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Gravitational wave observations of binary black hole mergers probe their astrophysical origins via the
binary spin, namely the spin magnitudes and directions of each component black hole, together described
by six degrees of freedom. However, the emitted signals primarily depend on two effective spin parameters
that condense the spin degrees of freedom to those parallel and those perpendicular to the orbital plane.
Given this reduction in dimensionality between the physically relevant problem and what is typically
measurable, we revisit the question of whether information about the component spin magnitudes and
directions can successfully be recovered via gravitational-wave observations, or if we simply extrapolate
information about the distributions of effective spin parameters. To this end, we simulate three
astrophysical populations with the same underlying effective-spin distribution but different spin
magnitude and tilt distributions, on which we conduct full individual-event and population-level parameter
estimation. We find that parametrized population models can indeed qualitatively distinguish between
populations with different spin magnitude and tilt distributions at current sensitivity. However, it remains
challenging to either accurately recover the true distribution or to diagnose biases due to model
misspecification. We attribute the former to practical challenges of dealing with high-dimensional
posterior distributions, and the latter to the fact that each individual event carries very little information
about the full six spin degrees of freedom.
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I. INTRODUCTION

The spins of black holes (BHs) in binaries (BBHs) are a
unique probe of physics on multiple scales, from funda-
mental BH properties to stellar interiors and the astro-
physical environments in which compact binaries form.
Each binary possesses six spin degrees of freedom: the spin
magnitudes, polar angles (tilts), and azimuthal angles of
each binary component [1]. BH spins are encoded in the
gravitational waves (GWs) the binary emits and can, at least
in principle, be constrained from observation [2,3] by the
LIGO [4] and Virgo [5] detectors. The magnitudes and
directions of the spins at merger are determined by the spin
each BH has upon formation as well as the binary’s
evolutionary history, e.g. [6–8]. Spin measurements are
therefore a promising way to determine whether BBHs
form dynamically or in the field, e.g. [9–14], and answer

questions such as the role of angular momentum transfer in
stars, tidal interactions, and mass transfer, e.g. [15–19].
Despite their astrophysical importance, spins remain

poorly constrained in GW data. Their imprint on the signal
is typically subdominant to other intrinsic effects such as
the BH masses, e.g. [20–24]. Furthermore, not all six spin
degrees of freedom affect the signal equally. Though
waveform models formally depend on the full spin vectors
[25–28], analytical post-Newtonian calculations indicate
that the dominant spin effect is captured by two effective
parameters: the effective aligned spin χeff that includes the
spin components parallel to the Newtonian orbital angular
momentum [29] and the effective precessing parameter χp
that includes the perpendicular components [30]. The
former primarily affects the length of the signal while
the latter describes spin precession, the change in binary
orientation due to spin-orbit and spin-spin interactions [31].
Unsurprisingly, then, constraints on the astrophysical dis-
tributions of χeff and χp can be typically obtained with
fewer observations and are less prone to population model
systematics than the spin components [32–34].
Although less well measurable, it is instead the under-

lying spin components that are of prime astrophysical
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interest. GW signals contain some information about
component spins. However, unlike χeff and χp that appear
prominently in the GW phase and amplitude and whose
measurability can be predicted with analytic arguments
[35,36], individual spin components have a significantly
subdominant effect on the waveform. The resulting con-
straints on the astrophysical distribution of spin compo-
nents are correspondingly weaker and in many cases
subject to uncertainties about the role of population models
[34,37]. Indeed, even though it is widely accepted that
BBHs have a range of χeff values that are not symmetric
about zero [2,3,38] and that not all BBHs have a vanishing
χp [2,3], the exact shape of the inferred distribution for spin
magnitudes and directions depends on the parametrization
of the corresponding population model. For example,
different parametrizations for the angle between the spins
and the Newtonian orbital angular momentum lead to
varied conclusions about where the distribution peaks
and the degree of spin-orbit misalignment [3,34,37,39–41].
Central to this discussion are the questions of how much

information GW signals actually contain about the BH spin
components versus χeff alone, how feasible it practically is
to reliably extract this information, and the extent to which
conclusions are driven by informative data or simply by
overly restrictive models. In this paper, we approach these
issues by posing three questions, from which we draw
conclusions:
(1) Do GWs carry information about spin components,

or are we just extrapolating the effective aligned
spin χeff? (Sec. IV) Yes, we can distinguish be-
tween populations with low, moderate, and high
spins even when they have identical effective spin
distributions.

(2) Can component spin distributions be accurately
measured? (Sec. V) Even though we can qualita-
tively tell apart BH populations with different spin
distributions, characterizing them accurately is
practically challenging.

(3) Can we tell when measurements of component
spin distributions are biased? (Sec. VI) Common
tests based on posterior predictive checks cannot
identify modeling biases in component spin distri-
butions due to the fact that individual-event poste-
riors are extremely weakly informative about spin
components.

The remainder of this paper presents our analysis in
support of these conclusions. We discuss spin degrees of
freedom, effective spin parameters, and the notation used
throughout in Sec. II. Our methods are briefly described in
Sec. III, and are expanded upon in the Appendices. Results
about measuring the component spin distributions are
presented in Sec. IV. Section V introduces the extensive
series of verification methods—both population and
individual-event level—we use to ensure the robustness
of our results, all of which are further elaborated upon in

the Appendices. In Sec. VI, we identify limitations of the
traditional method of using posterior predictive checks to
assess biased population measurements, and identify the
sources of this bias. We compare our findings to those of
past work in Sec. VII, and then conclude in Sec. VIII.

II. SPIN MAGNITUDES AND TILTS VERSUS
EFFECTIVE SPIN PARAMETERS

Each BH in the binary is described by a dimensionless
spin vector χ⃗i, i∈ f1; 2g. In a coordinate system where the
z axis is aligned with the binary Newtonian orbital angular
momentum L⃗, the spin vector is characterized by a
magnitude χi ∈ ½0; 1�, polar angle θi ∈ ½0; π�, and azimuthal
angle ϕi ∈ ½0; 2π�. Modulo horizon absorption effects,
the spin magnitude is constant throughout the binary
evolution [42,43], while the spin angles evolve due to
spin-orbit and spin-spin interactions causing the spin vector
to precess [31,44].
The full six spin degrees of freedom remain relatively

poorly constrained by GW signals. Rather, the dominant
spin effects are expressed by two effective parameters. The
mass-weighted average spin projected onto L⃗

χeff ¼
χ1 cos θ1 þ qχ2 cos θ2

1þ q
∈ ð−1; 1Þ; ð1Þ

is referred to as effective aligned spin, where we have
defined the binary mass ratio q≡m2=m1, where m1 ≥ m2

are the BH masses. The effective aligned spin is, in general,
better constrained as it is related (in the equal mass limit) to
the leading-order spin contribution in the post-Newtonian
expansion for the GW inspiral phase [1]. Additionally, χeff
is conserved under spin-precession and radiation reaction to
at least the second post-Newtonian order [29].
Spin-precession effects are captured with the effective

precessing parameter

χp ¼ max

�
χ1 sin θ1;

�
3þ 4q
4þ 3q

�
qχ2 sin θ2

�
∈ ½0; 1Þ: ð2Þ

This parameter and its extensions [45,46] are motivated by
the fact that spin-orbit precession (and the GW amplitude
and phase modulations it induces) are driven by in-plane
spin components [30,47]. Constraints on χp are typically
much weaker than χeff especially given the observed
absence of large spin precession in BBHs [2,3]. In what
follows, we therefore focus on χeff .

III. METHODOLOGY

In order to isolate the amount of information included
in GW signals about the spin components relative to the
effective spin, we simulate astrophysical populations
with identical χeff distributions but different underlying
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component spin distributions. We choose a χeff distribution
that is qualitatively similar to current constraints [3,34,48]
and decompose it into three populations with distinct spin
magnitudes and tilt angle distributions. The azimuthal
angles are uniformly distributed. These distributions are
not astrophysically motivated, but rather selected as distinct
test cases of potential distributions.
The three simulated astrophysical distributions are

shown in Fig. 1, with further details given in Appendix A:
(1) The HighSpinPrecessing population contains BHs with

the most extremal spins and tilts: the majority of the
population has χ > 0.5 and tilts nearly in plane,
corresponding to significant spin precession.

(2) The MediumSpin population is most similar to current
constraints: preferentially small to moderate spin
magnitudes peaking at 0.25, and a wide range of tilts
with a preference for alignment compared to anti-
alignment.

(3) The LowSpinAligned population has the smallest spin
magnitudes, with nearly all BHs having χ < 0.5.
Uniquely, this population has a bimodal spin tilt
angle distribution, with a larger peak at cos θ ¼ 1
(perfect alignment) and a smaller peak at cos θ ¼ −1
(perfect antialignment). It is therefore a test case of
sensitivity to mixture models.

With these three populations, we conduct a full end-to-
end injection/recovery campaign. We draw parameters
describing individual GW events from each distribution,
restrict to detectable events with a network optimal signal-
to-noise ratio (SNR) above 10 in the LIGO Livingston,
LIGO Hanford, and Virgo detectors, simulate data assum-
ing O3 sensitivity [49], and obtain samples from the
multidimensional posterior distribution of the binary
parameters for each event individually. We then hierarchi-
cally model the population distribution of the simulated
posteriors with parametrized population models.

The individual-event posterior sampling is conducted
with the nested sampler DYNESTY [50] as implemented in
BILBY [51,52]. We use the IMRPhenomXPHM waveform
model [27] both for simulation and recovery as it models
all six spin degrees of freedom, contains higher order
radiation modes, and is the least computationally expensive
option available. Although more computationally expen-
sive than approximate parameter estimation [53–55], it is
essential to use full stochastic sampling for this work. As
we are trying to discern subtle effects in the signals, we
must properly characterize the individual-event likelihoods.
Full details about parameter estimation settings are given in
Appendix B. For hierarchical inference, we primarily use
the Markov chain Monte Carlo sampler EMCEE [56], with
some follow-up studies run with NumPyro [57,58]. The full
hierarchical inference procedure is outlined in Appendix C,
with the parametrized population models detailed in
Appendix D.
For simplicity, the hierarchical inference ignores the

azimuthal angles and in what follows use the term “spin
components” to refer to the spin magnitudes and tilt angles.
The parameter estimation prior and the population distri-
bution for the azimuthal angles coincide, therefore fixing
their distribution (to truth) does not incur a bias, more
details are available in Appendix D.

IV. DIFFERENT SPIN MAGNITUDE AND TILT
DISTRIBUTIONS CAN BE DISTINGUISHED

Using the results of the signal injection and parameter
estimation campaign, we perform hierarchical inference
[59–61] on events drawn from each population shown
in Fig. 1 in order to reconstruct their underlying spin
distributions. Population inference requires the adoption of
a model for the component spin and tilt distributions. We
select an analytic model in which spin magnitudes follow a

FIG. 1. Spin distributions for the three simulated BBH populations we use to assess the amount of recoverable information GW signals
contain about component spin distributions. The three populations share the same χeff distribution (chosen for consistency with current
data), but differ in their underlying component spin and χp distributions. From left to right, panels show the spin magnitude χ, spin tilt
cos θ, the effective spin parameter χeff, and the effective precession parameter χp. Navy: HighSpinPrecessing: a BBH population with few
vanishing spins that are preferentially oriented close to the orbital plane. Pink: MediumSpin: a BBH population with moderate spin
magnitudes peaking at χ ¼ 0.25 and preferentially aligned with the Newtonian orbital angular momentum. Orange: LowSpinAligned:
a BBH population with low spin magnitudes peaking at χ ¼ 0.10 with both strongly aligned and antialigned subpopulations.
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nonsingular Beta distribution and the spin tilt angles follow
a bimodal Gaussian distribution, which we hereby refer to
as the Beta+DoubleGaussian; see Appendix D 2 for a full
description. We choose this population model for its
simplicity and similarity to common models in the
literature, albeit with small modifications to target our
questions of interest. While the true, underlying distribu-
tions shown in Fig. 1 were not explicitly drawn from the
Beta+DoubleGaussian model, this model is expected to agree
with each simulated population to within statistical
uncertainties.1 We do not model the spin azimuthal angle,
effectively (and correctly) assuming that it is distributed
according to its uniform prior.
Figure 2 shows the inferred distributions for various spin

parameters for the three simulated populations under the
Beta+DoubleGaussian population model. The results from a 70-
event catalog are plotted in pink, and from a 300-event
catalog in navy, chosen to mimic O3 and projected O4

catalog size, respectively. Black, bold traces show the true
underlying populations for comparison. The χ (first col-
umn) and cos θ (second column) distributions are generated
by random draws from the posteriors on the population
parameters, shown in Figs. 6–8 in Appendix E.
The χeff (third column) and χp (fourth column) distri-

butions are generated by (i) randomly drawing from the
inferred χ, cos θ, and q distributions, (ii) calculating the
effective spin parameters from these draws, and (iii) gen-
erating a Gaussian kernel density estimate. We find that the
χeff distributions are reconstructed accurately across all
three populations and for both catalog sizes.
Switching to the component spins, we can qualitatively

distinguish between their distributions for each population.
The spin magnitude inferred for the HighSpinPrecessing pop-
ulation is the widest and has the largest mean. From
HighSpinPrecessing to MediumSpin to LowSpinAligned, the means
and widths of the inferred distributions get progressively
smaller, as is the case for the true, underlying populations. The
mass ratio distributions are also successfully recovered for all
three populations and two catalog sizes, as shown in
Appendix E. We, therefore, can distinguish between popula-
tions with low, moderate, and high spins when they have
identical χeff distributions.
Although we can qualitatively characterize the spin

magnitude and tilt distributions among these three

FIG. 2. Inferred distributions for various spin parameters (from left to right: spin magnitude χ, spin tilt cos θ, effective χeff spin,
effective precessing spin χp) and the three simulated populations (top to bottom). All results are obtained with the
Beta+DoubleGaussian model using 70 (pink) and 300 (navy) events. Traces correspond to draws from the population posterior
and solid lines enclose 90% of the probability. The black solid line corresponds to the true, underlying population. The dashed lines
show the 90% credible intervals inferred by sampling the prior on the population-level parameters, including the effective sample
cut as defined in Eq. (C6).

1We confirm that the Beta+DoubleGaussian model is a
good fit to the underlying populations through a least-squares
fit. The Kullback-Leibler divergences [62] between the best fit
and true underlying distributions are <10−4 for all spin magni-
tude distributions and <0.08 for all cosine tilt distributions. As a
further check, we also run hierarchical inference on catalogs of
simulated, Gaussian individual-event spin posteriors, with results
discussed in Appendix G 2.
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populations, in some cases we cannot reliably characterize
their properties accurately. Specifically, the true under-
lying distribution of the LowSpinAligned population does not
lie within the 90% credible reconstructed region as
measured with the Beta+DoubleGaussian model. The bimo-
dality of this population’s tilt angle distribution is not
recovered and the inferred spin magnitude distribution
has a higher mean than truth. We confirm that this
mismatch between the true and inferred distributions is
not solely driven by overly restrictive priors on the
population-level parameters, plotted with dashed lines
in Fig. 2. For example, the bias in the inferred spin
magnitude distribution for the HighSpinPrecessing population
occurs over a region where the prior generates a flat
distribution.
Population measurements of the effective spin are more

robust against bias than component spins. Even a notable
mismatch between the true and recovered spin magnitude
and tilt distributions for the LowSpinAligned population results
in a precisely and accurately constrained χeff distribution.
The χp distributions are more susceptible to inaccurate
recovery in the component spins, effectively inheriting their
biases. For example, for the χp distribution of the
LowSpinAligned population: the inference of more in-plane
spin (cos θ ∼ 0) combined with the slight overestimation of
the mean of the spin magnitude distribution, leads to a
corresponding overestimate of the bulk of the χp distribution.
This means that χeff , but not necessarily χp can be reliably
characterized on a population level by component spin
measurements. We additionally look at alternative defini-
tions of χp (see e.g. Gerosa et al. [45]) and obtain over-all
consistent results with the standard χp given in Eq. (2).

V. DIFFICULTIES OF MEASURING
COMPONENT SPIN DISTRIBUTIONS

The biased reconstruction of the LowSpinAligned popula-
tion is unexpected. The injection and recovery campaign
was performed using the same waveform model, and
selection effects were self-consistently handled in both
signal selection and parameter estimation. Under these
conditions, there is no a priori reason why population
recovery should fail. As such, our results instead suggest a
shortcoming in either the parameter estimation or popula-
tion recovery stages of the analysis.
To diagnose this shortcoming, we employ a slew of

checks, all of which are further elaborated upon in
Appendix G. To ensure that the problem is not our
hierarchical inference framework and implementation we
do the following:
(1) Simulate Gaussian individual-event spin posteriors

(Appendix G 2): For each of the 300 events per
population, we generate a series of simulated Gaus-
sian individual-event spin posteriors with a range of

measurement errors and underlying correlations, and
use these as input to hierarchical inference. In these
cases, the Beta+DoubleGaussian population model is able
to recover the underlying populations, as seen in
Fig. 10. Implications: The hierarchical inference and
selection effect framework is algorithmically robust,
and the Beta+DoubleGaussian model is able to recover
the true population distributions to within statistical
uncertainties.

(2) Fix either the spin magnitude or tilt angle distribu-
tion to the truth (Appendix G 3): When only fitting
for the χ or cos θ population and not the other, we are
still unable to recover the correct distribution for the
LowSpinAligned population; see Fig. 12. Implications:
The observed bias in the spin magnitude and tilt
angle distributions is not related to correlations
between the two distributions.

(3) Use a different sampler for the hierarchical like-
lihood (Appendix G 4): We repeat the analysis of
Fig. 2 with an independently implemented hierar-
chical inference code that is based on NumPyro instead
of EMCEE. We obtain essentially identical results,
shown in Fig. 13. Implications: The hierarchical
inference and selection effect framework is algo-
rithmically robust.

(4) Fit for the mass and redshift distributions instead of
fixing it to truth (Appendix G 5): Our main results fit
for the spin magnitude, spin tilt, and mass ratio
distributions, while fixing the distributions of the
primary mass and redshift to their true population
values, given in AppendixA. Figure 13 extends these
results to also fit for the mass and redshift distribu-
tions and shows the corresponding spin population
posteriors, which remain unchanged. The mass and
redshift distributions are recovered with no bias.
Implications: We have not misspecified the mass or
redshift distributions when fixing them to truth
during hierarchical inference, nor biased results of
our spin inference by neglecting to simultaneously fit
for the mass and redshift distributions.

(5) Plot rates instead of probability distributions
(Appendix G 6): Apparent disagreement between
injected and recovered probability distributions can
sometimes be caused by comparing injected and
recovered probability distributions, rather than dif-
ferential merger rate densities. In the main text we do
not infer the overall rates of black hole mergers, but
only the shapes of their spin distributions. To check
if neglecting the merger rate contributes to apparent
disagreement between injected and recovered pop-
ulations, we repeat our hierarchical inference while
also fitting for the rate of black hole mergers as
function of spin magnitude and tilt. This yields the
results shown in Fig. 14, which remain qualitatively
similar to those in Fig. 2. Implications: We have not
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biased results of our spin measurements by failing to
measure or plot absolute merger rates, rather than
probability distributions.

(6) Exclude spin selection effects (Appendix G 7):
The selection function only negligibly affects
spin magnitudes and tilt angles. To ensure that we
are not incorrectly implementing the selection func-
tion in the hierarchical likelihood, we conduct
hierarchical inference without including selection
effects in spin. This does not impact our results,
as can be seen in Fig. 15. Implications: The
implementation of the selection function is algorith-
mically robust.

(7) Employ different methods of breaking the degeneracy
in the bimodal Gaussian model (Appendix G 7): For a
bimodal distribution, some method must be imposed
to break the degeneracy between the two components
of themodel. For the Beta+DoubleGaussianmodel, this can
be done in one of three ways: imposing an ordering of
the means, the widths, or limiting the mixing fraction
be ≤0.5. Sometimes one method of breaking the
degeneracy converges better than another. As shown
in Fig. 15, we find that this is not the case here and
different methods perform comparably. Implications:
Our choice of degeneracy-breaking between the two
Gaussian components in our population model is not
causing convergence issues.

(8) Run hierarchical inference on different 70-event
catalog instantiations (Appendix G 7): Finally, to
get a sense of how much the specific 70 events
we select from the underlying population affect
hierarchical inference, we repeat the procedure
with several different catalog instantiations. While
there is expected variance in the results—see
Fig. 16—it cannot account for the degree of
mismatch seen in the bottom row of Fig. 2.
Additionally, each catalog instantiation leads to
a different number of per-event effective samples,
which we find are not correlated to the goodness
of fit. Implications: The observed bias does not
arise from an insufficient number of per-event
effective samples.

We then move towards investigating the underlying
individual-event parameter estimation with the following
checks:
(1) Sampler settings: We run parameter estimation with

a large variety of sampler settings in BILBY, and
eventually adopt the standard, reviewed settings for
our headline results of Fig. 2. Implications: Running
with more aggressive sampler settings in BILBY may
fix convergence problems, but this was not the case
for any configurations we employed.

(2) Probability-probability plots (Appendix G 1): We
generate probability-probability (P-P) plots [63,64]
for reweighted individual-event BILBY posteriors.

As seen in Fig. 9, the test passes. Implications:
Either the BILBY individual-event posterior samples
are unbiased, or the biases are subtle enough to not
be detectable by a P-P test, as warned against in [65].

(3) Use a different waveform model (Appendix G 3):
We rerun individual-event inference on the same sets
of events with BILBY using the IMRPhenomXP wave-
form model instead of IMRPhenomXPHM both for
injection and recovery. Results with this waveform
model are comparable or worse to that presented in
the main text with IMRPhenomXPHM, although the
bimodality of the LowSpinAligned population is slightly
better constrained; see Fig. 11. Implications: The
existence of bias in the measured spin magnitude and
tilt distributions is not driven by our choice of
waveform model, although the specific details of
how that bias manifests appear to be, i.e. different
waveforms yield different population-level results.
This indicates that the bias may be due to individual-
event sampling issues.

(4) Fix nonspin parameters to truth in individual-event
sampling (Appendix G 3): Finally, we conduct
individual-event inference with IMRPhenomXPHM

fixing all parameters aside from the spin magnitudes
to tilt angles to truth (i.e. use delta function
priors at their injected values). In this case, the
Beta+DoubleGaussian population model is able to suc-
cessfully recover the truth for all three populations,
see Fig. 11. Implications: The added complexity
going from sampling just spins to all fifteen binary
parameters is a likely culprit for the biased spin
magnitude and tilt angle distributions.

Although we can qualitatively tell apart the different
populations in Fig. 1, our results indicate that the spin
distribution of all possible BBH populations cannot nec-
essarily be accuratelymeasured under the range of analyses
considered in this work. Full parameter estimation with
spin precession is a technically challenging analysis.
Despite conducting tens of model checking procedures,
we cannot fully identify the driving source of the bias
observed in Fig. 2. We hypothesize that the error is due to
issues related to sampling from the high-dimensional
posterior for individual events, as suggested by the final
point above. If the issue with unbiased recovery is indeed
due to poor convergence of parameter estimation, then it is
possible that future algorithmic improvements in parameter
estimation will resolve things and allow for accurate
recovery.

VI. IDENTIFYING BIAS IS DIFFICULT:
LIMITATIONS OF POSTERIOR

PREDICTIVE CHECKS

While the Beta+DoubleGaussian model was able to produce
qualitatively correct results for each of the three distinct
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populations, it was not able to successfully recover the true
underlying populations. This leads us to the question: Can
commonly-used modeling diagnostics successfully identify
poorly performing fits to component spin distributions?
There are multiple avenues through which a population
model can fail: either the model is theoretically a good fit
and for any number of reasons (e.g. those discussed in
Sec. V) cannot find the truth, or the model is intrinsically a
poor fit, i.e. it does not have enough flexibility to find the
shape of the true, underlying distribution. Both cases
induce mismatch between the true distribution and the
inferred distribution, which we hope to diagnose using only
the information available to us. In this section, we begin by
discussing the first scenario (Fig. 3) and then the sec-
ond (Fig. 4).
In reality, given the complexities of astrophysical BH

spin evolution, it is almost certain that our measured
distributions are in some other way discrepant with the
truth; phenomenological models likely cannot perfectly
reflect the underlying populations. Model checks on
current data sets are then used to motivate more compli-
cated parametric models that do not suffer from identi-
fiable deficiencies. In parallel, nonparametric inference
introduces more flexible models that are based on a large
number of parameters, however those are also subject to
model uncertainties and impose correlations across the
population parameter space [39,41,48]. Detailed model
checking remains an essential ingredient of population
constraints.
For end-to-end event simulation and population recovery

such as Fig. 2, we a priori know what the “true”
underlying astrophysical distribution is. However, when
dealing with real GW observations, this is, of course, not
the case. We therefore diagnose the bias seen in Fig. 2
using only information available to us when dealing with
real observations. To do so, we use posterior predictive
checks (PPCs) that examine the predictive accuracy of

the inferred models via its ability to predict future
data that are consistent with current observations. PPCs
are ubiquitous in the field of GW population analyses
[2,3,34,53,66].
We now look at the results from the Beta+DoubleGaussian

model presented in Sec. IV: a case in which a population
model is theoretically a good fit, but cannot find the
underlying distribution accurately. A PPC for the
LowSpinAligned population2 is plotted in Fig. 3. Specifically,
we plot the spin parameters predicted by the fitted model
against those of the observed events. The “predicted”
(horizontal axis) and “observed” (vertical axis) draws and
are generated as follows:
(1) Draw one sample from the posterior for the

Beta+DoubleGaussian hyperparameters.
(2) Draw one sample from the detectable [48,67] χi and

cos θi distribution corresponding to this hyperpara-
meter. This is the predicted draw.

(3) Draw one sample from one individual-event pos-
terior in the catalog, reweighted to the population
from Step 1, as described in Appendix F. This is the
observed draw.

(4) Repeat 70 times for the O3-like catalog, or 300 times
for the O4-like catalog.

The predicted and observed values are sorted and plotted
against each other, generating one trace in Fig. 3. We repeat
this procedure 100 times to generate a collection of traces. If
we have perfectly measured the true underlying distribution
and in the limit of infinitely many observations, then the
traces should be an exact diagonal. For a number of finite
observations, the average of the traces should be diagonal
[32,53,68–70]. As the number of observed events increases,
the spread of the traces around the diagonal should decrease.

FIG. 3. PPCs for spin parameters (left to right: component spin magnitudes χ, component spin tilts cos θ, effective spin χeff , and
effective precessing spin χp) of the LowSpinAligned population under the Beta+DoubleGaussian population model. Each trace is one catalog
from the observed and the predicted populations; 100 catalogs are shown, for results with 70 (pink) and 300 (navy) events. In the
absence of discrepancy between the inferred and true population distributions, the traces should on average follow the diagonal.
However, here there is such a discrepancy, as can be seen in the bottom row of Fig. 2, and the traces do on average follow the diagonal,
meaning that this PPC is not necessarily a good diagnostic tool for component spins.

2We highlight the LowSpinAligned population throughout Sec. VI
as it displays the largest bias under the Beta+DoubleGaussian model.

GRAVITATIONAL WAVES CARRY INFORMATION BEYOND … PHYS. REV. D 109, 104036 (2024)

104036-7



For all spin parameters shown, the traces on average do
follow the diagonal, even though the measured population
does not match the truth. The 300 event case (navy) traces
are more tightly clustered around the diagonal than the
70 event case (pink), as expected. That the traces average to
the diagonal but we know the fit is poor indicates that this
class of PPC, although widely used in GW population
analyses, is not a sufficient diagnostic of model mismatch
or inaccurate population inference in this case.
We continue to investigate the conditions under

which PPCs succeed or fail by next turning to the
second case discussed previously: that in which a

population model is an intrinsically bad fit to the under-
lying astrophysical distribution. We again perform pop-
ulation inference of simulated data, now deliberately
using a model that cannot reproduce the injected spin
distributions. In particular, we will adopt a model in
which cosine tilts are described only as a single
Gaussian, which we call the Beta+DoubleGaussian model
and is given analytically in Appendix D 1. This popu-
lation model is capable of reproducing the χeff distribu-
tion, but at the level of component spins cannot capture
the bimodality present in the MediumSpin and LowSpinAligned

populations.

FIG. 4. Results for diagnosing model misspecification for the LowSpinAligned population’s cos θ distribution under the
Beta+DoubleGaussian model. Results from three different simulated measurement uncertainties are shown: individual-event spin
measurement error of σmeas ¼ 0.1 (blue), 0.3 (pink), and 0.5 (yellow). The “true” measurement error from the BILBY runs averages
to σmeas ¼ 0.48. All results are shown from runs done on 70-event catalogs. Top row: traces corresponding to draws from the population
posterior, compared to the true population (black). Middle row: PPCs from 100 catalogs, each with 70 events. In the absence of model
misspecification, the traces should on average follow the diagonal. Bottom row: Fraction of events from the posterior predictive checks
with cos θ underpredicted. The shaded regions indicate three-sigma uncertainty on each average value, marked by the crosses. In the
absence of model misspecification, the error bars should encompass a horizontal line at 0.50.
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We here wish to isolate the effect of a bad model,
without having to worry about the shortcomings of
inference per Fig. 2. As such, this time we do not
perform full signal injection and parameter estimation,
but instead produce mock spin magnitude and cosine tilt
posteriors, allowing us to better control and understand
the interplay between individual-event and population-
level measurement uncertainty. We assume these mock
posteriors to be Gaussian distributed with width σmeas.
Our procedure for generating these mock posteriors is
detailed in Appendix G 2.
Results from conducting hierarchical inference using the

Gaussian mock posteriors are shown in Fig. 4. The left-
hand column (blue), shows results from individual-event
spin posteriors with σmeas ¼ 0.1, between ∼1–5 times more
informative than the BILBY-produced cos θ posteriors,
which averages to σmeas ¼ 0.48. In the right-hand column
(orange) are plotted results from more-realistic individual-
event measurement error of σmeas ¼ 0.5; the center column
(pink) is an intermediate case of σmeas ¼ 0.3.
The inferred cos θ distributions for the LOWSPIN-

ALIGNED population under the Beta+DoubleGaussian model
are plotted in the top row of Fig. 4. For each of the three
different individual-event measurement errors, the traces
are clustered tightly, meaning that the inferred population is
precisely measured, even though the model is not a good fit
to the underlying population. The Beta+DoubleGaussian model
is, in essence, doing its job: even with large individual event
uncertainty, it identifies the mean and the overall width of
the distribution very well, even though it cannot capture the
full underlying bimodal structure.
We again ask the following: If we did not know the

injected distribution, would we have been able to tell that
this model is insufficient? Going further, in the case that we
can tell a PPC fails, we are looking for an estimate of how
we should amend our population model to better fit the
truth. Beyond just inspecting the diagonality of PPCs by
eye, we can calculate the fraction of events over/under-
predicted by our model across parameter space using the
slopes of the PPC traces. If the slope of a PPC trace is
steeper (shallower) than the diagonal, then the model is
predicting more (fewer) events in that region of parameter
space than are observed. To find the slopes of each trace as
a function of each parameter of interest, we perform linear
regression in a small region around each point on a grid
spanning that parameter. The fractions of each spin
parameters underpredicted for each simulated population
is then the fraction of traces with slopes shallower than the
diagonal (i.e. <1). If the model is a good fit to the data,
then the fraction underpredicted should be consistent
with 0.5.
PPCs and the corresponding fraction of events under-

predicted are shown in the middle and bottom rows of
Fig. 4 respectively. Errors on the fraction underpredicted
are calculated by repeating the PPC procedure ten times,

and calculating the mean (crosses) and variance (shaded
region) of the results. For the σmeas ¼ 0.1 case, the
PPC is inconsistent with the diagonal, meaning that
here we can identify that inferred distribution under the
Beta+DoubleGaussian model is not a good fit. The fraction of
events underpredicted is correspondingly inconsistent with
0.5. For cos θ ≲ 0.25 and cos θ ≳ 0.75, the fraction under-
predicted is greater than 0.5, meaning that the model
ubiquitously underpredicts the population in this region
of parameter space. Between 0.25≲ cos θ ≲ 0.75, the
fraction is less than 0.5, meaning here the model over-
predicts. Looking at the top left corner of Fig. 4, we can see
that this is exactly the case. These results hint at how we
could improve the cos θ model: to find the truth we should
allow the model to predict more events at alignment and
antialignment, i.e. include a bimodality.
As the individual-event measurement uncertainty

increases (left to right), the PPCs become more consistent
with the diagonal, and correspondingly the fractions
become consistent with 0.5. By realistic measurement
uncertainty, we lose our ability to diagnose inconsistency
between the underlying and measured populations using
PPCs. A crucial step in generating PPCs is the reweighting
of individual-event posteriors to the inferred population. If
individual-event posteriors are sufficiently uninformative,
then this process yields reweighted posteriors that are all
essentially identical to the measured population. Thus, the
“observed” and “predicted” draws will be the same, and the
PPCs will be on average diagonal. This type of PPC is
therefore insufficient for weakly informative parameters as
the reweighted posterior is dominated by the population
rather than the individual-event likelihood. We propose
that alternative model-checking procedures must, therefore,
be developed and utilized for diagnosing model bias and
misspecification for poorly measured BBH parameters
such as spin components.

VII. COMPARISON TO PAST WORK
ON HIERARCHICAL INFERENCE

WITH SPIN PRECESSION

To our knowledge, our study includes the first full, end-
to-end individual-event and population-level GW injection
campaign for multiple distinct populations of spin magni-
tudes and tilt angles of BBHs. Past studies performing
injection-recovery campaigns for spin populations either
use different waveform models and sampling implementa-
tions, and/or consider cases with reduced complexity
compared to ours. Our work is in consistent with past
findings, as described below.
Talbot and Thrane [71] investigated the measurability of

the spin tilt angle distributions alone using an astrophysi-
cally motivated model assuming that some fraction of
BBHs form in isolated binaries, while the rest form
dynamically. They performed an injection and recovery
campaign for spin tilts where they measured the fraction
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of binary mergers with preferentially aligned versus
isotropically distributed tilts, and the typical degree of
spin misalignment for each BH. In their study, all
simulated binaries share the same masses, distance, and
spin magnitudes, chosen to be similar to LIGO’s first
event GW150914 [72]. Using the waveform model
IMRPhenomPv2 [73] and nested sampling implemented in
LALInference [74], they found that they are able to constrain
the parameters of the tilt-angle distributions for five
different populations. Although they do sample over all
15 BBH parameters during individual-event inference,
Talbot and Thrane [71] is most similar to the follow-up
studies we present in Appendix G 3: we too are able to
better recover the underlying distributions for all three of
our populations when the complexity of the explored
parameter space is reduced (see e.g. Fig. 12), on either an
individual-event or population level.
In the context of searching for unresolved binary signals,

Smith et al. [75] also simulated and recovered BBH spin
magnitude and tilt distributions. They looked at a single
population, consistent with the LIGO=Virgo O1 and O2
observations [38], and used the IMRPhenomPv2 waveform
model [73] implemented in BILBY for individual-event
inference. A crucial difference between this study and
ours is the use of a selection function: as Smith et al. [75]
are looking at resolved and unresolved binaries, they ignore
selection effects entirely. Under these conditions, Smith
et al. [75] find that the spin magnitude and tilt angle
distributions are both accurately measurable. Given that
their simulated populations are most similar to our
MediumSpin population, this is in agreement with our find-
ings, as we are able to well constrain the MediumSpin

population for both 70 and 300 events. It is only when
more complex distributions are introduced that our infer-
ence fails.
Another point of comparison between our work and

others’ is on the subject of biased measurements from
population model misspecification. In particular, other
authors have also identified shortcomings of traditionally
and widely used model checking techniques such as
probability-probability plots (Appendix G 1) and posterior
predictive checks (Sec. VI). Biscoveanu et al. [65] dis-
cussed population model bias in the mass distribution of
binary neutron star populations arising from misspecifica-
tion of spin priors. As part of their work, they show that a
P-P check on individual-event posteriors can pass but still
lead to highly biased population inference. This is in
agreement with our findings.

VIII. CONCLUSIONS

In this work, we investigated the measurability of the
spin magnitude and tilt angle distributions of BBH pop-
ulations via GW observations. To see if realistic GW
populations contain information about spin components
or just the effective spin, we simulated three BBH

populations that have the same underlying effective-spin
distributions, but deliberately distinct spin magnitude and
tilt distributions, and on them conducted individual-event
and population-level parameter estimation. We then turned
to the question of whether mismatch between the injected
and recovered spin magnitude and tilt distributions can be
identified using only the individual-event and population-
level data available to us, without knowledge of the true
underlying population. Our work focuses on the three
questions posed in Sec. I, the answers to which we
summarize below.
(1) There is information in gravitational-wave signals

beyond the effective-spin. As discussed in Sec. IV,
we can tell that our three different populations have
different spin magnitude and tilt distributions despite
their having identical χeff distributions.

(2) Measuring component spin distributions accurately
is practically challenging. Under standard, reviewed
parameter estimation settings, we were able to accu-
rately measure the spin magnitude and/or tilt angle
distributions for some of the populations, but not all
three. The bimodal tilt distribution of the LowSpinA-

ligned population proved especially resistant to
being accurately constrained, even when using a
population model that was inherently bimodal. We
employed a suite of verificationmethods to ensure the
robustness of these results, which are enumerated
in Sec. V. Notably, we find that the effective spin
distribution is, however, accurately measured no
matter the degree of mismatch in the component
spinmodel constraints; this is not true for the effective
precessing spin χp which remains susceptible to
biased spin magnitude and tilt inference.
Although we cannot say for certain, we hypoth-

esize that the root of the mismatch between the
recovered and underlying distributions is related to
a lack of convergence in individual-event posteriors,
the specifics ofwhich are subtle enough to not present
themselves via a standard P-P check (Appendix G 1).
We do not claim that accurately recovering compo-
nent spin population distributions is impossible at
current sensitivity, just challenging. Running BILBY

withmore aggressive settings, while computationally
costly, may very well fix the problems presented in
this work. However, unlike our injection set, real
observations do not come with an answer key. If
manually tuning sampler settings is a requirement to
recover truth, we must be aware what these same
errors could manifest in real LIGO=Virgo events.

(3) At current sensitivity, we cannot tell when measure-
ments of component spin distributions are biased via
the currently widely used method of posterior
predictive checks. Due to the fact that individual-
event posteriors are extremely weakly informative
about spin components, reweighting these posteriors
to the inferred population distribution—a crucial step
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in conducting posterior predictive checks—yields
individual-event measurements that are all nearly
identical to the inferred population itself. Nearly
any population model can seem like a good fit to
poorly constrained data, as discussed in Sec. VI.

Fishbach et al. [53] detailed different categories of
posterior predictive checking for GW data. The most
commonly used level is what we do in this work: perform-
ing consistency checks on the true underlying parameters
of the observed data versus predicted by the model.
However, one can also conduct PPCs on the observed
parameters (e.g. max likelihood parameters) of the data
versus those predicted by the model. While checks on the
true parameters are susceptible to the issues related to
reweighting that we discuss in Sec. III, checks on observed
parameters might be more constraining. However, they are
far more computationally expensive to perform, as one
must generate maximum likelihood values predicted by the
model: this involves either running an optimization routine
or conducting mock-parameter estimation on thousands
of events. While trustworthy mock-parameter estimation
exists for some parameters (e.g. masses) [53–55], the
imprint of spin magnitudes and tilt angles on data is more
subtle and remains unincorporated into these algorithms.
Developing different, more-informative methods of pos-
terior predictive checking for poorly constrained parame-
ters such as spin is an essential topic of future work.

Data availability. The code used to produce all results
presented in this paper can be found at [76] Our individual-
event and hierarchical-inference posteriors samples can be
shared upon request.
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APPENDIX A: SIMULATED POPULATIONS

We simulate three populations with the same χeff but
different spin magnitude χ and tilt angle θ distributions. To
generate the populations, we first choose distributions of
the mass ratio q and spin z component si;z ≡ χi cos θi to be
shared in common across all three populations; this ensures
the same χeff distribution. The mass ratio distribution
corresponds to the median posterior value inferred with
the PowerLaw+Peak model in Ref. [3], while for si;z we select a
Gaussian with mean 0.10 and standard deviation 0.15. This
yields a Gaussian-like χeff distribution with mean 0.10 and
standard deviation 0.11.
To decompose χeff into component spins, we choose a

different spin magnitude χ distribution for each population
and then numerically calculate the resultant cos θ distribution
implied by pðχÞ and pðsi;zÞ. This procedure results in the
three populations shown in Fig. 1. The χ distribution for the
HighSpinPrecessing population is uniform between si;z and 1,
i.e., si;z values are drawn from the Gaussian described above
and then a χi value is conditionally drawn based on each si;z.
For the MediumSpin (LowSpinAligned) population, each χ value is
drawn from a Gaussian distribution about si;z, truncated on
0 ≤ χ ≤ 1, with a standard deviation of 0.20 (0.05). For each
population, we assume χ1 and χ2 are identically but inde-
pendently distributed, as are cos θ1 and cos θ2. Finally, each
spin vector’s azimuthal angleϕi is drawn uniformly between
0 and 2π. Due to the different χ and cos θ distributions, the χp
distributions of each population differ as well.3

The astrophysical distribution of the remaining binary
parameters is the same for all populations. We inject
primary masses drawn from the PowerLaw+Peak model
[84] with all parameters, except for mmin, fixed to their
one-dimensional median values as found in Ref. [3]:
α ¼ 3.51, mmax ¼ 88.21, λpeak ¼ 0.033, μm ¼ 33.61,
σm ¼ 4.72, and δm ¼ 4.88 in the notation used therein.
The injected mass ratio distributions for all populations are
described by a power law with slope βq ¼ 0.96 [see
Eq. (D2)], again the median inferred value from [3]. In
the parametrization of the PowerLaw+Peak model, we use a
population minimum mass of mmin ¼ 6M⊙ instead of 5M⊙
to set the shape of the distribution. We additionally impose
a mass cut of 8M⊙, as restricting to higher-mass events
ensures shorter analysis times. This mass cut effectively
becomes the minimum mass, but we renormalize the dis-
tribution to keep the same shape above the cutoff mass as it

3Different component spin distributions given identical χeff
and χp distribution can only be achieved by relaxing the
assumption of identically distributed component spin magnitudes
and angles.
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would with mmin ¼ 6. Explicitly setting mmin ¼ 8 in the
PowerLaw+Peak model would change the overall shape of the
distribution to be inconsistent with the desired results
in Ref. [3].
Finally, the BBH merger density rate in the source frame

evolves with respect to redshift z as

RðzÞ ∝ dVc

dz
ð1þ zÞ2.7; ðA1Þ

where Vc is the comoving volume. Distances are calculated
from redshifts assuming the cosmology reported by the
Planck 2013 survey [85]. All other parameters are drawn
uniformly from their respective physical range. Mass and
redshift distributions are plotted in Fig. 5.

APPENDIX B: INDIVIDUAL-EVENT
PARAMETER ESTIMATION

From each of the three astrophysical distributions
described in Appendix A, we draw 105 events. We apply
a network SNR [86–89] cut of 10 in the LIGO Livingston,
LIGO Hanford, and Virgo detector network using the “O3
actual” power spectral densities provided in Ref. [49], and
select 300 detectable events. Histograms of events from the
underlying (navy) versus detectable (orange) mass and
redshift distributions are shown in Fig. 5.
For each event, we simulate GW data with the

IMRPhenomXPHM waveform model [27] including a
Gaussian noise realization and draw samples from the
15-dimensional posterior distribution for the binary param-
eters using the same waveform. Specifically, we sample in
detector frame component massesm1,m2, spin magnitudes
χ1, χ2, spin tilt angles θ1, θ2, the azimuthal interspin angle
ϕ12, the azimuthal cone precession angle ϕJL, the lumi-
nosity distance dL, the inclination angle between the total
angular momentum and the line of sight of the observer
θJN , the right ascension α, declination δ, polarization angle
ψ , and the time t and orbital phase φ at coalescence. We
employ standard priors for all binary parameters [52],
although we use a targeted chirp mass [90,91] prior of
�15M⊙ about the injected value to reduce computational
cost, which we verify does not affect results.
Simulated data assume a detector network of LIGO-

Hanford, LIGO-Livingston [4], and Virgo [5], each at their
O3 sensitivity [49] with a sampling rate of 2048 Hz. We
analyze data in the 15–921.6ð¼ 0.9 × 2048=2Þ Hz fre-
quency range, assuming perfect knowledge of the detector
calibration.
We use the nested sampler DYNESTY [50] as imple-

mented in BILBY [51,52] under reviewed settings to
stochastically sample from the individual-event posteriors.
For sampler settings, we use nlive = 1000, naccept =
60, and sample = “acceptance-walk”. Time mar-
ginalizaton is turned on, while distance and phase mar-
ginalization remain off. Post-facto, we apply an optimal
SNR cut of 10 on the posterior samples for consistency
with our selection criteria [67].

APPENDIX C: HIERARCHICAL INFERENCE

The hierarchical inference framework used in our analy-
sis to obtain posteriors distributions on the population
parameters is implemented using the Python Markov chain
Monte Carlo package EMCEE [56]. The likelihood
LðfdgjΛÞ that a catalog of Nobs GW events with data
fdigNobs

i¼1 arises from an underlying population πpop
described by parameters Λ is given by [59–61,92]

LðfdgjΛÞ ∝
YNobs

i

R
dλLðdijλÞπpopðλjΛÞ

ξðΛÞ ; ðC1Þ
FIG. 5. The underlying (navy) and detected (orange) distribu-
tions for source-frame primary mass m1 (top), source-frame
secondary mass m2 (middle), and redshift z (bottom) shared
between all three simulated populations.
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where λi are the parameters of the ith event in the catalog
(i.e. spins, masses, etc.). In practice, we have access to the
individual-event posteriors pðλijdiÞ obtained with a default
parameter estimation prior πpeðλiÞ, rather than the event
likelihood LðdijλiÞ. We thus write Eq. (C1) as

LðfdgjΛÞ ∝ ξðΛÞ−Nobs

Y
i

Z
dλ

pðλjdiÞ
πpeðλiÞ

πpopðλijΛÞ: ðC2Þ

Additionally, rather than pðλijdiÞ itself, we have a discrete
set of Ni independent samples fλi;jgNi

j¼1 drawn from
pðλijdiÞ. Using the standard procedure, we approximate
the integral of Eq. (C2) via a Monte Carlo average,

LðfdgjΛÞ ∝ ξðΛÞ−Nobs

Y
i

1

Ni

XNi

j¼1

πpopðλi;jjΛÞ
πpeðλi;jÞ

: ðC3Þ

The detection efficiency

ξðΛÞ ¼
Z

dλπpopðλjΛÞPdetðλÞ; ðC4Þ

is the fraction of events that we would successfully detect if
the population with parameters Λ is the true underlying
population. Here, PdetðλÞ is the probability that an indi-
vidual event with parameters λ is detected. As with the
population likelihood, we calculate the detection efficiency
with a Monte Carlo average. Given Ninj injected signals
drawn from some reference distribution pinjðλÞ, the detec-
tion efficiency is

ξðΛÞ ¼ 1

Ninj

XNfnd

i¼1

πpopðλijΛÞ
pinjðλiÞ

; ðC5Þ

where the sum is over the Nfnd injections that pass the
detection criteria. We generate the set of “found” injections
over which the Monte Carlo average is calculated in the
same way that we produced catalogs of events in
Appendix B. The reference pinjðλÞ follows the true mass
and redshift distribution (Appendix A; Fig. 5), but is
uniform in spin magnitudes and isotropic in spin tilts such
that we can resolve features across the full underlying spin
distribution. As in Appendix B, our detection criterion is an
optimal SNR greater than 10 using the waveform
IMRPhenomXPHM [27] in the LIGO Livingston, LIGO
Hanford, and Virgo network at O3 sensitivity [49]. We
acknowledge that the optimal SNR is not a strictly accurate
estimate of selection effects on real data as it is solely a
function of source parameters, not detector noise. However,
this approach remains formally self-consistent as long as
we apply the same optimal SNR cut on posterior samples,
as explained in Essick and Fishbach [67].

Following Farr [93], we account for uncertainty in the
Monte Carlo integral by demanding that the effective
number of independent samples

NeffðΛÞ≡ ½PNfnd
i¼1 wiðΛÞ�2PNfnd
i¼1 ½wiðΛÞ�2

≥ 4Nobs; ðC6Þ

where the weights wi between the population distribution
and parameter estimation prior are defined as

wiðΛÞ ¼
πpopðλijΛÞ
pinjðλiÞ

; ðC7Þ

evaluated on the parameters of the found injections. This
procedure rejects samples from regions of parameter space
in which there are not sufficient injections to accurately
probe. We use 200,000 injections to calculate ξ. Our results
never rail against the Neff cut of Eq. (C6), so we do not
believe it affects our results. For further investigation, we
perform a set of analyses without including spins when
calculating Neff (see Appendix G 7), under which our
conclusions do not change.
In addition to including a cut on effective samples from

the selection function, one can also impose a cut on the per-
event effective samples of the posteriors used in calculating
the hierarchical likelihood. Here, instead of evaluating
Eq. (C7) on the found injections, it is evaluated on the
posterior samples for every event. If any events in the
catalog have an effective sample number below some
threshold, then the corresponding Λ sample is tossed. In
this work, we do not include any per-event Neff cuts in the
sampling of LðfdgjΛÞ, but calculate them post-facto as a
check of Monte Carlo convergence (see e.g. Fig. 16). Other
tests of Monte Carlo convergence are discussed in [94].

APPENDIX D: SPIN POPULATION MODELS

We recover the simulated populations with two models.
Generically, we factorize the population models as

πpopðλjΛÞ ¼ pðm1jΛÞpðm2jm1;ΛÞpðzjΛÞ
× pðχ1jΛÞpðχ2jΛÞpðcos θ1jΛÞpðcos θ2jΛÞ;

ðD1Þ

meaning, aside from the masses m1 and m2, there are no
correlations in the population. Our two parametrized
models for the spin magnitude χ and tilt angle θ are
described below. More details about the two models are
provided in Table I. Spin magnitudes χi and tilt angles θi
are assumed identically and independently distributed.
During hierarchical inference, we fix the distributions of

primary mass m1 and redshift z to truth, as described in
Appendix A. To account for possible correlations between
spins and mass ratio, although no underlying correlation
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was injected, we follow Callister et al. [95] and simulta-
neously infer the distribution of binary mass ratios and
spins using a secondary mass distribution of

pðm2jm1Þ ∝ m
βq
2 ðmmin ≤ m2 ≤ m1Þ; ðD2Þ

where the power-law index βq is a free parameter with a
Gaussian prior ofN ð0; 3Þ. The true underlying distribution
has βq ¼ 0.96. For all other individual-event parameters,
we take population distributions identical to the priors used
during the original BILBY parameter estimation. Most
notably for this analysis, azimuthal spins are distributed
uniformly ϕi ∈ ½0; 2πÞ. All parameters aside from masses,
redshift, and spin magnitudes and tilt angles are thus
excluded from hierarchical inference.

1. Beta+DoubleGaussian

Following the Default model in Ref. [3], we assume that
spin magnitudes χi are identically and independently
distributed according to a Beta distribution

pðχijα; βÞ ¼
χα−1i ð1 − χiÞβ−1

Bðα; βÞ ; ðD3Þ

where Bðα; βÞ is the Beta function which ensures that the
distribution is normalized to unity on 0 ≤ χ ≤ 1. Instead of
sampling in the shape parameters α and β, we sample in the
more familiar mean μχ and standard deviation σχ which are
related to α and β by

α ¼ μχν; β ¼ ð1 − μχÞν; ðD4Þ

where

ν ¼ μχð1 − μχÞ
σ2χ

− 1: ðD5Þ

We adopt uniform priors on μχ and σχ and impose an
additional cut such that α, β ≥ 1 to keep the distribution
bounded. This cut enforces pðχijα; βÞ ¼ 0 at χi ¼ 0 and 1.
Aside from the HighSpinPrecessing population at χ ¼ 1, this
assumption is valid, and even there the spin model captures
the overall distribution’s shape.
For the tilt-angle distribution, we adopt a truncated,

normalized Gaussian distribution

pðcos θijμθ; σθÞ ¼ N ½−1;1�ðcos θijμθ; σθÞ ðD6Þ

on the interval −1 ≤ cos θ ≤ 1, and fit for the mean μθ and
standard deviation σθ.

2. Beta+DoubleGaussian

The Beta+DoubleGaussian model uses the same spin magni-
tude distribution as the Beta+DoubleGaussian, as given in
Eq. (D3) and explained thereafter. The tilt angle distribu-
tion is here instead given by a mixture of two truncated
normalized Gaussians

pðcos θijμθ;1; σθ;1; μθ;2; σθ;2; fÞ
¼ fN ½−1;1�ðcos θijμθ;1; σθ;1Þ
þ ð1 − fÞN ½−1;1�ðcos θijμθ;2; σθ;2Þ; ðD7Þ

to capture the multimodality of the some of the underlying
distributions. We measure the means μθ;1, μθ;2 and standard
deviations σθ;1, σθ;2 of the two Gaussians, and the mixing
fraction f between them. We impose μθ;1 ≤ μθ;2 to dis-
tinguish between the two components.

TABLE I. Details about the two component spin models we employ. Columns give the model names, an example χ and cos θ plot, the
parameters they depend on, the parameter priors, and some brief comments. The notation Uða; bÞ means a prior uniform between a and
b. For pðχÞ in both models, we impose an additional prior requirement that the beta distribution shape parameters α, β > 1, see Eq. (D4),
making the distribution nonsingular at the boundaries. Full expressions for pðχÞ and pðcos θÞ can be found in Eqs. (D3), (D6), and (D7).
Model Name pðχÞ pðcos θÞ Parameter Prior Comments

Beta+DoubleGaussian μχ U (0, 1) Component spin model that cannot reproduce
the simulated populations; used to study
model misspecification

σχ U (0.07, 0.5)
μθ U (−1, 1)
σθ U (0.16, 0.8)

Beta+DoubleGaussian μχ U (0, 1) Component spin model that can reproduce the
simulated populations; used to study the
amount of information available in
component spins. See Appendix G 7 about
methods of breaking the degeneracy between
the two Gaussian components.

σχ U (0.07, 0.5)
μθ;1 U (−1, 1)
σθ;1 U (0.16, 0.8)
μθ;2 U (−1, 1)
σθ;2 U (0.16, 8)
f U (0, 5)
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APPENDIX E: DETAILED HIERARCHICAL
INFERENCE RESULTS

We here show full posteriors on the hyperparameters
for the Beta+DoubleGaussian component spin population model,

as given in Eqs. (D3) and (D7), for the HighSpinPrecessing

(Fig. 6), MediumSpin (Fig. 7), and LowSpinAligned (Fig. 8)
populations. Results for 70 (pink) and 300 (navy) event
catalogs are shown in each figure. These posteriors are
compared against nonlinear least-squares fit parameters

FIG. 6. The posterior distributions on the hyperparameters of the spin magnitude and tilt angle distributions under the
Beta+DoubleGaussian model for the HighSpinPrecessing population for 70 (pink) and 300 (navy) event catalogs. The labels above each
one-dimensional posterior give the medians and 90% credible intervals on each hyperparameter for the two different catalog sizes, while
the contours in each two-dimensional posterior denote the 50% and 90% credible regions. See Table I for descriptions the
hyperparameters and their priors. Black dashed lines labeled “truth” represent the theoretical best-fit parameters for the population under
the Beta+DoubleGaussian model, as calculated using a least-squared fit on 50,000 draws from the population.
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(black dashed) calculated from 50,000 draws per population,
representing the best possible fit for the true underlying
distributions within the Beta+DoubleGaussian model. Population
distributions generated from draws from these posteriors are
plotted in Fig. 2. For all three populations, as expected,
including more events makes hyperparameter measurements
more precise. However, adding more events does not neces-
sarily make the results more accurate.

The hyperparameters of the HighSpinPrecessing

population (Fig. 6) are recovered with minimal bias.
While the mean μχ of the spin magnitude distribution of
the HighSpinPrecessing population is very well constrained, its
width σχ is slightly underestimated in the case of both the
70 and 300 event catalogs. The means μi;cos θ are also
accurately constrained. The widths of the tilt angle dis-
tributions also seem to be underestimated, but per Fig. 2,

FIG. 7. Same as Fig. 6 but for the MediumSpin population. This population is recovered by the Beta+DoubleGaussian model
without bias.
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the actual shape of the distribution converges on the truth.
This is because—due to the allowed bimodality—different
combinations of hyperparameters can lead to the same
unimodal distribution.
The MediumSpin population (Fig. 7), on the other

hand, is reconstructed very accurately by the Beta

+DoubleGaussian model for both the 70 and 300 event
catalogs. Each “true” hyperparameter either falls within

the 90% measured credible region. This is also reflected in
Fig. 2—the black traces representing truth are enclosed by
the 90% credible envelopes for both χ and cos θ.
Finally, the width of the spin magnitude distribution

for the LowSpinAligned population (Fig. 8) is accurately con-
strained, but its mean μχ is overestimated. The most striking
failure of the Beta+DoubleGaussian model is its inability to
identify the bimodality of the LowSpinAligned population’s tilt

FIG. 8. Same as Figs. 6 and 7 but for the LowSpinAligned population. This population is recovered by the Beta+DoubleGaussian model with
considerable bias.
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angle distribution, for either 70 or 300 events. Aside from
the mixing fraction f, none of the tilt-angle distribution
hyperparameters’ posteriors are consistent with truth at the
90% level.
For all three populations, the power law slope for the

mass distribution is recovered within 90% credibility
about the injected value of βq ¼ 0.96. Masses are recov-
ered without bias by our hierarchical inference procedure;
we only encountering biases when fitting for the spin
populations.

APPENDIX F: REWEIGHTING INDIVIDUAL
EVENT POSTERIORS

Given a set of discrete sample from an individual-event
posterior pðλjdiÞ calculated with prior πpeðλÞ and discrete
samples of hyperparameters describing a population dis-
tribution πpopðλjΛÞ, we can reweight the individual-event
posterior to the inferred population using a two-step
algorithm [32,70]. First, randomly select a hyperparameter
sample from the population distribution Λi ∈ fΛg and
calculate the following weights for each individual-event
posterior sample λj:

wj ∝
πpopðλjjΛiÞ
πpeðλjÞ

: ðF1Þ

Second, select one sample λj ∈ fλjg subject to the weights
wj. Repeat this process to build up a set of samples from
a reweighted individual-event posterior. This procedures
ensures that events are not double-counted during
weighting [70].

APPENDIX G: VERIFICATION OF METHODS

To explore the origin of the bias observed in Fig. 2, we
perform a number of explorations that we elaborate upon in
subsequent subsections. In Appendix G 1, we generate P-P
plots for reweighted individual event BILBY posteriors,
which return unbiased. In Appendix G 2, we turn to
hierarchical inference and explore a range of simulated
Gaussian individual-event spins posteriors, rather than ones
generated via stochastic sampling with BILBY. We also
reduce the complexity of the parameter spaces explored on
both an individual-event and population level. In
Appendix G 3, we present results where we fix various
combinations of parameters to their true values in both
the individual-event and hierarchical inference levels.
We here also discuss using a less complex waveform—
IMRPhenomXP rather than IMRPhenomXPHM—which excludes
higher order modes, in individual-event sampling.
Appendix G 4 uses an alternate hierarchical inference code,
implemented in NumPyro instead of EMCEE, and Appendix G
5 shows results from simultaneously inferring for the mass
and redshift distributions along with the spins. In
Appendix G 6, we look at hierarchically inferred rates

across parameter space rather than probability density
functions to ensure that the normalization is not obscuring
the results. Finally, other miscellaneous checks for the
hierarchical inference framework and implementation are
excluding selection effects in spin, trying different methods
of breaking the degeneracy in the double-Gaussian tilt
distribution, and looking at different 70-event catalog
instantiations. Plots showing these results can be found
in Appendix G 7.

1. P-P plots

A crucial assumption of hierarchical inference is
that the input individual-event posteriors are themselves
reliable. To test this assumption and ensure that the
stochastically sampled BILBY individual-event posteriors
(see Appendix B) are indeed unbiased, we perform the
common diagnostic check of generating a P-P plot [63,64].
A P-P plot is generated by performing parameter

estimation on events with parameters distributed according
to their individual-event priors, in Gaussian noise. The
percentiles, or credible intervals (CIs), at which the
injections fall in their resultant one-dimensional, margin-
alized posterior distribution shall be uniformly distributed
if parameter estimation is unbiased. In our case, where the
injected distribution does not match the priors used in
parameter estimation, reweighting (see Appendix F) to the
injected distribution must be performed as a postprocessing
step. Specifically, we apply an optimal SNR cut of 10 to the
posteriors, and then reweight to the underlying population;
this procedure is analogous to not applying any SNR cut
and reweighting to the detected distribution.
P-P plots for spin magnitudes, spin tilt angles, masses,

and redshifts for the 300 injections per simulated popula-
tion are shown in Fig. 9. On the horizontal axis, the (sorted)
CIs are plotted. The vertical axis shows the cumulative
density function of these CIs, i.e. the frequency at which
each CI occurs. This should be a diagonal line with a slope
of 1 in the case of infinitely many injections: e.g. 20% of
the time, the injection should fall within the lower 20% CI
of its posterior. In the case of finitely many injections, these
cumulative density functions should roughly fall within a
3-σ region around the diagonal, the width of which is a
function of the number of events injected, as indicated by
the gray lines in Fig. 9.
To check if the BILBY posteriors pass the P-P test, we

look at the p values4 that each set of y-axis values shown in
Fig. 9 is uniform. Then, we take the p values of these
p values, which should also be uniformly distributed if the
sampling error is random. The p values (listed in the titles
of Fig. 9) for each of the three simulated populations is
above the threshold of randomness expected from the seven
parameters plotted (1=7 ∼ 0.143), indicating that the BILBY

posteriors pass the P-P test.

4We calculate p values using a Kolmogorov-Smirnov test.
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Though a necessary check, diagonal P-P plots are not a
sufficient condition for reliable individual-event posteriors.
As also seen in [65], a sampling algorithm can pass a P-P
test but still result in biased hierarchical inference recovery
beyond the 3-σ level. In Fig. 8, for example, the truth for the
means of the spin magnitude distribution and both modes
of the spin tilt distribution all lie outside of the 90% credible
interval for the recovered values. It remains unclear in our
case whether such discrepancies between the true and
recovered populations are due to individual-event sampling
issues that are not picked up by the P-P test, as was the case
in [65], or further unknown biases.

2. Simulated Gaussian individual-event spin posteriors

To better understand the relation between individual-
event and population-level measurement uncertainty, we
generate a series of simulated individual-event spin mag-
nitude and tilt angle posteriors for each of the same
300 GW events per population that we stochastically
sample in BILBY. We take these mock posteriors to be
Gaussian distributed with width σmeas.
First, we generate a series of mock posteriors without

any underlying spin-spin correlations with the following
steps. For each of the 300 injections per population,
(1) Take the true, injected value of each spin parameter

λtrue ∈ fχ1; χ2; cos θ1; cos θ2g;
and from it draw an observed maximum like-
lihood value λobs from the Gaussian distribution
N ðλtrue; σmeasÞ with mean λtrue and width σmeas.

(2) Draw N samples from N ½a;b�ðλobs; σmeasÞ where N is
the number of samples in the BILBY posterior for the
injection of interest and N ½a;b� is a Gaussian dis-
tribution truncated on ½a; b�. For spin magnitude this

truncation is between [0, 1], and for the cosine tilt
angle ½−1; 1�.

Specifically, we look at cases where σmeas ¼ 0.1, 0.3, and
0.5, as shown in Fig. 3. In all cases, we keep the BILBY mass
and redshift posteriors. Moreover, the simulated and BILBY

posteriors all have the same number of samples per event.
To simulate a more realistic case, we also generate a set

of mock Gaussian posteriors that do include underlying
interspin correlations, with the same covariance as BILBY

individual-event posteriors. For each injection, we first
find the covariance of the corresponding four-dimensional
BILBY posterior for fχ1; χ2; cos θ1; cos θ2g. We then gen-
erate a mock four-dimensional spin posterior with that
same covariance using the procedure enumerated above:
from truth, draw an observed maximum likelihood value;
then generate a posterior by sampling a truncated Gaussian
centered at that observed value. The only difference is that,
instead of separately generating each one-dimensional
posterior for magnitudes and tilts, we generate a four-
dimensional posterior that includes correlations.
The Beta+DoubleGaussian population model is able to recover

the underlying populations when using the simulated
Gaussian posteriors, as seen in Fig. 10. This is true for the
most-informative individual-event mock posteriors (σmeas ¼
0.1; light bluedotted), the least informative (σmeas ¼ 0.5; blue
dashed), and the most realistic (the posteriors with correla-
tions, labeled “realistic σmeas”; pink solid). In all three cases,
the true population lies within the 90%credible interval of the
recovered region. As the measurement error decreases, the
constraints get tighter around truth.

3. Reducing complexity of the explored
parameter spaces

In this section, we present two simplified scenarios for
individual-event sampling in BILBY, then one simplified
scenario for population inference in EMCEE.

FIG. 9. P-P plots for spin magnitudes (dark blue), spin tilt angles (light blue), masses (pink), and redshifts (orange) for each simulated
population (from left to right: HighSpinPrecessing, MediumSpin, LowSpinAligned). For 300 events per population, CIs (horizontal axis) are
plotted against the fraction of events for which the true, injected value is recovered in that CI, stochastically sampled using the BILBY

implementation of the nested sampler DYNESTY. The 1-, 2-, and 3-σ regions for 300 events are plotted in gray; all parameters stay within
the 3-σ region, corresponding to the outermost gray lines. The p values for each of the three populations are greater than the threshold for
seven parameters (∼0.143), indicating that the P-P test is passed.

GRAVITATIONAL WAVES CARRY INFORMATION BEYOND … PHYS. REV. D 109, 104036 (2024)

104036-19



FIG. 10. Inferred distributions obtained with the Beta+DoubleGaussian model for spin magnitude χ, spin tilt cos θ, effective χeff spin,
effective precessing spin χp, for the three simulated populations with simulated Gaussian individual-event spin posteriors. Results are
shown from 70 event catalogs with per-event spin magnitude and tilt measurement error σmeas ¼ 0.5 (light blue dotted), σmeas ¼ 0.1
(blue dashed), and with realistic σmeas and interparameter correlations taken from the BILBY posteriors (pink solid). The shaded region
denotes 90% of the probability, while the black solid line corresponds to the true population.

FIG. 11. Inferred distributions obtained with the Beta+DoubleGaussian model for spin magnitude χ, spin tilt cos θ, effective χeff spin,
effective precessing spin χp, for the three simulated populations with some form of reduced complexity when the sampling of individual-
event posteriors. The dashed lines show population results with the IMRPhenomXP waveform (used for both injection and recovery), which
excludes higher order modes, for 70 (yellow) and 300 (blue) event catalogs. The solid lines shown populations results from 100-event
catalogs using individual-event posteriors calculatedwith IMRPhenomXPHM, butwith various parameters fixed to their true values rather than
sampled over. In pink (“fixed extrinsic”), we have fixed the extrinsic parameters (i.e. everything aside from masses and spins) to their true
values. In orange (“fixed extrinsic + masses”), we further restrict by only sampling over spin magnitudes and tilts. Of these variations, only
the “fixed extrinsic + masses” individual-event posteriors yield population constraints that are improved from those shown in Fig. 2.
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On the side of individual-event inference, we first
reduce complexity by reducing the number of parameters
sampled over. The results shown in the main text use
posteriors where all fifteen dimensions of parameter-space
are sampled over (see Appendix B). To simplify, we first
conduct parameter estimation on all the same injections, but
fixing their extrinsic parameters (i.e. everything aside from
masses and spins) to the true, injected values. This yields
the population constraints shown in the pink solid lines in
Fig. 11 (for 100 events), labeled “fixed extrinsic parame-
ters.” We then simplify further and additionally fix the
masses and spin azimuthal angles to truth, generating the
orange solid lines in Fig. 11 and labeled “fixed extrinsic
parameters + masses.” Notably, the “fixed extrinsic +
masses” individual-event posteriors yield population con-
straints that are significantly improved from those shown in
Fig. 2. Since sampling convergence is more challenging
as the dimensionality of the explored parameter-space
increases, the trend we observe suggests that convergence
might at least partially contribute to the bias.
Next, we return to sampling over all parameters

(masses, spins, and extrinsic), but this time with a simpler
waveform model: IMRPhenomXP [27]. Coming from the
same family as IMRPhenomXPHM, the IMRPhenomXP model
does not contain higher order modes, which help break
degeneracies between BBH parameters. The yellow (light
blue) dashed lines in Fig. 11 show the population con-
straints from the same 70 (300) events as Fig. 2
but with individual-event posteriors sampled with
IMRPhenomXP. The recovered HighSpinPrecessing and
MediumSpin populations have a worse mismatch with the
truth than in Fig. 2, but the LowSpinAligned population is
recovered marginally better. Higher order modes become
more important to accurately constrain BBH parameters
as the degree of spin precession increases. Thus, the fact
that the HighSpinPrecessing population is the worst con-
strained by IMRPhenomXP is consistent with our under-
standing of the utility of higher order modes. We
emphasize that these findings are unrelated to waveform
systematics: we always inject and recover with the same
waveform model.
On the population level, to reduce the complexity of the

sampling, we conduct analyses where we fit for only the
spin magnitude or the tilt angle distribution, while fixing
the other to it’s true injected value. In theory, this could help
identify if one or the other of these parameters was the
driving factor for the mismatch between the true and
recovered populations seen in Fig. 2. The inferred spin
magnitude distribution for the LowSpinAligned population
under the Beta+DoubleGaussian model with the tilt distribution
fixed to truth is shown in blue in the top panel of Fig. 12;
the bottom panel shows the inverse. These recoveries are
indeed better than those in Fig. 2 (plotted in navy dashed
lines for comparison), i.e. the mean of the χ distribution and
mean of the larger subpopulation of the cos θ distribution
are both more accurate. However, even in this much

simplified version, the Beta+DoubleGaussian model again fails
to recover the truth, and in particular still shows no signs of
bimodality in the tilt distribution.

4. Hierarchical analysis with independent codes

It is always possible that our poor recovery of component
spin distributions is simply due to an unidentified
error in the code used to perform hierarchical inference.
As a safeguard against this possibility, we have repeated
the hierarchical analysis of the HighSpinPrecessing, MediumSpin,
and LowSpinAligned populations using a second, distinct body
of code. This alternate analysis code was developed entirely
independently, and furthermore relies on a different sto-
chastic sampler: whereas our main hierarchical inference
results are obtained using EMCEE, this alternative performs
inference using NumPyro [57,58], a probabilistic program-
ming library implemented with JAX [83]. The NumPyro code

FIG. 12. Top: inferred spin magnitude χ distribution (blue
shaded) for 70 events from the LowSpinAligned population under
the Beta+DoubleGaussian population model with the tilt-angle
distribution fixed to truth (black line in the bottom subplot).
Bottom: inferred cosine of the tilt angle cos θ distribution for the
same 70 events and model with the spin magnitude distribution
fixed to truth (black line in the top subplot). In both subplots, 90%
credible intervals for the distributions inferred by fitting for both
the spin magnitude and tilt distributions simultaneously, as shown
in Fig. 2, are shown in navy dashed lines.
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produces results nearly identical to those obtained with our
EMCEE-based code. This implies that our results are not
attributable to an unidentified error, unless that same error
was independently introduced into two bodies of code
created by two different analysts.

5. Simultaneously fitting the mass
and redshift distributions

Yet another source of potential bias we investigate is the
choice to fix, rather than fit, the binary black hole primary
mass and redshift distributions. In principle, we do not
expect significant covariance between the inferred primary
mass, redshift, and component spin distributions; our
simulated astrophysical populations have no underlying
correlations between mass, redshift, and spin. At the same
time, inferred component spins are expected to correlate
strongly with the mass ratio distribution, which in turn can
depend systematically on the choice of primary mass
distribution [35,65]. Furthermore, it is known that assump-
tions regarding spin magnitudes can at times affect infer-
ence of the high-redshift rate of black hole mergers [2,3].
Given these possibilities, it is possible that fixing the
presumed mass and redshift distributions (even fixing them
to the correct values, as we have done) introduces bias into
our spin measurements.
To check this, we repeat our inference but now

hierarchically inferring the black hole mass and redshift
distributions alongside the component spin distributions.

We model primary masses following the PowerLaw+Peak

model [2,3] and assume that the merger rate density
evolves with redshift as ð1þ zÞκ for some parameter κ.
This model also uses a slightly different spin magnitude
model: a truncated normal distribution instead of a Beta

distribution. We perform this inference using the alter-
native NumPyro code introduced in Appendix G 4 above.
The spin distributions inferred in this case are shown in
Fig. 13. The results are extremely similar to those in
Fig. 2. As before, we recover the HighSpinPrecessing and
MediumSpin component spin distributions reasonably well,
but do not successfully measure the LowSpinAligned dis-
tributions. In this latter case, we miss (or misplace) the
bimodality inherent in cos θ and, accordingly, systemati-
cally overestimate component spin magnitudes. Once
more, though, the χeff distribution is well recovered in
all three cases.

6. Recovering rates and spins simultaneously

GW data are generated according to a Poisson point
process, in which individual compact binaries stochasti-
cally trace an underlying rate density dR=dλ of mergers
across the space of binary parameters λ. When performing
hierarchical inference over GW catalogs, we are formally
reconstructing this rate density: measuring the “counts” of
events occurring in different regions of parameter space.
Often, however, we are concerned only about the shape of
dR=dλ, not its normalization. In this case, it is common to

FIG. 13. As in Fig. 2, but now when additionally inferring the mass and redshift distributions of the three simulated populations in
conjunction with their spin distributions. These results are furthermore produced with an entirely independent body of code, using
NumPyro rather than EMCEE to stochastically sample the population likelihood. Despite these differences, the results are nearly identical
to those in Fig. 2, indicating that the difficult recovery of injected component spin distributions is due neither to our choice to fix the
mass and redshift distributions in the main text, nor to unidentified errors in our hierarchical inference code.
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instead study the normalized probability distribution pðλÞ
of source parameters. This is achieved after the fact by
fitting for the merger rate but only presenting pðλÞ, or from
the very outset by marginalizing over and subsequently
ignoring the total rate, a procedure that gives Eq. (C1).
While this procedure is usually well behaved, there do

exist instances in which the choice to present the normal-
ized pðλÞ, rather than a reconstructed rate density, can yield
inadvertently misleading conclusions. In some cases, mod-
els that successfully recover the correct rate density can
appear to fail in recovering the correct probability density;
see discussion in Sec. 5 B of Callister et al. [48]. Thus,
when evaluating the goodness of fit of a given model, the
most robust results are obtained by comparing injected and
recovered merger rates, rather than injected and recovered
probability densities.
Given this discussion, does the poor agreement between

injected and recovered spin probability distributions sig-
nify a true modeling and inference failure? Or is this
disagreement illusory, due to our choice to compare
probability distributions rather than reconstructed merger
rate densities? To check this, we repeat the hierarchical
analyses of the three simulated populations but now fitting
for the overall merger rate alongside the hyperpara-
meters governing the component spin distributions.

As in Appendix G 5, we simultaneously infer the primary
mass and redshift distributions. Figure 14 shows our
inferred merger rates as a function of spin for each injected
population. Our initial conclusions hold: when simulta-
neously fitting for and presenting differential merger rates,
rather than probability densities, we still find that the
HighSpinPrecessing and MediumSpin populations are recovered
well, but we do not successfully recover the LowSpinAligned

population. Hence our poor recovery of LowSpinAligned is a
real effect, rather than a bias or misleading visualization
related to our choice to marginalize over the absolute
merger rate.

7. Other miscellaneous checks
for hierarchical inference

Finally, we present results from other miscellaneous
verification methods for our hierarchical inference pro-
cedure. First, we investigate different methods of breaking
the degeneracy between the two Gaussian components in
tilt-distribution portion of the Beta+DoubleGaussian model, see
Eq. (D7). For any model defined as a mixture of multiple
components, some method must be imposed to break the
degeneracy these components. For a bimodal Gaussian, this
can be done in three ways:

FIG. 14. As in Fig. 2, but now fitting for the absolute rate of black hole mergers as a function of spin, rather than component spin
probability distributions. When producing these results, we additionally infer the black hole mass and redshift distributions, as in Fig. 13
using NumPyro rather than EMCEE. The left-most column shows the differential merger rate dR=dm1dχ1χ2 per unit primary and secondary
spin magnitude, evaluated along the χ1 ¼ χ2 line. The second column analogously shows the merger rate dR=dm1d cos θ1d cos θ2
across the cos θ1 ¼ cos θ2 line, and the last two columns give the rates and dR=dm1dχp as a function of effective spins. In all cases, rates
are evaluated atm1 ¼ 30M⊙ and z ¼ 0.2. Even when plotting rates, we draw the same qualitative conclusions as originally identified in
Fig. 2: the HighSpinPrecessing and MediumSpin populations are recovered well, while the rate density of the LowSpinAligned population is
recovered poorly.
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(1) Imposing an ordering of the means: Assign “dis-
tribution 1” to be that with the smaller mean and
“distribution 2” to be that with the larger mean.

(2) Imposing an ordering of the widths: Assign “dis-
tribution 1” to be that which is narrower, and
“distribution 2” to be wider.

(3) Limiting the mixing fraction be ≤0.5: Assign “dis-
tribution 1” to be that which contains a smaller
fraction of events, and “distribution 2” to be that
which contains a larger fraction.

Sometimes one method of breaking the degeneracy
converges better when used in a hierarchical inference
procedure than another. We find that this is not the
case in this work: different methods perform identically
(within sampling error), as seen in Fig. 15. Using the
means (mixing fraction) of the Gaussians to break the
degeneracy yields the distributions plotted in blue
(orange). The results are consistent with each other.
We opt to use the mixing fraction to break degeneracy
throughout the bulk of this work because it is more
computationally efficient.
Next, to ensure there is no misspecification in the

selection function for spins, see Eq. (C5), we run
hierarchical inference without any spin selection effects.
Results are shown for the LowSpinAligned population pink
in Fig. 15 for 70 (dashed) and 300 (solid) events.
Selection effects in component spins are not strong,
and thus are not expected to effect population inference
significantly.5 This is indeed the case, as the distributions
inferred without spin selection effects are nearly identical
to those inferred with them (shown in orange). We also
note that for all results shown in this work, the number of
effective samples does not rail against the cut given
in Eq. (C6).
Our final check is to conduct hierarchical inference on

several different random 70-event catalog realizations
from the 300 total events per population. Just like
different Gaussian noise instantiations of the data lead
to variance in individual-event posteriors, so too can
random catalog instantiation lead to variance in the
recovered posteriors on the population parameters.
Some catalogs will yield a more accurately recovered
population than others, just by random chance from
working with finite numbers, see, e.g. Callister et al.
[34]. Figure 16 shows some expected variance in results,
but nothing corresponding to the degree of mismatch
between the true and inferred tilt distributions of the
LowSpinAligned population seen in Fig. 2. We therefore
conclude that we cannot attribute bias between the
injected and recovered LowSpinAligned population to be

from an “unlucky” catalog realization. Additionally, each
catalog instantiation leads to a different number
of per-event effective samples, see Eq. (C7) and corre-
sponding discussion in Appendix C, which we find
within a given population are not correlated to the by-
eye goodness of fit, as seen in the rightmost column of
Fig. 16. However, the LowSpinAligned population yields, on
average, the lowest Neff values and is the least accurate
fit. This leads us to believe that the absence of inferred

FIG. 15. Inferred distributions (blue) for spin magnitude χ (top
subplot) and cosine of the tilt angle cos θ (bottom subplot) for 70
events from the LowSpinAligned population obtained with the Beta

+DoubleGaussian population model under various conditions. All
results from 70 (300) event catalogs are plotted with dashed
(solid) lines. In blue and orange we compared two methods of
breaking the degeneracy between the two Gaussian subpopula-
tions in the Beta+DoubleGaussian tilt distribution: first, restricting
the mean of distribution 1 to be smaller than that of distribution 2
(μ1;cos θ < μ2;cos θ; blue), and second, restricting the mixing
fraction to be less than one half, effectively assigning distribution
1 to be that containing less events (f < 0.5; orange). In orange
and pink, we compare results where we do (orange) versus do not
(pink) include spin selection effects (both using the f < 0.5
method of breaking degeneracy). None of these variations
produce population constraints improved from those shown in
Fig. 2; the bimodality of the tilt-angle distribution remains
unrecovered.

5Selections effects are strong for masses and redshift, on the
other hand. This can be seen when comparing the underlying and
detected distributions in Fig. 5.
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bimodality is not due to the issue of our events not having
enough effective samples, although the fact that the
minimum event-level Neff over catalog instantiations is
small could be another source of imperfect recovery. As

part of future work, we plan to explore the uncertainty in
difference in log-likelihood formulated in Talbot and
Golomb [94] as another way to gauge whether our
Monte Carlo estimations avoid bias.
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Ohme, G. Pratten, and M. Pürrer, Simple model of complete
precessing black-hole-binary gravitational waveforms,
Phys. Rev. Lett. 113, 151101 (2014).

[74] J. Veitch et al., Parameter estimation for compact binaries
with ground-based gravitational-wave observations using
the LALInference software library, Phys. Rev. D 91, 042003
(2015).

[75] R. J. E. Smith, C. Talbot, F. Hernandez Vivanco, and E.
Thrane, Inferring the population properties of binary black
holes from unresolved gravitational waves, Mon. Not. R.
Astron. Soc. 496, 3281 (2020).

[76] https://github.com/simonajmiller/measuring-bbh-component-
spin.

[77] C. R. Harris et al., Array programming with NumPy, Nature
(London) 585, 357 (2020).

[78] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,
T. Reddy et al., SciPy 1.0: Fundamental algorithms for
scientific computing in Python, Nat. Methods 17, 261
(2020).

[79] J. D. Hunter, Mtplotlib: A 2d graphics environment, Comput.
Sci. Eng. 9, 90 (2007).

[80] M. L. Waskom, SEABORN: Statistical data visualization,
J. Open Source Softwaare 6, 3021 (2021).

[81] Astropy Collaboration, Astropy: A community Python pack-
age for astronomy, Astron. Astrophys. 558, A33 (2013).

[82] Astropy Collaboration, The Astropy Project: Building an
open-science project and status of the v2.0 Core Package,
Astron. J. 156, 123 (2018).

GRAVITATIONAL WAVES CARRY INFORMATION BEYOND … PHYS. REV. D 109, 104036 (2024)

104036-27

https://doi.org/10.1103/PhysRevD.103.064067
https://doi.org/10.1103/PhysRevD.103.064067
https://doi.org/10.1103/PhysRevD.103.083022
https://doi.org/10.1103/PhysRevD.103.083022
https://doi.org/10.1103/PhysRevD.86.104063
https://arXiv.org/abs/2302.07289
https://dcc.ligo.org/LIGO-T2000012/public
https://dcc.ligo.org/LIGO-T2000012/public
https://dcc.ligo.org/LIGO-T2000012/public
https://doi.org/10.1093/mnras/staa278
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.1093/mnras/staa2850
https://doi.org/10.3847/2041-8213/ab77c9
https://doi.org/10.1103/PhysRevD.108.082006
https://doi.org/10.1103/PhysRevD.108.082006
https://doi.org/10.3847/1538-4357/aced02
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://arXiv.org/abs/1912.11554
https://doi.org/10.1063/1.1835214
https://doi.org/10.1063/1.1835214
https://doi.org/10.1093/mnras/stz896
https://arXiv.org/abs/2007.05579
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1198/106186006X136976
https://arXiv.org/abs/1804.06788
https://doi.org/10.1093/mnras/stac347
https://doi.org/10.1093/mnras/stac347
https://doi.org/10.3847/2041-8213/abc827
https://doi.org/10.3847/2041-8213/abc827
https://doi.org/10.3847/1538-4357/ad1604
https://doi.org/10.1016/S0378-3758(02)00303-8
https://doi.org/10.1016/S0378-3758(02)00303-8
https://doi.org/10.1214/07-STS235
https://doi.org/10.1214/07-STS235
https://doi.org/10.1103/PhysRevD.96.023012
https://doi.org/10.1103/PhysRevD.96.023012
https://doi.org/10.1103/PhysRevD.93.122003
https://doi.org/10.1103/PhysRevD.93.122003
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1093/mnras/staa1642
https://doi.org/10.1093/mnras/staa1642
https://github.com/simonajmiller/measuring-bbh-component-spin
https://github.com/simonajmiller/measuring-bbh-component-spin
https://github.com/simonajmiller/measuring-bbh-component-spin
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.3847/1538-3881/aabc4f


[83] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary
et al., JAX: Composable transformations of Python+NumPy
programs (2018).

[84] C. Talbot and E. Thrane, Measuring the binary black hole
mass spectrum with an astrophysically motivated parameter-
ization, Astrophys. J. 856, 173 (2018).

[85] P. A. R. Ade et al. (Planck Collaboration), Planck 2013
results. XVI. Cosmological parameters, Astron. Astrophys.
571, A16 (2014).

[86] K. S. Thorne, Gravitational radiation, inThreeHundred Years
of Gravitation (Cambridge University Press, Cambridge,
1987), pp. 330–458.

[87] L. S. Finn and D. F. Chernoff, Observing binary inspiral in
gravitational radiation: One interferometer, Phys. Rev. D 47,
2198 (1993).

[88] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and
J. D. E. Creighton, FINDCHIRP: An algorithm for detection of
gravitational waves from inspiraling compact binaries,
Phys. Rev. D 85, 122006 (2012).

[89] R. Essick, Semianalytic sensitivity estimates for catalogs of
gravitational-wave transients, Phys. Rev. D 108, 043011
(2023).

[90] P. C. Peters, Gravitational radiation and the motion of two
point masses, Phys. Rev. 136, B1224 (1964).

[91] L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G.
Wiseman, Gravitational-radiation damping of compact
binary systems to second post-Newtonian order, Phys.
Rev. Lett. 74, 3515 (1995).

[92] E. Thrane and C. Talbot, An introduction to Bayesian
inference in gravitational-wave astronomy: Parameter esti-
mation, model selection, and hierarchical models, Pub.
Astron. Soc. Aust. 36, e010 (2019).

[93] W.M. Farr, Accuracy requirements for empirically-mea-
sured selection functions, Res. Notes Am. Astron. Soc. 3, 66
(2019).

[94] C. Talbot and J. Golomb, Growing pains: Understanding the
impact of likelihood uncertainty on hierarchical Bayesian
inference for gravitational-wave astronomy, Mon. Not. R.
Astron. Soc. 526, 3495 (2023).

[95] T. A. Callister, C.-J. Haster, K. K. Y. Ng, S. Vitale, and
W.M. Farr, Who ordered that? unequal-mass binary black
hole mergers have larger effective spins, Astrophys. J. Lett.
922, L5 (2021).

MILLER, KO, CALLISTER, and CHATZIIOANNOU PHYS. REV. D 109, 104036 (2024)

104036-28

https://doi.org/10.3847/1538-4357/aab34c
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1103/PhysRevD.47.2198
https://doi.org/10.1103/PhysRevD.47.2198
https://doi.org/10.1103/PhysRevD.85.122006
https://doi.org/10.1103/PhysRevD.108.043011
https://doi.org/10.1103/PhysRevD.108.043011
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1103/PhysRevLett.74.3515
https://doi.org/10.1103/PhysRevLett.74.3515
https://doi.org/10.1017/pasa.2019.2
https://doi.org/10.1017/pasa.2019.2
https://doi.org/10.3847/2515-5172/ab1d5f
https://doi.org/10.3847/2515-5172/ab1d5f
https://doi.org/10.1093/mnras/stad2968
https://doi.org/10.1093/mnras/stad2968
https://doi.org/10.3847/2041-8213/ac2ccc
https://doi.org/10.3847/2041-8213/ac2ccc

