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Within the framework of general relativity, we explore the interior of the Schwarzschild black hole
before complete collapse occurs, finding that the exterior is perfectly compatible with a source much more
complex than a pointlike mass. We provide a set of inner geometries for singular and regular black holes
that smoothly joint the Schwarzschild exterior at the horizon r ¼ h ¼ 2M, and which can therefore be
regarded as suitable initial conditions for collapse. In particular, the regular solutions might be an
alternative to the Schwarzschild black hole as the final stage of gravitational collapse, and thus useful to
study the validity of general relativity in environments of high curvature.
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I. INTRODUCTION

In pure general relativity (GR), that is, without modifica-
tions or any other interaction, there is a fairlywell-known and
very well established result: the only possible spherically
symmetric black hole (BH) solution, without cosmological
constant, is the one given by the Schwarzschild metric [1],
namely,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where

fðrÞ ¼ 1 −
2M
r

; 0 < r ≤ ∞: ð2Þ
This solution has no other free parameter beyond its total
massM, a pointlike mass at the center r ¼ 0, giving rise to
a physical singularity. It also contains a coordinate singu-
larity at r ¼ 2M≡ h, indicating the so-called event
horizon, a hypersurface that separates two causally dis-
connected regions of space-time, i.e., the inner and outer
regions [2–6]. The former, given by r < h, contains the
central singularity hidden behind the event horizon. In this
region the metric function fðrÞ becomes negative, making
the radial and temporal coordinates exchange roles, thus
revealing the dynamic nature of the inner region.
Consequently, any form of matter inevitably face the same
fate: collapsing into the central singularity. This is a general
and strongly established result in GR, independent of any
symmetry: the celebrated Penrose singularity theorem [7].
On the other hand, the main feature of the outer region,
defined for all r > h, apart from being static and asymp-
totically flat, is its strong observational support (slow

rotation). In this regard, we can safely say that the
space-time for r > h is sourced by a very compact dark
configuration of radius h. However, any observer in this
region will have no access to explore the internal structure
of this compact configuration, or, better said, this observer
could cross the border r ¼ h, collect data, but never return
or send information to the outer region. This is, indeed, the
very definition of event horizon. Regarding the two regions
described above, in this paper we address the question of
whether there is alternative in GR beyond the pointlike
mass as a source for the BH region r > h. Since Penrose’s
theorem clearly establishes the singularity as the final stage
of gravitational collapse, the question seems rhetorical.
However, we do not intend to question the central singu-
larity as the final result of gravitational collapse, at least not
in the case of singular BHs. What we want to do is to
describe an inner region before all form of energy encoded
in the total mass M has collapsed into the singularity,
and doing it by (i) keeping the Schwarzschild exterior
untouched, (ii) M as the only free parameter, (iii) without
using any form of exotic matter or any additional geometric
structure (thin shell) near the horizon, and (iv) keeping tidal
forces finite everywhere. As far as we know, there is no
solution with these characteristics. If such a solution exists,
then it will be particularly useful, among other applications,
to build analytic models for gravitational collapse, to
explore in detail the formation of BHs, horizons, singu-
larities, and possible scenarios to avoid them.

II. INSIDE THE BLACK HOLE

Let us start from the Hilbert-Einstein action

S ¼
Z �

R
2κ

þ LM

� ffiffiffiffiffiffi
−g

p
d4x; ð3Þ
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with κ ¼ 8πGN and c ¼ 1, R the scalar curvature, and LM a
Lagrangian density which contains ordinary matter. Our
study will be limited to spherically symmetric and static
spacetimes, whose line element can be written as [8]

ds2 ¼ −eΦðrÞ
�
1 −

2mðrÞ
r

�
dt2 þ dr2

1 − 2mðrÞ
r

þ r2dΩ2; ð4Þ

where ΦðrÞ is a metric function and mðrÞ stands for the
Misner-Sharp mass function. First, let us start by imposing
Φ ¼ 0. This assures that any eventual BH solution will
belong to the same subclass of spacetime as Schwarzschild,
i.e., Kerr-Schild [9]. Second, since we want to explore a
possible Schwarzschild interior beyond the point mass
source at r ¼ 0, we will demand for the metric (4) that
mðrÞ ¼ M only for r ≥ h, where

M≡mðrÞjr¼h ¼
h
2

ð5Þ

stands for the total mass of the BH and h its event horizon.
Under Φ ¼ 0, Einstein field equations become

ϵ ¼ 2m0

κr2
; pr ¼ −

2m0

κr2
; pθ ¼ −

m00

κr
; ð6Þ

where the energy-momentum tensor,

Tμ
ν ¼ diag½pr;−ϵ; pθ; pθ�; ð7Þ

contains an energy density ϵ, radial pressure pr, and
transverse pressure pθ. Notice that a characteristic feature
of Einstein equations in (6) is its linearity in the mass
function mðrÞ. Therefore, any solution mðrÞ of the system
(6) can be coupled with a second one m̂ðrÞ to generate a
new solution m̄ðrÞ as mðrÞ → m̄ðrÞ ¼ mðrÞ þ m̂ðrÞ. This
represents a trivial case of the so-called gravitational
decoupling [10,11]. Finally, if there is matter inside the
BH, i.e., Tμν ≠ 0, the Bianchi identity leads to ∇μTμν ¼ 0,
which yields

ϵ0 ¼ −
�
Φ0 0

2
þ m − rm0

rðr − 2mÞ
�
ðϵþ prÞ 0 −

2

r
ðpθ − prÞ ð8Þ

For a realistic stellar system, we should expect the density
decays monotonically from a maximum at the origin, i.e.,
ϵ0 < 0. This means, according to Eq. (8), an anisotropic
interior with pθ > pr. Therefore, a fluid element experi-
ences a pull towards the center as a consequence of negative
energy gradients ϵ0 < 0, which is canceled by a gravita-
tional repulsion caused by the anisotropy in the pressures
∼ðpθ − prÞ. We see that the role of “gravitational force”
∼ðϵþ prÞ is replaced by −ϵ0. Let us recall that the
“equilibrium” displayed in Eq. (8) does not mean the fluid

element will not face the singularity, which is the endpoint
of geodesics inside singular BHs. However, that equilib-
rium may explain the region between the center r ¼ 0 and
the inner (Cauchy) horizon in nonsingular BHs (see
Sec. II B), but then we will face the potential lost of
causality in this region [12,13]. Having clarified the main
feature of the generic matter inside the BH, we now ask
about its viability as a source for the exterior Schwarzschild
solution. To address this, we must first of all examine the
compatibility of the Schwarzschild exterior with the hypo-
thetical nonvacuum interior, that is, the continuity of the
metric (4) [with ΦðrÞ ¼ 0] at the horizon r ¼ h. In this
matter, in order to smoothly joint both regions, the mass
function mðrÞ must satisfy

mðhÞ ¼ M; m0ðhÞ ¼ 0; ð9Þ

where FðhÞ≡ FðrÞjr¼rs for any FðrÞ. Expressions in
Eq. (9) are the necessary and sufficient conditions for
smoothly jointing the still unknown interior with the
Schwarzschild exterior. From Eqs. (6) and (9) we see that
continuity of the mass functionmðrÞ leads to the continuity
of both density and radial pressure. Hence,

ϵðhÞ ¼ 0; prðhÞ ¼ 0: ð10Þ

However, the pressure pθ is in general discontinuous.
Finally, we want to emphasize a key point regarding the

line element (4): if the surface r ¼ h is an event horizon, the
time and radial terms switch signs precisely at r ¼ h. This
occurs as long as we can write the Misner-Sharp mass
function m as

mðrÞ → m̄ðrÞ ¼
�
r − μðrÞ; 0 ≤ r ≤ h

μðrÞ; r ≥ h
; ð11Þ

where the new metric function μðrÞ coincides withmðrÞ for
r ≥ h, hence μðrÞjr¼h ¼ M [see Eq. (5)]. Notice that,
according to Eqs. (9) and (11), μðrÞ is not continuous at
r ¼ h. The mass transformation (11) produces a change for
the scalar curvature

RðrÞ → R̄ ¼
� 4

r2 − RðrÞ; 0 ≤ r ≤ h

RðrÞ; r ≥ h
: ð12Þ

We want to emphasize that the linear term in r, explicit in
Eq. (11), is of critical importance in the search for solutions
of BH without Cauchy horizons (see Ref. [14] for more
details). Notice that by using the mass transformation (11)
we can decompose the metric (4) for each causality dis-
connected patch, namely,
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ds2 ¼ þeΦðrÞFðrÞdt2 − dr2

FðrÞ þ r2dΩ2; r ≤ h; ð13Þ

ds2 ¼ −eΦðrÞFðrÞdt2 þ dr2

FðrÞ þ r2dΩ2; r ≥ h; ð14Þ

where

FðrÞ ¼ 1 −
2μðrÞ
r

≥ 0: ð15Þ

Therefore, we can conclude that the metric (4) contains a
(singular) BH as long as the generic mass functionmðrÞ can
be written as shows the expression in Eq. (11).

A. Integrable singularity: A conjecture

As we see through Eqs. (11) and (12), if the generic mass
function in the metric (4) yields a BH, then a scalar
singularity will be present. Of course, if the case was a
regular BH the scenery would be quite different, since we
will deal with the appearance of a Cauchy horizon, and the
eventual lost of causality, something which we want to
avoid for now. In this regard, and following the work in
Ref. [14], we will first investigate how far we can go in the
construction of BHs where any potential Cauchy horizon
has been removed. Therefore, we will demand BHs without
Cauchy horizon and integrable singularities. In this regard,
the scalar curvature R for the metric (4) [with Φ ¼ 0] reads

R ¼ 2rm00 þ 4m0

r2
≠ 0; r < h: ð16Þ

For a singularity to be integrable, and therefore tidal forces
remain finite [15], we need R to be singular, at most,
R ∼ r−2. Hence, following the expression in Eq. (16), we
demand

2rm00 þ 4m0 ¼
X∞
n¼0

Cnrn; n∈N; ð17Þ

which yields

mðrÞ ¼M −
Q2

2r
þ 1

2

X∞
n¼0

Cnrnþ1

ðnþ 1Þðnþ 2Þ ; r ≤ h; ð18Þ

where the two integration constants fM;Qg may be
identified with the mass of the Schwarzschild solution
and a charge for the Reissner-Nordström (RN) geometry,
respectively. However, let us remind that our theory is
prescribed by the action (3), hence Q is not an electric
charge. Finally, notice that if we keep the standard
nomenclature of “hair” for the region inside the event
horizon, we can say that the interior contains two poten-
tially primary hair, i.e., M and Q. Therefore the mass

function (18) may be interpreted as a superposition of
configurations in a RN background. However, it is known
that the RN geometry contains a Cauchy horizon, the
problem we precisely want to avoid, at least for now. We
conclude that, besides the Schwarzschild solution, the only
possible configuration potentially useful for finding a
Cauchy horizon free BH, (i) possessing only an integrable
singularity and (ii) compatible with the Schwarzschild
exterior, is that with Q ¼ 0 in the mass function (18).
That solution will contain the two free charges fM;Mg,
where M would be a primary hair. However, since we are
searching for solutions determined only by the total mass
M of the configuration, we will impose M ¼ Q ¼ 0 [the
caseM ¼ M yields Cn ¼ 0 after imposing conditions (9)].
The immediate consequence would be a regular metric
and therefore more tolerable to the singularity problem. At
first sight the above seems to be in conflict with the
Schwarzschild exterior [in fact, it is in conflict as long as
conditions (9) are not used], since the standard interior in
Eq. (1) is given by M ¼ M ≠ 0 and Q ¼ Cn ¼ 0 for all n
in Eq. (18). However, getting rid of this preconceived idea
is precisely the key for finding the set of solutions
developed through this work. Finally, we emphasize that
no matter what condition we eventually impose, in order to
have a BH configuration the linear term in Eq. (18) must
always be present [see Eq. (11)]. We conclude by display-
ing the energy and pressures, found by using the mass
function (18) in Eq. (6),

κϵ ¼ Q2
0

r4
þ
X∞
n¼0

Cnrn−2

nþ 2
; r ≤ h; ð19Þ

κpt ¼
Q2

0

r4
−
1

2

X∞
n¼0

n
nþ 2

Cnrn−2; r ≤ h: ð20Þ

1. First singular solution

First of all, let us notice that as soon as we impose the
conditions in Eq. (9), we ensure the convergence of the
infinite series in (18), which would indicate that it can be
expressed in terms of some (unknown) analytical function.
Given the impossibility of finding such a function (if it
exists), we have no other alternative than to face the series
as it appears in (18). Therefore, if we want to find a specific
solution, we have to deal with the coefficients Cs of the
series. In this respect, a simple inspection of Eq. (19) shows
that for ϵ > 0 it is enough that the dominant term in
Eq. (19) at r ∼ 0 be positive, i.e., C0 > 0. On the other
hand, since a minimum requirement is that both conditions
in Eq. (9) be satisfied, and since we want a BH solution
with no extra parameters beyond the mass M, then it is
enough to take only two unknown coefficients Cs in
Eq. (18), one of them being C0. Hence,
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mðrÞ ¼ 1

2

�
C0r
2

þ Cnrnþ1

ðnþ 1Þðnþ 2Þ
�
; n > 1∈N; ð21Þ

where the Cs can be found by the two conditions in Eq. (9).
However, in order to have a BH solution [see Eq. (11)] we
needC0 ¼ 4 in Eq (21), which is consistent with conditions
in Eq. (9) only for n ¼ 1, and therefore

mðrÞ ¼ r −
r2

2h
: ð22Þ

Finally, using the expression for the mass function in
Eq. (22) in the line element (4) [with Φ ¼ 0], we obtain

ds2 ¼
�
1 −

r
h

�
dt2 −

dr2

ð1 − r
hÞ
þ r2dΩ2; r ≤ h: ð23Þ

The regular metric in Eq. (23) represents the inner of a
Schwarzschild BH sourced by nonexotic matter. According
to Eq. (8), every element of the fluid experiences a pull
towards the center −χðrÞ that is canceled by a gravitational
repulsion þχðrÞ, where χðrÞ ¼ 2ð 2r3 − 1

hr2Þ. We emphasize
that this balance does not mean that the fluid element will
not face the singularity.

2. Second singular solution

We can go further and impose an even smoother transi-
tion between the inner BH geometry and the Schwarzschild
exterior. This can be accomplished by demanding con-
tinuity of the second derivative of the mass function at the
horizon, namely,

m00ðrÞjr¼h ¼ 0: ð24Þ

A direct consequence, according to (6), will be the
continuity of the tangential pressure pθ at the horizon,
and therefore ϵ ¼ pr ¼ pθ ¼ 0 at r ¼ h. As the previous
case, if we want a BH solution with only M as a free
parameter, we have to take no more than three elements of
the series in Eq. (18), one of them being C0. Hence,

mðrÞ ¼ 1

2

�
C0r
2

þ Cnrnþ1

ðnþ 1Þðnþ 2Þ þ
Clrlþ1

ðlþ 1Þðlþ 2Þ
�
;

l > n > 1∈N: ð25Þ

The three constants fC0; Cn; Clg in Eq. (25) are found in
terms of fn; lg by conditions (9) and (24). However, as in
the previous case, C0 ¼ 4 to ensure a BH solution. This
yields l ¼ ðnþ 1Þ=ðn − 1Þ, which for fn; lg∈N leads to a
unique solution, namely,

mðrÞ ¼ r −
r3

h2
þ r4

2h3
: ð26Þ

We remark that the configuration in Eq. (26) can be
seen [see Eq. (29)] as the coupling of a singular source,
an anti–de Sitter with cosmological constant Λ ¼ −6=h2
and a regular configuration, respectively. Finally, using the
expression for the mass in Eq. (26), the metric functions
in (4) [with Φ ¼ 0] reads

ds2 ¼
�
1 −

2r2

h2
þ r3

h3

�
dt2 −

dr2�
1 − 2r2

h2 þ r3

h3

	þ r2dΩ2;

r ≤ h: ð27Þ

The nontrivial source for the metric (27), which also
generates the outer Schwarzhchild BH, is given by

κϵ ¼ −κpr ¼
2

r2h3
ðh − rÞ2ðhþ 2rÞ;

κpθ ¼
6

h3
ðh − rÞ; ð28Þ

with curvature

R ¼ 4

r2

�
1þ 5r3

h3
−
6r2

h2

�
; r < h: ð29Þ

We end by highlighting that the Schwarzschild exterior in
Eq. (1) can be generated by a source much more complex
than a pointlike mass, as the BH interior in Eqs. (23)
and (27). Notice that if we allow l to be a fraction, we will
end up with a metric with

−gtt ¼ g−1rr ¼ 1þ
h
2ðrhÞn − ðn − 1Þ2ðrhÞ

nþ1
n−1

i
ðn2 − 2n − 1Þ ; ð30Þ

where n > 1∈N includes the polynomial case n ¼ 2 in
Eq. (26). Finally, since an internal horizon (a second zero
for metric functions) implies the existence of a local
minimum, we need to check if this happens for the
solutions in Eqs. (23), (27), and (30) by evaluating g0tt. It
is trivial to prove that a minimum never occurs for the first
two cases. However, for (30) this occurs if

g0tt ¼ 0 → h

�
n2 − 1

2n

�
 n−1
n2−2n−1

�
¼ 0; ð31Þ

but this is ruled out since n > 1.

3. Generic singular solutions

The solution (27) is particularly attractive since the
energy-momentum tensor is continuous at the horizon,
i.e., Tμ

νjr¼h ¼ 0, which is a direct consequence of the
additional condition (24). In this regard, the possible
existence of new solutions with the same feature can be
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explored by considering the generic solution for mðrÞ in
Eq. (18) as a finite series

mðrÞ ¼ rþ
XN
i¼2

Ciri; ð32Þ

where the (N − 1) unknown Cs can be found by the

condition (5) and dnmðrÞ
drn jr¼h ¼ 0 for all n < N − 2.

Expressions in Eqs. (22) and (26) correspond to (32) for
N ¼ 3 and N ¼ 4, respectively. However, for N > 4 the
strong energy condition is violated (pθ < 0 for r ∼ 0),
although the weak holds. Therefore, if we want to explore
extra solutions with the same feature as (27), instead of
finite series we have to consider [as we did in Eqs. (21) and
(25)] a generic polynomial form, as for instance

mðrÞ ¼ rþ Arl þ Brn þ Crp; p ≠ n ≠ l > 1; ð33Þ

where fA; B;Cg are constants to be found by Eqs. (9)
and (24), as displayed in Table I. Of course, we can gene-
rate new solutions by including additional terms in (33).
Furthermore, since violation of the energy conditions is to
be expected for very high curvatures, we could relax these
conditions to further expand the set of solutions in Table I.
All of this indicates that the inner region is much richer than
illustrated in Table I and may offer many possibilities,
something that will be particularly important for gravita-
tional collapse models [see Eq. (39)].
We conclude by mentioning that both solutions (23)

and (27) have a fairly simple form. Notice that even in the
case where the infinite series (18) converges to a simple
analytical function, it is difficult to imagine something
simpler than the solution (23). Since our results are quite
general, obtained without imposing any extra constraint
beyond (i) existence of non exotic matter and (ii) standard
criteria for analytic continuity, we express our results in the
form of conjecture: In general relativity, for the spherically
symmetric case, the simplest three single horizon BH
solutions, with the total mass M as a unique charge, are
the Schwarzschild solution and those displayed in Eqs. (23)

and (27) for the region r ≤ h, which smoothly joint the
Schwarzschild exterior at the horizon r ¼ h ¼ 2M. These
solutions eventually will collapse giving rise to the
Schwarzschild solution (1).

B. Regularity and Cauchy horizon

By simple inspection of Eqs. (16) and (17), we see that
n ≥ 2 to get rid of the singularity. This leads to the
inevitable appearance of an inner (Cauchy) horizon, which
turns out to be particularly problematic. This implies
(related) problems such as mass inflation, instability, and
eventual loss of causality [12,13] (see also Ref. [16] and
Refs. [17–24] for a recent study). However, all these issues
go beyond the scope of this work.

1. First regular solution

As in the previous cases, if we want BHs with only M
as a free parameter, we have to take a finite number of
elements of the series in Eq. (18), one of them beingC2 > 0
to have solutions with ϵð0Þ > 0, according to Eq. (19).
When we take no more than two elements, the conditions in
Eq. (9) yield

mðrÞ ¼ r
2ðn − 2Þ

�
r2

h2
ðnþ 1Þ − 3

�
r
h

�
n
�
; n > 2; ð34Þ

where n represents a family of BHs with a single charge
M. In this case, the metric components read,

−gtt ¼ grr ¼ 1 −
1

ðn − 2Þ
�
r2

h2
ðnþ 1Þ − 3

�
r
h

�
n
�
: ð35Þ

We see that for n ≫ 2, the metric behaves as de Sitter with
effective cosmological constant Λeff ¼ 3=h2. Of course this
behavior is lost near the horizon since the interior must
match the Schwarzschild exterior.

2. Second regular solution

As in the singular case, an even smoother transition
between the regular interior and the Schwarzschild exterior

TABLE I. Different inner geometries (r ≤ h ¼ 2M) for the Schwarzschild solution (1) before complete collapse. Tidal forces are
finite everywhere. All solutions satisfy m0ðhÞ ¼ m00ðhÞ ¼ 0, with p > n > l > 1.

fl; n; pg mðrÞ ¼ rþ Arl þ Brn þ Crp. ϵ > 0 Energy condition

f2; n; pg mðrÞ ¼ r − ½2−2pþnðp−2Þ�
2ðn−2Þðp−2Þ

r2
h þ h

ðn−2Þðn−pÞ ðrhÞn þ h
ðp−2Þðp−nÞ ðrhÞp. Yes Strong

f3; 4; pg mðrÞ ¼ r − r3

h2 þ r4

2h3.
Yes Strong

f3; 5; pg mðrÞ ¼ r − h
4

ð3p−8Þ
ðp−3Þ ðrhÞ3 þ h

4

ðp−4Þ
ðp−5Þ ðrhÞ5 − h=2

ðp−3Þðp−5Þ ðrhÞp. Yesð6 ≤ p ≤ 16Þ Strong

f3; 6; pg mðrÞ ¼ r − h
3

ð2p−5Þ
ðp−3Þ ðrhÞ3 þ h

6

ðp−4Þ
ðp−6Þ ðrhÞ6 − h

ðp−3Þðp−6Þ ðrhÞp. Yesð7 ≤ p ≤ 10Þ Strong

f3; 7; 8g mðrÞ ¼ r − 7r3

10h2 þ r7

2h6
− 3r8

10h7.
Yes Strong

f4; 5; 6g mðrÞ ¼ r − 5r4

2h3 þ 3r5

h4 −
r6

h5
. Yes Strong
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is accomplished by demanding the condition (24), which
yields Tμ

νjr¼h ¼ 0. Hence, apart from C2 ≠ 0 in Eq. (17),
we need two additional elements of the series in Eq. (18).
These three Cs are found by the conditions (9) and (24),
leading to

mðrÞ ¼ r
2

�ðnþ 1Þðlþ 1Þ
ðn − 2Þðl − 2Þ

�
r
h

�
2

þ 3ðlþ 1Þ
ðn − 2Þðn − lÞ

�
r
h

�
n

þ 3ðnþ 1Þ
ðl − 2Þðl − nÞ

�
r
h

�
l
�
; l > n > 2∈N: ð36Þ

The time and radial metric components −gtt ¼ grr read,

grr ¼ 1 −
�ðnþ 1Þðlþ 1Þ
ðn − 2Þðl − 2Þ

�
r
h

�
2

þ 3ðlþ 1Þ
ðn − 2Þðn − lÞ

�
r
h

�
n

þ 3ðnþ 1Þ
ðl − 2Þðl − nÞ

�
r
h

�
l
�
; l > n > 2∈N: ð37Þ

The simplest case fl ¼ 3; n ¼ 4g contains a Cauchy
horizon at r ¼ h=2. Both BH solutions (35) and (37)
satisfy the weak energy condition, and represent an alter-
native source for the Schwarzschild exterior r > h in
Eq. (1). However, since the region between the inner
(Cauchy) horizon and event horizon (i.e., hc < r < h) is
not static, all the matter contained in this volume will
eventually collapse into the region 0 < r < hc. After the
collapse, this central region, “the core,” remains static and
filled with a fluid which does not collapse to form a
singularity. The reason is the balance displayed in Eq. (8),
where antigravitational effects produced by the anisotropy
play a key role (t and r reverse roles again at r ¼ hc).
However, the existence of the Cauchy horizon is potentially
problematic, and therefore any analysis must be carry out
with extreme caution. In particular, if the Cauchy horizon
turns out to be unstable, then we will have to impose the
strong cosmic censorship conjecture [25] to conclude that
matter is collapsing into a region that cannot be described
by GR. Quite the contrary, a stable inner horizon will
represent clear evidence that GR is still valid to describe
very high curvature scenarios. In this case, and given the
large number of possibilities contained in Eqs. (35), (37)
and eventual extensions, we can safely conclude that the
landscape to investigate the singularity problem is quite
extensive.

III. GRAVITATIONAL COLLAPSE
AND FINAL REMARKS

The Schwarzschild geometry in Eq. (1) shows the final
state of gravitational collapse, without giving details about
this process, which turns out to be of vital importance to
properly understand scenarios of extreme curvature, pre-
cisely such as the formation of BHs. On the other hand,
obeying the weak cosmic censorship conjecture [25], the
event horizon must form before the central singularity
appears. This leaves open the possibility, quite reasonable,
that part of the total mass M is still on its way to the
singularity, which is precisely the scenario described by the
solutions displayed in Table I. Therefore, we can conclude
that these solutions are ideal for analytically exploring
gravitational collapse in detail. In this regard, and even
though the metric (4) is not the best to carry out the above,
we can sketch a preliminary overview. In order to accom-
plish this, we need to promote the mass function asmðrÞ →
mðr; tÞ such that

mðr; tÞjt¼0 ¼ mðrÞ; mðr; tÞjt→∞ ¼ M: ð38Þ

The simplest possible model satisfying the above is

mðr; tÞ ¼ Mþ ½mðrÞ −M�e−ωt; ð39Þ

where ω−1 is a time scale associated with the collapse, and
mðrÞ an initial configuration for collapsing matter inside
BHs, as those in Table I. Since a large τ≡ ω−1 means a
large inertia to collapse, it is reasonable to conclude that
τ ∼ h, i.e., small for astrophysical BHs and very large for
super massive BHs. Following this procedure, we can
accurately and analytically describe the process that
gives rise to the ultimate geometry of the collapse: the
Schwarzschild BH in (1). Finally, we want to point out that,
with few exceptions [26], the inner geometry in Eq. (1) has
remained unexplored for a long time. The reason may be
the certainty of the final result of the collapse, namely, a
singularity. However, details about the formation of such
singularities and possible ways to evade them are critical to
investigate the validity of GR in environments of extreme
curvature.
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