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The class of Galileon scalar fields theories encapsulate the Vainshtein screening mechanism, which is
characteristic of a large range of infrared modified theories of gravity. Such theories can lead to testable
departures from general relativity through fifth forces and new scalar modes of gravitational radiation.
However, the inherent nonlinearity of the Vainshtein mechanism has limited analytic attempts to describe
Galileon theories with both cubic and quartic interactions. To improve on this, we perform direct numerical
simulations of the quartic Galileon model for a rotating binary source and infer the power spectrum of given
multipoles. To tame numerical instabilities we utilize a low-pass filter, extending previous work on
the cubic Galileon. Our findings show that the multipole expansion is well defined and under control.
Moreover, our results confirm that despite being a nonlinear scalar, the dominant Galileon radiation is
quadrupole, and we find a new scaling behavior deep inside the Vainshtein region.
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I. INTRODUCTION

Of all the screening mechanisms proposed to account
for how light dark energy degrees of freedom can affect
cosmological evolution without being ruled out by current
tests of gravity, the Vainshtein mechanism [1–10] remains
simultaneously the most interesting and potentially tech-
nically natural but least well understood. It is automatically
built into large classes of massive theories of gravity (both
soft and hard mass) without any need for tuning [5–17].
Furthermore these theories have a universal decoupling
limit whose description in terms of a scalar field accom-
panied by an intriguing nonlinearly realized Galileon sym-
metry has an interesting mathematical structure [18–20].
However, the Vainshtein mechanism is poorly under-
stood beyond idealized symmetric situations due to its
inherent nonlinear nature, although various results have
been obtained in a variety of contexts [21–40]. Further-
more, those nonlinear interactions significantly complicate

numerical evolution with certain approaches being ill-
posed from the outset.
The simplest example of the Vainshtein mechanism is

provided by the cubic Galileon [11] which originally
emerged as the decoupling limit of the Dvali-Gabadadze-
Porrati model [41]. This model is sufficiently simple to be
reasonably acquiescent to analytic approximations [42,43].
In a recent work, three distinct numerical approaches
were utilized to describe the scalar radiation emitted by
a binary system, such as a binary pulsar [44]. One of these
approaches built on previous works [45] by directly
simulating the cubic Galileon using a low-pass filter to
suppress any numerical instabilities. The other approaches
utilized an extended system of equations of motion, in
effect a well-posed UV completion, designed to reproduce
the Galileon theory at low energies. In the present work
we will extend the low-pass filter approach to the quartic
Galileon, and in a companion work [46] the UV completion
method will similarly be utilized for the quartic Galileon
theories. What makes the quartic Galileon particularly
challenging is that, unlike in the cubic case, analytic
attempts to describe scalar radiation using the one-body
effective approach fail [43]. This failure is a reflection of
the fact that on linearizing around spherically symmetric
backgrounds, the usual centrifugal repulsion which sup-
presses power in high order multipoles is lost, leading to
a superficially divergent power spectrum. This simply
indicates the failure of perturbative analytic approaches.
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It is worth noting that this problem is ameliorated by having
a larger cubic Galileon term, and this is mirrored by our
numerical simulations which are more stable for large cubic
interactions.
In the present work we show that just as for the cubic

case, the Vainshtein mechanism is successfully realized
for these time-dependent solution in the quartic Galileon
models (in the presence of a cubic interaction), something
which could not be inferred from any approximate analytic
treatment. In common with the pure cubic Galileon, we find
that the dominant scalar radiation is quadrupole. However,
when the source radiates in the region in which the quartic
interaction dominates, the scaling of the radiated power
with both frequency and multipole number is distinct from
the cubic case demonstrating that the quartic Galileon
screening while qualitatively similar to the cubic is quan-
titatively distinct. The results in this paper closely parallel

those in [46] where the quartic Galileon system is treated
by embedding it in a “UV completion” that renders the
dynamics well posed.

II. THE MODEL

The Galileon is a scalar field theory which exhibits a non-
linearly realized “Galileon” symmetry π → π þ vμxμ [18].
Among the class of interactions that are invariant under this
symmetry are a finite set of interactions that lead to second
order equations of motion. In 3þ 1 dimensions these are
the cubic, quartic, and quintic Galileon terms. In the present
work we shall be concerned with the generic quartic
Galileon meaning that we shall include both cubic and
quartic interactions and consider a coupling to the trace of
the stress energy of matter1
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The precise form of the normalization is characteristic of
how the Galileon arises as the helicity-zero mode in
massive gravity theories [17,47]. If we assume spherical
symmetry and a static point source, then we can integrate
(2.1) to obtain an ordinary differential equation for E≡
dπ=dr [35,43,48]
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We will use a system consisting of two Gaussian “masses”
orbiting around their center of mass

T ¼ −A
�
e−ðr⃗þðtÞ=σÞ2 þ e−ðr⃗−ðtÞ=σÞ2

�
: ð2:3Þ

The locations of each mass, at a given time, are r⃗ðtÞ ¼
ðx� r̄ cos ðΩptÞ=2; y� r̄ sin ðΩptÞ=2; zÞ and the constant
A is chosen so that the total mass of the system is Ms ¼R
d3xρ ¼ R

d3xT and r̄ is the diameter of the circular orbit.
We constrain the system to be Keplerian,

Ms ¼ 8πM2
Plr̄

3Ω2
p; ð2:4Þ

for an orbital frequency Ωp, which is to say we will ignore
relativistic corrections to the orbit. The quantity Ωpr̄ is an
important quantity that parametrizes the power in scalar
radiation from the Klein-Gordon system,

PKG
2 ¼ Ms

r̄

ðΩpr̄Þ8
45

: ð2:5Þ

III. NUMERICAL IMPLEMENTATION

The Galileon system has been studied both analytically
and numerically (see e.g. [23,27,36–38,42,43,45,49]). At
least two of the numerical implementations use modified
versions of GABE using a standard, CPU implementation
[45] as well as a GPU implementation [44]. In [45] the
authors show that turning on the sources and the nonlinear
interactions slowly at the beginning of the simulation can
avoid the issue of a singular effective metric [43]. This
method was made more robust in the GPU implementation,
one of the methods described in [44], where efficient fast
Fourier transforms made it possible to calculate mixed
spatial derivatives using spectral methods and cutoff high
frequency modes. In the present work our goal is to extend
these methods to the quartic Galileon.
All of the simulations presented here use grid sizes of

N3 ¼ 3843 points where the length of each side is L ¼ 50r̄.
These parameters are chosen as to be comparable to the
previous literature. We use a set of dimensionless units to
rescale spacetime (we can choose physical units such that
MPl ¼ 1)

xμpr ¼ 2

r̄
xμ; ð3:1Þ

and the Galileon field,

πpr ¼
ffiffiffiffiffiffiffi
r̄
Ms

r
π: ð3:2Þ

1We closely follow the notation of [46].
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In these dimensionless units, we can rewrite the quartic
equation of motion (2.1) in a pictorial form that allows
us to separate the nonlinear interactions On from the
strength of these interactions κn and the numerical turn-
on functions, fn,

O2 þ f3ðtprÞκ3O3 þ f4ðtprÞκ4O4 ¼ −f1ðtprÞJpr;

where O2 is the usual Klein-Gordon term

O2 ¼ □prπpr; ð3:3Þ

and we have two nonlinear operators
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The source is taken to be

J ¼ 2
ffiffiffi
2

p
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where we take σpr ¼ σ2=r̄ ¼ 1=3. The cubic interaction is
parametrized by the dimensionless quantity

κ3 ¼
1
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whereas the quartic interaction is parametrized by
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1
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If we only consider the cubic term, then there is a clear
connection between the size of κ3 and the Vainstein radius,

rv ¼
1
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In the presence of a quartic term, we have two important
radii that differentiate between the regions where the
quartic term, the cubic term, or the Klein-Gordon term
dominates the left-hand side of (2.2). While we can set an
expectation of where the second of these boundaries is
based on (3.9), we can numerically solve (2.2) to find both.
In a particular EFT realization, there might be a clear

reason to expect that the two interactions scales are related
Λ4 ∼ Λ3, however generically they can be independent.

In order to truly probe the Vainshtein screening effect of the
quartic Galileon we will choose a value of κ4 which is large
enough for the quartic term to dominate in the region of the
source. To use the parametrization of [46], we set

κ4 ¼ κ23ξ
6; ð3:10Þ

where ξ ¼ 0.6 is a fiducial value that realizes our goal.
Figure 1 demonstrates how this choice puts the boundary
between the region of quartic dominance and the region of
cubic dominate at a value of r=r̄ ≈ 0.85—this value is
substantially far away from the sources which orbit at
r=r̄ ¼ 0.5 with a width of σ=r̄ ¼ 1=6. Larger values of ξ
should, in principle, be possible; however, they require
significantly more computational time due to the need to
slowly turn on the interactions.
In the present work we need to be more careful than in

previous work [44,45] when turning on the sources and
interactions. These choices are not unique, but they allow
us to get all the simulations presented here to a stable state,
where the code can run until its end time. We turn on the
source using

f1ðtprÞ ¼
tanhð0.1ðtpr − 25ÞÞ þ tanhð2.5Þ

1þ tanhð2.5Þ − 0.01
; ð3:11Þ

and the two interactions using

f3ðtprÞ¼
1

4

�
tanhð:015ðtpr−250ÞÞþ tanhð3.75Þ�2; ð3:12Þ

and

FIG. 1. The relative contributions of the different terms on the
left-hand side of the spherically symmetric equation of motion
(2.2). We show the relative contributions of the quartic (blue),
cubic (red), and Klein-Gordon (black) contributions for our
choice of ξ ¼ 0.6 (solid) and what would happen in the case
of a larger, ξ ¼ 0.95 (dashed). In both cases we set the size of κ3
such that the Vainstein radius is approximately r=r̄ ¼ 20.
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f4ðtprÞ ¼
1

4

�
tanhð:0075ðtpr − 675ÞÞ þ tanhð5.0625Þ�2:

ð3:13Þ

These are smoother and slower functions than are needed
for pure cubic simulations and are shown graphically in
Fig. 2. In addition to the simulations needing longer
program time to initialize, we needed to reduce the time
step from the choice made in [44] to Δt ¼ 3Δx=625 ¼
0.0048Δx.
We use the same CUDA-accelerated version of GABE as

described in Sec. III a of [44]. In this numerical scheme, we
employ spectral methods to calculate spatial derivatives of
π and ϕ̇; because the derivatives exist in Fourier space, we
apply a low-pass filter,

FðkÞ ¼ 1

2
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�
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; ð3:14Þ

on ϕ̇ at the end of every time step. As in [44], the cutoff scale
is chosen to be the equivalent one-dimensional Nyquist
frequency, k1DN ¼ dkN=2 ¼ πN=2, where dk ¼ 2π=L.
Again, this is not a unique choice, but one that allows for
our simulations to remain stable until late times.
One major challenge that has been apparent in numerical

simulations of the Galileon theories is the treatment of
outgoing wave boundary conditions [44]. In the present
work we continue to use

π̇ ¼ −
π

r
− ∂rπ; ð3:15Þ

which is strictly speaking only valid for massless Klein-
Gordon fields. Although in principle this should be suitable
when applied to an interacting Galileon at large distances,
in practice it is hard to perform simulations for large
hierarchies, meaning that in practice the radii at which we
evaluate the boundary conditions is not significantly larger

than the Vainshtein radii. Given this, the interaction terms
have not truly switched off and the above boundary condi-
tions can lead to waves reflecting at the boundary of the
simulation and potentially generating instabilities that
terminate the runs too soon. In the alternative UV com-
pletion method considered for the cubic Galileon in [44]
and the quartic Galileon [46] a second problem arises: it is
difficult to implement outgoing boundary conditions even
for a linear massive scalar. We leave to future work a
potential solution to these problems.

IV. RESULTS

To illustrate the efficacy of our numerical scheme, we
consider the fiducial model with parameters Ωpr̄ ¼ 0.2,
r̄=rv ¼ 0.05 together with a choice of ξ ¼ 0.6. For these
values, our dimensionless couplings are κ3 ¼ 1.70 × 105

and κ4 ¼ 1.35 × 109. We find that when running the
simulations, a large ξ (and hence large quartic Galileon)
necessitates a longer turn on time for the simulations,
making the runs inefficient. The alternative approach con-
sidered in [46] has the advantage that it may be implemented
without needing to slowly turn on the interactions.
While there is no analytic solution to the time-dependent

problem, we can still look to validate the code by
comparing the time-averaged field profile to that of the
(semi)analytic solution to (2.2). Figure 3 shows a com-
parison of rEðrÞ, as calculated by taking the positive x axis
in the simulation to be the r direction and averaging each
point along that axis over the final two periods of the
simulation. We show both the entire range of the positive
x axis as well as a closeup near the center. We can see that
the solution is nearly identical to the spherically symmetric
profile—and much different from the cubic-only profile.
Deviations from the solution are expected at small r=r̄≲ 1
where the source is not well described as a point source.
We can now turn to calculating the power emitted by the

system. The outgoing energy flux is given by [45]

tπ0r ¼
3

2

�
1þ 4

3Λ3

E
r

�
π̇
dπ
dr

: ð4:1Þ

Note that this is not the nonlinear expression for the power
but rather that for perturbations around a spherically
symmetric background. At large distances where the back-
ground monopole dominates this is expected to be a
sufficiently good approximation to the true radiated power.
We evaluate the relation (4.1) at a radius where the Klein-

Gordon term dominates, r=r̄ ¼ 22.5, which is halfway
between the Vainshtein radius and the closest edge of the
box. Again, following the procedure first described in [44],
we evaluate dπ=dr and π̇ on a set of points on the sphere
defined by the HEALPIX

2 standard using a trilinear

FIG. 2. The turn-on functions, f1ðtÞ (blue dashed), f3ðtÞ (black
dotted), and f4ðtÞ (red solid). In the fiducial case, Ωpr̄ ¼ 0.2 so
the system orbits about every t=r̄ ¼ 30.

2http://healpix.sourceforge.net.
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interpolation. We can then use the efficient HEALPY [50]
routines to decompose this power onto the spherical
harmonics. When we report the power, we further perform
a rolling time average over one orbital period.
Figure 4 shows how the first three moments, namely the

monopole, dipole, and quadrupole, behave as a function of
time. We note that the dipole power is zero to machine
precision throughout the simulation. The initially large
monopole is an artifact of the way the interactions and
source are turned on for which energy is not conserved and
a large monopole artificially appears. We find that time-
averaged quadrupole power remains the dominant mode, as
in Fig. 4 in the presence of the quartic interaction.
Figure 5 shows how the power in the quadrupole differs

in the quartic case from the purely cubic Galileon.
Interestingly for our fiducial values the power with the
quartic interaction included for the same value of cubic
terms is actually larger, although not by orders of

magnitude. Another major difference that arises when
the quartic term is added is the modification of the spectrum
of power as distributed among the modes. This is illustrated
in Fig. 6(a). For cubic case the best-fit shows an l
dependence of P ∝ l−6.48, whereas the quartic case shows
a best fit of P ∝ l−9.41 as in Fig. 6(a).
We can now turn our attention to parametrizing how the

power depends on Ωpr̄. To isolate this, we calculate the
ratio of the quadrupole power from our simulations to
the Klein-Gordon expectation (2.5) as can be seen in
Fig. 6(b). A simple power-law fit of the scaling of the
power with frequency gives

hP2i
hPKG

2 i ∝ ðΩpr̄Þ−2.07; ð4:2Þ

which varies significantly from the cubic-only case,
where [45]

FIG. 3. The profile of rE averaged over two periods at the end of a simulation with Ωpr̄ ¼ 0.2 (black dots). This is compared to the
static spherically symmetric solution (2.2) (red, solid) and a cubic-only static spherically symmetric solution (blue, dotted) and a purely
Klein-Gordon static spherically symmetric solution (gray, dashed). The left panel shows the full range of 0 < r < 50r̄ resolved in our
simulations and the right panel shows just the range 0 < r < 20r̄ to more clearly show disagreement between the spherically symmetric
expectations and the simulation near the source.

FIG. 4. Power as a function of time for the fiducial, Ωpr̄ ¼ 0.2
and ξ ¼ 0.6 model. The curves show the period-averaged power
in the monopole (black), dipole (blue), and quadrupole (red) as a
function of time.

FIG. 5. The quadrupole power, P2, for our fiducial simulation,
Ωpr̄ ¼ 0.2, κ4 ¼ 0.6 (red, solid) compared to the quadrupole
power in a cubic Galileon, κ4 ¼ 0 simulation (black, dotted). Note
the increase in power as the quartic interactions are turned on.
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hPCubic
2 i

hPKG
2 i ∝ ðΩpr̄Þ−2.5; ð4:3Þ

where the latter was consistent with analytic approxima-
tions [42,43]. Unfortunately we do not at present have a
semianalytic understanding of this distinct scaling; how-
ever it is worth noting that already for the static solutions
the scaling of π with r in the region where the quartic
dominates is quite different from the pure cubic theory.
Finally, we can address how the quadrupole power reacts

to changing the strength of the coupling. While we have
achieved good numerical convergence for our fiducial
model where r̄=rv ¼ 0.05, there are numerical challenges
to significantly change this ratio. If we increase r̄=rv, then
the inner screening radius decreases and begins to overlap
with the sources—which are centered at r ¼ r̄=2 with
width σ ¼ r̄=6. If we decrease r̄=rv, then we quickly move
to regions of numerical instability. At the same time, we are
able to probe within this interval, as can be seen in Fig. 7.
While the range of values of f̄=rv is narrow, we can do a
power-law fit to the four simulations in Fig. 7 to predict a
scaling

hP2i
hPKG

2 i ∝
�
r̄
rv

�
2.98

; ð4:4Þ

which differs from the cubic case [45]

hPCubic
2 i

hPKG
2 i ∝

�
r̄
rv

�
1.44

: ð4:5Þ

While we recognize the limits of such a fit, the 95% con-
fidence interval of the exponent in (4.4) is 2.98� 0.80,

which indicates that the system shows an expected much
stronger screening than in the cubic case alone. Within our
error range it does look like a power of 3 is a good fit.

V. CONCLUSIONS

In this work we have been able to successfully simulate a
generic quartic Galileon, and use this to determine the
power radiated into scalar radiation for a rotating binary
source. This is of great interest in models of modified
gravity where additional scalar degrees of freedom can
couple to the trace of the stress energy with gravitational
strength but are at the same time screened by the Vainshtein
mechanism. Understanding the amount of power for a
generic binary system such as a binary pulsar is important
in order to put observational constraints on such models.
The present work is a step in this direction for modified

(a) (b)

FIG. 6. The period-averaged power at the end of a set of simulations with (a) multipoles and (b) varying Ωpr̄. (a) Power versus
multipole. Blue dots denote the cubic, κ4 ¼ 0, Galileon whereas the black dots the fiducial quartic Galileon system. In both cases,
Ωpr̄ ¼ 0.2. The dashed red line is the best-fit to the low-l multipoles for the cubic system and the dashed red line is the best-fit for the
quartic system. (b) Power versus orbital velocity. The dots show the late-time qudrapole power versus Ωpr̄ for a set of quartic Gaileon
simulations. The dotted red line is a best-fit line.

FIG. 7. Relative power, hPCubic
2 i=hPKG

2 i as a function of r̄=rv
time for the fiducial, Ωpr̄ ¼ 0.2 and ξ ¼ 0.6 model.
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gravity models whose decoupling limit is well described by
a quartic Galileon, as is common in both soft and hard
massive gravity theories.
First and foremost our results show that the Vainshtein

mechanism is fully active in this time-dependent situation,
as previously found in simulations of the cubic Galileon
[44,45]. In particular the time averaged field configuration
matches well analytic expectations of the screened solution.
This is a nontrivial result since attempts to provide an
approximate semianalytic treatment fail [42,43]. We con-
firm that despite the highly nonlinear nature of the system,
the dominant scalar radiation is quadrupole, with the next
most significant mode l ¼ 4 being typically several orders
of magnitude smaller. Although these results parallel the
cubic case, we find that the quartic Galileon leads to a
qualitatively similar but quantitatively different scaling of
the power with orbital velocity, Vainshtein radius, and
multipole number.
Although the particular numerical scheme we have used

here is successful, it was necessary to turn each interaction
and source on slowly to tame any potential numerical
instabilities which may arise due to the fact that the
Galileon system is not strictly well posed. Furthermore
the larger the quartic coupling parameter ξ the slower the
rate of turn on needed to avoid any instabilities (we were

able to simulate ξ ≤ 0.6 with smaller ξ being considerably
easier). This unfortunately renders simulating large hier-
archies ξ ≫ 1 too costly in time at present. A solution to the
turn on problem is to use the UV completion method
proposed in [44], which is considered for the quartic case
in [46]. This latter method avoids the particular instabilities
associated with the system of equations not being well
posed. Both the present simulation and that of [46] have
difficulty giving a proper treatment of the radial boundary
conditions and we suspect that a better treatment of the
boundary conditions will improve the stability of typi-
cal runs.
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