ − 2

3
½θ�� − 2

3
½θ��

Π̄ ½Σ�� ½Σ��
Q̄ 0 0
½ϕ�� 0 0
½A�� ind. ind.
½θ�� ind. ind.
½Σ�� ind. ind.
½E�� − 1

2
½Π�� − ½Σ��ðhΣi − 1

3
hθiÞ þ 1

3
hΣi½θ�� − 1

2
½Π�� − ½Σ��ðhΣi − 1

3
hθiÞ þ 1

3
hΣi½θ��

½H�� 0 3hξi½Σ��
½μ�� 2

3
hθi½θ�� − 3

2
hΣi½Σ�� 2

3
hθi½θ�� − 3

2
hΣi½Σ��

½p�� ind. ind.
½Π�� ind. ind.
½Q�� 2

3
hAi½θ�� − ½Σ��ðhAi þ 3

2
hϕiÞ hAið2

3
½θ�� − ½Σ��Þ
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additional element is a nontrivial conservation law origi-
nating from the tensor Sab, which, in turn, points toward a
more complex behavior of matter on the shell. In addition,
in this case, the junction conditions related to Bianchi
identities lead to two differential equations describing the
matter conservation on the shell.
Another interesting result to highlight concerns the value

of the magnetic part of the Weyl tensor. In the case of
matching between LRS-II spacetimes, this quantity is
always identically zero, but it does not have to be so in
other LRS spacetimes. Our analysis shows that within
LRS-I and LRS-III spacetimes, one could have a matching
between spacetimes with different values of the magnetic
part of the Weyl tensor. In both cases, this match can only
be obtained by introducing a thin shell. The relations we
found relate the jump in H to the vorticity/twist of the
spacetime. As normally H is connected with the presence
of gravitational radiation, the junction conditions we derive
point out to the possibility that there might exist types of
thin shells able to “absorb” gravitational radiation, in the
sense of encompassing a hypervolume of spacetime with
less (or no) gravitational radiation.

B. Tilted observers

The relations derived in the previous section concern
only observers comoving with matter in the spacetimes to
be matched. However, limiting the junction conditions to
these cases would be reductive as, in general, one can also
consider non-comoving (tilted) observers in a given space-
time. In this section, we extend our reasoning to the case of
such observers.

In the 1þ 1þ 2 formalism, tilted observers can be
characterized by the following timelike and spacelike
vectors:

ŭa ¼ ua cosh β þ ea sinh β

ĕa ¼ ea cosh β þ ua sinh β; ð91Þ

where the angle β is defined by cosh β ¼ −ŭaua. The
relations (176) are nothing but the Lorentzian boost of
the vectors ua and ea. Under these transformations, the
kinematic 1þ 1þ 2 potentials transform as

ϕ̆ ¼ ϕ cosh β þ
�
2

3
Θþ Σ

�
sinh β

Ă ¼ A cosh β þ
�
1

3
Θþ Σ

�
sinh β

þ ðua cosh β þ ea sinh βÞ∇aβ

Θ̆ ¼ Θ cosh β þ ðϕþAÞ sinh β
þ ðea cosh β þ ua sinh βÞ∇aβ

Σ̆ ¼ Σ cosh β −
1

3
ðϕ − 2AÞ sinh β

þ 2

3
ðea cosh β þ ua sinh βÞ∇aβ

Ω̆ ¼ −4ðΩ cosh β þ ξ sinh βÞ
ξ̆ ¼ −4ðξ cosh β þ Ω sinh βÞ
Ĕ ¼ E

H̆ ¼ H; ð92Þ

TABLE III. Junction conditions for matching two spacetimes along outgoing and ingoing null hypersurface for LRS spacetimes. In the
case of multiple signs, the upper sign corresponds to outgoing hypersurfaces, and the lower sign corresponds to ingoing hypersurfaces.
The entry “ind.” indicates that the quantity is an independent parameter.

LRS-II

μ̄ ∓ ffiffi
2

p
2
½ϕ��

p̄ �
ffiffi
2

p
6
½ϕ�� �

ffiffi
2

p
3
½A�� −

ffiffi
2

p
3
½θ��

Π̄ ∓ 2
ffiffi
2

p
3
½ϕ�� ∓ ffiffi

2
p
3
½A�� þ

ffiffi
2

p
3
½θ��

Q̄
ffiffi
2

p
2
½ϕ��

½ϕ�� ind.
½A�� ind.
½θ�� ind.
½Σ�� 2

3
½θ�� ∓ ½ϕ��

½E�� 1
3
½μ�� − 1

2
½Π�� þ 1

2
hϕi½ϕ�� � ½ϕ��ð12 hΣi − 1

3
hθiÞ

½H�� 0
½μ�� ind.
½p�� ½μ�� − ½Π�� þ ½ϕ��ð3hϕi þ 4hAiÞ ∓ 2½ϕ��ð32 hΣi þ hθiÞ þ ð½θ�� ∓ ½A��ÞðhΣi − 2

3
hθi ∓ hϕiÞ þ ˙̄μ − ð ˆ̄pþ ˆ̄ΠÞ ∓ ˙̄Q� ˆ̄Q

½Π�� ind.
½Q�� ∓ ½μ�� ∓ ½ϕ��ðhϕi þ 2hAiÞ þ 2½ϕ��ðhΣi þ 1

3
hθiÞ þ ð½A�� ∓ ½θ��ÞðhΣi − 2

3
hθiÞ − ˆ̄Q ∓ ˙̄μ
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whereas the thermodynamical variables transform as

μ̆ ¼ μþ ðμþ pþ ΠÞsinh2β −Q sinhð2βÞ

p̆ ¼ pþ 1

3
ðμþ pþ ΠÞsinh2β − 1

3
Q sinhð2βÞ

Q̆ ¼ Q coshð2βÞ − ðμþ pþ ΠÞ sinh β cosh β

Π̆ ¼ Πþ 2

3
ðμþ pþ ΠÞsinh2β − 2

3
Q sinhð2βÞ: ð93Þ

At this point, one can use the junction conditions listed in
Tables I–III, in which the transformed quantities are used
instead of the conventional ones. For later convenience, we
introduce the “tilted jump” fXg� of a given scalar X as

fXg� ¼ X̆þ
H − X−

H; ð94Þ

which is used to characterize the modified type II junction
conditions. For simplicity’s sake, we refer to these con-
ditions as “tilted type II junction conditions.” We provide
an example of the application of these conditions in the
following sections.
Some considerations on the general form of the trans-

formations are in order. First, we should notice that a fluid
that is perfect in its rest frame is not necessarily perfect for
non-comoving observers. This is, indeed, a well-known
result, and we refer the reader to the relevant literature on
the matter [63]. Second, the boost leaves the scalars
associated with the Weyl tensor unchanged; therefore,
the conclusions on the “absorbing” thin shells mentioned
in the previous section also remain valid in this case. Third,
the transformation of the vorticity and the twist shows that
LRS-I or LRS-III spacetimes can be matched to other
spacetimes only if the congruence of the observer in the
exterior spacetime has vorticity or twist. In other words, no
LRS-II spacetime can be joined with LRS-I or LRS-III
geometries.

VI. EXAMPLES

In this section, we apply the junction conditions we
derived in the previous sections to some physically relevant
cases. As mentioned before, the covariant junction con-
ditions amount to the search of two congruences, one in the
interior and one in the exterior spacetimes, which can be
made to match at the boundary. The procedure we adopt is
the following. First, we write the line elements on the
interior and exterior spacetimes in the coordinate system of
choice and select the type of boundary and its normal
vector. Then, we select a working coordinate system, which
can be one of the coordinates chosen for the two spacetimes
or a different one altogether. Next, using the normal vector,
we fix the congruences ua and ea in the first spacetime. The
first type I junction condition in Eq. (43) can then be used
to determine the corresponding normal vector in the other
spacetime and, therefore, the corresponding vectors ua and

ea. Then, the second type I junction condition in Eq. (44)
determines the relation between the two coordinate systems
at the boundary. At this point, one can calculate the 1þ
1þ 2 quantities necessary to write the nontrivial type II
junction conditions from Eqs. (64)–(71) directly or using
the formulas in Appendix A. Depending on the relation
between the comoving LRS observer congruence in the
second spacetime and the congruence determined by the
normal of the first spacetime, one can choose to use tilted
type II junction conditions. Applying type I and II junction
conditions entirely determines the geodesic congruence in
the second spacetime in the working coordinates.

A. The Martinez thin shell

1. Spherical coordinates

As a first example, let us look into the Martinez thin shell
in spherical coordinates [64,65]. This is a solution in general
relativity of a thin shell separating an interior Minkowski
spacetime from an exterior Schwarzschild spacetime. Both
solutions are vacuum solutions, i.e., Tþ

ab ¼ T−
ab ¼ 0, and

therefore, ½μ�� ¼ 0, ½p�� ¼ 0, ½Π�� ¼ 0. The line elements
describing the interior and exterior spacetimes of the
Martinez shell are of the forms

ds2− ¼ −dt2 þ dr2 þ r2dΩ2; ð95Þ

ds2þ ¼−
�
1−

M
4πr̃

�
dt̃2þ

�
1−

M
4πr̃

�
−1
dr̃2þ r2dΩ̃2; ð96Þ

where

dΩ2 ¼ dθ2 þ sin2θdϕ2

dΩ̃2 ¼ dθ̃2 þ sin2θdϕ̃2 ð97Þ

are the two-sphere line elements. We choose the coordinates
of the interior Minkowski spacetime as a working coor-
dinate system. Consider a spacelike boundary characterized
by the equation r̃ ¼ const ¼ r̃H. Then, the (spacelike)
normal vector in the interior spacetime can be chosen as

n−a dx̃a ¼ dr̃; ð98Þ

which is spacelike. Then, selecting ea parallel to na, one can
write

e−a dx̃a ¼ n−a dx̃a ¼ dr̃; ð99Þ

since by definition e−a u−a gab ¼ 0, and assuming
u−a u−a gab ¼ −1, we have

u−a dx̃a ¼ −dt̃; ð100Þ

so that the congruence in the interior spacetime represents
a comoving LRS observer. The first type I junction
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condition in Eq. (43) implies that7

eþa dxa ¼
∂r̃
∂r

e−1 dr ¼
�
1 −

M
4πr

�
−1=2

dr; ð101Þ

and, following the same procedure to obtain u−a , we arrive
at

uþa dxa ¼
∂t̃
∂t
u−0 dt ¼ −

�
1 −

M
4πr

�
1=2

dt: ð102Þ

The congruence in the exterior spacetime represents a
comoving LRS observer, so tilted junction conditions are
unnecessary. The tensor qab in H for the two spacetimes
can be written in terms of line elements as

ds2H;− ¼ q−abdx
adxb ¼ −dt2 þ r2HdΩ2; ð103Þ

ds2H;þ ¼ qþabdx̃
adx̃b

¼ −
�
1 −

M
4πr̃H

�
dt̃2 þ r̃2HdΩ̃2

¼ −dt2 þ r2HdΩ2; ð104Þ

where in the last step, we have written ds2H;þ in the
working coordinate system assuming dΩ̃2

H ¼ dΩ2
H; i.e.,

we assume that the angular coordinates coincide on H.
The second type I junction condition, Eq. (44), implies

r̃H ¼ rH: ð105Þ

As the congruences associated with uþa , eþa , u−a and e−a are
all rotation free Ω ¼ 0 ¼ ξ and also have θ ¼ 0 and
Σ ¼ 0, the only nontrivial conditions are

μ̄ ¼ −½ϕ��;

p̄ ¼ 1

3
½ϕ�� þ 2

3
½A��;

Π̄ ¼ −
1

3
½ϕ�� −

2

3
½A��;

½E�� ¼ 1

2
hϕi½ϕ��;

½p�� ¼ ½ϕ��
�
hAi þ 1

2
hϕi

�
þ hϕi½A��: ð106Þ

At r ¼ rH, one obtains

½ϕ�� ¼ −
2

rH

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M
4πrH

s 1
A; ð107Þ

½A�� ¼ M
r2H

�
1 −

M
4πrH

�
−1
2

: ð108Þ

The first three conditions in Eq. (106) then show the
presence of a thin shell at rH characterized by a stress-
energy tensor Sab in Eq. (53) with

μ̄ ¼ 2

rH

0
@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M
4πrH

s 1
A; ð109Þ

p̄e ¼
1

rH

��
1 −

M
rH

��
1 −

M
4πrH

�
−1
2

− 1

�
; ð110Þ

p̄N ¼ 0; ð111Þ

where pe is the radial pressure, and pN is the transverse
pressure.
Of the last two conditions in Eq. (106), the one for ½p�� is

automatically satisfied by Eq. (107), and the one for ½E��
can be verified immediately by direct calculation. In fact,

½E�� ¼ −
M

4πr3H
; ð112Þ

and the hϕi appearing on the lhs of the second last of
Eq. (106), can be written, in H, as

hϕi ¼ −
1

rH

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M
4πrH

s 1
A; ð113Þ

therefore,

hϕi½ϕ�� ¼ M
2πr3H

: ð114Þ

This result is also obtained if one considers that for static,
spherically symmetric and vacuum spacetimes, like
Eq. (103) and Eq. (104), Eq. (9) implies E ¼ −Aϕ.

B. The Schwarzschild fluid star

Let us now consider the case of the Schwarzschild fluid
star. This solution of Einstein’s field equations consists of an
interior solution with a constant density perfect fluid [11]
matched to an exterior vacuum Schwarzschild solution.
The line elements for the interior and exterior spacetimes

are given, respectively, in the usual spherical coordinates by

7Notice that we have assumed here that the spatial coordinates
of the exterior and exterior spacetime do not mix. The form of the
two metrics suggests this assumption. One can redo the calcu-
lations considering a more general relation between the coor-
dinates. The second type I junction condition then provides
prescriptions on the coordinate dependence necessary to perform
the junction. We show an example of this procedure in the case of
the Oppenheimer-Snyder collapse.
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ds2− ¼ −
1

4

0
@3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M
4πR

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Mr̃2

4πR3

s 1
A2

dt̃2

þ
�
1 −

Mr̃2

4πR3

�−1
dr̃2 þ r̃2dΩ̃2; ð115Þ

ds2þ ¼−
�
1−

M
4πr

�
dt2þ

�
1−

M
4πr

�
−1
dr2þr2dΩ2; ð116Þ

where M is the total mass of the star, and R is the radius of
the star.
The interior solution is nonvacuum, while the stress-

energy tensor Tab vanishes for the exterior solution. The
interior source is described by an isotropic perfect fluid, i.e.,

ðT−Þba ¼ diagð−μ−0 ; p−; p−; p−Þ; ð117Þ

where μ0 is the constant density of the fluid, and p− ¼
p−ðrÞ is the isotropic pressure

p−ðrÞ ¼ μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Mr2

4πR3

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − M

4πr

q
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − M

4πr

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Mr2

4πR3

q ; ð118Þ

which corresponds to the well-known solution of the TOV
equations. Since the fluid considered is isotropic, this result
implies that Π− ¼ 0 and p−

e ¼ p−
N ¼ p−.

We choose the coordinate system of the interior solution
as theworking coordinate system. If we consider a spacelike
boundary characterized by the equation r̃ ¼ r̃H ¼ const, the
(spacelike) normal vector in the interior spacetime can be
chosen as

n−a dx̃a ¼
�
1 −

Mr̃2

4πR3

�−1=2
dr̃; ð119Þ

which is spacelike. Choosing e−a parallel to n−a , we have

e−a dx̃a ¼ n−a dx̃a ¼
�
1 −

Mr̃2

4πR3

�−1=2
dr̃; ð120Þ

and therefore, u−a is

u−a dx̃a ¼ −
1

2

�����3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M
4πR

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Mr̃2

4πR3

s �����dt̃; ð121Þ

so that the congruence of the interior spacetime represents a
comoving LRS observer. Equation (43) implies that

eþa dxa ¼
∂r̃
∂r

e−1 dr ¼
�
1 −

M
4πr

�
−1=2

dr; ð122Þ

and choosing as usual uþa normalized and orthogonal to eþa ,
we have

uþa dx̃a ¼
∂t̃
∂t
u−1 dt ¼ −

�
1 −

M
4πr

�
1=2

dt; ð123Þ

and also the congruence of the exterior spacetime represents
a comoving LRS observer. The tensor qab in H for the two
spacetimes can be written in terms of line elements as

ds2H;− ¼ −
1

4

0
@3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M
4πR

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Mr̃2H
4πR3

s 1
A2

dt̃2 þ r̃2HdΩ̃2;

ð124Þ

ds2H;þ ¼ −
�
1 −

M
4πrH

�
dt2 þ r2HdΩ2

¼ −
1

4

0
@3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M
4πR

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Mr̃2H
4πR3

s 1
A2

dt̃2

þ r2HdΩ2; ð125Þ

which, once written in the working coordinates as in the
previous example, gives rH ¼ r̃H if dΩ̃2

H ¼ dΩ2
H.

We are now ready to look at the type II junction
conditions. As the eþa and uþa are associated with a
comoving LRS observer, tilted junction conditions are
unnecessary. In addition, since the congruences uþa , eþa ,
u−a , and e−a are rotation free and have zero expansion and
shear, one obtains the following nontrivial type II junction
conditions

μ̄ ¼ −½ϕ��;

p̄ ¼ 1

3
½ϕ�� þ 2

3
½A��;

Π̄ ¼ −
1

3
½ϕ�� −

2

3
½A��;

½E�� ¼ 1

3
½μ�� þ 1

2
hϕi½ϕ��;

½p�� ¼ ½ϕ��
�
hAi þ 1

2
hϕi

�
þ hϕi½A��: ð126Þ

Hence, using Eqs. (115) and (116) at some radius rH ≤ R,
one finds for ½ϕ�� and ½A�� the following results:

½ϕ�� ¼ 2

rH

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M
4πrH

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Mr̃2H
4πR3

s 1
A; ð127Þ
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½A�� ¼ M

4πr2H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − M

4πrH

q
þ Mr̃H

4πR3
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2Mr̃2H
R3

q
− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r̃H

q 	 : ð128Þ

From the equations above, it is clear that if the matching is
performed at a radius rH ¼ R, one obtains ½ϕ�� ¼
½A�� ¼ 0, which in turn implies by Eq. (126) that
μ̄ ¼ p̄ ¼ Π̄ ¼ 0; i.e., the matching is smooth. However,
we note that this is only a particular case of a much
broader class of possible outcomes. Indeed, in general,
rH ≠ R, and the matching features a thin shell.
One can also verify that the last equation of Eq. (126) is

always identically satisfied if ½p�� ¼ −p−ðrHÞ. In particu-
lar, when the matching is performed at rH ¼ R, one has
pðrHÞ ¼ 0, and thus, ½p�� ¼ 0. Thus, one concludes that
the case for a smooth matching corresponds to a situation
where the pressure is continuous across the hypersurfaceH.
Finally, consider the junction condition for ½E��, i.e., the

fourth of Eq. (126). Since

½μ�� ¼ −μ0

½E�� ¼ M
4πR3

;

hϕi½ϕ�� ¼ M
2πr3H

; ð129Þ

this equation at a given radius rH reduces to

M
4πR3

−
M

4πr3H
−
μ0
3
¼ 0; ð130Þ

which in general is not satisfied, coherently with the
presence of a shell. In the particular case rH ¼ R, for
which the matching is smooth, this equation is identically
satisfied.8

C. The Oppenheimer-Snyder collapse

Finally, let us now turn to the analysis of a nonstatic case:
the Oppenheimer-Snyder collapse [12]. We work on this
problem by making two different choices of the exterior
metric to illustrate an inductive application of junction
conditions and highlight the role of the observer.

1. Dynamical exterior metric

In this case, which matches the original approach to the
problem in [12], the interior solution is represented by a
collapsing closed Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime with line element

ds2− ¼ −dη2 þ aðηÞ2ðdχ2 þ sin2χdΩ̃2Þ: ð131Þ

For the exterior region, we consider a metric represented by
a Lemaître-Tolman (LT) line element

ds2þ ¼ −dt2 þ eω̄ðt;rÞdr2 þ eωðt;rÞdΩ2: ð132Þ

We also assume that the interior spacetime contains a
pressureless fluid, i.e., p− ¼ Π− ¼ 0 with no fluxes, i.e.,
Q− ¼ 0 (we are then considering a comoving observer),
and the exterior spacetime is empty of matter.
We consider as boundary a surface of comoving radius

χ ¼ χH whose normal is given by

nadx̃a ¼ adχ; ð133Þ

which is spacelike. Choosing ea parallel to na, we have

e−a dx̃a ¼ nadx̃a ¼ adχ; ð134Þ

and with the usual assumptions on u−a , we can set

u−a dx̃a ¼ −dη; ð135Þ

and the congruence of the interior spacetime represents a
comoving LRS observer. Equation (43) implies that

eþa dxa ¼
∂χ

∂r
e−1 ¼ e

1
2
ωðt;rÞdr: ð136Þ

For uþa , we have

uþa dxa ¼
∂η

∂t
u−0 ¼ −dt; ð137Þ

so that the observer in the exterior spacetime is a comoving
LRS observer.
The tensor qab in H as seen from the two spacetime

regions can be described by the following line elements as

ds2H;− ¼ −dη2 þ aðηÞ2sin2χHdΩ̃2; ð138Þ

8While this result might not be considered problematic in GR,
this feature indicates that there might be some subtleties in
junction conditions that have not been considered before,
particularly in alternative theories of gravity connected with
the junction of the Weyl tensor. For example, the solutions found
in Ref. [13], where the matching was performed at a radius
rH ≠ R, can only exist in theories of gravity for which the field
equations do not depend explicitly on the Weyl tensor, one such
example being GR. In more complicated theories of gravity on
which the Weyl tensor plays a role in the field equations, and
consequently featuring junction conditions constraining the
continuity of E, these solutions would not satisfy this junction
condition and would not be acceptable. Another example can be
found in [52].
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ds2H;þ ¼ −dt2 þ eω̄ðt;rHÞdΩ2 ¼ −dη2 þ eωðη;rHÞdΩ2; ð139Þ

where rH ¼ rðχHÞ. The type I junction condition, Eq. (44),
implies t ¼ η and

aðηÞ sin χH ¼ e
1
2
ωðη;rHÞ ð140Þ

if dΩ̃2
H ¼ dΩ2

H, i.e., if we assume the angular coordinates
coincide on H.
As the congruences uþa , eþa , u−a , and e−a are rotation free

and have zero expansion and shear, the remaining junction
conditions are given by

μ̄ ¼ −½ϕ��;

p̄ ¼ 1

3
½ϕ�� þ 2

3
½A��;

Π̄ ¼ −
1

3
½ϕ�� −

2

3
½A��;

½Σ�� ¼ 2

3
½θ��;

½E�� ¼ 1

3
½μ�� þ 1

2
hϕi½ϕ��;

½p�� þ ½Π�� ¼ ½ϕ��
�
hAi þ 1

2
hϕi

�
þ hϕi½A��: ð141Þ

Let us now assume that the matching is smooth. This
implies that the matter quantities at the boundary, i.e., μ̄, p̄,
and Π̄, vanish. From the first of Eq. (141), this forces the
½ϕ�� ¼ 0. Then, from the second and third of the same
equation, this implies further that ½A�� ¼ 0.
Using Eq. (140), one can show that the condition on the

acceleration is satisfied. Next, we consider the condition on
the shear and the expansion

½Σ�� ¼ 2

3
½θ�� ⇒

1

2
ω;ηj

H
¼ a;η

a
; ð142Þ

which is satisfied if by Eq. (140). The fifth and the sixth of
Eq. (141), which concerns the electric part of the Weyl
tensor, is also satisfied once the (140), and the gravitational
field equations are employed.
The condition of the potential ϕ leads instead to

½ϕ�� ¼ 0 ⇒ e−
1
2
ω̄ω;rjH ¼ 2 cot χH

a
: ð143Þ

Using Eq. (140), Eq. (143) leads to

4 cos χðrÞeω̄ ¼ eωðω;rÞ2; ð144Þ

which gives the relation between ω̄ and ω which is required
for the junction. The above equation admits as a particular
solution the Oppenheimer Snyder spacetime [12]

eω̄ðt;rÞ ¼ r

ðr3=2 þ 3
ffiffiffi
rs

p
2

ηÞ2=3
;

eωðt;rÞ ¼
�
r3=2 þ 3

ffiffiffiffi
rs

p
2

η

�
4=3

; ð145Þ

if one chooses cos χðrÞ ¼ 1. Here, rs ¼ 1
3
μ0sin3χH, and μ0

is the matter energy density value in the interior spacetime
at a reference instant.

2. Static exterior metric

In the previous section, we chose a dynamic exterior
metric. This was suggested by the original work by
Oppenheimer and Snyder. However, in literature, it is often
found that the exterior metric of the Oppenheimer-Snyder
collapse is the Schwarzschild metric. We show that the
results derived above imply that the junction, in this case, is
impossible for a comoving observer. However, as we have
seen, we can consider a non-comoving observer within the
Schwarzschild spacetime by using the tilted type II junction
conditions.
Let us start as usual by defining the interior and exterior

spacetimes metric. We have

ds2− ¼ −dη2 þ aðηÞ2ðdχ2 þ sin2χdΩ̃2Þ; ð146Þ

and

ds2þ ¼ −FðRÞdT2 þ dR2

FðRÞ þ R2dΩ2;

FðRÞ ¼ 1 −
M
4πR

: ð147Þ

Again, we assume the interior spacetime contains a pres-
sureless fluid (p− ¼ Π− ¼ 0). For the exterior spacetime,
we assume no matter is present. As before, we consider as
boundary a surface of comoving radius χ ¼ χH whose
normal is given by

nadx̃a ¼ adχ; ð148Þ

which is spacelike, and we choose ea parallel to na

e−a dx̃a ¼ nadx̃a ¼ adχ; ð149Þ

so that

u−a dx̃a ¼ −dη: ð150Þ

This choice selects a comoving LRS observer in interior
spacetime. This time, Eq. (43) implies that
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eþ0
dT
dη

þ eþ1
dR
dη

¼ e−0 ¼ 0;

eþ0
dT
dχ

þ eþ1
dR
dχ

¼ e−1 ¼ a; ð151Þ

so that

eþ0 ¼ aR;η

R;ηT;χ − T;ηR;χ
;

eþ1 ¼ −
aT;η

R;ηT;χ − T;ηR;χ
: ð152Þ

For later convenience, we can set

R;ηT;χ − T;ηR;χ ¼ −a; ð153Þ

so that we can write

eþa dxaþ ¼ −R;ηdT þ T;ηdR; ð154Þ

and

uþa dxaþ ¼ −FT;ηdT þ R;η

F
dR; ð155Þ

which does not represent an LRS comoving observer. The
tensor qab inH, as seen from the two spacetime regions, can
be written in terms of the following line elements as

ds2H;− ¼ −dη2 þ aðηÞ2sin2χHdΩ̃2; ð156Þ

ds2H;þ ¼ −F2T2
;ηdT2 þ 2R;ηT;ηdRdT −

R2
;η

F2
dR2 þ R2dΩ2

¼ −
�
FT2

;η −
R2
;η

F

�
2

dη2 − 2

�
FT;ηT;χ −

R;ηR;χ

F

�
dηdχ

þ
�
FT;ηT;χ −

R;ηR;χ

F

�
2

dχ2 þ R2dΩ2: ð157Þ

Using Eq. (153) for the coefficient in front of dηdχ and dχ2,
we obtain

FT;ηT;χ −
R;ηR;χ

F
¼ 1

R;η

��
FT2

;η−
R2
;η

F

�
R;χ −aFT;η

�
: ð158Þ

This quantity must be zero, as the induced metric must be
orthogonal to na. In this way, on H, the junction condition
in Eq. (44) implies

R2
;η

F
− FT2

;η ¼ −1;

R ¼ a sin χH;

R;χ ¼ aFT;η; ð159Þ

so that the spacelike vector eþa is normalized (at least onH),
and we must have

FT;η ¼ cos χH ¼ κ0: ð160Þ

Finally, using the above relations, Eq. (153) becomes

T;χ ¼ a
R;η

F
: ð161Þ

Considering the properties of the congruences associated
with uþa , eþa , u−a , and e−a are vorticity and twist free, the type
II junction conditions to be satisfied are

μ̄ ¼ −½ϕ��;

p̄ ¼ 1

3
½ϕ�� þ 2

3
½A��

Π̄ ¼ −
1

3
½ϕ�� −

2

3
½A��;

½Σ�� ¼ 2

3
½θ��;

½E�� ¼ 1

3
½μ�� þ 1

2
hϕi½ϕ��;

0 ¼ ½ϕ��
�
hAi þ 1

2
hϕi

�
þ hϕi½A��: ð162Þ

However, as the congruence we have obtained with the type
I junction conditions does not correspond to a comoving
LRS observer, we have to use tilted type II junction
conditions. Indeed, even if we would not realize that the
tilted conditions were necessary, one can check that the
condition on the shear and expansion in Eq. (162) can never
be satisfied. Consequently, the worldline of a comoving
observer of the interior spacetime cannot be smoothly
matched to the static or free-falling observer in the exterior
one.
We check then if the junction is possible for a tilted

observer in the exterior spacetime. In other words, we look
for a parameter β such that the following conditions are
satisfied:
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μ̄¼−fϕg�;

p̄¼ 1

3
fϕg� þ 2

3
fAg�;

Π̄¼−
1

3
fϕg� −

2

3
fAg�;

fΣg� ¼ 2

3
fθg�;

fEg� ¼ 1

3
fμg� þ 1

2
hϕifϕg�;

fpg� þfΠg� ¼ fϕg�
�
hAiþ 1

2
hϕi

�
þhϕifAg�: ð163Þ

As before, a smooth matching implies immediately
fϕg� ¼ 0 and fAg� ¼ 0. From the first condition,
we have

fϕg� ¼ 0 ⇒

ffiffiffiffi
F

p

R
cosh β ¼ cot χH

a
; ð164Þ

which using the second and the third of Eq. (159) leads to

cosh β ¼ κ0ffiffiffiffi
F

p ¼
ffiffiffiffi
F

p
T;η: ð165Þ

On the other hand, the conditions on the expansion and
shear lead to

fΣg� ¼ 2

3
fθg� ⇒

ffiffiffiffi
F

p

R
sinh β ¼ a;η

a
; ð166Þ

which, combined with Eq. (159), give

sinh β ¼ R;ηffiffiffiffi
F

p : ð167Þ

Notice that, with the results Eq. (167) and Eq. (165), the
first of Eq. (159) corresponds to the well-known identity

cosh2 β − sinh2 β ¼ 1: ð168Þ

Moreover, we have, for the acceleration,

fAg� ¼ 0⇒
1ffiffiffiffi
F

p ðF;R þ 2β;ηÞ coshβþ 2
ffiffiffiffi
F

p
β;χ sinhβ ¼ 0;

ð169Þ

which can be used to determine the value of β;χ once β;η is
known. From Eq. (165) and Eq. (167), we have

β;η ¼ κ0
F;R

F
; ð170Þ

and therefore,

β;χ ¼
κ0ðF − 2κ0ÞFR

2F2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ20 − F

p : ð171Þ

We now need to check only the last two equations of
Eq. (163). The fifth of Eq. (163) implies that

R;ηη ¼
1

2
FR ¼ F − 1

2R
; ð172Þ

which can be verified considering the derivative of the
normalization constraint given by the first of Eq. (159). By
substituting the second of Eq. (159) in the above equations
and the form of the function F, one has

a;ηη ¼ −
M

8πa2ð1 − κ20Þ3=2
; ð173Þ

which compared with the Raychaudhuri equation for the
internal Friedmann metric

a;ηη ¼ −
μ0
6a3

; ð174Þ

gives

M ¼ 4

3
πμ0ð1 − κ20Þ3=2 ¼

4

3
πμR3: ð175Þ

This last expression shows the mass of the matter of the
interior spacetime as measured by the observer in the
exterior spacetime.
Finally, the sixth of Eq. (163) is satisfied when all the

previous results are employed.
We have, therefore, proven that a class of tilted observers

exists for which the junction is possible. These observers
are characterized by the congruences

ŭa ¼
ffiffiffiffi
F

p
T;ηua þ

R;ηffiffiffiffi
F

p ea;

ĕa ¼
ffiffiffiffi
F

p
T;ηea þ

R;ηffiffiffiffi
F

p ua: ð176Þ

VII. CONCLUSIONS

In this paper, we used the 1þ 1þ 2 covariant formalism
to give a complete map of the junction conditions on
spacelike, timelike, and null boundaries for LRS space-
times for comoving and tilted observers. By performing the
foliation at the base of the covariant formalism in such a
way that ua, ea, or their null linear combination at the
boundary hypersurface coincide with the normal, one is
able to write the junction conditions in terms of the 1þ
1þ 2 potentials associated with the congruences tangent to
ua and ea.
The covariant formalism offers a new perspective on

junction conditions. They can be seen as the process of
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connecting the word lines of observers in the two space-
times much in the same way as the interface conditions in
electromagnetism. Because of the structure of the 1þ 1þ
2 formalism, a special role is played by the motion of these
observers with respect to the comoving LRS observers, i.e.,
the class of observers that are comoving with the matter
sources and choose a space direction aligned in every point
to the local axis of symmetry of the spacetime. From this
point of view, junctions are only valid for two specific
classes of observers in two defined geometries, and,
therefore, phrases like performing the junction between
the FLRW and Schwarzschild spacetimes are incomplete if
no information on the observers we consider is included.
Naturally, in the classical Israel treatment, the choice of the
observer is performed automatically as the coordinates are
chosen. Still, we feel that this way of looking at junction
conditions is not as straightforward as it might lead to the
idea that two spacetimes can (not) be matched in absoluto.
The 1þ 1þ 2 junction conditions have been divided

into two main groups. The first ones, which we have called
type I junction conditions, do not depend on the character-
istics of the two spacetimes to join and ensure the
consistency of the distribution formalism associated with
the junction conditions, as well as the existence of a
connection between the two congruences. When covari-
ance is broken, these conditions determine the relation
between the coordinates that characterize the two space-
times. A second group of junction conditions, which we
have called type II, are instead closely connected with the
features of the spacetimes and constraint, explicitly, the
features of the observers’ congruences and the boundary.
When covariance is broken, these add additional condi-
tions on the parameters of the spacetime to join, if any.
Indeed, some of these prescriptions can be quite general.

For example, a consistent junction of LRS-I and LRS-II
spacetimes is only possible if the scalar vorticity Ω and the
twist scalar ξ are continuous across the boundary for
comoving LRS observers. In other words, we can only
perform homologous junctions of these spacetimes. The
situation changes somewhat when one considers non-
comoving observers, for which it appears clear that a
junction between tilted LRS class I and LRS class III
(but not class II) is possible.
Another general result concerns the jump of the mag-

netic part of the Weyl tensor H. We have found that in a
consistent junction, this quantity must always be zero in
LRS-II spacetimes but not in the other LRS classes.
Therefore, vorticity and twist can play a role in the
interaction of H with a boundary. As H is associated
with gravitational radiation, our result implies that one
could construct spacetimes in which gravitational waves
are present only in one of the components of spacetime.
In other words, gravitational radiation can be “absorbed”
and/or “stored” in the vortical degrees of freedom. This

possibility certainly deserves a more detailed study, which
will be left for future works.
We conclude by considering the relation between our

junction conditions and the classical Israel conditions. In
particular, we can explicitly prove that our formalism
includes such conditions. This can be seen simply using
the formulas in Appendix D 1. For example, in the case of
observers at rest in two static spherically symmetric LRS-II
spacetime with spacelike boundary, the results in Table II
show that the conditions for a smooth junction are
essentially ½ϕ�� ¼ 0 and ½A�� [see also Eq. (126)], which
are consistent with setting, with the same assumptions,

½Kð1Þ
ab �� ¼ 0: ð177Þ

One difference, however, concerns the practical calcula-
tions. As the jumps have to be calculated in the working
coordinate system, performing the explicit calculations
requires less effort when dealing with scalars rather than
higher-order tensors. Even in the case of null boundaries,
for which it is now known that the Israel conditions are not
sufficient to characterize completely the junction condi-
tions [66], the additional invariants required in this case can
be written in terms of 1þ 1þ 2 potentials (see Appendix D
for details). This should not be surprising as these quantities
characterize the complete geometry of a given spacetime.
However, the most important difference between the

covariant junction conditions and the Israel formulation is
in the relevance of the conditions on the Weyl tensors for
junction conditions. As Israel’s conditions do not explicitly
contain the Weyl tensor, these conditions might be over-
looked, but they can become relevant in other settings
(particular geometries or modified theories of gravity).
Indeed, the ease of generalization is another advantage of
using covariant approaches in formulating junction con-
ditions. It is known that the treatment of complicated
spacetimes, like Bianchi IX and extensions of general
relativity, can be significantly simplified by employing this
formalism. We expect the same will happen with the
extensions of junction conditions to these contexts. We
will explore these possibilities in forthcoming works.
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APPENDIX A: LRS SPACETIMES
IN COORDINATES

We now provide some useful expressions to calculate
the 1þ 1þ 2 scalars in terms of coordinates. We have
excluded the electric part of the Weyl tensor here due to its
length. Its expression, however, can be derived from the
definitions.
The most generic metric representing an LRS-I space-

time can be written in a coordinate system xa ¼ ðt; x; y; zÞ
in the form [34,35]

ds2 ¼ −A−2ðt; xÞ½dtþ Eðy; kÞdz�2
þ dx2 þ C2ðxÞ½dy2 þD2ðy; kÞdz2�; ðA1Þ

where Eðy; kÞ ¼ ð2 cos y;−y2;−2 cosh yÞ and Dðy; kÞ ¼
ðsin y; y; sinh yÞ for k ¼ ð1; 0;−1Þ, labeling the closed, flat,
or open geometry of the two-spaces, and C is a generic
function of x. The nonzero 1þ 1þ 2 potentials in the
LRS-I case are then

ϕ ¼ 2
C;x

C
; ðA2Þ

A ¼ −
A;x

A
; ðA3Þ

Ω ¼ −
C2D2

A
E;y; ðA4Þ

H ¼ E;x

AC2D

�
A;x

A
−
C;x

C

�
; ðA5Þ

where commas denote the partial derivative operation.
In the LRS-II case, the most generic metric in the same

coordinate system can be written as [45]

ds2 ¼ −A−2ðt; xÞdt2 þ B2ðt; xÞdx2
þ C2ðt; xÞ½dy2 þD2ðy; kÞdz2�: ðA6Þ

In this case, the nonzero 1þ 1þ 2 potentials are

ϕ ¼ 2
C;x

BC
; ðA7Þ

A ¼ −
A;x

AB
; ðA8Þ

θ ¼ A

�
B;t

B
þ 2

C;t

C

�
; ðA9Þ

Σ ¼ 2

3
A

�
B;t

B
−
C;t

C

�
: ðA10Þ

Finally, in the LRS-III case, one has a generic metric
written in the form [34,35]

ds2 ¼ −A−2ðt; xÞdt2 þ B2ðtÞ½dx − E2ðy; kÞdz�2
þ C2ðtÞ½dy2 þD2ðy; kÞdz�; ðA11Þ

and the nonzero 1þ 1þ 2 potentials are

θ ¼ A

�
B;t

B
þ 2

C;t

C

�
; ðA12Þ

Σ ¼ 2A
3

�
B;t

B
−
C;t

C

�
; ðA13Þ

A ¼ −
A;x

AB
; ðA14Þ

H ¼ AF;y

BCD

�
C;t

C
−
B;t

B

�
: ðA15Þ

APPENDIX B: A PARAMETRIC
FORMALISM FOR THE NORMAL

AND THE INDUCED METRIC

Let us now construct two general vectors va and wa

defined in terms of one parameter ϵ that allows one
to recover the vectors ua and ea for the particular cases
ϵ ¼ �1 and the basis of vectors la and l̄a for the particular
case ϵ ¼ 0. To do so, we define va and wa as

va ¼ αþua þ α0ea; wa ¼ α0ua þ α−ea; ðB1Þ

α� ¼ ϵ2 � α0; α0 ¼
ffiffiffi
2

p

2
ð1 − ϵ2Þ: ðB2Þ

The vectors va and wa defined above satisfy the following
properties for the inner product

vava ¼ −ϵ2; wawa ¼ ϵ2; vawa ¼ ϵ2 − 1: ðB3Þ

Let us then define a set of useful matrices to work with.
Define the vector matrix Va, the product matrix A, and the
projection matrix P as

Va ¼
�
va

wa

�
; ðB4Þ

A ¼
�

−ϵ2 ϵ2 − 1

ϵ2 − 1 ϵ2

�
; ðB5Þ
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P ¼
�
xþ 0

0 −x−

�
; ðB6Þ

where the constants x� are given by

x� ¼ 1

2
ϵð1� ϵÞ: ðB7Þ

Under these definitions, the four-metric gab and the induced
metric qab on the hypersurface take the forms

gab ¼ Nab þ VT
aAVb ðB8Þ

qab ¼ Nab þ VT
aPAVb ≡ Nab þ VT

aBVb; ðB9Þ

where we have defined a matrix B ¼ PA as the product
matrix for the three-dimensional hypersurface.

1. The case ϵ= � 1: timelike and spacelike
hypersurfaces

Let us assume ϵ ¼ �1. In this case, one has α0 ¼ 0,
α� ¼ 1. From Eq. (B1), one verifies that the vectors va and
wa reduce to uHa and eHa , respectively, and that the inner
products in (B3) reduce to

gabuaub ¼ −1; gabeaeb ¼ 1 gabuaeb ¼ 0: ðB10Þ

in H. Furthermore, the product matrix A reduces to

A ¼ diagð−1; 1Þ; ðB11Þ

and thus, the four-metric gab reduces to the form given
in Eq. (1).
For timelike hypersurfaces, i.e., for ϵ ¼ 1, the constants

x� reduce to xþ ¼ 1 and x− ¼ 0. The projection matrix is

P ¼ diagð1; 0Þ; ðB12Þ

and one obtains B ¼ −P. This implies that the normal
vector satisfies na ¼ eHa , and the induced metric qab in the
hypersurface is hab given by Eq. (1) in H:

qab ¼ NH
ab − uHa uHb : ðB13Þ

On the other hand, for spacelike hypersurfaces, i.e., for
ϵ ¼ −1, the constants x� become instead xþ ¼ 0 and
x− ¼ −1. The projection matrix becomes

P ¼ diagð0; 1Þ; ðB14Þ

and also B ¼ P. As a result, the normal vector can be
chosen as na ¼ uHa , and induced metric qab becomes

qab ¼ NH
ab þ eHa eHb : ðB15Þ

2. The case ϵ= 0: null hypersurfaces

Let us now set ϵ ¼ 0. In this case, one obtains
αþ ¼ −α− ¼ α0 ¼

ffiffiffi
2

p
=2. From Eq. (B1), one concludes

that the vectors va and wa become the null vectors la and l̄a,
respectively, and the inner products from Eq. (B3) become
the ones in Eq. (34):

lHa ¼
ffiffiffi
2

p

2
ðuHa þ eHa Þ; l̄Ha ¼

ffiffiffi
2

p

2
ðuHa − eHa Þ: ðB16Þ

Also, in this case, the constants x� vanish, which implies
that the projection matrix P, and consequently the matrix B,
vanish identically. Thus, as anticipated, the induced metric
qab coincides with the two-metric Nab. The matrix A is
given by

A ¼
�

0 −1
−1 0

�
; ðB17Þ

from which one verifies that Eqs. (32) and (35) for gab and
qab, respectively, are recovered. Furthermore, the normal
vector na becomes the null vector l̄a, and all the results are
consistent.

3. Parametric form of the normal vector

The discussion above proves explicitly that we can
always write the normal vector na to the hypersurface in
general as

na ¼ τua þ ςea; ðB18Þ

where

τ ¼ α0 − x−; ς ¼ xþ − α0; ðB19Þ

which is precisely Eq. (36). Notice also that in this case

ε ¼ ς2 − τ2: ðB20Þ

APPENDIX C: DERIVATIVES OF THE DIRAC-δ
DISTRIBUTION

When dealing with derivatives of the 1þ 1þ 2 scalars
that feature terms proportional to the δðlÞ distribution, e.g.,
the scalars E, H, the Gaussian curvature K, and the matter
fields μ, p, Π, and Q, it is necessary to compute the
covariant derivatives of the δ distribution function. These
derivatives give rise to additional contributions nontangent
to the hypersurface H, usually called double gravitational
layers and external fluxes and tensions [17,19]. In this
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section, we briefly review how to compute these
derivatives.
Consider a scalar quantity X that can be written in the

distribution formalism as

X ¼ XþΘðlÞ þ X−Θð−lÞ þ X̄δðlÞ; ðC1Þ

where X̄ denotes the term proportional to the δ distribution.
Taking a covariant derivative of X, one obtains

∇aX ¼ ð∇aXÞþΘðlÞ þ ð∇aXÞ−Θð−lÞ
þ ½X��δðlÞ þ∇aX̄δðlÞ þ X̄∇aδðlÞ: ðC2Þ

To compute the last term on the right-hand side of Eq. (C2),
one needs to consider the full definition of a distribution
function. Let Ya be a tensorial test function of compact
support. We define the application of a distribution function
of the form ∇aðδðlÞÞ to the test function Ya as

h∇aδ; Yai ¼
Z
Ω
∇aδðlÞYadΩ: ðC3Þ

Given that the test function Ya has compact support, one
can perform an integration by parts to obtain

h∇aδ; Yai ¼ −hδ;∇aYai: ðC4Þ

The covariant derivative ∇aYa can then be split into its
tangent and orthogonal projections with respect to the
hypersurface H via

∇aYa ¼ qba∇bYa þ nanb∇bYa: ðC5Þ

The projection orthogonal to H can then be manipulated as
follows:

hδ; nanb∇bYai ¼ −h∇bðnanbδÞ; Yai: ðC6Þ

Thus, defining a distribution Δa ≡∇bðnanbδðlÞÞ, one can
interpret the projection orthogonal to H as the application
of some tensor distribution function ΔaðlÞ on a test
function Ya:

hΔa; Yai ¼ −
Z
H
ϵnanb∇bYadH ðC7Þ

This distribution is commonly referred to as the double
gravitational layer. On the other hand, the projection
tangent to H can be manipulated via the use of the
Gauss’s theorem, from which one obtains

hδ; qba∇bYai ¼ hδ; ϵnaKYai; ðC8Þ

where K is the trace for the extrinsic curvature Kab (see
Sec. D for its definition). Collecting all the results above,

one verifies that the covariant derivative of the δ distribu-
tion features a term proportional to the double gravitational
layer plus an orthogonal term proportional to the trace of
the extrinsic curvature. Summarizing,

∇aδðlÞ ¼ ΔaðlÞ − ϵnahKiδðlÞ: ðC9Þ

We note that the double gravitational layer distribution
ΔaðlÞ corresponds to a singular term nontangent to the
hypersurface H. Thus, upon calculating the junction con-
ditions in this manuscript, in the same way that the terms
proportional to δðlÞ must match on both sides of the 1þ
1þ 2 equations, also the terms proportional to ΔaðlÞ must
match on both sides of these equations, which leads to
additional constraints that simplify the calculations and the
system of junction conditions.
One final remark regarding the notation used in this

section and throughout the manuscript for the distribution
ΔaðlÞ is that in other publications, one may find a
slightly different definition of this distribution, given by
ΔX

a ðlÞ ¼ ∇bðX̄nanbδðlÞÞ, i.e., with a factor X̄ inside. If
one wishes to transform the notation from ΔaðlÞ to ΔX

a ðlÞ,
this can be achieved through the equality

∇aX̄ þ X̄ΔaðlÞ ¼ qba∇bX̄ þ ΔX
a ðlÞ: ðC10Þ

In this work, we opt for the former notation due to its
simpler structure and convenience in the analysis carried
out throughout the manuscript. Still, we note that the two
notations are equivalent.

APPENDIX D: SECOND FUNDAMENTAL FORMS

In this appendix, we show that the junction conditions
obtained in Sec. V are indeed in agreement with the Israel
junction conditions, which are based on the jump of the
extrinsic curvature and the induced metric.

1. Extrinsic curvature in terms of the 1 + 1 + 2 quantities

For every type of hypersurface, i.e., timelike, spacelike,
and null, the extrinsic curvature of the hypersurface is given
by the projection of the covariant derivative of the normal
vector

Kab ¼ qcaqdb∇cnd; ðD1Þ

where in general, the induced metric qab is given by
Eq. (B9), and the normal vector is given by Eq. (36).
Equation (D1) can be written in terms of the parametric
formalism (see Appendix B) as

Kab ¼ xþK
ð1Þ
ab − x−K

ð2Þ
ab þ α0K

ð3Þ
ab ; ðD2Þ

where we have defined
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Kð1Þ
ab ¼ −Auaub þ

1

2
ϕNab þ ξϵab ðD3Þ

Kð2Þ
ab ¼ 1

3
θðeaeb þ NabÞ þ Σ

�
eaeb −

1

2
Nab

�
ðD4Þ

Kð3Þ
ab ¼ Nab

�
1

3
θ −

1

2
Σþ 1

2
ϕ

�
þ ϵabðξþΩÞ: ðD5Þ

We can express Kab also in terms of τ and ς as

Kab ¼ ςKð1Þ
ab − τKð2Þ

ab − α0ð∓ Kð1Þ
ab −Kð2Þ

ab −Kð3Þ
ab Þ; ðD6Þ

where the choice of the sign in forn to of Kð1Þ
ab depends on

the null vector chosen and

α0 ¼
ffiffiffi
2

p

2
½1 − ðς2 − τ2Þ�: ðD7Þ

For timelike and spacelike hypersurfaces, one has τ ¼ 1
and ς ¼ 0 or τ ¼ 0 and ς ¼ 1, which in both cases implies
that α0 ¼ 0. Then, for timelike hypersurfaces, one has
extrinsic curvature becomes

Kab ¼ Kð1Þ
ab ; ðD8Þ

and for spacelike hypersurfaces, the extrinsic curvature is

Kab ¼ Kð2Þ
ab : ðD9Þ

Finally, for null hypersurfaces, τ ¼ �ς ¼
ffiffi
2

p
2
, α0 ¼

ffiffi
2

p
2
, and

the extrinsic curvature reads

Kab ¼
ffiffiffi
2

p

2
Kð3Þ

ab : ðD10Þ

Let us now verify that the smoothness of the matching, as
defined by the 1þ 1þ 2 potentials, implies the continuity
of the extrinsic curvature. For timelike hypersurfaces, one
verifies that the matching is smooth whenever

½θ�� ¼ ½Σ�� ¼ 0; ðD11Þ

which corresponds to the continuity of the extrinsic
curvature as seen from Eq. (D4) in the particular case
for LRS spacetimes. On the other hand, for spacelike
hypersurfaces, the matching is smooth whenever

½ϕ�� ¼ ½A�� ¼ 0; ðD12Þ

which corresponds to the continuity of the extrinsic
curvature from Eq. (D3) in the particular case for LRS

spacetimes. Finally, for null hypersurfaces, in LRS-II
spacetimes, the matching is smooth if

½ϕ�� ¼ 0; ðD13Þ

which implies

½Σ�� ¼ 2

3
½ϕ��: ðD14Þ

Both these conditions correspond to the continuity of the
extrinsic curvature from Eq. (D5). However, an additional
constraint is necessary for smoothness, namely

½θ�� ¼ �½A��: ðD15Þ

Nevertheless, since A is unconstrained in this case, the
previous expression simply indicates that the value of ½A��
determines merely the value of ½θ��.

2. Other fundamental forms for null geodesics

In the case of null geodesics, it is necessary to analyze
other second fundamental forms apart from the extrinsic
curvature (see, e.g., [66]). In particular, the following
fundamental forms have been used in the literature:

χab ¼ qcaqdb∇cld; ðD16Þ

ψab ¼ qcaqdb∇cl̄d; ðD17Þ

ηa ¼ qcal̄d∇cld ¼ −qcald∇cl̄d: ðD18Þ

In terms of the 1þ 1þ 2 potentials and for null hyper-
surfaces, the fundamental form ηa vanishes identically,
whereas the fundamental forms χab and ψab take the forms

χab ¼
1ffiffiffi
2

p
�
Nab

�
1

3
θ −

1

2
Σþ 1

2
ϕ

�
þ ϵabðΩþ ξÞ

�
; ðD19Þ

ψab ¼
1ffiffiffi
2

p
�
Nab

�
1

3
θ −

1

2
Σ −

1

2
ϕ

�
þ ϵabðΩ − ξÞ

�
: ðD20Þ

From the junction conditions ½ξ�� ¼ ½Ω�� ¼ 0, one verifies
that the terms proportional to ϵab in both Eqs. (D19) and
(D20) above are continuous. Furthermore, as mentioned
before, for null hypersurfaces, the smoothness of the
matching implies that ½ϕ��, which consequently implies
that either ½θ�� ¼ ½Σ�� ¼ 0 for LRS-I and LRS-III space-
times or ½Σ�� ¼ 2

3
½θ�� for LRS-II spacetimes. Both these

conditions imply the continuity of the terms proportional to
Nab in Eqs. (D19) and (D20), thus implying that these
fundamental forms are continuous in the particular case of
smooth matching, as anticipated.
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