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Observation of gravitational waves from inspiralling binary black holes has offered a unique opportunity
to study the physical parameters of the component black holes. To infer these parameters, Bayesian
methods are employed in conjunction with general relativistic waveform models that describe the source’s
inspiral, merger, and ringdown. The results depend not only on the accuracy of the waveform models but
also on the underlying fiducial prior distribution used for the analysis. In particular, when the premerger
phase of the signal is barely observable within the detectors’ bandwidth, as is currently the case with
intermediate-mass black hole binary signals in ground-based gravitational wave detectors, different prior
assumptions can lead to different interpretations. In this study, we utilize the gravitational-wave inference
library, PARALLEL BILBY, to evaluate the impact of mass prior choices on the parameter estimation of
intermediate-mass black hole binary signals. While previous studies focused primarily on analysing event
data, we offer a broader, more controlled study by using simulations. Our findings suggest that the
posteriors in total mass, mass ratio and luminosity distance are contingent on the assumed mass prior
distribution used during the inference process. This is especially true when the signal lacks sufficient
premerger information and/or has inadequate power in the higher-order radiation multipoles. In conclusion,
our study underscores the importance of thoroughly investigating similarly heavy events in current detector
sensitivity using a diverse choice of priors. Absent such an approach, adopting a flat prior on the binary’s
redshifted total mass and mass ratio emerges as a reasonable choice, preventing biases in the detector-frame
mass posteriors.

DOI: 10.1103/PhysRevD.109.104031

I. INTRODUCTION

The field of gravitational-wave astronomy is experienc-
ing significant advancements owing to the frequent
upgrades made to the International Gravitational-Wave
Observatory Network (IGWN) [1,2]. Since their inception,
the Advanced LIGO and the Advanced Virgo detectors

have observed ≳100 signals, most of which are attributed
to binary black hole mergers [3–11]. This growing catalog
has enabled precision strong-field tests of general relativity
and has shed light on the astrophysical origin and the
nature of the black hole population in the local Universe
[12–18].
Quite a few of these results rely heavily on Bayesian

parameter inference. For instance, the inspiral-merger-ring-
down consistency test examines the consistency of the
signal’s low and high-frequency components by independ-
ently inferring the mass and spin of the remnant object from
each portion [19,20]. Similarly, the residual test measures
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the coherent residual signal-to-noise ratio in the data after
subtracting the best-fit waveform to ensure overall signal
consistency [21]. Likewise, studying secondary parame-
ters, such as the remnant object’s recoil velocity, requires
accurate inference of the binary’s primary parameters,
such as their masses and spins [22–30]. Also, to determine
the shape of the black hole mass or spin spectrum, we
must first accurately obtain the astrophysical properties of
the observed binary black holes. Therefore, addressing
the potential issues in Bayesian parameter inference is
essential.
One such issue is the impact of prior choices in signal

parameter estimation. In gravitational-wave astronomy,
Bayesian parameter inference involves analysing signal-
containing data segments from a detector network with a
prior distribution to obtain posterior samples of binary
parameters. If the analyzed data lacks sufficient informa-
tion, prior assumptions will significantly influence the
resulting posteriors. For example, GW190521 has had
multiple interpretations due to its barely observable pre-
merger phase [31–40]. Even under the quasispherical signal
hypothesis, the binary constituents have a non-negligible
probability of occupying the pair-instability gap or strad-
dling it, depending on the prior choice.
This paper studies the effect of competing mass prior

choices on synthetic intermediate-mass black hole binary
signals. This work is motivated by similar previous studies
[39–41] which highlighted the potential limitations of
certain prior choices in exploring the high-likelihood
regions of parameter space. However, these previous
studies primarily focused on analysing data segments
containing the GW190521 event (or other comparatively
low-significance events). In contrast, our study offers a
broader and more controlled perspective as we use
simulations.
Our study shows that the posteriors in binary’s redshifted

total mass, mass ratio, and luminosity distance critically
depend on the mass prior choice. This effect is particularly
accentuated when the signal has a barely observable
inspiral phase and/or has insufficient power in the
higher-order radiation multipoles. The amplitudes and
phases of these higher-order radiation multipoles relative
to the dominant quadrupole mode are determined by the
binary properties, such as mass ratio and inclination and
therefore encode them. We, therefore, advocate mapping
the likelihood of similarly high-mass events with diverse
mass prior choices whenever possible, although reweight-
ing may be enough. (See Appendix A for details).
The remainder of this paper is structured as follows.

Section II briefly describes Bayesian inference and sum-
marises the notations and conventions of the binary
parameters used in this article. The following section,
Sec. III, summarizes our simulation setup and our prior
choices. The results of our analysis are in Sec. IV, and a
summary and conclusion of our study are in Sec. V.

II. PRELIMINARIES

A. Bayesian inference in a nutshell

Bayesian parameter inference libraries, like BILBY, model
the calibrated detector output dðtÞ as

dðtÞ ¼ nðtÞ þ sðtjθÞ ð1Þ

where nðtÞ is the noise, and sðtjθÞ is the signal strain
[42–46]. These libraries compute the posterior probability
distribution of the signal parameters θ by using the Bayes
theorem:

pðθjd;MÞ ¼ Lðdjθ;MÞπðθjMÞ
ZM

: ð2Þ

Here, Lðdjθ;MÞ is the likelihood function, and πðθjMÞ is
the prior probability distribution which is typically chosen
to avoid imprinting astrophysical assumptions on the
results. ZM ¼ R

dθLðdjθ;MÞπðθjMÞ is the probability
of observing the data given the modelM, otherwise known
as the model evidence. The likelihood function is defined as
follows:

Lðdjθ; SnÞ ∝ exp

�
−
X
i

2jd̃ðfiÞ − h̃ðfijθÞj2
TSnðfiÞ

�
: ð3Þ

assuming wide-sense stationary Gaussian noise and
involves the data segment duration T, the noise power
spectrum SnðfiÞ at each frequency fi, the Fourier repre-
sentations of the data d̃ðfiÞ and the template h̃ðfijθÞ. When
using data from multiple detectors, BILBY obtains the joint
likelihood by multiplying individual likelihoods for each
detector j while requiring the template to be coherent
across the Nifo detector network:

Lðfdgjθ; fSngÞ ¼
YNifo

j

Lðdjjθ; SnÞ: ð4Þ

To compute this likelihood function and estimate the
posterior probability distribution described in Eq. (2),
Bayesian inference algorithms rely on off-the-shelf sto-
chastic samplers. Given the dimensionality involved, this
can be computationally expensive for some waveform
models and prior choices. Therefore, it is preferable to
use marginalized likelihood over specific parameters when-
ever possible. The marginalized parameters can be retrieved
later using postprocessing techniques.
Posterior sampling generates a multidimensional prob-

ability density function that describes our joint inference
about the signal parameters. Understanding and/or visual-
izing the full posterior probability distribution is tricky. So,
we often focus on just one or two parameters and
marginalize the others. For example, if we are interested
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in the joint posterior for component masses m1, m2 of an
event, we integrate over the other parameters as follows:

pðm1; m2jfdgÞ ¼
X

θð−m1 ;−m2Þ

pðθjfdgÞ ð5Þ

This marginalized posterior indicates what we can infer
about the component masses when the uncertainties in the
omitted parameters are considered. Once obtained, the
marginal posterior samples can be visualized using histo-
grams or kernel density plots. We can also calculate its
summary statistics, such as the median and estimate the
uncertainty in the parameter(s) of interest by constructing
symmetric credible intervals (CI) defined as follows:

Xa
θk¼−∞

pðθkjfdgÞ ¼
1 − X
2

¼
X∞
θk¼b

pðθkjfdgÞ: ð6Þ

Here, the interval ða; bÞ is a symmetric 100X% CI for
parameter θk. In this article, we choose X ¼ 0.68; 0.9 and
construct two-dimensional marginal posteriors to consider
the potential influence of one parameter on the other. The
68% CI corresponds to approximately one standard
deviation from the mean of a normal distribution.
Conversely, the 90% CI provides a wider interval, encom-
passing a higher degree of uncertainty and has traditionally
been employed in gravitational-wave data analysis.
Finally, when multiple models are available, it is natural

to quantify how much one model, say A, is preferred to
another, say B. Within the Bayesian framework, the Bayes
factor is the primary tool for comparing the preferences of
two competing models. The log Bayes’ factor for A over
model B is calculated by subtracting the log model
evidence: ln BFAB ¼ lnZA − lnZB. A lnBFAB > 1 indicates
positive support for model A over model B [47].

B. Quasicircular black hole binary parameters:
Notations and conventions

For quasicircular or nonprecessing black hole binaries,1

θ represents four intrinsic and seven extrinsic parameters.
The intrinsic parameters include the component’s masses
mi and the dimensionless spins χi aligned with each other
and the orbital angular momentum. The extrinsic param-
eters comprise the source’s two-dimensional sky location
ðα; δÞ, the luminosity distance DL (or equivalently the
redshift z to the source), the source’s inclination ι, the
polarization angle ψ , the azimuth φ, and the merger time tc.
It is possible to capture the dominant effect of spin on the

inspiral rate using the mass-weighted effective aligned spin
parameter χeff. At a given reference frequency, say fref,
during the binary’s inspiral, it is defined as follows [48–50]:

χeff ¼
χ1 þQχ2
1þQ

; ð7Þ

using the binary’s spins and the mass ratio Q ¼
m2=m1 ≤ 1. Aligned spin binaries are characterized by
positive values of χeff whereas antialigned spin binaries
have negative χeff . Low-spin binaries have χeff → 0.
The redshifted (detector-frame) total mass MTð1þ zÞ is

crucial for detection, as it determines the signal’s overall
strength and frequency content. In agreement with other
works, we express it and the individual component masses
in solar mass units.

III. METHODOLOGY

A. Data

We aim to explore the differences between posteriors
sampled under differentmass priors for systemswith detector
frame masses similar to GW190521. We, therefore, create
two sets of simulated quasicircular intermediate-mass black
hole binary signals for our analysis. The first set uses the
phenomenological waveform model IMRPhenomXAS,
which models just the dominant waveform harmonic,
(2, 2) of a quasicircular black hole binary [51]. The second
set of signals uses the phenomenological waveform model
IMRPhenomXHM, which includes the modes (2, 1), (3, 3),
(3, 2), (4, 4) in addition to the (2, 2) mode [52].
These simulated signals share a set of common param-

eter values, as shown in Table I. However, they differ in
their Q, ι, and χeff values. Even though we perform our
study with several combinations of these varying param-
eters, we only report the results for simulations with
specific combinations to summarize the features. These
combinations are listed in Table II and Table III for
simulation set-1 (quadrupole-only signal) and simulation
set-2 (multipole signal), respectively.
We use a three-detector network comprising advanced

LIGO and advanced Virgo interferometers, operating at the
anticipated fourth observing run sensitivity [54]. We do not
add Gaussian noise to the simulated data in each detector for
simulation set-2 thus enabling their analysis in zero-noise
[55]. Therefore, statistically, these results are equivalent to

TABLE I. True parameter values that are shared by both the
simulation sets. They represent the maximum likelihood point of
the GW190521 posterior samples that LIGO-Virgo has publicly
released [53]. All angles are in radians.

Parameter Symbol Value

Detector-frame total mass MTð1þ zÞ 268.83M⊙
Azimuth φ 0.004
Polarization angle ψ 2.38
Coalescence GPS time tc 1242442967.41 s
Right ascension α 0.16
Declination δ −1.14

1Precessing binaries are quasispherical as the orbital orienta-
tion evolves with time.
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the average results obtained from a large sample of runs on
Gaussian noise [54]. The distance to each system is adjusted
to fix the network optimal SNR at 20. Though we show
results for a network SNR of 20, our analysis has produced
consistent results for optimal network SNR values of 15
and 30.
Increasing the binary’s mass asymmetry and inclination

decreases the system’s intrinsic luminosity, thus placing it
at a relatively closer distance than mass-symmetric systems
with a face-on orientation. However, the former systems
will have significantly larger contributions from the non-
quadrupole modes, particularly for simulation set 2. This
can help reduce the correlation between certain signal
parameters, such as source inclination and distance [56,57].
Given that the primary objective of our work is to

provide a preliminary understanding of the measurability
of mass parameters based on prior choices, we have
restricted our discussion primarily to quasicircular black
hole binaries in the main text. Relativistic precession
introduces amplitude and phase modulations in the signal
inspiral, which is limited for the heavy systems considered
in this study. Consequently, we anticipate that the funda-
mental qualitative attributes of our findings would remain
unaltered even if we use quasispherical signals. A dem-
onstration of this assertion is provided in Appendix B
where we use a quasispherical binary at two different
inclinations, finding that it doesn’t qualitatively change our
results. Nonetheless, it is essential to underscore that
relativistic precession, particularly for certain specific spin
configurations, can significantly suppress the inspiral phase
before the merger, affecting measurements [58,59].

B. Inference settings

To obtain the posterior samples, we use the parallelized
version of the parameter estimation package BILBY [42,43]

with the nested sampler DYNESTY [60]. In our analysis, we
fix the number of walks and maxmcmc at 200 and 15000,
respectively. Additionally, we set the number of live points,
denoted as nlive, to 1024, and the number of autocorre-
lation times, denoted as nact, to 30. Other DYNESTY

attributes, such as naccept, proposals, etc., are set to
their default values.
To expedite convergence, we downsample our simulated

data to 1024 Hz and utilise marginalized likelihood with
marginalization over distance and time, which is performed
numerically following the approach of Farr [61] and Singer
and Price [62]. Further, while using the IMRPhenomXAS
waveform model, we use the likelihood function that is
analytically marginalized over the signal phase [63]. We
compute all spin posteriors at fref ¼ 11 Hz and use an
identical lower-frequency cutoff of 11 Hz for likelihood
integration. The high-frequency cutoff is set to the Nyquist
frequency, 512 Hz, corresponding to the data’s sampling
rate of 1024 Hz.

C. Priors

Except for the mass priors, we adopt default prior
choices for our quasicircular binary black hole analysis,
with some adjustments based on our injections [7,45,64].
Table IV summarizes these settings for the signal param-
eters. The maximum spin values are set to 0.99 to ensure
consistency with the employed waveform models. We
employ the UniformSourceFrame luminosity distance
prior, which implements a uniform prior in comoving
volume Vc with an initial factor 1=1þ z, assuming the
Planck15 cosmology—the factor of 1=1þ z accounts for
time dilation due to the expansion of the Universe [45].
As for the mass priors, we explore the following four

choices for our analysis. Prior-1 adopts a flat prior on the
detector frame chirp mass Mcð1þ zÞ in the range of
½30; 300�M⊙ andQ in the range of [0.1, 1]while constraining
the individual masses mið1þ zÞ to lie within ½5; 300�M⊙.
Prior-2 aligns with the prior used in LIGO/Virgo’s
GW190521 analysis, setting flat priors on the component
massesmið1þ zÞ in the range of ½5; 300�M⊙ while ensuring
that the mass ratio and the detector frame total mass range lie

TABLE II. True parameter values for the twelve simulated
binaries from the first simulation set.

Parameter Symbol Value

Mass ratio Q 0.82, 0.25
Inclination ι 28.6°, 54.4°
Primary spin χ1 0.054, 0.7, −0.7
Secondary spin χ2 0.144, 0.4

TABLE III. True parameter values for the nine simulated
binaries from the second simulation set.

Parameter Symbol Value

Mass ratio Q 0.82, 0.25, 0.11
Inclination ι 28.6°, 54.4°, 74.5°
Primary spin χ1 0.054
Secondary spin χ2 0.144

TABLE IV. Default prior settings of signal parameters to study
binary black hole signals.

Parameter Shape Limits Boundary

χ1, χ2 Uniform (0, 0.99) � � �
ι Sinusoidal ð0; πÞ � � �
ψ Uniform ð0; πÞ Periodic
φ Uniform ð0; 2πÞ Periodic
α Uniform ð0; 2πÞ Periodic
δ Cosinusoidal ð−π=2; π=2Þ � � �
DL UniformSourceFrame (0.1, 10) Gpc � � �
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within Q∈ ½0.1; 1� and MTð1þ zÞ∈ ½80; 400�M⊙.
2 Prior-3

imposes a flat prior on Q∈ ½0.1; 1� and MTð1þ
zÞ∈ ½80; 400�M⊙ while constraining the individual masses
mið1þ zÞ to lie within ½5; 300�M⊙. Finally, prior-4, follow-
ing Nitz and Capano [33], is flat in 1=Q∈ ½1; 10� and
MTð1þ zÞ∈ ½80; 400�M⊙. Figure 1 compares themass ratio
distribution of our prior choices. Prior-4 favors unequal mass
ratio systems, while the first three have no such preference.
Asmeticulously elucidated in Estellés et al. [39], Olsen et al.
[40], Bustillo et al. [41], when examining the GW190521
event under the quasispherical signal hypothesis, such prior
choices can notably impact the signal inference.
Irrespective of our prior choice, we sample inMcð1þ zÞ

and Q space following BILBY’s default setting. BILBY

accomplishes this by utilizing appropriate transformations
between the chosen parametrization and the Mcð1þ zÞ −
Q representation, thereby folding the chosen prior into
Mcð1þ zÞ −Q space.
Finally, to assess the similarity/dissimilarity between

posterior probability distributions obtained using different
prior choices, we measure the Jensen-Shannon divergence
(JSD) defined as follows [65]:

JSDðp1; p2Þ ¼
1

2

X
k

p1ðθkjdÞ ln
�

2p1ðθkjdÞ
p1ðθkjdÞ þ p2ðθkjdÞ

�

þ 1

2

X
k

p2ðθkjdÞ ln
�

2p2ðθkjdÞ
p1ðθkjdÞ þ p2ðθkjdÞ

�
:

Here, p1ðθijdÞ and p2ðθijdÞ represents the posterior of
parameter θi for two different prior choices. A value of 0
nats3 indicates that no additional information is gained
when transitioning from one posterior distribution to
another, implying that the two distributions are similar.
On the other hand, a value of lnð2Þ ¼ 0.69 nat represents
the maximum divergence between the distributions.

IV. RESULTS

A. Simulation set-1

We first present the results obtained using quasicircular
dominant waveform harmonics. As mentioned in Sec. III A,
we simulate and recover set-1, detailed in Table II, using the
waveform approximant IMRPhenomXAS to prevent any
systematic errors caused by a disagreement between wave-
form models. Therefore, the effects discussed in this section
are entirely due to different prior assumptions made for the
analysis. We focus on the system’s redshifted total mass and
mass ratio since these parameters are better constrained for
the heavy binaries discussed. We note that most of the signal
SNR comes from themerger and ringdown phases for all our
systems. Consequently, during likelihood evaluation and
thus posterior sampling, the sampler prefers waveforms that
better describe the postinspiral phase.

1. Nearly equal-mass binaries

Figure 2 shows the two-dimensional posterior distribution
of MTð1þ zÞ and Q for systems with injected Q ¼ 0.82 at
varying inclinations and aligned spin values.We find that the
JSD value for MTð1þ zÞ and Q posteriors lie in the range
[0.0008, 0.0100] for prior-1, 2 and 3, indicating that within
statistical uncertainties, the samples drawn using prior-1, 2
and 3 have an identical distribution. Further, the figure
illustrates that the posterior’s 68% CI consistently encom-
passes the injected value across inclinations and spin values
for prior-1 through prior-3. However, the behavior differs for
prior-4 due to its preference toward unequal mass systems.
Notably, at χeff ¼ −0.2 and χeff ¼ 0.56, the injected value
lies outside the posterior’s 68%CI for this prior choice. Also,
this prior choice leads to a comparatively broader posterior
distribution of masses for all spin values and inclinations,
with a notable impact on mass ratios.
The spread of the posterior for all prior choices is least

when the systems have χeff ¼ 0.56 and most for
χeff ¼ −0.2.4 This is due to the orbital-hangup effect,
which results in a delay (or acceleration) in the merger
of aligned (antialigned) spin systems relative to systems
with lower spin (χeff ¼ 0.09) [67]. Consequently, our set of

FIG. 1. The figure compares mass ratios Q resulting from four
different prior choices used in our analysis. Unlike the other three
priors, prior-4 distinctly favors systems with unequal component
masses. Also, as evident, prior-2 effectively imposes a flat prior
on Q.

2Please note that Abbott et al. [31] implemented a prior which
is πðdLÞ ∝ d2L which distribute mergers uniformly throughout
Euclidean Universe. Throughout our study, we adopt the
UniformSourceFrame as our distance prior.

3“nat” is a unit of information based on natural logarithms [66].
4For χeff ¼ −0.2 system, Q ¼ 0.43þ0.44

−0.25 and for χeff ¼ 0.09
system, Q ¼ 0.52þ0.40

−0.31 (These measurements are reported as
symmetric 90% CI around the median of the marginalized
posterior distribution).
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aligned spin systems spends ∼0.05 seconds more within
the detector bandwidth than antialigned systems, thus
providing more information about the binary components
and reducing measurement uncertainties. This trend holds
irrespective of the binary’s inclination. Additionally, alter-
ing parameters such as the number of live points (e.g.,
nlive ¼ 2048) or the network optimal SNR of the system
to 30 does not alter the qualitative nature of these findings.

2. Asymmetric-mass binaries

Similar to Q ¼ 0.82 systems, we observe that for Q ¼
0.25 systems, the JSD values of MTð1þ zÞ and Q
posteriors lie within the range of [0.0024, 0.0099] for
prior-1, 2, and 3, indicating a coherence between their
distributions for these specific prior selections. However,
the overall results for these systems are quite different from
Q ¼ 0.82 systems. As illustrated in Fig. 3, the accuracy of
the inference for the first three priors is unsatisfactory for
antialigned and low-spin systems, which contrasts with the

previously observed consistent agreement. The inferred
masses’ 90% CI (indicated by lighter contours) fail to
adequately enclose the injected parameter values. This
stems from the flat nature of these priors in theQ parameter
and our chosen prior on luminosity distance, which
together favors intrinsically luminous systems—systems
that are mass-symmetric and located further away from us.
Conversely, prior-4, as depicted in Fig. 1, exhibits a

propensity for asymmetric mass systems, resulting in a
better recovery of the injected value. The injected param-
eter value lies within the 90% CI and the 68% CI for
antialigned and low spin systems, respectively, when using
prior-4. As for aligned spin systems, the maximum a
posteriori estimate of MTð1þ zÞ and Q is close to the
injected parameter values for all prior choices, irrespective
of inclination angle choice as evident from Figure 3.
Also, asymmetric systems tend to have a larger total

mass posterior than mass-symmetric binaries. This is
expected as an increase in mass asymmetry corresponds
to a decrease in intrinsic loudness of the gravitational wave

FIG. 2. Comparison of joint posterior distributions for MTð1þ zÞ and Q for different simulated systems with Q ¼ 0.82 and varying
χeff as summarized in Table II. The contours represent the credible intervals (CI), with the smaller contour indicating the 68% CI and the
larger contour representing the 90% CI. The different colors in the figure represent the various mass prior choices used in the analysis,
while the dotted line corresponds to the true mass parameters of the injected signals.
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signal for a fixed total mass. Consequently, to account for
this diminished signal strength, the resulting posterior
distribution for the total mass naturally extends toward
larger values of MTð1þ zÞ.
Therefore, in summary, owing to a flat prior on Q, the

MTð1þ zÞ and Q posteriors obtained using prior-1, 2 and
3 remain identical for different mass ratios, inclinations,
and spins. However, due to their preference toward
symmetric mass systems, their capability to effectively
retrieve higher mass ratio systems with low spins or
antialigned configurations is limited for the quasicircular
quadrupole case.

B. Simulation set-2

We now examine the results obtained when analysing the
injections described in Table III with IMRPhenomXHM,
zero-noise realization and different prior choices. This set
of simulated binary systems has low spin and is oriented at
three different inclination angles. Given that the posterior
distributions obtained using prior-1, prior-2, and prior-3
yield similar results (with a JSD value ofMTð1þ zÞ and Q

falling within the range of [0.0016, 0.0099]), we only
consider the results for prior-2 (LVK-like prior) and prior-4
presented in Fig. 4. The area inside the MTð1þ zÞ −Q
contour decreases compared to the quadrupole analysis
performed with simulation set-1, indicating a lower meas-
urement uncertainty. This is expected as the presence of
higher harmonics in the signal facilitates a more accurate
determination of the binary parameters in contrast to
systems dominated by the quadrupole harmonic alone.
Furthermore, the correlation between theMTð1þ zÞ and Q
for a fixed mass ratio injection decreases as the inclination
angles increase from lower to higher values. Similarly, the
correlation becomes less from higher to lower mass ratios
for a fixed inclination angle. This behavior arises due to the
increasing strength of the higher harmonics relative to the
dominant quadrupole harmonic as the inclination and mass
asymmetry rise, reducing the correlation between these two
parameters of the binary system.
However, for prior-4, the estimate’s uncertainty decreases

as we move from low (ι ¼ 28.6°) to moderate inclination
(ι ¼ 54.4°) but grows as we move from moderate to high
inclination (ι ¼ 74.5°) except for Q ¼ 0.82 system.

FIG. 3. Comparison of joint posterior distributions for MTð1þ zÞ and Q for different simulated systems with Q ¼ 0.25 and varying
χeff as summarized in Table II.
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Lastly, it is essential to note that for the injection with a
low mass ratio and low inclination (Q ¼ 0.11; ι ¼ 28.6°),
the actual value of the parameters, as indicated by the blue
lines, lies outside the 90% CI of prior-2 but inside the 68%
CI of prior-4, indicating that the prior distribution, rather
than the higher harmonic content, is more crucial in such
cases. As the injection’s inclination increases, the actual

parameter value lies inside the 68% CI for all prior choices,
thus illustrating the opposite.

C. Impact of mass prior choices on remnant properties

The properties and configuration of an inspiralling black
hole binary fully specify the remnant’s mass, spin and kick.
Therefore, in practice, we need numerical relativity

FIG. 4. Joint posterior distributions for MTð1þ zÞ and Q of simulated systems with parameters summarized in Table III.
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simulations to compute the remnant properties for arbitrary
binary mass and spin sets. However in this article, we use
surrogate fits from Healy and Lousto [68], Hofmann et al.
[69], Jiménez-Forteza et al. [70] to infer the final redshifted
mass Mfð1þ zÞ and final spin χf.
Figure 5 shows that as the binary’s inclination increases

and/or the mass ratio decreases, the uncertainties associated

with the final spin estimates increase, resulting in broader
posterior probability distributions. This is because both
priors induce a final spin prior that strongly favors binary
remnants with χf ∼ 0.6–0.7, as shown in Fig. 6. Con-
sequently, the resulting measurement uncertainty is lower
when the true spin is within this range, making the
likelihood peak near the bulk of the prior, as we observe

FIG. 5. The 2-dimensional posterior distribution for simulated systems’ redshifted final mass and final spin.
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in the case of the Q ¼ 0.82 binary system. In contrast,
when the true final spin is within the edge of the prior
support, likelihood and prior compete, leading to broader
posterior distributions, as in the case of the Q ¼ 0.25 and
Q ¼ 0.11 binaries. This phenomenon is more pronounced
under prior-4, where a larger CI is observed compared to
prior-2, particularly for systems with moderate to high mass
ratios and higher inclination angles. The posterior support
would progressively move toward the likelihood peak if the
SNR of the injection is increased, similarly to what is
described in Leong et al. [71].
We also observe that the inferred posteriors peak closer

to the true values when prior-4 is employed. Additionally,
for low Q binaries, we observe that the true value falls
outside the 68% CI of the posteriors generated by prior-2 as
the sampler is unable to probe the higher likelihood regions
efficiently.

D. Impact on inclination and redshift measurement

To measure the source properties of a binary black hole
and study its astrophysical implications, it is necessary to
determine its source frame masses. Conventionally, we rely
on standard cosmology and the gravitational wave meas-
urement of the luminosity distance to estimate the cosmo-
logical redshift. This redshift estimate is subsequently used
to convert detector-frame masses to source-frame masses.
Given this, it is critical to evaluate the impact of our chosen
mass priors on the measurement of luminosity distance or,
equivalently, redshift. This section presents the results
obtained using simulation set-2 as the inclination angle ι
and the distance DL are degenerate for quadrupole signals.

Further, we only discuss the results obtained using prior-2
and prior-4 as the results obtained using prior-1, prior-2,
and prior-3 exhibit comparable characteristics.
Figure 7 displays the two-dimensional posteriors of

redshift and inclination for each synthetic binary. We find
atQ ¼ 0.82 andQ ¼ 0.25, the redshift posterior of low and
moderate inclination binaries peaks closer to the true value
of the redshift, irrespective of prior choice. However, when
the binary inclination becomes large, the true redshift value
is relatively poorly recovered for either prior choice.
A subtle disparity emerges for low inclinationbinarieswith

Q ¼ 0.11. Specifically, the true value lies outside the 90%CI
when using prior-2, yet it is within the 68%CIwhen prior-4 is
used. However, as the binary inclination increases, the
measurement bias decreases. We also observe that except
for theQ ¼ 0.82 systematmoderate and high inclination, the
true inclination angle for most other binaries falls within 68%
CI for both prior choices. Additionally, consistent with other
studies [56,57,72,73], the correlation between distance and
inclination angle weakens as the relative strength of higher
harmonics increaseswith increasing inclination or decreasing
mass ratio.We leave the detailed investigation to futurework.

E. Pair-instability mass gap

Stellar physics predicts the existence of a black hole
mass gap with no first-generational black holes in the mass
range between 65M⊙ and 120M⊙ owing to the develop-
ment of pair-instability in massive stars with helium core
masses in this range [74–77]. While the precise location of
the pair-instability mass gap remains theoretically uncertain
(See for e.g. [32,78] and references therein), we assume that
the lower boundary is at 65M⊙ and the upper boundary is at
120M⊙. The observation of GW190521 by the LVK [31]
challenged this prediction, as the largest merging black hole
squarely fits within the mass gap. Given the strong impact
that priors can have on mass estimates, it is relevant to ask
whether prior choices could induce such observation. We
test this idea here by checking if any of our priors falsely
places our component masses inside or outside the mass
gap. For instance, Calderón Bustillo et al. [37] showed that
such an effect can happen when highly massive and highly
eccentric sources are mistakenly taken as precessing ones.
Table V shows the inferred source-frame component

masses (m1, m2) of systems with Q ¼ 0.82. For increasing
inclination, these simulations havem1 of ∼ð75; 85; 105ÞM⊙
andm2 of∼ð63; 73; 85ÞM⊙. Therefore, except for the lowest
inclination, both components lay in the pair-instability
mass gap.
We find that for the lowest inclination, ι ¼ 28.6°, prior-4

places the secondary component outside the mass gap with
a slightly higher probability than prior-2, making it a better
choice. Similarly, prior-4 puts the secondary black hole
within the mass gap at the highest inclination with some-
what higher confidence, consistent with the true values.
However, at a mid inclination, prior-2 does a moderately

FIG. 6. The figure compares the priors on the binary’s red-
shifted final mass and final spin. Both the prior choices strongly
prefer remnants with final spin ∼0.6–0.7.
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better job. This shows that while prior choices can mildly
affect the astrophysical interpretation of our injected
sources, none of them lead to false conclusive results.
For our remaining injections, for which the true masses
straddle the mass gap, both priors place the masses outside
the gap with probabilities ≳0.97.

F. Model selection

Given gravitational wave data, the support for a given
prior is given by the Bayes factor. This is defined as the
prior-averaged value of the log-likelihood ln BFSN across
the whole parameter space and, therefore, is bounded by the

FIG. 7. The 2-dimensional posterior distribution for the luminosity distance (redshift) and inclination of simulated systems
summarized in Table III.

TABLE V. Component masses and their probability of being within the pair-instability (PI gap) of multipole simulations with
Q ¼ 0.82. We report the median values of the masses with their 90% symmetric credible intervals.

Prior-2 Prior-4

ι m1 ½M⊙� m2 ½M⊙� Pðm1 ∈PIÞ Pðm2 ∈PIÞ m1 ½M⊙� m2 ½M⊙� Pðm1 ∈PIÞ Pðm2 ∈ PIÞ
28.6° 75.9þ12.3

−9.0 63.6þ12.2
−14.7 0.99 0.43 76.6þ14.4

−9.5 61.7þ12.9
−18.0 0.99 0.34

54.4° 81.7þ13.2
−11.7 69.9þ12.4

−15.7 1.0 0.73 81.5þ13.7
−11.7 69.0þ12.8

−18.1 0.99 0.68
74.5° 84.3þ14.1

−12.7 71.5þ13.0
−14.9 1.0 0.78 88.0þ13.8

−13.2 73.0þ13.3
−16.0 1.0 0.81
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maximum log-likelihood lnLmax. In principle, we expect
the latter to peak near the true injection parameters,
provided that the priors do not prevent a correct sampling
of the parameter space.
Table VI shows the log Bayes factor for the signal versus

noise model for our priors 2 and 4 within the context of the
simulation set 2. For Q ¼ 0.82 systems and the two lowest
inclinations, both priors provide similar ln BFSN and lnLmax.
For larger inclinations and the Q ¼ 0.82 case, however, we
recall that prior-2 fails to include the right luminosity
distance in its 90% CI while prior-4 does. Yet, prior-2
yields a larger Bayes Factor while finding a worse fit (lower
lnLmax) to the injection. On the one hand, prior-2 has very
strong support for loud equal-mass sources that emit louder
signals, which are, in turn, strongly favored by the distance
prior. Smaller inclinations are also preferred for the same
reason. On the other hand, since prior-2 does not prefer
low-Q signals, which generally leads to slightly weaker
sources that are then punished by the luminosity closer to
the true injection values and, therefore, a larger likelihood.
However, this difference in likelihood is not enough to
overcome the difference in prior support.
The above situation changes when Q is decreased, and

the increasing contribution of higher-order modes can
provide information about the inclination of the source.
On the one hand, we note that for decreasing mass ratio, the
true injection parameters are progressively displaced from
the 90% CI of prior-2, which prefers distant and louder
mass-symmetric systems at smaller inclinations. This is
particularly true for small inclinations, for which the signal
contains weak higher harmonics. In contrast, prior-4 always
returns 90% CI, including the true values and larger
likelihoods. Even in this situation, the Bayes Factors reveal
no clear preference for any of the models, as the larger
likelihood obtained by prior-4 cannot compensate for the
strong support that the distance prior shows for the mass
ratios preferred by prior-2. Unlike in the above paragraph,
this does not happen for the largest inclinations, for which
the higher-order harmonic modes present in the injections
do provide strong information about the inclination angle.

This way, the maximal likelihood obtained by prior-4 is
enough to overcome the preference of prior-2 for high-Q
systems, which are further favored by the distance prior.
Summarizing, we have explicitly shown here how a

perfectly reasonable prior, a standard one in gravitational-
wave data analysis, can lead to biased parameter estimates
and still be statistically preferred with respect to a second
prior giving unbiased estimates.

V. SUMMARY

This study investigates the influence of various mass prior
choices on Bayesian parameter inference of quasicircular
intermediate-mass black hole binaries.We employ twowave-
form models, IMRPhenomXAS and IMRPhenomXHM, to
simulate and infer binary parameters, focusing on their
detector-frame total mass and mass ratio. Our results reveal
that the choice of mass prior has a substantial influence on the
recovery of parameters for systems with a network optimal
signal-to-noise ratio of 20. Interestingly, changing the net-
work optimal SNRof the systems to 15or 30 does not alter the
qualitative nature of our results.
When using the quadrupole-only waveform

IMRPhenomXAS, we find that prior-4, which is flat in
MTð1þ zÞ and 1=Q, recovers the injected mass parameters
better when the simulated signal corresponds to a short-
lived mass-asymmetric binary. On the other hand, prior-1, 2
and 3, which are flat in mass ratio, perform relatively better
when recovering nearly equal mass binaries with compo-
nent spins aligned relative to each other and the orbital
angular momentum.
We have also shown that when recovering

IMRPhenomXHM injections with the same waveform
model, prior-4 yields better recovery of MTð1þ zÞ and
Q, especially when the system is mass-asymmetric and is at
a low inclination. However, as the relative strength of the
higher-order modes increases with inclination or mass
asymmetry, the accuracy of inference with conventional
prior choices, such as prior-2, which is flat in component
masses, is better. Moreover, the correlation between the
mass ratio and detector-frame total mass decreases with
increasing higher-order mode content.
Lastly, we highlight a noteworthy observation: the red-

shift posterior peaks closer to the true value when using
prior-4, irrespective of the binary configuration used in the
study, implying that this prior provides a more robust
choice. Since accurate luminosity distance and/or redshift
inference can impact efforts to measure source properties of
black holes, tests of general relativity, and the study of
secondary parameters, such as the remnant’s recoil kick, it
is recommended to use prior-4 while analyzing such short-
lived signals. While an exhaustive exploration of distance
measurability is beyond the scope of our current study, its
importance beckons for future investigations.
In conclusion, our findings suggest that it is essential to

consider multiple mass prior choices when analyzing

TABLE VI. ln BFSN and lnLmax values of simulation set-2 for
prior choices, 2 and 4.

Prior-2 Prior-4

ln BFSN lnLmax ln BFSN lnLmax

Q ¼ 0.82ι ¼ 28.6° 188.29 207.77 187.20 208.17
Q ¼ 0.82ι ¼ 54.4° 186.63 207.62 185.26 207.63
Q ¼ 0.82ι ¼ 74.5° 179.08 200.93 177.15 201.75
Q ¼ 0.25ι ¼ 28.6° 188.45 208.82 188.47 208.94
Q ¼ 0.25ι ¼ 54.4° 187.08 208.95 187.04 208.88
Q ¼ 0.25ι ¼ 74.5° 175.30 197.98 176.16 199.31
Q ¼ 0.11ι ¼ 28.6° 184.76 206.12 184.85 207.14
Q ¼ 0.11ι ¼ 54.4° 201.88 225.36 203.83 226.91
Q ¼ 0.11ι ¼ 74.5° 196.52 221.15 198.94 223.15
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intermediate-mass black hole binary events rather than
relying on a single prior. Model selection techniques, such
as the Bayes factor, can then be used with maximum
likelihood to evaluate which prior better explains the
observation. While previous works have given indications
of this either when analysing real events [39–41], or when
using a broader set of injections [71], we explicitly
demonstrate this in a controlled setup.
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APPENDIX A: PRIOR REWEIGHTING

Figure 8 compare the original and reweighted posterior
probability distributions of two nonprecessing simulations
—[left] Q ¼ 0.82 system at ι ¼ 28.6° and [right] Q ¼ 0.11
system at ι ¼ 74.5°. The original corresponds to those
obtained using prior-2, while the reweighted distribution is
obtained as follows:

p̄4ðθjdÞ ¼ wðθÞ · p2ðθjdÞ: ðA1Þ

Here, p2ðθjdÞ represents the original posterior probability
distribution, and wðθÞ ¼ π4ðθÞ=π2ðθÞ denotes the weight,
with π4ðθÞ and π2ðθÞ corresponding to prior-4 and prior-2,
respectively. Computationally, to calculate wðθkÞ, we
evaluate π4ðθkÞ and π2ðθkÞ for each posterior sample
θk ∈p2ðθjdÞ rather than using a Jacobian because the prior
support between the two priors, as depicted in Fig. 9, is
different.

Visual inspection reveals a broad similarity between the
two distributions, consistent with the low JSD (¡0.001)
obtained between the two distributions. This shows that it is
possible to recompute the posterior using a new prior
without stochastic sampling. However, it is worth mention-
ing that the quality of reweighed samples depends heavily
on the posterior samples obtained under the original prior
(in this case, prior-2). The reweighed samples may fail to

FIG. 8. Comparison corner plot for original (samples obtained
by directly sampling from prior-4) and reweighted posterior
(samples obtained by reweighing posterior obtained using prior-2
with prior-4 [See Eq. (A1)]).
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capture the original posterior distribution if they are sparse
or not representative. We prevent this in the main text by
sampling under the new prior.

APPENDIX B: QUASISPHERICAL
BLACK HOLE BINARIES

While the effect of the masses can be quite degenerate
with that of the effective-spin (present already in aligned-
spin systems), this is not the case for orbital precession. The
reason is that the main impact of precession is an amplitude
modulation of the waveform as a function of time.
Therefore, the type of impact of the mass priors we
describe, must be weakly dependent on whether or not
we include precession in the analysis. To give evidence of
the absence we show results for two experiments where we
include orbital precession. The binary parameters are fixed
at the following values:
These simulations’ spin angles and sky location corre-

spond to the maximum-likelihood point of GW190521
from Islam et al. [79] as listed in Table VII.
In line with previous findings, we observe in Fig. 10 that

the actual parameter values for ι ¼ 28.6°, represented by
the blue lines, fall outside the 68% CI of prior-2 but within
the 68% CI of prior-4. This suggests that in such cases, the
prior distribution, rather than the higher harmonic content,
plays a more pivotal role. Conversely, for the higher
inclination value (ι ¼ 74.5°), the actual parameter values
lie within the 68% CI for all prior choices, illustrating the
opposite trend. This is anticipated, considering that pre-
cession exhibits minimal degeneracy with total mass, as the
former introduces frequency modulations while the latter
shifts the entire frequency spectrum. Although not the
primary focus of this study, we note a similar bias in the χeff
measurement for the ι ¼ 28.6° system. This is due to χeff’s
dependence on Q.

Thus, while it is true that precession may quantitatively
alter our results, we understand that the qualitative impact
of the mass priors on the recovered masses would remain
unaltered.

FIG. 9. Support regions of the two priors, generated from
20000 sample points from each prior. The blue region (prior 2)
does not extend as much into the high Mtot at low Q due to the
constraint of m1;2 < 300M⊙.

FIG. 10. Comparison corner plot for the two simulated systems
at network SNR of 20.
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