
Dark photon–dark energy stationary axisymmetric black holes

Marek Rogatko *

Institute of Physics, Maria Curie-Sklodowska University,
plac Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland

(Received 31 January 2024; accepted 15 April 2024; published 9 May 2024)

Using Ernst formalism, the stationary axisymmetric black hole solution in Einstein dark matter–dark
energy gravity has been elaborated. The dark sector was chosen as a dark photon concept, where an
auxiliary Uð1Þ-gauge field coupled to ordinary Maxwell one was introduced, while dark energy was
modeled by the existence of a positive cosmological constant. Refining our studies to the case of a
vanishing cosmological constant, the uniqueness theorem for the black hole in question has been proved.
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I. INTRODUCTION

The nature of the illusive ingredient of our Universe
mass, the dark sector, is the most tantalizing question in
contemporary physics and astrophysics. The influence of
dark matter on galaxy rotation curves, motion of galaxy
clusters, measurements of cosmic microwave background
radiation, and baryonic oscillations [1,2] as well as pulsar
timing array experiments [3] has also been revealed. The
unknown dark matter sector constitutes almost 27% of
the mass of the observable Universe [4], while most of the
additional part of the mass comprises dark energy, respon-
sible for the Universe expansion. The visible sector con-
stitutes only 4% of the Universe mass.
One of the simplest conceptual ideas is to consider the

existence of a hidden sector composed of particles weakly
interacting with the ordinary matter. The notion of the dark
photon being a hypothetical Abelian gauge boson coupled
to the ordinary Maxwell gauge field [5] is very a plausible
candidate for physics beyond the Standard Model. The dark
photon idea has been introduced in [5] several years ago;
however, it acquires a contemporary justification in the
unification scheme [6], where the mixing portals coupling
Maxwell and auxiliary gauge fields are under intensive
exploit and the hidden sector states are charged under their
own groups. On the other hand, it has been claimed that
dark photons might be produced, e.g., during the infla-
tionary phase of the Universe evolution from inflationary
fluctuations [7,8], during reheating [9], from resonant
creation during axion oscillations [10], and from dark
Higgs [11] as well as from cosmic strings [12].
Furthermore, several anomalous astrophysical effects

like 511 keV gamma rays [13], excess of the positron
cosmic ray flux in galaxies [14], and the observations of an
anomalous monochromatic 3.56 keV x-ray line in the

spectrum of some galaxy clusters [15] may advocate the
dark photon idea. Other astrophysical observations and
laboratory experiments [16], like, for instance, studies of
gamma ray emissions from dwarf galaxies [17], examina-
tion of dilatonlike coupling to photons caused by ultralight
dark matter [18], inspections of the fine structure constant
oscillations [19], dark photon emission taking place during
the 1987A supernova event [20], electron excitation mea-
surements in a CCD-like detector [21], the search for a dark
photon in eþe− collisions at the BABAR experiment [22],
and measurements of the muon anomalous effect [23],
propose the possible range of values for a dark photon–
Maxwell field coupling constant and the mass of the hidden
photon [24].
It turns out that a dark photon acting as a portal to

the hidden sector, which introduces dark matter self-
interactions, may constitute a solution of the small-scale
structure problems [25]. Moreover, it can explain the
XENON1T anomaly [26]. Dark photons can affect the
primordial nucleon synthesis, altering the effective number
of thermally excited neutrino degrees of freedom [27], and
potentially influence on transport properties and exert on
stellar energy transport mechanism being the key factor
during cooling neutron star processes [28].
It has been also reported that the new exclusion limit for

the α-coupling constant α ¼ 1.6 × 10−9 and the mass range
of the dark photon 2.1 × 10−7–5.7 × 10−6 eV. These data
were achieved by using the two state-of-art high-quality
factor superconducting radio frequency cavities [29].
Improved limits on the coupling of ultralight bosonic dark
matter to Maxwell photons, based on long-term measure-
ments of two optical frequencies, were proposed in [30].
On the other hand, using quantum limited amplification,

the first probing of the kinetic mixing coupling constant to
10−12 level for the majority of dark photon masses was
given in [31], being the first stringent constraints on new
dark matter parameter space.*rogat@kft.umcs.lublin.pl
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Recently, it is to be noted that the use of a cryogenic
optical path and a fast spectrometer to study dark photon
conversion into an ordinary one at the metal surface plate
enables one to establish an upper bound on coupling
constant α < 0.3–2 × 10−10 (at 95% confidence level) [32].
On the other hand, in light of the first LIGO gravitational

wave detection and Event Horizon Telescope images of a
black hole shadow, investigations of black holes, and the
influence of the dark sector on their physics constitute a
very interesting problem on its own.
The main aim of our paper is to find the stationary axially

symmetric solution to Einstein-Maxwell dark photon grav-
ity with a cosmological constant, sometimes being iden-
tified with dark energy. Additionally, we treat the problem
of the uniqueness of a rotating black hole influenced by the
dark matter sector, where we restrict our consideration to
the case without dark energy.
Our paper is organized as follows. In Sec. II, we consider

the basic features of Einstein-Maxwell gravity replenished
by the auxiliary Uð1Þ-gauge field (dark photon) coupled to
the Maxwell one by the so-called kinetic mixing term. Next,
we derive the Ernst-like equations for stationary axisym-
metric solution in the theory in question, adding to our
inspection the cosmological constant which will be identi-
fied with dark energy. In Sec. III, after introducing adequate
charges bounded with the gauge fields, one achieves the line
element we are looking for. In Sec. IV, we pay attention to
the boundary conditions of the studied solution. Using the
matrix type of Ernst equations, one conducts the uniqueness
proof for a stationary axisymmetric black hole in the
considered theory, when the cosmological constant is absent.
Namely, we reveal that all stationary axisymmetric solutions
to Einstein-Maxwell dark photon gravity, being subject to
the same boundary and regularity conditions, comprise the
only black hole solution having a regular event horizon with
nonvanishing mass and t and ϕ components of Uð1Þ-gauge
fields. In the last section, we conclude our investigations.

II. GRAVITY WITH DARK MATTER–DARK
ENERGY SECTORS

This section will be devoted to the basic features of
Einstein-Maxwell gravity influenced by the dark matter
sector, which constitutes another Uð1Þ-gauge field coupled
to the ordinary Maxwell one, by the so-called kinetic
mixing term describing interactions of both gauge fields.
Moreover, we add the positive cosmological constant
authorizing dark energy in the spacetime under inspection.
The action related to Einstein-Maxwell dark photon–dark
energy gravity is provided by

SEM-dark photon-Λ

¼
Z ffiffiffiffiffiffi

−g
p

d4xðR − 2Λ − FμνFμν − BμνBμν − αFμνBμνÞ;

ð1Þ

where α is taken as a coupling constant between Maxwell
and dark matter field strength tensors.
Introducing the redefined gauge fields Ãμ and B̃μ, in the

forms as follows:

Ãμ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2 − α

p

2
ðAμ − BμÞ; ð2Þ

B̃μ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p

2
ðAμ þ BμÞ; ð3Þ

one can get rid of the kinetic mixing term, obtaining the
following:

FμνFμν þ BμνBμν þ αFμνBμν ⇒ F̃μνF̃μν þ B̃μνB̃μν; ð4Þ

where we have denoted F̃μν ¼ 2∂½μÃν� and, respectively,
B̃μν ¼ 2∂½μB̃ν�. Having it in mind, the rewritten action (1)
implies

SEM-dark photon-Λ¼
Z ffiffiffiffiffiffi

−g
p

d4xðR−2Λ− F̃μνF̃μν− B̃μνB̃μνÞ:

ð5Þ

Variation of the action (5) with respect to gμν, Ãμ, and B̃μ

reveals the following equations of motion for Einstein-
Maxwell dark matter gravity with the positive cosmological
constant (dark energy):

Gμν þ Λgμν ¼ 2F̃μρF̃ν
ρ −

1

2
gμνF̃αβF̃αβ þ 2B̃μρB̃ν

ρ

−
1

2
gμνB̃αβB̃αβ; ð6Þ

∇μF̃μν ¼ 0; ∇μB̃μν ¼ 0: ð7Þ

In what follows, one will focus on stationary axisymmetric
solution in the considered theory of gravity. The corre-
sponding line element is given by

ds2¼−aeb
2ðdtþωdϕÞ2þae−

b
2dϕ2þ e2uffiffiffi

a
p ðdr2þdz2Þ; ð8Þ

where the functions appearing in the line element (8)
depend on r and z coordinates.
Furthermore, we choose the following Ansätze for Uð1Þ-

gauge fields, which will be also r and z dependent:

Ã ¼ Ã0dtþ Ãϕdϕ; B̃ ¼ B̃0dtþ B̃ϕdϕ: ð9Þ

For brevity of notation, we denote ∇⃗k ¼ ð∂rk; ∂zkÞ.
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The Einstein-Maxwell dark photon equations of motion
with cosmological constant Λ modeled dark energy are
provided by

∇2aþ 2Λe2u
ffiffiffi
a

p ¼ 0; ð10Þ

4a∇2uþ∇2a − ebað∇⃗ωÞ2 þ 1

4
að∇⃗bÞ2 ¼ 0; ð11Þ

−
∇⃗ · ða∇⃗bÞ

2
− aebð∇⃗ωÞ2 − ω · ∇⃗ðeba∇⃗ωÞ

¼ 2½eb
2ðð∇⃗Ã0Þ2ω2 − ð∇⃗ÃϕÞ2Þ − e−

b
2ð∇⃗Ã0Þ2�

þ 2½eb
2ðð∇⃗B̃0Þ2ω2 − ð∇⃗B̃ϕÞ2Þ − e−

b
2ð∇⃗B̃0Þ2�; ð12Þ

∇⃗ · ðeba∇⃗ωÞ ¼ −4ωeb
2½ð∇⃗Ã0Þ2 þ ð∇⃗B̃0Þ2�

þ 4e
b
2ð∇⃗Ãϕ · ∇⃗Ã0 þ ∇⃗B̃ϕ · ∇⃗B̃0Þ: ð13Þ

The differential operators ∇⃗ and ∇2 appearing in the above
set of equations are flat gradient and Laplacian operators
written in ðr; zÞ coordinates, while the dots mean the scalar
product of ∇ operators.
On the other hand, the t and ϕ components of Maxwell

dark photon relations imply, respectively, for the Ãμ gauge
field

∇⃗ · ½e−b
2∇⃗Ã0 þ ωe

b
2ð∇⃗Ãϕ − ω∇⃗Ã0Þ� ¼ 0; ð14Þ

∇⃗ · ½eb
2ð∇⃗Ãϕ − ω∇⃗Ã0Þ� ¼ 0 ð15Þ

and for the B̃μ one

∇⃗ · ½e−b
2∇⃗B̃0 þ ωe

b
2ð∇⃗B̃ϕ − ω∇⃗B̃0Þ� ¼ 0; ð16Þ

∇⃗ · ½eb
2ð∇⃗B̃ϕ − ω∇⃗B̃0Þ� ¼ 0: ð17Þ

Equations (15) and (17) comprise the integrability con-
ditions for a scalar potentials, say, A3 and B3. Namely, they
imply

e⃗ϕ × ∇⃗A3 ¼ e
b
2ð∇⃗Ãϕ − ω∇⃗Ã0Þ ð18Þ

and for B3

e⃗ϕ × ∇⃗B3 ¼ e
b
2ð∇⃗B̃ϕ − ω∇⃗B̃0Þ: ð19Þ

From the above relation, we get the following relations for
A3 and B3:

∇iðϵiϕmeϕ∇mA3Þ ¼ 0; ∇iðϵiϕmeϕ∇mB3Þ ¼ 0; ð20Þ

where we set m ¼ r, z and the ϵabc in (20) denotes the
Levi-Civita symbol in the orthonormal frame defined by

the ordered triad ðe⃗r; e⃗ϕ; e⃗θÞ. It, in turn, leads to the
following conditions:

∂r∂zA3 ¼ ∂z∂rA3; ∂r∂zB3 ¼ ∂z∂rB3:

Extracting from Eq. (18) the term e⃗ϕ × ∇!Ãϕ and calculat-
ing its diverges, we obtain the following:

∇iðe−b
2∇iA3 − ωϵiϕmeϕ∇mÃ0Þ ¼ 0: ð21Þ

The same procedure applied to the B3 potential reveals

∇iðe−b
2∇iB3 − ωϵiϕmeϕ∇mB̃0Þ ¼ 0: ð22Þ

The above equations together with the relations (14)
and (16) will give us the set of Maxwell dark photon–dark
energy equations. Let us define the complex potential ΦðkÞ,
where k ¼ F̃; B̃, in the form

ΦðF̃Þ ¼ Ã0 þ iA3; ΦðB̃Þ ¼ B̃0 þ iB3: ð23Þ

It can be easily seen that the Maxwell dark photon
equations may be rewritten by means of ΦðkÞ as a single
set of two complex equations:

∇⃗ · ðe−b
2∇⃗ΦðkÞ − iωe⃗ϕ × ∇⃗ΦðkÞÞ ¼ 0: ð24Þ

On the other hand, we apply the same procedure in respect
to Eq. (13) and cast it in the form

∇⃗ ·
�
eba∇⃗ω − 2e⃗ϕ × Im

� X
k¼F̃;B̃

Φ�
ðkÞ∇⃗ΦðkÞ

��
¼ 0: ð25Þ

Moreover, relation (25) constitutes the integrability con-
dition for the existence of the other potential, say, h.
Consequently, one achieves

e⃗ϕ × ∇⃗h ¼ eba∇⃗ω − 2e⃗ϕ × Im

� X
k¼F̃;B̃

Φ�
ðkÞ∇⃗ΦðkÞ

�
; ð26Þ

while using relation (25) we obtain the relation given by

e⃗ϕ×∇⃗ω¼−
1

aeb

�
∇⃗hþ2Im

� X
k¼F̃;B̃

Φ�
ðkÞ∇⃗ΦðkÞ

��
¼0; ð27Þ

which, in turn, enables us to find that the ðϕ; tÞ component
of Einstein dark photon equations of motion may be
rewritten in terms of the potential h and the complex
potentials ΦðkÞ. Namely, it implies

∇⃗ ·

�
1

aeb

�
∇⃗hþ 2Im

� X
k¼F̃;B̃

Φ�
ðkÞ∇⃗ΦðkÞ

���
¼ 0: ð28Þ
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Having in mind the above definitions, the relation (12) will be provided by

f
a
∇⃗ · ða∇⃗fÞ − ∇⃗f · ∇⃗f − f2

∇2a
a

¼ 2f
X
k¼F̃;B̃

∇⃗ΦðkÞ · ∇⃗Φ�
ðkÞ −

�
∇⃗hþ 2Im

� X
k¼F̃;B̃

Φ�
ðaÞ∇⃗ΦðkÞ

��
·

�
∇⃗hþ 2Im

� X
k¼F̃;B̃

Φ�
ðkÞ∇⃗ΦðkÞ

��
; ð29Þ

where one denotes f ¼ aeb=2.
To proceed further, let us define the complex function given by the relation

E ¼ f −
X
k¼F̃;B̃

Φ�
ðkÞΦðkÞ þ ih: ð30Þ

It happens that both Einstein-Maxwell dark matter–dark energy equations can be arranged in a system of the complex
equations provided by

�
ReE þ

X
k¼F̃;B̃

Φ�
ðkÞΦðkÞ

� ∇⃗ · ða∇⃗EÞ
a

¼
�
∇⃗E þ 2

X
k¼F̃;B̃

Φ�
ðkÞ∇⃗ΦðkÞ

�
· ∇⃗E þ Re2

�
E þ

X
k¼F̃;B̃

Φ�
ðkÞΦðkÞ

�∇2a
a

; ð31Þ

X
m¼F̃;B̃

�
ReE þ

X
k¼F̃;B̃

Φ�
ðkÞΦðkÞ

� ∇⃗ · ða∇⃗ΦðmÞÞ
a

¼
X

m¼F̃;B̃

�
∇⃗E þ 2

X
k¼F̃;B̃

Φ�
ðkÞ∇⃗ΦðkÞ

�
· ∇⃗ΦðmÞ: ð32Þ

The above relations authorize the generalization of Ernst’s
equations describing the Einstein-Maxwell system. The
real and imaginary parts of the first one envisage the
Einstein-Maxwell dark matter equations with a

cosmological constant (sometimes interpreted as dark
energy). The real and imaginary parts of (32) describe
the Maxwell dark photon equations of motion. The afore-
mentioned equations reduce to the ordinary complex Ernst
differential relations for Einstein-Maxwell gravity, when
one sets the auxiliary gauge field equal to zero as well as
assumes that the last term in (31) vanishes. It yields that a
should be a harmonic function ∇2

ðr;zÞa ¼ 0.
On the other hand, they can be achieved by varying the

effective action S½E; E�;ΦðkÞ;Φ�
ðkÞ�, where one denotes

k ¼ F̃; B̃. The aforementioned action yields

S¼
Z

drdz
X
k¼F̃;B̃

a

"ð∇iEþΦ�
ðkÞ∇iΦðkÞÞð∇iEþΦ�

ðkÞ∇iΦðkÞÞ
ðEþE�þΦðkÞΦ�

ðkÞÞ2
−

∇mΦðkÞ∇mΦ�
ðkÞ

ðEþE�þΦðkÞΦ�
ðkÞÞ

−
∇ja
2a

∇jðEþE�þΦðkÞΦ�
ðkÞÞ

ðEþE�þΦðkÞΦ�
ðkÞÞ

#
: ð33Þ

III. CHARGING SOLUTION

In Ref. [33], it was shown how to achieve the solution of
the complex system of equations of the type given by
relations (31) and (32). Namely, in order to find the form of
the potentials ΦðkÞ, one should additionally assume that
they are analytic functions and also analyze their asymp-
totic behavior. Having all these in mind, by using the chain
rule, we arrive at

d2E
dΦ2

ðF̃Þ
∇⃗ΦðF̃Þð∇⃗ΦðF̃ÞÞ2 ¼ ∇2E∇⃗ΦðF̃Þ −∇2ΦðF̃Þ∇⃗E ð34Þ

and

d2E
dΦ2

ðB̃Þ
∇⃗ΦðB̃Þð∇⃗ΦðB̃ÞÞ2 ¼ ∇2E∇⃗ΦðB̃Þ −∇2ΦðB̃Þ∇⃗E: ð35Þ

When one implements Eq. (31) multiplied and summed byP
m¼F̃;B̃ ∇⃗ΦðmÞ and Eq. (32) multiplied by ∇⃗E, one obtains

the relations for the potentials in the forms

∀∇⃗ΦðF̃Þ≠0;

d2E
dΦ2

ðF̃Þ
ð∇⃗ΦðF̃ÞÞ2−Re

�
Eþ

X
k¼F̃;B̃

Φ�
ðkÞΦðkÞ

�∇2a
a

¼0 ð36Þ

and for the ΦðB̃Þ potential
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∀∇⃗ΦðB̃Þ≠0;

d2E
dΦ2

ðB̃Þ
ð∇⃗ΦðB̃ÞÞ2−Re

�
Eþ

X
k¼F̃;B̃

Φ�
ðkÞΦðkÞ

�∇2a
a

¼0: ð37Þ

In the next step, we decompose the complex Ernst potential
E in the form of a sum, where the first term does not contain
Λ, while the second in Λ dependent [34]:

E ¼ E0 þ EΛ: ð38Þ

The forms of the equations reveal that there are no Λ terms
at zero order in the cosmological constant; thus, we get

d2E0

dΦ2
ðmÞ

¼ 0; ð39Þ

which implies that to zero order in cosmological constant
E0 is a linear function of the potential in question, i.e.,

E0ðΦðF̃ÞÞ¼f0þf1ΦðF̃Þ; E0ðΦðB̃ÞÞ¼b0þb1ΦðF̃Þ; ð40Þ

where fi and bi are arbitrary constants. From the boundary
conditions at infinity, i.e.,ΦðmÞ → 0 and E0 → 1, we can fix
f0 and b0 to be 1, while b1 ¼ − 2

QðB̃Þ
and f1 ¼ − 2

QðF̃Þ
. It

implies the following forms of the potentials bounded with
the visible and dark sectors:

ΦðF̃Þ ¼
QðF̃Þ
ξþ 1

; ΦðB̃Þ ¼
QðB̃Þ
ξþ 1

; ð41Þ

where we have set

QðF̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2 − α

p

2
ðQðFÞ −QðBÞÞ;

QðB̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p

2
ðQðFÞ þQðBÞÞ: ð42Þ

The quantities QðFÞ and QðBÞ are expressed in the standard
way (as in charged Kerr metric derivation [33]) provided by

QðFÞ ¼
eðFÞ þ igðFÞ

M
; QðBÞ ¼

eðBÞ þ igðBÞ
M

; ð43Þ

where eðiÞ and gðiÞ are bounded, respectively, with electric
and magnetic charges of Maxwell and dark matter sectors.
As was revealed in [33–36], the form of E for Kerr

AdS/dS spacetime yields

E ¼ ξ − 1

ξþ 1
þ 1

β2
ððξþ 1Þ2 þ q2Þ; ð44Þ

where ξ ¼ px − iqy, 1=β2 ¼ �ΛM2=3, and, respectively,
the other quantities are defined as [35]

p ¼ k
M

; q ¼ â
M

; x ¼ r −M
k

;

y ¼ cos θ; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − â2

p
: ð45Þ

By M we have denoted the total mass of the black hole,
while â ¼ J=M stands for its angular momentum per
unit mass.
On the other hand, one arrives at the following expres-

sions for the metric ingredients:

f ¼ ReE þ
X
k¼F̃;B̃

Φ�
ðkÞΦðkÞ

¼ ξ�ξ − 1þ jQðF̃Þj2 þ jQðB̃Þj2
jξþ 1j2 þ 1

β2
Reððξþ 1Þ2 þ q2Þ

¼ ΔðF̃;B̃Þ − Δθâ2 sin2 θ

ðr2 þ â2 cos2 θÞ ; ð46Þ

h ¼ ImE ¼ 2
Imξ

jξþ 1j2 þ
1

β2
Imðξ2 þ 2ξÞ ð47Þ

¼ −2â cos θ
�

r
β2M2

þ M
r2 þ â2

�
; ð48Þ

while the other components of the rotating black hole with
visible and hidden sector field line elements are provided
by the following expressions:

ω ¼ â sin2 θðΔðF̃;B̃Þ − Δθðr2 þ â2ÞÞ
â2Δθ sin2 θ − ΔðF̃;B̃Þ

; ð49Þ

a ¼ sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔθΔðF̃;B̃Þ

q
; ð50Þ

e2u ¼ ffiffiffi
a

p ðr2 þ â2 cos2 θÞ; ð51Þ

e
b
2 ¼ ΔðF̃;B̃Þ − â2Δθ sin2 θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔθΔðF̃;B̃Þ
p ðr2 þ â2 cos2 θÞ sin θ ; ð52Þ

where we have denoted, in the standard way, the quantities
appearing in the above relations, i.e.,

Δr ¼ ðr2 þ â2Þ
�
1 −

Λ
3
r2
�
− 2Mr; ð53Þ

Δθ ¼ 1þ Λ
3
â2 cos2 θ; ð54Þ

ΔðF̃;B̃Þ ¼ Δr þ e2ðFÞ þ g2ðFÞ þ e2ðBÞ þ g2ðBÞ

þ αðeðFÞgðBÞ þ eðBÞgðFÞÞ: ð55Þ
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It can be seen that dark matter influences not only the line
element by the squares of electric and magnetic charges,
likewise the adequate Maxwell field ingredients, but also a
mixture of terms appears. They are connected with the sum
of electric Maxwell magnetic dark photon and electric dark
photon magnetic Maxwell charges, with the proportionality
constant α being the coupling constant between visible and
dark sectors [see the action (1)].
Moreover, inspection of Eq. (55) reveals that if we

neglect dark charge eðBÞ ¼ 0, then the main influence is
exerted by dark magnetic charge gðBÞ, and the dark
magnetic charge couples to the Maxwell electric one,
i.e., αeðFÞgðBÞ. The same feature of the dark sector was
also spotted in the analysis of the influence of dark matter
on transport coefficients in chiral solids [37,38].

IV. UNIQUENESS THEOREM FOR DARK
MATTER STATIONARY AXISYMMETRIC

BLACK HOLE

In this section, we pay attention to the problem of the
uniqueness [39] of stationary axisymmetric black holes
with the dark sector. On the other hand, the uniqueness
theorem for a static axially symmetric black hole in a
magnetic universe (say, dark Melvin universe) was proved
in Ref. [40].
In what follows, we shall restrict our considerations to

the case when the cosmological constant is equal to zero.
Namely, in relations (31) and (32), we set ∇2

ðr;zÞa ¼ 0

and a ¼ r.
It can be checked, by direct calculations, that by defining

homographic change of the variables, for the previously
defined quantities connected with both gauge fields,
provided by

E ¼ ξ − 1

ξþ 1
; ð56Þ

and taking into account the relations (41)–(43), in the case
of absence of the cosmological constant, the equations of
motion (31) and (32) reduce to a single complex one of the
following form:

ðξ�ξ − 1þ jQðF̃Þj2 þ jQðB̃Þj2Þ∇2ξ ¼ 2ξ�∇⃗ξ · ∇⃗ξ: ð57Þ

A. Boundary conditions

In order to study the relevant boundary conditions for a
stationary axisymmetric dark photon black hole, one
introduces the two-dimensional manifoldM [41], with the
spheroidal coordinates r2¼ðλ2−c2Þð1−μ2Þ and z¼ λμ,
where we set μ ¼ cos θ. In the coordinates in question, the
black hole event horizon boundary is situated at λ ¼ c. On
the other hand, two rotation axis segments distinguishing
the south and the north parts of the event horizon are

located at the limits μ ¼ �1. The obtained line element on
the two-dimensional manifold in question can be written in
the form as follows:

dr2 þ dz2 ¼ ðλ2 − μ2c2Þ
�

dλ2

λ2 − c2
þ dμ2

1 − μ2

�
: ð58Þ

Next, let us choose the domain of outer communication
⟪D⟫ being a rectangle, which implies

∂Dð1Þ ¼ fμ ¼ 1; λ ¼ c;…; Rg;
∂Dð2Þ ¼ fλ ¼ c; μ ¼ 1;…;−1g;
∂Dð3Þ ¼ fμ ¼ −1; λ ¼ c;…; Rg;
∂Dð4Þ ¼ fλ ¼ R; μ ¼ −1;…; 1g: ð59Þ

As far as the boundary conditions [41,42] are concerned,
at infinity, due to the asymptotic flatness of the solution
we require that f=λ2, h, Ã0, A3, B̃0, and B3 constitute well-
behaved functions of 1=λ and μ, in the limit where
1=λ → 0, and the values of Ã0 and B̃0 tend, respectively,
to eðF̃Þ and eðB̃Þ, while the values of A3 and B3 coincide with
gðF̃Þ and gðB̃Þ, respectively. In terms of the above require-
ments, they are given by

Ã0¼−eðF̃ÞμþOðλ−1Þ; B̃0¼−eðB̃ÞμþOðλ−1Þ; ð60Þ

A3¼−gðF̃ÞμþOðλ−1Þ; B3¼−gðB̃ÞμþOðλ−1Þ; ð61Þ

h ¼ Jμð3 − μ2Þ þOðλ−1Þ; ð62Þ

f
λ2

¼ ð1 − μ2Þð1þOðλ−1ÞÞ: ð63Þ

On the black hole event horizon, where λ → c, the
quantities in question should behave regularly; i.e., they
yield the following relations:

f ¼ Oð1Þ; 1

f
¼ Oð1Þ; ð64Þ

∂μA3 ¼ Oð1Þ; ∂λA3 ¼ Oð1Þ; ð65Þ

∂μÃ0 ¼ Oð1Þ; ∂λÃ0 ¼ Oð1Þ; ð66Þ

∂μB3 ¼ Oð1Þ; ∂λB3 ¼ Oð1Þ; ð67Þ

∂μB̃0 ¼ Oð1Þ; ∂λB̃0 ¼ Oð1Þ; ð68Þ

∂μh ¼ Oð1Þ; ∂λh ¼ Oð1Þ: ð69Þ

On the other hand, in the vicinity of the symmetry axis,
where μ → 1 (north polar segment) and μ → −1 (south
polar segment), one requires that A3, Ã0, B3, B̃0, f, and h
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ought to be regular functions of λ and μ. Consequently, they
are provided by

f ¼ Oð1 − μ2Þ; 1

f
∂μf ¼ 1þOð1 − μ2Þ; ð70Þ

∂λA3 ¼ Oð1 − μ2Þ; ∂μA3 ¼ Oð1Þ; ð71Þ

∂λÃ0 ¼ Oð1 − μ2Þ; ∂μÃ0 ¼ Oð1Þ; ð72Þ

∂λB3 ¼ Oð1 − μ2Þ; ∂μB3 ¼ Oð1Þ; ð73Þ

∂λB̃0 ¼ Oð1 − μ2Þ; ∂μB̃0 ¼ Oð1Þ; ð74Þ

∂μhþ 2ðÃ0∂μA3 − A3∂μÃ0Þ
þ 2ðB̃0∂μB3 − B3∂μB̃0Þ ¼ Oð1 − μ2Þ; ð75Þ

∂λh ¼ Oðð1 − μ2Þ2Þ: ð76Þ

B. Uniqueness of solutions

It was revealed in Ref. [43] that various combinations of
the Ernst equations of the type given by (31) and (32) can
be comprised in a matrix equation of the form

∂r½P−1
∂rP� þ ∂z½P−1

∂zP� ¼ 0; ð77Þ

where by P we have denoted 3 × 3 Hermitian matrices
with unit determinants. Additionally, it happens that, for
any constant, invertible matrix A, the matrix APA−1 is the
solution of the relation (77), enabling one to create all the
transformations referred to Ernst’s system of partial differ-
ential equations.
Let us assume that the matrix P components are enough

differentiable in the domain of outer communication ⟪D⟫
of the two-dimensional manifold M, with boundary ∂D.
Suppose further that we have two different matrix solutions
of Eq. (77), P1 and P2, subject to the same boundary and
differentiability conditions, and consider the difference
between the aforementioned relations satisfies the equation
of the form

∇ðP−1
1 ð∇QÞP2Þ ¼ 0; ð78Þ

where one sets Q ¼ P1P−1
2 . Multiplying Eq. (78) by Q†

and taking the trace of the result, we achieve the following
outcome:

∇2q ¼ Tr½ð∇Q†ÞP−1
1 ð∇QÞP2�; ð79Þ

where we set q ¼ TrQ. Hermiticity and positive definite-
ness of the matrix P allow us to postulate the matrix in the
form as P ¼ MM†, which, in turn, yields

∇2q ¼ TrðJ †J Þ; ð80Þ

where J ¼ M−1
1 ð∇QÞM2.

Defining homographic change of the variables, for the
previously defined quantities connected with both gauge
fields, provided by

ϵ ¼ ξ − 1

ξþ 1
; ΨðF̃Þ ¼

ηðF̃Þ
ξþ 1

; ΨðB̃Þ ¼
ηðB̃Þ
ξþ 1

; ð81Þ

enables us to find that the P matrix implies

Pαβ ¼ ηαβ −
2ξαξ̄β
hξδξ̄δi

; ð82Þ

where we define the scalar product in the form

hξδξ̄δi ¼ −1þ
X
γ

ξγξ̄
γ; γ ¼ 1;…; q: ð83Þ

In the case under consideration, ξ1 ¼ ξ, ξ2 ¼ ηðF̃Þ,
ξ3 ¼ ηðB̃Þ, and q ¼ 3.
Moreover, for brevity of the final notion, we change the

notation in the relation (23) for the following:

ΦðF̃Þ ¼ EðF̃Þ þ iBðF̃Þ; ΦðB̃Þ ¼ EðB̃Þ þ iBðB̃Þ: ð84Þ

The further step in the uniqueness proof of the dark
matter stationary axisymmetric black hole solution is to
find the trace q ¼ TrðP1P−1

2 Þ. Consequently, after some
algebra, one arrives at

q ¼ Pαβð1ÞP
αβ
ð2Þ ¼ 3þ 1

f1f2

�
ðf1 − f2Þ2 þ

�X
i¼F̃;B̃

ððEðiÞ1 − EðiÞ2Þ2 þ ðBðiÞ1 − BðiÞ2Þ2Þ
�
2

− 2ðf1 þ f2Þ
X
i¼F̃;B̃

½ðEðiÞ1 − EðiÞ2Þ2 þ ðBðiÞ1 − BðiÞ2Þ2�

þ
�
2
X
i¼F̃;B̃

ðBðiÞ1E
ðiÞ
2 − BðiÞ2E

ðiÞ
1 Þ þ ðh1 − h2Þ

�
2
�
: ð85Þ
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Let us turn our attention to the relation (80) and integrate it over the domain of outer communication ⟪D⟫ (59), using
Stoke’s theorem. In accordance with the choice of ⟪D⟫, one gets

Z
∂⟪D⟫

∇kqdSk ¼
Z
∂⟪D⟫

dλ

ffiffiffiffiffiffiffi
hλλ
hμμ

s
∂μqjμ¼const þ

Z
∂⟪D⟫

dμ

ffiffiffiffiffiffiffi
hμμ
hλλ

s
∂λqjλ¼const

¼
Z

c

∞
dλ

ffiffiffiffiffiffiffi
hλλ
hμμ

s
∂μqjμ¼−1 þ

Z
∞

c
dλ

ffiffiffiffiffiffiffi
hλλ
hμμ

s
∂μqjμ¼1 þ

Z
−1

1

dμ

ffiffiffiffiffiffiffi
hμμ
hλλ

s
∂λqjλ¼c þ

Z
1

−1
dμ

ffiffiffiffiffiffiffi
hμμ
hλλ

s
∂λqjλ→∞

¼
Z
⟪D⟫

TrðJ †J ÞdV: ð86Þ

The behavior of the left-hand side of the above equa-
tion (86) will be elaborated by considering the integrals
over each part of the domain of outer communication
⟪DðiÞ⟫, where i ¼ 1;…; 4, chosen as a rectangle in the
two-dimensional manifold with coordinates ðμ; λÞ.
Namely, on the black hole event horizon ∂Dð2Þ, all the

examined functions are well behaved, having asymptotic
behavior given byOð1Þ. As λ → c, the r coordinate tends to
r ≃Oð ffiffiffiffiffiffiffiffiffiffi

λ − c
p Þ, and the square root has the form offfiffiffiffiffi

hμμ
hλλ

q
≃Oð ffiffiffiffiffiffiffiffiffiffi

λ − c
p Þ. Then, one can conclude that ∇kq

vanishes on the dark matter stationary axisymmetric black
hole event horizon.
On the symmetry axis ∂Dð1Þ and ∂Dð3Þ, when μ� 1, all

the quantities under inspection are of the order of Oð1Þ.
As μ → 1, the r coordinate tends to Oð ffiffiffiffiffiffiffiffiffiffiffi

1 − μ
p Þ, and for

the case when μ → −1, one has that r ≃Oð ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

p Þ. The
behaviors of square roots are given by

ffiffiffiffiffi
hλλ
hμμ

q
≃Oð ffiffiffiffiffiffiffiffiffiffiffi

1þ μ
p Þ

when μ → −1 and
ffiffiffiffiffi
hλλ
hμμ

q
≃Oð ffiffiffiffiffiffiffiffiffiffiffi

1 − μ
p Þ for μ → 1. Thus, the

relation (86) reveals that ∇mq ¼ 0 for μ� 1.
For the case when λ ¼ R → ∞, all functions in question

are well behaved and have asymptotic behaviors given by
Eqs. (60)–(63). On the other hand, the square root in the

considered limit tends to
ffiffiffiffiffi
hμμ
hλλ

q
≃OðλÞ. Inspection of the

boundary conditions given by relations (60)–(63) and (86),
where we have differentiation with respect to λ, reveal the
fact that the studied integral tends to zero.
All the aforementioned arguments lead to the conclusion

that Z
⟪D⟫

TrðJ †
ðiÞJ ðiÞÞ ¼ 0; ð87Þ

which, in turn, implies that PðiÞ1 ¼ PðiÞ2, at all points
belonging to the domain of outer communication, com-
prising a two-dimensional manifold M with coordi-
nates ðr; zÞ.
It means that if one considers two stationary axisym-

metric black hole solutions of Einstein-Maxwell dark

photon gravity characterized, respectively, by ðf1; h1; Ã0ð1Þ;
A3ð1Þ; B̃0ð1Þ; B3ð1ÞÞ and ðf2; h2; Ã0ð2Þ; A3ð2Þ; B̃0ð2Þ; B3ð2ÞÞ,
being subject to the same boundary and regularity con-
ditions, they are identical.
In summary, the consequences of our research can be

summarized as follows.
Theorem. Consider a domain of outer communication

⟪D⟫ constituting a region of two-dimensional manifold
with a boundary ⟪∂D⟫, equipped with the coordinate
system ðr; zÞ defined by r2 ¼ ðλ2 − c2Þð1 − μ2Þ and
z ¼ λμ.
Assume further that PðiÞ are Hermitian positive, three-

dimensional matrices, with unit determinants. On the
boundary of the domain ⟪∂D⟫, matrices Pð1Þ and Pð2Þ
authorize the solution of the equation

∂r½P−1
∂rP� þ ∂z½P−1

∂zP� ¼ 0

and satisfy the relation ∇mq ¼ 0, where q ¼ TrðP1P−1
2 Þ.

Then, if Pð1Þ ¼ Pð2Þ in all domains of outer communi-
cation ⟪D⟫, implying that for at least one point d∈⟪D⟫,
one arrives at the relation Pð1ÞðdÞ ¼ Pð2ÞðdÞ.
Thus, all the stationary axisymmetric solutions of

Einstein-Maxwell dark photon gravity subject to the same
boundary and regularity conditions, say, a Kerr-like dark
matter black hole, comprise the only stationary axisym-
metric symmetric black hole solution, endowed with a
regular event horizon, having nonvanishing Ã0, A3, B̃0, and
B3 components of Maxwell visible and hidden sector gauge
fields. Having in mind equations introduced in Sec. II, the
above components can be rewritten by means of A0, Aϕ, B0,
and Bϕ ones, i.e.,

Ã0¼
ffiffiffiffiffiffiffiffiffiffi
2−α

p

2
ðA0−B0Þ; B̃0¼

ffiffiffiffiffiffiffiffiffiffi
2þα

p

2
ðA0þB0Þ; ð88Þ

Ãϕ¼
ffiffiffiffiffiffiffiffiffiffi
2−α

p

2
ðAϕ−BϕÞ; B̃ϕ¼

ffiffiffiffiffiffiffiffiffiffi
2þα

p

2
ðAϕþBϕÞ: ð89Þ
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V. CONCLUSIONS

In our paper, we have elaborated the stationary axisym-
metric solution to Einstein-Maxwell dark matter–dark
energy black hole solution. The dark sector was modeled
by dark photon theory, i.e., a new Abelian gauge field
coupled to the ordinary Maxwell one, by means of the so-
called kinetic mixing term. On the other hand, the positive
cosmological constant mandated phenomenologically the
features of the influence of dark energy. The equations of
motion for the considered system were arranged into the
form of Ernst-like system of complex relations.
The obtained metric components of the rotating Kerr-like

dark matter–dark energy solution have envisaged the
ordinary cosmological constant dependence (like in Kerr
dS spacetime [34,36]), while the dark sector imprints its
presence by square of electric Maxwell and dark photon
charges, square of magnetic charges of both sectors, and
mixing electric-magnetic charges pertaining to visible-dark
and dark-visible sectors.

Then, we restrict our attention to the case of the
asymptotically flat solution and rearrange the adequate
Ernst equations into the form of a matrix equation.
Choosing the domain of outer communication ⟪D⟫ as a
rectangle in a two-dimensional manifold with coordinates
ðr; zÞ, one shows that the two matrix solutions of the
underlying equations being subject to the same boun-
dary and regularity conditions are equal in ⟪D⟫. Thus,
one can draw the conclusion that Kerr-like dark matter
stationary axisymmetric black hole solution to Einstein-
Maxwell dark photon gravity authorizes the only sta-
tionary axisymmetric solution in the theory under
inspection, having nonzero A0, Aϕ, B0, and Bϕ gauge
field components.
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