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It is shown that the spectral amplitude of gravitational wave ringdown of a Kerr black hole sourced by an
extreme mass ratio merger can be modeled by the greybody factor, which quantifies the scattering nature of
the black hole geometry. The estimation of the mass and spin of the remnant is demonstrated by fitting the
greybody factor to gravitational wave data without using black hole quasinormal modes. We propose that
the ringdown modeling with the greybody factor may strengthen the test of gravity as one can avoid the
possible overfitting issue and the start time problem in the ringdown modeling with superposed
quasinormal modes.
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I. INTRODUCTION

The Kerr solution, describing a spinning black hole, is
one of the most simplest solutions to the Einstein equation.
Based on the black hole no-hair theorem [1–3], the
spacetime structure near an astrophysical Kerr black hole
is characterized by two parameters only, i.e., the mass M
and angular momentum J of the black hole. Therefore, a
black hole is a suitable site to test gravity in strong gravity
regimes. In the context of the test of the no-hair theorem,
the black hole spectroscopy [4–6] has been actively studied
so far. The black hole spectroscopy is an extraction of each
black hole quasinormal (QN) mode [7–14] from gravita-
tional wave (GW) ringdown which is a superposition of
multiple QN modes. There are infinite number of QN
modes and each mode has a complex frequency ω ¼
ωlmn ∈C labeled by the overtone number n for each
angular and azimuthal mode ðl; mÞ. The real and imaginary
part of ωlmn represent the frequency and damping rate of
the mode, respectively.
GW ringdown appears after the inspiral phase of a binary

black hole system. If the ringdown starts around the strain
peak, then it would be possible to measure several QN
modes included in a ringdown signal by truncating GW
data before the assumed start time of ringdown and by
fitting several QN modes to the truncated data [15].
However, some issues in the black hole spectroscopy with
(superposed) QNmodes have been pointed out like the start
time problem [8,13,14,16] and overfitting problem [17].
Then, it would be natural to ask if there is another
nice quantity being suitable to test gravity other than
QN modes.

In this paper, we propose that the black hole greybody
factor, ΓlmðωÞ, would be an important quantity in the test of
the no-hair theorem and the estimation of the remnant
parameters from GW ringdown. We here consider a particle
plunging into a massive black hole as a source of GW. Then
we show that for ðl; mÞ ¼ ð2; 2Þ, Γlm can be imprinted on
the GW spectral amplitude jh̃lmðωÞj in ω≳ flm ≡
Reðωlm0Þ with the form of

jh̃lmðωÞj ≃ clm × γlmðωÞ≡ clm ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ΓlmðωÞ

p
=ω3

for ω≳ flm; ð1Þ

where ω is a frequency of GWs and clm is a constant
corresponding to the GW amplitude. The frequency
dependence of the greybody factor is determined by the
two remnant parameters only, i.e., the mass and spin of the
black hole. It means that if (1) holds, then one can detect
the greybody factor from the ringdown to test the no-hair
theorem as the spectral amplitude in ω≳ flm corresponds
to the ringdown signal. The reflectivity Rlm ≡ 1 − Γlm has
an exponential damping at high frequencies (ω≳ flm) and
the strength of the damping in the frequency domain is
unique for the remnant mass and spin like a complex QN
mode frequency. As the damping inRlm is strong for rapid
spins, the reflectivity well govern the dependence of jh̃lmj
on frequency and our model works well especially for
rapidly spinning remnant black holes. One of the important
difference in the ringdown modeling with the greybody
factor and QN modes is that given the remnant massM and
spin jð≡J=M2Þ, we know where the universal damping of
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Rlm ¼ 1 − Γlm appears in the frequency space, i.e.,
ω≳ flmðM; jÞ, but it is unknown when the excitation of
superposed QNmodes appears in the time domain, which is
recognized as the start time problem or the time-shift
problem.
The original idea of the modeling of ringdown with the

greybody factor was introduced in the previous paper by
the author [18]. In this paper, we investigate the importance
of the greybody factors in the ringdown sourced by an
extreme mass ratio merger in more detail. In Sec. II A, we
explain our methodology to compute GW waveform in the
linear perturbation regime. The definition and the property
of the greybody factor is provided in Sec. II B. In Sec. III A,
we study why the greybody factor can be imprinted on the
GW ringdown by carefully considering the effect of the
source term. In Sec. III B, we investigate the exponential
damping in the greybody factor and how it is consistent
with the exponential damping in the spectral amplitude of
the GW ringdown. In Sec. III C, we perform the measure-
ment of the remnant mass and spin only with the fit of the
greybody factor. In Sec. IV, our conclusion is provided and
we discuss the pros and cons of using the greybody factor
and QN modes in the test of the no-hair theorem,
measurement of the remnant quantities, and the modeling
of GW ringdown. Throughout the manuscript, we use the
natural unit of c ¼ ℏ ¼ 1 and G ¼ 1.

II. FORMALISM

In this section, we describe how we compute GW
spectral amplitude for an extreme mass ratio merger and
the greybody factor of a spinning black hole. Here we
concentrate on a particle plunging into the hole and its
trajectory is restricted on the equatorial plane.

A. Extreme mass ratio merger
and gravitational waveform

The background geometry is approximated by the Kerr
spacetime when we consider an extreme mass ratio merger
with a massive black hole. Therefore, the background
geometry can be covered by the Boyer-Lindquist coordi-
nates ðt; r; θ;ϕÞ and one can compute the GW spectrum
h̃lmðωÞ sourced by the merger event in a linear manner. Let
us begin with solving the Sasaki-Nakamura equation [19]:

�
d2

dr�2
− Flm

d
dr�

−Ulm

�
Xlm ¼ ρlm; ð2Þ

where the explicit forms of Flm and Ulm are given in the
original paper by Sasaki and Nakamura [19], and the
spectrum h̃lm is obtained from the perturbation variable
Xlm as is shown later explicitly. The source term ρlm
depends on the plunging orbit of a particle with mass μ. The
form of ρlm for the plunging particle on the equatorial plane
(θ ¼ π=2) is [20]

ρlm ¼ γ0Δ
ðr2 þ a2Þ3=2r2W exp

�
−i

Z
r Kðr0Þ
Δðr0Þ dr

0
�
; ð3Þ

where ΔðrÞ≡ r2 − 2Maþ a2, KðrÞ≡ ðr2 þ a2Þω − am,
and a≡ J=M. The functions γ0 and W are shown in
Appendices A and B in Ref. [20], respectively. The
trajectory of a particle is determined by the following
differential equations [20,21]:

r2
dt
dτ

¼ −aða − LzÞ þ
r2 þ a2

Δ
P; ð4Þ

r2
dϕ
dτ

¼ −aða − LzÞ þ
a
Δ
P; ð5Þ

r2
dr
dτ

¼ −
ffiffiffiffi
R

p
; ð6Þ

θ ¼ π=2; ð7Þ

whereP≡r2þa2−Lza,R≡2Mr3−L2
zr2þ2MrðLz−aÞ2,

μLz is the orbital angular momentum, and τ is the
proper time of the particle. We obtain the source
term ρlm by substituting the trajectory of the particle,
ðtðτÞ; rðτÞ; θ ¼ π=2;ϕðτÞÞ, into (3). We then numerically
compute the Sasaki-Nakamura equation with the source
term for a plunging orbit on the equatorial plane ρlm. The
GW spectral amplitude we obtained for l ¼ m ¼ 2 are
shown in Fig. 1.

B. Greybody factors

The greybody factor quantifies the absorptive nature
of a black hole geometry and is independent of the source
term. It is determined only by the no-hair parameters
of a black hole, i.e., the mass and spin of a black hole,
like the black hole quasinormal modes. We obtain the
greybody factor by computing a homogeneous solution

FIG. 1. Spectral amplitude jh̃22j for j ¼ 0.7 (black dash dotted),
0.9 (red solid), and 0.99 (blue dashed). The source term is
obtained with Lz ¼ 0.5 and the observation angle is θ ¼ π=2.
The black vertical lines show the real part of the fundamental QN
mode frequency f22ðjÞ. The exponential damping of the spectral
amplitudes appear in ω≳ f22.
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to the Sasaki-Nakamura equation Xlm ¼ XðhomÞ
lm with the

boundary condition of

XðhomÞ
lm ¼ e−ikHr

�
for r� → −∞; ð8Þ

where kH ≡ ω −mΩH with ΩH ≡ j=ð2rþÞ. We then read
the asymptotic ingoing and outgoing amplitudes at a distant
region as

XðhomÞ
lm ¼ Aine−iωr

� þ Aouteiωr
�

for r� → ∞: ð9Þ
The reflectivity of the angular momentum barrier is given
by [22,23]

Rlm ≡
���� Cc0

����
2
����Aout

Ain

����
2 ≡ 1 − Γlm; ð10Þ

where Rlm and Γlm are the reflectivity and the greybody
factor (i.e., transmissivity), respectively. This model
includes contributions from all QN modes associated with
ðl; mÞ mode by virtue of the residue theorem. QN modes
are nothing but the poles of AoutðωÞ=AinðωÞ in the complex-
frequency plane ω∈C. On the other hand, the greybody
factor is determined by the values of AoutðωÞ=AinðωÞ on the
real axis of ω, i.e., ω∈R. It means that performing the
inverse Fourier transform of Aout=Ain on the real axis of ω,
we can obtain the excitation of all QN modes for which
each mode amplitude is determined by the Kerr excitation
factor [16,24,25]. The factors jCj2 and c0 are1 [26,27]

jCj2 ≡ λ4 þ 4λ3 þ λ2ð−40a2ω2 þ 40amωþ 4Þ
þ 48aλωðaωþmÞ
þ 144ω2ða4ω2 − 2a3mωþ a2m2 þM2Þ; ð11Þ
c0 ≡ λðλþ 2Þ − 12aωðaω −mÞ − i12Mω; ð12Þ

respectively, and λ is the separation constant of the spin-
weighted spheroidal harmonics. We numerically compute
the greybody factor by solving the Sasaki-Nakamura
equation.2 Our computation reproduce the exponential
decay of R22 at high frequencies (ω≳ f22) and the
superradiant amplification at ω < mΩH as is shown in
Fig. 2. The exponential damping of 1 − Γlm at high-
frequency region (ω≳ flm) can be approximated as

1 − Γlm ≃ e−ðω−flmÞ=Tlm ; ð13Þ
where Tlm quantifies the strength of the exponential
damping of Rlm in the frequency domain. The factor

Tlm is a no-hair quantity which depends only on the mass
and spin of the remnant black hole like the QN mode
frequency. The values of Tlm extracted from our numerical
data are shown in Table I and the fitting methodology we
used is provided in Appendix A.

III. GREYBODY FACTORS IN RINGDOWN

In this section, we study the greybody factor imprinted
on GW ringdown. As is shown in Fig. 3, we find that the
greybody factor can model the spectral amplitude of GW
ringdown in ω≳ flm when the GW is sourced by an
extreme mass ratio merger.3 This still holds even for some
higher harmonic modes (Fig. 4) and for various values of
the orbital angular momentum μLz and the spin parameter j
of the massive black hole. We also confirm that the
frequency dependence of GW spectrum is insensitive to
the observation angle θ as shown in Appendix B. This
universal nature in the black hole ringdown is important to
test the no-hair theorem with high precision by combining
the black hole spectroscopy.
We here study how the greybody factor can be imprinted

on the ringdown signal. We also demonstrate the estimation
of the remnant mass and spin by using the greybody factor
only. We then find that it works well, which implies that the
greybody factor is important to test the black hole no-hair
theorem. Not only using the QN modes but also using the
greybody factor would enhance the accuracy of the test of
gravity and measurability of the remnant quantities at least
for extreme mass ratio mergers.

A. Why are the greybody factors imprinted
on ringdown?

We here discuss why the greybody factors can
be imprinted on the ringdown for extreme mass ratio

FIG. 2. ReflectivityRlm ¼ 1 − Γlm for ðl; mÞ ¼ ð2; 2Þ with j ¼
0.7 (black dot dashed), 0.9 (red solid), and 0.99 (blue dashed).
The black vertical lines show the real part of the fundamental QN
mode frequency ω ¼ f22. The exponential damping of the
reflectivity appear in ω≳ f22.

1As far as the author is aware, the argument of C still remains
to be ascertained.

2For more details of our numerical computation, see Appen-
dix A. Recently, the greybody factor of Kerr black holes was
analytically computed by solving the connection problem of the
confluent Heun equation and its analytic form was obtained in
Ref. [28].

3The source term may have its small dependence on ω, which
causes small deviations between the GW spectra and our grey-
body-factor model.
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mergers. For higher mass ratios, the background geo-
metry is governed only by a massive black hole
and the perturbation theory in the Kerr spacetime
works to compute GW waveform. The GW strain, h, is
given by

h ¼
X
l;m

eimϕffiffiffiffiffiffi
2π

p
r

Z
dωh̃lmðωÞe−iωt

¼
X
l;m

eimϕffiffiffiffiffiffi
2π

p
r

Z
dω

−2
ω2 −2Slmðaω; θÞRlmðωÞe−iωt; ð14Þ

¼
X
l;m

eimϕffiffiffiffiffiffi
2π

p
r

Z
dω

−2
ω2 −2Slmðaω;θÞ

AoutðωÞ
2iωAinðωÞ

ρ̃lmðωÞe−iωt;

ð15Þ
where −2Slmðaω; θÞ is the spin-weighted spheroidal har-
monics, Rlm is the radial Teukolsky variable, and ρ̃lm is

ρ̃lmðωÞ ¼
−4ω2

λðλþ 2Þ − 12iMω − 12a2ω2

×
Z

∞

rþ
dr0

ρlmðω; r0ÞXðhomÞ
lm ðω; r0Þ

AoutðωÞ
: ð16Þ

FIG. 3. The comparison of the GW spectral amplitude jh̃22j and a function γ22ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γ22

p
=ω3 determined by the greybody factor

Γ22. The observation angle θ is set to π=2. For other values of θ, see Appendix B. The match between the two quantities for ω≳ f22 is
explained in Sec. III A. The vertical black lines indicate ω ¼ f22.

TABLE I. The value of Tlm ðl ¼ m ¼ 2Þ with respect to the spin parameter j. We read the value of T22 from
1 − Γ22ðωÞ in the range of α × f22 ≤ ω ≤ 1.99=ð2MÞ, where we choose a constant α in the range of 1 ≤ α ≤ 1.2.
The constant α should be larger for a lower spin in order for 1 − Γ22 to be well approximated with e−ðω−f22Þ=T22 in the
frequency range. The value of α we set is shown in (A3) in Appendix A.

Spin parameter (j) 0.001 0.1 0.2 0.3 0.4 0.5 0.6
Decay frequency (T22) 0.067 0.066 0.065 0.064 0.063 0.062 0.060
Spin parameter (j) 0.7 0.8 0.9 0.95 0.99 0.995 0.998
Decay frequency (T22) 0.057 0.053 0.045 0.036 0.019 0.014 0.0096

FIG. 4. The comparison of the GW spectral amplitude jh̃lmj and a function γlmðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γlm

p
=ω3 for ðl; mÞ ¼ ð3; 3Þ, (4,4), and (5,5).

The vertical black lines indicate ω ¼ flm. We set j ¼ 0.9, Lz ¼ 0.5, and θ ¼ π=2.
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Then we find

jh̃lmj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γlm

p
ω3

tlm ¼ γlmtlm; ð17Þ

where γlm is a universal quantity that depends only on the
two remnant quantities (M, j) and another factor tlm
includes the source term and the spheroidal harmonics,
depending on the external information like the GW source
and the observation angle, respectively:

tlm≡
���� c0C

����jρ̃lmjj−2Slmj: ð18Þ

The factor of tlm is hereinafter referred to as the renor-
malized source term. The frequency dependence of the GW
spectral amplitude, jh̃lmj, is governed by γlm at higher
frequencies ω≳ flm provided that tlm has the small
dependence in ω for ω≳ flm. The value of the source
term t22 is shown in Fig. 5. One can see that t22ðωÞ is
indeed nearly constant and γ22 governs the frequency
dependence of the GW spectrum. In our situation, a
compact object instantaneously passes the light ring of
the massive black hole and excite the ringdown (see, e.g.,
Ref. [18]), which would be regarded as an instantaneous
source of GW ringdown, which may be why the associated
source term can be nearly constant in the relevant frequency
region.4 In the comparable mass-ratio mergers, it is more
complicated as the merger process is nonlinear. The
structure of the light ring would be significantly disturbed
during the merger. Still, if the light ring forms soon after the
merger while instantaneously sourcing the ringdown, its
spectral amplitude may be modeled by the greybody-factor
model. We leave a more detailed study of our model for

other harmonic modes, e.g., the sensitivity of our model for
ðl; mÞ ≠ ð2; 2Þ to external parameters like the orbital
angular momentum, for a future work.

B. Exponential decay in GW spectral amplitudes
and in the greybody factors

We find the spectral amplitude in high frequency region
(ω≳ f22) can be modeled by the greybody factor as is
shown in Figs. 3 and 5. This holds for various values of the
orbital angular momentum of the plunging particle μLz.

Fitting the Boltzmann factor exp½−ðω − f22Þ=TðGWÞ
22 � to the

simulated GW data,5 we read the damping exponent of the

GW spectral amplitude TðGWÞ
22 in the frequency domain. The

result is shown in Fig. 6 and the best fit values of TðGWÞ
22

(dots) is consistent with T22 (solid line) especially for
j≳ 0.8. The value of T22 is sensitive to the spin parameter j
for rapid spins but is insensitive to j for lower spins (see
Table I as well).
In addition to Tlm, another quantity flm is also important

to model jh̃lmj as the exponential damping in jh̃lmj appears
at ω≳ flm (see Figs. 1 and 3). In the next section, we show
that the two remnant values, i.e.,M and j, can be extracted
from the GW spectral amplitude by fitting γlm characterized
by TlmðM; jÞ and flmðM; jÞ.

C. Estimation of the remnant quantities

The two no-hair quantities ðM; jÞ can be extracted by
fitting the function of γlmðM; jÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ΓlmðM; jÞp
=ω3 to

the spectral amplitude of GW data jh̃lmj as the greybody
factor is characterized by the two remnant quantities. The
fitting parameters are M, j, and an amplitude clm. Here we
demonstrate the extraction of the two no-hair parameters

FIG. 5. Plot of the GW spectral amplitude jh̃22j (black solid),
γ22 (blue dot-dashed), and t22 (red dashed) for j ¼ 0.8, Lz ¼ 0,
and θ ¼ π=2.

FIG. 6. The dots show the best fit values of TðGWÞ
22 extracted

from the numerical GW waveform data with θ ¼ π=2. The black
solid line is the best fit value of the damping frequency T22

obtained from the numerical computation of the greybody factor.

4Remember that an instantaneous pulse like a delta function or
a sharp Gaussian distribution in the time domain has a nearly
constant distribution in the frequency domain.

5The detailed methodology of our fitting analysis is provided
in Appendix A.
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ðM; jÞ from our clean numerical GW waveform by fitting
γlm with ðl; mÞ ¼ ð2; 2Þ. We here use the analytic model
function that models γ22, whose explicit form is shown
in Appendix C. The estimation of ðM; jÞ with noise is
important to quantify the feasibility for a specific detector,
and it will be studied elsewhere.
We estimate the mismatch M between the GW spectral

amplitude jh̃22j and c22 × γ22 on the mass-spin space with

MðM; aÞ ¼
�����1 −

hjh̃22jjc22 × γ22iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjh̃22jjjh̃22jihc22 × γ22jc22 × γ22i

q
�����

¼
�����1 −

hjh̃22jjγ22iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjh̃22jjjh̃22jihγ22jγ22i

q
�����; ð19Þ

where haðωÞjbðωÞi is

haðωÞjbðωÞi ¼
Z

ωf

ωi

dωaðωÞb�ðωÞ: ð20Þ

Note that the mismatch M is independent of the scale c22
and depends only on the other two fitting parameters ðM; jÞ

only. This makes the fit and extraction of the remnant
quantities quite simpler than the case in the multiple QN
mode fitting. Also, we could avoid the overfitting issue. For
the fit of multiple overtones, on the other hand, there are
many fitting parameters, i.e., an amplitude and phase for
each QN mode. It was pointed out [17] that the inclusion of
many QN modes in the ringdown model may cause
overfitting when we use a GW waveform beginning with
the strain peak [17].6

We estimate the mismatch M by computing the inner
product (20) with the range of the integral of ωi ¼ 2M and
ωf ¼ 2M × 1.99. Note that the M in ωi=f is not the true
value but the fitting parameter of the black hole mass. The
mismatch is computed in the mass-spin domain and the
result is shown in Fig. 7. We find that the mass-spin
estimation works well even though we here use the grey-
body factor without the fit of multiple QN modes. We also

FIG. 7. The mismatch M between jh̃22j and γ22 for (a) j ¼ 0.7, (b) 0.9, and (c),(d) 0.99. The injected (true) values of the remnant
quantities are indicated with the white solid lines. The source particle has the orbital angular momentum of μLz ¼ 0.5μ and the
observation angle is set to θ ¼ π=2. The frequency range used in the estimation of the mismatch is ½2Mωi; 2Mωf� ¼ ½1; 1.99�.

6On the other hand, the previous work of Ref. [15] fit multiple
QN modes to the numerical relativity GW waveform beginning
from the strain peak. Then they reproduced the injected remnant
mass and spin values. This implies that the fit of multiple QN
modes may work at least when GW data has no contamination
by noise.

NARITAKA OSHITA PHYS. REV. D 109, 104028 (2024)

104028-6



find that the best fit mass and spin are not sensitive to
an artificial choice of the range of the data we use
ω∈ ½ωi;ωf� as is shown in Fig. 8. On the other hand, in
the fit of QN modes, the mass-spin measurement is
sensitive to the assumed start time of ringdown [15].
Although the feasibility of the extraction of the greybody
factor depends on noise, combining this with the black
hole spectroscopy may strengthen not only the measur-
ability of the remnant quantities but also the precision of
the test of gravity. We will come back to this in the
future.

IV. DISCUSSIONS

The superposed QNmodes is one of the most established
model of the black hole ringdown. In this paper, we
discussed another universal nature of ringdown that is
described by the black hole greybody factor Γlm. We
considered how GW ringdown can be modeled by the
greybody factor, which is another no-hair quantity that
depends only on the mass and spin of the remnant black
hole like the black hole QN modes. We found that the
spectral amplitude of GW ringdown jh̃lmj with ðl; mÞ ¼
ð2; 2Þ sourced by an extreme mass ratio merger can be
modeled by jh̃lmj ∼ c × γlmðωÞ for ω≳ flm, where
γlmðωÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Γlm
p

=ω3 and c is an amplitude. In order
for the greybody factor to be imprinted on the ringdown,
the renormalized source term tlmðωÞ, depending on the GW
source, should be nearly constant with respect to ω for
ω≳ flm. We confirmed that t22ðωÞ satisfies the condition
when GW is sourced by a compact object plunging into a
massive black hole in the extreme mass ratio regime
(Fig. 5). We may expect that this is the case as long as
a particle plunging into a massive black hole can be
regarded as an instantaneous source of GW ringdown.
We numerically computed GW waveforms with several
values of the orbital angular momentum μLz. We then
confirmed that the GW spectral amplitude is well modeled

by γ22, determined by the greybody factor, at higher
frequencies ω≳ f22 for various values of jLzj≲ 0.5
(see Figs. 3 and 6). Also, this model works well especially
for a rapidly spinning remnant black hole. Indeed, the
measurement of the innermost stable circular orbit of
supermassive black holes based on the x-ray observation
puts the lower bound on the spin j of supermassive black
holes, and some of them take j > 0.9 and can be even near
extremal as j > 0.99 [29,30].
As the greybody factor Γlm is another no-hair quantity,

the extraction of not only the QN modes but also the
greybody factor from GW ringdown would improve the
accuracy of the measurement of the remnant mass and spin
and strengthens the test of gravity (Fig. 7). The pros and
cons in the modeling of GW ringdown with QN modes and
greybody factors are summarized below.
(1) For the ringdown modeling with QN modes, the

relevant data range in the time domain t≳ tstart is
difficult to identify, where tstart is the start time of
ringdown. On the other hand, for the ringdown
modeling with the greybody factor, the relevant data
range ω≳ flmðM; jÞ is uniquely determined once
we fix the remnant quantities M and j.

(2) Many fitting parameters are needed to extract
QN modes from GW ringdown especially when
several QN modes are excited simultaneously asP

n Clmn exp½−iωlmntþ φlmn� for a dominant an-
gular mode of ðl; mÞ. For the extraction of the
greybody factor, on the other hand, the spectral
amplitude of the black hole ringdown at ω≳ flm is
modeled by c × γlmðM; jÞ. The scale c is irrelevant
for the minimization of the mismatch M. As such,
one can search the least value of M with the only
two fitting parameters ðM; jÞ while avoiding the
overfitting issue. It is much simpler than the QN
mode fitting which involves many fitting param-
eters, i.e., amplitude Clmn and phase φlmn for each
QN mode.

FIG. 8. The mismatchM between jh̃22j and γ22 for j ¼ 0.9. The injected (true) values of the remnant quantities are indicated with the
white solid lines. The source particle has the orbital angular momentum of μLz ¼ 0.5μ and we set θ ¼ π=2. We change the frequency
range of the data used in the computation of M as 2Mωi ¼ 1, 1.1, 1.25 and 2Mωf is fixed to 1.99.
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(3) GW ringdown can be modeled by the superposition
of QN modes regardless of the frequency depend-
ence of the source term. However, the modeling of
ringdown with the greybody factor does not always
work due to the contamination from the source term.
Note that the greybody factor can be extracted only
when the normalized source term tlmðωÞ is nearly
constant in ω≳ flm (Fig. 5).

Given the pros and cons in the modeling of ringdown with
the greybody factor and in that with QN modes, combining
those two models may improve the test of the no-hair
theorem and the estimation of the remnant quantities. We
could also relate the excitation of overtones with the
greybody factors as the residue of γlm at QN modes can
be regarded as the excitation factor, which quantifies the
excitability of each QN mode [7,16,24,25]. It would be
important to understand the relation between the greybody
factor and excitation factor to reveal the universality in the
black hole ringdown.
To further confirm the importance of the greybody factor

in the modeling of GW ringdown, we have to check the
detectability of the greybody factor from GW ringdown
with the future detectors such as LISA. Also, it would be
important to take into account some higher harmonic
modes, which would affect the extraction of the greybody
factor and increases the fitting parameters if higher har-
monic modes are significantly excited. We will come back
to these points in the future. It is interesting to note that as
another different direction, the authors in Ref. [31] studied
an inverse problem to read the greybody factor from
quantum Hawking radiation. An interesting aspect of the
greybody factor is that it can be important in both quantum
and classical radiation of black holes, i.e., Hawking
radiation and GW ringdown, respectively.
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APPENDIX A: NUMERICAL METHODOLOGY
AND ACCURACY

We numerically solve the Sasaki-Nakamura equation (2)
with the fourth Runge-Kutta method. The source term ρlm
for the plunging particle is numerically computed in the
range of r�min ≤ r� ≤ r�max ¼ 400M. The minimum radius
of the range of integral r�min is set to

r�min ¼

8>>>>>>>><
>>>>>>>>:

−40M; for j ≤ 0.9

−50M; for 0.9 < j < 0.97

−80M; for 0.97 ≤ j < 0.99

−100M; for j ¼ 0.99

−120M; for j ¼ 0.995

−160M; for j ¼ 0.998

: ðA1Þ

For the Sasaki-Nakamura equation, the exponential tail of
the potential Ulm near the horizon becomes long range as
j → 1. As such, r�min should be a larger negative value for
rapid spins so that one can impose the boundary condition
of e−ikHr

�
at the end point of r� ¼ r�min. The numerical

integration of the Sasaki-Nakamura equation is done in
the range of r�min ≤ r� ≤ r�SN max ¼ 300þ 30=ω for each
frequency mode of ω.
The source term ρlmðω; r�Þ is obtained in the resolution

of Δr� ¼ ðr�max − r�minÞ=Nsource with Nsource ¼ 5000. The
Sasaki-Nakamura equation is integrated with the step size
of Δr� ¼ ðr�SN max − r�minÞ=NSN with NSN ¼ 105. The grey-
body factor is computed by reading the asymptotic ampli-
tude at r� ¼ r�SN max by using the Wronskian. We checked
that our resolution is high enough to obtain high-accuracy
GW waveform and greybody factor (see Fig. 9).

The damping frequency Tlm in 1 − ΓlmðωÞ and TðGWÞ
lm in

the GW spectral amplitude jh̃lmðωÞj are extracted at higher
frequencies ω≳ flm by using a Mathematica’s function
NonlinearModelFit for the log-scaled data, logΓlm and
logðjh̃lmj2ω6Þ, with the fitting function of

Bðω − ωiÞ þ logA; ðA2Þ

where A and B are the fitting parameters and B is associated

with Tlm or TðGWÞ
lm . The results for ðl; mÞ ¼ ð2; 2Þ are shown

in Table I and Fig. 6. The extraction of T22 is done by fitting
the Boltzmann factor e−ðω−f22Þ=T22 to the data in the
frequency range of ωi ≤ ω ≤ ωf ¼ 1.99=ð2MÞ with

FIG. 9. GW spectral amplitude for j ¼ 0.8, ðl; mÞ ¼ ð2; 2Þ,
Lz ¼ 0.5, and θ ¼ π=2. We compute it for high, medium, and low
resolutions with ðNsource; NSNÞ ¼ ð104; 2 × 105Þ, ð5 × 103; 105Þ,
and ð2.5 × 103; 5 × 104Þ, respectively.

NARITAKA OSHITA PHYS. REV. D 109, 104028 (2024)

104028-8



ωi ¼

8>>>>>><
>>>>>>:

1.20 × f22; for 0.001 ≤ j ≤ 0.75

1.10 × f22; for 0.8 ≤ j ≤ 0.9

1.05 × f22; for 0.93 ≤ j ≤ 0.99

1.02 × f22; for j ¼ 0.995

1.00 × f22; for j ¼ 0.998

: ðA3Þ

For the extraction of TðGWÞ
22 , we fit the Boltzmann factor to

the numerical data in the range of ωi ≤ ω ≤ ωf with

ωi ¼

8>>><
>>>:

1.20 × f22; for 0.001 ≤ j ≤ 0.75

1.10 × f22; for 0.8 ≤ j ≤ 0.9

1.05 × f22; for 0.93 ≤ j < 0.98

1.00 × f22; for 0.98 ≤ j ≤ 0.998

; ðA4Þ

and ωf is set to a value at which ðω3
fjh̃22ðωfÞj2Þ=

ðω3
i jh̃22ðωiÞj2Þ ≃ 0.01. Also, the best fit value and error

of TðGWÞ
22 in Fig. 6 was estimated by Mathematica’s com-

mands BestFitParameters and ParameterErrors in a Mathematica’s
function of NonlinearModelFit.

APPENDIX B: GREYBODY FACTOR IN GW
RINGDOWN AND OBSERVATION ANGLE θ

Our ringdown modeling for a harmonic mode ðl; mÞ is
given by the product of γlm and the renormalized source
term (17). The renormalized source term is determined
by a source of GW emission and the observation angle
as it includes the spin-weighted spheroidal harmonics

−2Slmðaω; θÞ. We confirmed that the ringdown modeling
with the greybody factor works for a wide range of the
observation angle θ. Indeed, the mismatch M defined
in (19) is less than 10−3 at least for π=6 ≤ θ ≤ 5π=6 as is

shown in Fig. 10. The mismatch M is evaluated for data
in f22 ≤ ω ≤ 1.99=ð2MÞ.

APPENDIX C: ANALYTIC MODEL
OF THE GREYBODY FACTOR

Our proposal in this paper is that the greybody factor Γlm
is imprinted on the spectral amplitude of GW ringdown
with the form of

γlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γlm

p
=ω3: ðC1Þ

As the greybody factor is a universal quantity which
depends only on the remnant mass and spin like the black
hole QN modes, the extraction of the greybody factor from
the signal is applicable to test the no-hair theorem and the
measurement of the remnant mass and spin. To demonstrate
that in Sec. III C, we compute the mismatch M between
GW spectral amplitude and the function γlm. As the
computation of the greybody factor involves the numerical
integration of the Sasaki-Nakamura equation in our
approach, we shorten the computation time of M by using
an analytic model function Γ̃22 that models the greybody
factor Γ22 for ω > 0

7:

1 − Γ̃22ðωÞ

¼ 1þ a1Z½−2; 2; 2;M; j;ω�ð1 − tanh ½ðω − f22Þ=a2�Þ
ð1þ exp½ðω − f22Þ=T22�Þ

for ω > 0; ðC2Þ

FIG. 10. Comparison of the spectral amplitude of GW jh̃22j (black solid) and γ22 (red dashed). We set j ¼ 0.9 and Lz ¼ 0.5. We also
set the observation angle as θ ¼ π=6, π=4, π=2, 3π=4, and 5π=6. The mismatch M is evaluated for data in f22 ≤ ω ≤ 1.99=ð2MÞ.

7Another fitting function of the reflectivity for 0.6 < j < 0.8 is
provided in Ref. [23].
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where a1 ¼ 0.325, a2 ¼ 0.02, and

T22 ≃ 0.223
ffiffiffiffiffiffiffiffiffiffi
1 − j

p
− 0.33ð1 − jÞ þ 0.249ð1 − jÞ3=2 − 0.0748ð1 − jÞ2; ðC3Þ

f22 ≃ 2 − 2.85
ffiffiffiffiffiffiffiffiffiffi
1 − j

p
þ 3.01ð1 − jÞ − 2.01ð1 − jÞ3=2 þ 0.597ð1 − jÞ2; ðC4Þ

Z½s; l; m;M; j;ω�≡ 4mΩH
rþffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
�ðl − sÞ!ðlþ sÞ!
ð2lÞ!ð2lþ 1Þ!!

�
2
�
2Mω

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

q �
2lþ1 Yl

k¼1

�
1þ 4

k2

�
mΩH

rþffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
�

2
�
; ðC5Þ

where s is the spin of the relevant field, e.g., jsj ¼ 2 for gravitational field. The function Z½s; l; m;M; j;ω� is the analytic
expression for the superradiant amplification factor for lower frequencies [26]. This fitting model matches with the exact
greybody factor within M̃≲ 0.01 as is shown in Fig. 11. This fitting function is applicable to the broad range of spin
parameter 0.001 ≤ j ≤ 0.998 as is partially shown in the figure.

FIG. 11. Reflectivity R22 ¼ 1 − Γ22 is shown in the linear and log scale for several spin parameters in 0.001 ≤ j ≤ 0.998.
The mismatch M̃ between the reflectivity obtained by our numerical computation 1 − Γ22 and the one modeled by the analytic
function in (C2).

NARITAKA OSHITA PHYS. REV. D 109, 104028 (2024)

104028-10



[1] W. Israel, Phys. Rev. 164, 1776 (1967).
[2] W. Israel, Commun. Math. Phys. 8, 245 (1968).
[3] B. Carter, Phys. Rev. Lett. 26, 331 (1971).
[4] F. Echeverria, Phys. Rev. D 40, 3194 (1989).
[5] L. S. Finn, Phys. Rev. D 46, 5236 (1992).
[6] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73,

064030 (2006).
[7] E. W. Leaver, Phys. Rev. D 34, 384 (1986).
[8] Y. Sun and R. H. Price, Phys. Rev. D 38, 1040 (1988).
[9] N. Andersson, Phys. Rev. D 51, 353 (1995).

[10] K. Glampedakis and N. Andersson, Phys. Rev. D 64,
104021 (2001).

[11] K. Glampedakis and N. Andersson, Classical Quantum
Gravity 20, 3441 (2003).

[12] H.-P. Nollert andB. G. Schmidt, Phys.Rev.D 45, 2617 (1992).
[13] N. Andersson, Phys. Rev. D 55, 468 (1997).
[14] H.-P. Nollert and R. H. Price, J. Math. Phys. (N.Y.) 40, 980

(1999).
[15] M. Giesler, M. Isi, M. A. Scheel, and S. Teukolsky, Phys.

Rev. X 9, 041060 (2019).
[16] E. Berti and V. Cardoso, Phys. Rev. D 74, 104020 (2006).
[17] V. Baibhav, M. H.-Y. Cheung, E. Berti, V. Cardoso, G.

Carullo, R. Cotesta, W. Del Pozzo, and F. Duque, Phys. Rev.
D 108, 104020 (2023).

[18] N. Oshita, J. Cosmol. Astropart. Phys. 04 (2023) 013.
[19] M. Sasaki and T. Nakamura, Prog. Theor. Phys. 67, 1788

(1982).
[20] Y. Kojima and T. Nakamura, Prog. Theor. Phys. 71, 79

(1984).
[21] B. Carter, Phys. Rev. 174, 1559 (1968).
[22] R. Brito, V. Cardoso, and P. Pani, Lect. Notes Phys. 906, 1

(2015).
[23] H. Nakano, N. Sago, H. Tagoshi, and T. Tanaka, Prog.

Theor. Exp. Phys. 2017, 071E01 (2017).
[24] Z. Zhang, E. Berti, and V. Cardoso, Phys. Rev. D 88,

044018 (2013).
[25] N. Oshita, Phys. Rev. D 104, 124032 (2021).
[26] A. A. Starobinsky, Sov. Phys. JETP 37, 28 (1973).
[27] A. A. Starobinsky and S. M. Churilov, Sov. Phys. JETP 38,

1 (1974).
[28] G. Bonelli, C. Iossa, D. P. Lichtig, and A. Tanzini, Phys.

Rev. D 105, 044047 (2022).
[29] C. S. Reynolds, Nat. Astron. 3, 41 (2019).
[30] C. S. Reynolds, Annu. Rev. Astron. Astrophys. 59, 117

(2021),
[31] S. H. Völkel, R. Konoplya, and K. D. Kokkotas, Phys. Rev.

D 99, 104025 (2019).

GREYBODY FACTORS IMPRINTED ON BLACK HOLE … PHYS. REV. D 109, 104028 (2024)

104028-11

https://doi.org/10.1103/PhysRev.164.1776
https://doi.org/10.1007/BF01645859
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevD.40.3194
https://doi.org/10.1103/PhysRevD.46.5236
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRevD.34.384
https://doi.org/10.1103/PhysRevD.38.1040
https://doi.org/10.1103/PhysRevD.51.353
https://doi.org/10.1103/PhysRevD.64.104021
https://doi.org/10.1103/PhysRevD.64.104021
https://doi.org/10.1088/0264-9381/20/15/312
https://doi.org/10.1088/0264-9381/20/15/312
https://doi.org/10.1103/PhysRevD.45.2617
https://doi.org/10.1103/PhysRevD.55.468
https://doi.org/10.1063/1.532698
https://doi.org/10.1063/1.532698
https://doi.org/10.1103/PhysRevX.9.041060
https://doi.org/10.1103/PhysRevX.9.041060
https://doi.org/10.1103/PhysRevD.74.104020
https://doi.org/10.1103/PhysRevD.108.104020
https://doi.org/10.1103/PhysRevD.108.104020
https://doi.org/10.1088/1475-7516/2023/04/013
https://doi.org/10.1143/PTP.67.1788
https://doi.org/10.1143/PTP.67.1788
https://doi.org/10.1143/PTP.71.79
https://doi.org/10.1143/PTP.71.79
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1093/ptep/ptx093
https://doi.org/10.1093/ptep/ptx093
https://doi.org/10.1103/PhysRevD.88.044018
https://doi.org/10.1103/PhysRevD.88.044018
https://doi.org/10.1103/PhysRevD.104.124032
https://doi.org/10.1103/PhysRevD.105.044047
https://doi.org/10.1103/PhysRevD.105.044047
https://doi.org/10.1038/s41550-018-0665-z
https://doi.org/10.1146/annurev-astro-112420-035022
https://doi.org/10.1146/annurev-astro-112420-035022
https://doi.org/10.1103/PhysRevD.99.104025
https://doi.org/10.1103/PhysRevD.99.104025

