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Unimodular gravity is a compelling modified theory of gravity that offers a natural solution to the
cosmological constant problem. However, for unimodular gravity to be considered a viable theory of
gravity, one has to show that it has a well-posed initial value formulation. Working in vacuum, we apply
Dirac’s algorithm to find all the constraints of the theory. Then, we prove that, for initial data compatible
with these constraints, the evolution is well-posed. Finally, we find sufficient conditions for a matter action
to preserve the well-posedness of the initial value problem of unimodular gravity. As a corollary, we argue
that the “unimodular” restriction on the spacetime volume element can be satisfied by a suitable choice of
the lapse function.
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I. INTRODUCTION

Nowadays, general relativity (GR) is accepted as the
theory of gravity. However, GR is not problem-free. In
particular, it requires a cosmological constant to describe
the universe at cosmological scales and its measured value
departs, by many orders of magnitude, from the value
estimated by considering vacuum state contributions [1].
Remarkably, there is a modified theory of gravity, called
unimodular gravity (UG), where the cosmological constant
arises as an integration constant, and it is thus independent
of vacuum state contributions [2].
One important property of any fundamental physical

theory is its ability to predict a system’s evolution from
initial data. Given some initial data, perhaps subject to
some constraints, this evolution ought to be unique.
However, for some theories, these properties are not
enough; the evolution must also be continuous and causal
in the following sense: we expect that small perturbations
on initial data should produce small changes in the
solutions, where the notion of “smallness” is given by
certain Sobolev norms [3]. In other words, we require the
solutions to depend continuously on the initial data to avoid
losing predictability, since the initial data can only be
measured with finite precision. Also, changes in initial data
supported in a given spacetime region should only affect
the region’s causal future (and past). A relativistic theory in
which the evolution is unique, continuous, and causal, in
the above-described sense, is said to have a well-posed
initial value formulation.
Avery important feature of GR is that it has a well-posed

initial value formulation [4]. This is not a trivial result since

the metric, which is the dynamical field, contains all the
causal information. Nevertheless, the well-posedness of the
initial problem of GR can be shown by writing the equation
of motion, via a judicious choice of coordinates, in a form
where one can prove that the above-mentioned proper-
ties hold.
It is worth mentioning that, besides GR, there is a

relatively small set of modified gravity theories for which
proofs of well-posed initial value formulation are known.
Examples of modified gravity theories where such results
have been obtained include scalar-tensor theories [5], the
k-essence theory [6], the Einstein-æther theory [7],
Horndeski theories [8,9], and a four-derivative scalar-tensor
theory [10]. Still, to the best of our knowledge, there are no
previous proofs of this kind for theories with nondynamical
tensors.
The goal of this work is to show that UG has a well-

posed initial value formulation. We must stress that the
proof we present is not a simple application of the GR
techniques. This is because the UG constraint structure is
different from that of GR. In this sense, this work
introduces methods that could be used when investigating
the initial value formulation of other modified gravity
theories.
We structured the paper as follows: in Sec. II we

introduce UG. Section III is the core of this paper, and
it begins with a classification of the equations of motion of
vacuum UG into evolution equations and (primary) con-
straint. Then, we find all the constraints necessary for a
consistent evolution (Subsec. III A), we study the evolution
equations in the well-known BSSN formulation, named
after Baumgarte, Shapiro, Shibata, and Nakamura
(Subsec. III B), and we propose sufficient conditions for
UG with matter to have a well-posed initial value*bonder@nucleares.unam.mx

PHYSICAL REVIEW D 109, 104025 (2024)

2470-0010=2024=109(10)=104025(10) 104025-1 © 2024 American Physical Society

https://orcid.org/0000-0001-8303-7500
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.104025&domain=pdf&date_stamp=2024-05-08
https://doi.org/10.1103/PhysRevD.109.104025
https://doi.org/10.1103/PhysRevD.109.104025
https://doi.org/10.1103/PhysRevD.109.104025
https://doi.org/10.1103/PhysRevD.109.104025


formulation (Subsec. III C). Finally, we offer our conclu-
sions in Sec. IV. In the Appendix, we present some
mathematical tools that are used throughout the paper,
and we clarify our notation.

II. BASIC ASPECTS OF UNIMODULAR GRAVITY

Historically, UG dates back to Einstein [11] and
Pauli [12] who were interested in possible interplays
between gravity and elementary particles (for historical
remarks see Ref. [13]). Yet, the framework that is closer to
what is presented here emerged some 50 years later [14]
when the theory was studied in the context of field
theory [15–17]. In 2011, attention was drawn to UG with
the observation that the energy associated with the vacuum
state does not gravitate (in a semiclassical framework),
bypassing the cosmological constant problem [18], a claim
that is not free of criticism [19].
Recent works rekindled the interest in UG. For example, it

has been shown that energy nonconservation avoids some
incompatible features with quantum mechanics and could
give rise to an effective cosmological constant that has an
adequate sign and size [20,21]. Also, cosmological diffusion
models in the UG framework affect the value of the Hubble
constant [22], among other interesting features [23].
Here, we work on a four-dimensional spacetime M

equipped with the pseudo-Riemannian metric gab (we
follow the notation and conventions of Ref. [3] where pairs
of indexes between parentheses/brackets stand for its sym-
metric/antisymmetric part, with a 1=2 factor). Moreover,
spacetime is assumed to be globally hyperbolic, which
allows us to foliate M by constant time (Cauchy) hyper-
surfaces Σt.
There are several ways to introduce UG [24]; the UG

action we consider here is

S½gab; λ;Φ� ¼ 1

2κ

Z
d4x

n ffiffiffiffiffiffi
−g

p
Rþ λð ffiffiffiffiffiffi

−g
p

− fÞ
o

þ SM½gab;Φ�; ð1Þ

where gab is the inverse of gab, λ is a scalar field that acts as
a Lagrangian multiplier, κ is the gravitational coupling
constant, and R is the curvature scalar associated with the
metric-compatible and torsion-free derivative ∇a.
Moreover, g is the determinant of gab, and f is a non-
dynamical positive scalar density, i.e., a real function that
transforms under coordinate transformations mimickingffiffiffiffiffiffi−gp

. The matter action is

SM½gab;Φ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LMðgab;ΦÞ; ð2Þ

where LMðgab;ΦÞ is the matter Lagrangian and Φ collec-
tively describes all matter fields.

We want to emphasize that the only difference in the UG
action when compared with that of GR is the presence of
the term with the Lagrange multiplier. This term fixes
the differential spacetime volume element,

ffiffiffiffiffiffi−gp
d4x, to

coincide with fd4x, which requires f > 0.
An arbitrary variation of the action (1) has the form

δS ¼
Z

d4x

� ffiffiffiffiffiffi
−g

p �
1

2κ

�
Gab −

1

2
gabλ

�
−
1

2
Tab

�
δgab

þ 1

2κ
ð ffiffiffiffiffiffi

−g
p

− fÞδλþ δLM

δΦ
δΦ

�
; ð3Þ

where we omit the boundary terms, as we do throughout the
paper, and we define the energy-momentum tensor

Tab ≔ −
2ffiffiffiffiffiffi−gp δðLM

ffiffiffiffiffiffi−gp Þ
δgab

: ð4Þ

Hence, the metric equation of motion is

Rab −
1

2
Rgab −

1

2
λgab ¼ κTab: ð5Þ

Furthermore, the equation of motion associated with λ
yields the “unimodular constraint”

ffiffiffiffiffiffi
−g

p ¼ f: ð6Þ
Of course, there are also matter field equations that can be
written generically as

δSM
δΦ

¼ 0: ð7Þ

The divergence of Eq. (5) produces

κ∇aTab ¼ −
1

2
∇bλ; ð8Þ

where we use the Bianchi identity. Interestingly, if
∇aTab ¼ 0, λ is constant, and Eq. (5) becomes the conven-
tional Einstein equation with λ playing the role of a
cosmological constant. Thus, vacuum UG, in particular,
is equivalent, at the level of the equations of motion, to GR
with a cosmological constant. Still, UG is compatible with
some matter solutions where ∇aTab ≠ 0, opening the door
to new phenomenology [25].
On the other hand, the trace of Eq. (5) produces

λ ¼ −
1

2
ðRþ κTÞ; ð9Þ

where T ≔ gabTab. Inserting Eq. (9) in Eq. (5) yields

Eab ≔ Rab −
1

4
Rgab − κ

�
Tab −

1

4
Tgab

�
¼ 0; ð10Þ
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which satisfies

Eabgab ¼ 0: ð11Þ

Another difference between GR and UG is the theories’
symmetries and the corresponding conservation laws. As it
is well-known, GR is invariant under all diffeomorphisms,
which implies that ∇aTab ¼ 0. This is not the case in UG
where the nondynamical function f, which does not
transform under (active) diffeomorphisms, partially breaks
invariance under diffeomorphisms [26]. To show this, we
first consider theory in vacuum, namely, SM ¼ 0. The
variation of the vacuum UG action with respect to a
diffeomorphism associated with the vector field ξa is given
by Eq. (3) with

δgab ¼ £ξgab ¼ −2∇ðaξbÞ; ð12Þ

δλ ¼ £ξλ ¼ ξa∇aλ; ð13Þ

where £ξ is the Lie derivative along ξa. Then, the UG action
variation with respect to a diffeomorphism takes the form

δS ¼
Z

d4x

��
1

κ

�
−Gab þ

1

2
gabλ

��
∇aξb

þ 1

2κ
ð ffiffiffiffiffiffi

−g
p

− fÞξa∇aλ

�
: ð14Þ

After we integrate by parts (with the appropriate volume
form), this variation can be written as

δS ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
λ∇a

�
ξa

fffiffiffiffiffiffi−gp
�
; ð15Þ

where we use the Bianchi identity. On shell, Eq. (6) is valid,
and thus,

δS ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
λ∇aξ

a: ð16Þ

Hence, the vacuum UG action is only invariant under
diffeomorphisms associated with divergence-free vector
fields. We refer to this restricted set of diffeomorphisms
as volume-preserving diffeomorphisms.
To obtain the matter conservation law associated with

volume-preserving diffeomorphisms, we notice that a
divergence-free vector field ξa can be written in terms of
a generic antisymmetric tensor αab as ξa ¼ ϵabcd∇bαcd,
where ϵabcd is the volume form associated with gab. Thus,
the on-shell variation of SM with respect to a volume-
preserving diffeomorphism can be written as

δSM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Tabϵ

bcde∇a∇cαde

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
αdeϵ

bcde∇c∇aTab; ð17Þ

where, in the last step, we integrate by parts twice. Therefore,
the matter action is invariant under all volume-preserving
diffeomorphisms if

∇½b∇aTc�a ¼ 0: ð18Þ
This last equation is the UG matter conservation law,
and it is more general than ∇aTab ¼ 0, which is the matter
conservation law of GR. What is more, using the Poincaré
lemma [27] and under the hypothesis that M is simply
connected, this conservation law implies that there exists a
scalar Q such that

∇aTab ¼ ∇bQ: ð19Þ
Notice that, when Q is constant, we recover the GR matter
conservation law. However, in UG,Q can be arbitrary (still,
people have considered Tab − gabQ as an effective energy-
momentum tensor that is conserved [2]). These are all the
UG aspects required in this paper, and we turn now to
classify the UG equations of motion as evolution or
constraints and study the Cauchy problem for UG.

III. INITIAL VALUE PROBLEM

In this section, we study UG in terms of evolving three-
dimensional geometrical objects. We recommend to a
reader who is not familiar with the mathematical tools
of the 3þ 1 decomposition of GR, or with the correspond-
ing notation, to review the Appendix.
The first task when studying the initial value problem of

a theory is to identify the constraints. When working with a
geometrical gravity theory that has second-order equations
of motion, an evolution equation is, by definition, an
equation of motion that contains time derivatives of the
extrinsic curvature. This is because the time derivatives can
be thought of as second-time derivatives of hab [see
Eq. (A8)]. Conversely, an equation with no time derivatives
of Kab is a constraint, which must be imposed on the initial
data, and, for consistency, must be kept valid under
evolution.
Notice that, to perform an initial value study, we need to

specify the matter action. Thus, before we incorporate
matter fields, we consider vacuum UG, and we later use the
lessons from vacuum UG to analyze UG with matter. We
define EðvÞ

ab ≔ Rab − gabR=4, which coincides with Eab
when Tab ¼ 0. Importantly, in this part of our study,

EðvÞ
ab is not assumed to be zero throughout M. Instead, a

weaker assumption is considered: the constraints are only
valid on the initial data hypersurface, while the evolution
equations are satisfied all over M. Note that, since we do
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not assume that all the equations of motion are valid
throughout M, their four-dimensional divergences are not
well defined.
Of course, we expect vacuum UG to have a well-posed

initial value formulation, since this theory is dynamically
equivalent to GR with a cosmological constant. Still, this
is not an obvious result since we cannot take four-
dimensional divergences of the equations of motion, which
is the key step to show the equivalence between UG and
GR with a cosmological constant.
Using the Bianchi identity, we can show that

∇aEðvÞ
ab ¼ 1

4
∇bR: ð20Þ

However, under the assumptions we consider, we cannot
claim that its divergence vanishes, and thus, at this stage we
cannot argue that R is constant. Also, observe that, from
Eq. (11), we get

habEðvÞ
ab ¼ EðvÞ

ab n
anb: ð21Þ

This last equation allows us to identify the three-dimensional
trace of tangential-tangential projection with the normal-
normal projection, rendering the latter redundant; in what
follows, we omit the normal-normal projection. Thus, there
are only nine independent equations of motion, which,
together with the unimodular constraint, amount to ten
equations, which coincides with the number of independent
equations of GR.
Without loss of generality, we take the initial value

hypersurface to be Σ0. Since we assume all equations of
motion—evolution equations and constraints—to vanish

on the initial value hypersurface, we impose EðvÞ
ab jΣ0

¼ 0.

We then separate EðvÞ
ab jΣ0

¼ 0 into its tangential-tangential
projection and its normal-tangential projection, which are,
respectively, given by

0 ¼ ð3ÞRab þ KKab − 2Ka
cKcb þ N−1K̇ab − aaab

− N−1NcDcKab − 2N−1KcðaDbÞNc −DðaabÞ

−
1

4
½ð3ÞRþ K2 − 3KcdKcd þ 2N−1hcdK̇cd

− 2N−1NcDcK − 4N−1KcdDcNd − 2acac

− 2Dcac�hab; ð22Þ

0 ¼ DbKb
a −DaK; ð23Þ

where we use some results from the Appendix, concretely
Eqs. (A12) and (A14). The tangential-tangential projection,
Eq. (22), has time derivatives of Kab. Therefore, it is an
evolution equation. On the other hand, the normal-tangential
projection, Eq. (23), does not contain time derivatives ofKab

and is thus a constraint. This constraint is reminiscent of the
GR momentum constraint.
Notice that the unimodular constraint, Eq. (6), is a

constraint in the sense that it does not have time derivatives
of Kab. Still, it is not a relation that can be imposed on the
initial data and be automatically satisfied throughout
spacetime by the evolution. This is because the values of
f, which is nondynamical, are given a priori all over M.
However, we will show that the unimodular constraint can
be satisfied by choosing the lapse function.
In summary, in terms of components, six of the field

equations of vacuum UG, the tangent-tangent projections,
are evolution equations, while the remaining three, the
normal-tangential projections, are constraints. In the next
subsection, we analyze the evolution of the constraints.

A. Constraint equations

We now study whether the constraint is maintained under
evolution. In other words, given initial data on Σ0 that
satisfy Eq. (23), we must verify if the fields obtained by
evolving this initial data still satisfy the constraint. This can
be done by proving that the constraint, on Σ0, has zero time
derivative.
We define the tangential tensors

Eab ≔ hcahdbE
ðvÞ
cd ; ð24Þ

Ca ≔ DbKb
a −DaK: ð25Þ

Let A1 be the following set of assumptions: the evolution
equations, Eab ¼ 0, are valid throughout M, and the
constraint, Ca ¼ 0, is only valid on Σ0. What remains to
check is if, under A1, Ċa ¼ 0 on Σ0. From the definition
of the time derivative (see the Appendix), we readily obtain

Ċa ¼Nhdane∇eCdþNeDeCaþNCeKe
aþCeDaNe: ð26Þ

Given that Ca ¼ 0 ¼ DaCb on Σ0, Eq. (26), when
restricted to Σ0, takes the form

ĊajΣ0
¼ Nhbanc∇cCb; ð27Þ

which is not automatically zero under A1.
Let

Sa ≔ hbanc∇cCb: ð28Þ

The time derivative of Ca vanishes if Sa ¼ 0. We can show
that, under A1, Sa ¼ −DaR=4 on Σ0.
Proof. We can verify that

hda∇bðEðvÞ
bc h

c
dÞ ¼ DbEab þ Eabab − Sa − KCa; ð29Þ
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where we use K ¼ ∇cnc. Now, using Eq. (20), we obtain

hda∇bðEðvÞ
bc h

c
dÞ ¼

1

4
DaRþ Ka

bCb − aaE; ð30Þ

where we define aa ≔ nb∇bna and

E ≔ Eabhab

¼ 1

4
ð3ÞRþ 1

4
K2 þ 1

4
KabKab −

1

2
N−1habK̇ab

þ 1

2
aaaa þ

1

2
N−1NcDcK þ N−1KabDaNb

þ 1

2
Daaa: ð31Þ

Combining Eqs. (29) and (30) produces

Sa ¼ −
1

4
DaR − Ka

bCb − KCa þ Eabab

þ aaE þDbEab: ð32Þ

Hence, on Σ0 and assuming A1,

SajΣ0
¼ −

1

4
DaRjΣ0

: ð33Þ
▪

According to Dirac’s method [28], it is necessary to
promote Sa ¼ 0 as a constraint; following Dirac’s termi-
nology, Sa ¼ 0 is a “secondary constraint.” This, of course,
implies that the four-dimensional curvature scalar, R, must
be constant throughout Σ0. Namely, R ¼ 4Λ, where
DaΛ ¼ 0. Notice that we must consider R as a shorthand
notation for the right-hand side of Eq. (A15), which only
contains tangential objects. Also, as the notation suggests,
Λwill end up playing the role of the cosmological constant.
However, at this stage, we can only claim that Λ is constant
along Σ0 and there is no reason to assume that Λ̇ ¼ 0.
Surprisingly, only when we require dynamical consistency
do we find that Λ is constant throughout M.
We now prove that, under A1, Ṙ ¼ 0 on Σ0.
Proof. Using the fact that hba − nanb is the identity tensor

in spacetime, we can verify that

EðvÞ
ab n

b ¼ Ca − naE: ð34Þ
The divergence of this last equation produces

∇aðEðvÞ
ab n

bÞ ¼ ∇aCa − KE − na∇aE: ð35Þ

Alternatively, we can calculate ∇aðEðvÞ
ab n

bÞ using the
Leibniz rule and Eq. (20), which yields

∇aðEðvÞ
ab n

bÞ ¼ 1

4
na∇aRþ EðvÞ

ab K
ab − Caaa: ð36Þ

When we compare Eqs. (35) and (36), we obtain

DaCaþ2Caaa−KE−na∇aE¼
1

4
na∇aRþEabKab; ð37Þ

where we use ∇aCa ¼ DaCa þ Caaa. Hence, on Σ0 and
assuming A1,

na∇aRjΣ0
¼ 0: ð38Þ

This result, together with the fact that DaR ¼ 0 on Σ0,
implies that Ṙ ¼ 0 on Σ0. ▪
The lesson from this last proof is that, under A1, Λ, which

coincides with R=4 on Σ0, is constant throughoutM. Hence,
Λ can play the role of the cosmological constant, as we
anticipated. Recall that A1 is a significantly weaker set of

assumptions than assuming that EðvÞ
ab ¼ 0 throughout M.

We now need to check if Ṡa ¼ 0 on Σ0, assuming A1 and
SajΣ0

¼ 0; we refer to this new set of assumptions by A2.
Clearly, under A2, the vanishing of Ṡa is equivalent to

hbanc∇cSbjΣ0
¼ 0; ð39Þ

which we show to hold.
Proof. Using Eq. (32), we get

hbanc∇cSb ¼ −
1

4
hbanc∇cDbR − Cdhbanc∇cKb

d

− Ka
bSb − Canb∇bK − KSa

þ adhbanc∇cEbd þ Eabnc∇cab þ aanb∇bE

þ Ehbanc∇cab þ hbanc∇cDdEbd; ð40Þ

where we write nc∇cKab and na∇aK in terms of R ¼ 4Λ
and other tangential objects using Eqs. (A15) and (A16).
Notice that, except for the first term, all the terms in
Eq. (40) are proportional to Ca, Sa, E, Eab or derivatives of
E and Eab, all of which vanish under A2. Thus, we need to
focus on

hbanc∇cDbR ¼ hbanc∇cðhdb∇dRÞ
¼ hbaðnc∇chdbÞ∇dRþ hbanc∇c∇bR

¼ aanb∇bRþDaðnb∇bRÞ − Ka
bDbR; ð41Þ

where we repeatedly use the definition of the tangential
derivative, the Leibniz rule, and the fact that covariant
derivatives acting on scalars commute; this is a conse-
quence of the torsion-free hypothesis (a study of a unim-
odular theory with torsion is presented in Ref. [29]). When
we evaluate on Σ0, we see that the first and last terms in
Eq. (41) vanish using R ¼ 4Λ. Moreover, if we take the
tangential derivative of Eq. (37), we can write the second
term in terms of objects that also vanish under A2. With all
this, we can show that, under A2, hbanc∇cSb ¼ 0 on Σ0. ▪
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Relevantly, the secondary constraint Sa ¼ 0 can be
written more familiarly. Starting from R ¼ 4Λ, which,
under A2, is equivalent to Sa ¼ 0, and using E ¼ 0 and
Eqs. (31) and (A15), it is possible to obtain

4Λ ¼ 2ð3ÞRþ 2K2 − 2KcdKcd; ð42Þ

which has the form of the Hamiltonian constraint of GR
with a cosmological constant. Remarkably, this shows that
vacuum UG and GR with a cosmological constant are
equivalent, as expected. However, in the light of the 3þ 1
formalism, this equivalence is not due to the Bianchi
identity and a spacetime divergence; it arises by requiring
the constraints to be maintained under evolution. Moreover,
notice that, in this approach, the value ofΛ is determined by
the initial data through Eq. (42).
The main conclusion of this subsection is that, for

consistency, initial data in vacuum UG must be subject
to Eqs. (23) and (42). In the next subsection, we verify that
the evolution predicted in vacuum UG is unique, continu-
ous, and causal in the above-described sense.

B. Evolution equations

In this subsection, we study the evolution equations,
namely, the tangential-tangential projection of the vacuum
field equations, and the unimodular constraint. Up to this
point, we have taken hab andKab as the dynamic variables for
vacuum UG. However, we use the BSSN formulation,
developed for GR initially by Shibata and Nakamura [30]
and later by Baumgarte and Shapiro [31], which is better
suited to this part of our study.TheBSSN formulation consists
of separating the conformal factor for the spatial metric and
the trace of the extrinsic curvature, and studying their
evolution separately. Also, we decompose the tensors into
their components on the foliation hypersurfaces, which are
denoted with Latin indexes i, j, k. Moreover, for simplicity,
we take Na ¼ 0, a condition that can be trivially relaxed.
Let h̃ij be such that

hij ¼ ψ4h̃ij; ð43Þ

where ψ ¼ h1=12, so that the determinant of h̃ij is h̃ ¼ 1

(h is the determinant associated with hij). Notice that

h̃ij ¼ ψ4hij ¼ h1=3hij ð44Þ

is the inverse of h̃ij. Let Aij be the symmetric tensor field
defined by

Aij ≔ Kij −
1

3
Khij: ð45Þ

Clearly Aijh̃
ij ¼ 0, so that Aij is the traceless part of the

extrinsic curvature.

In the BSSN formulation, the dynamical variables are ϕ,
K, h̃ab, Ãab, and Γ̃a, which are given by

ϕ ≔ lnψ ¼ 1

12
ln h; ð46aÞ

K ¼ hijKij; ð46bÞ

h̃ij ¼ e−4ϕhij; ð46cÞ

Ãij ¼ e−4ϕAij; ð46dÞ
Γ̃i ≔ h̃jkΓ̃i

jk: ð46eÞ
The first expression is a redefinition of the conformal
factor, the second is the trace of the extrinsic curvature, the
third is the conformal transformation given in Eq. (43), the
fourth is a rescaling of the traceless part of the extrinsic
curvature, and finally, Γ̃i are the conformal connection
functions, where

Γ̃i
jk ¼

1

2
h̃ilð∂jh̃kl þ ∂kh̃lj − ∂lh̃jkÞ ð47Þ

are the Christoffel symbols associated with h̃ij. Furthermore,
we can show that Eq. (46e) is equivalent to Γ̃i ¼ −∂jh̃ji.
What remains to be done is to rewrite the constraint and
evolution equations in terms of the BSSN variables; this will
allow us to argue when comparing with the GR evolution
equations that vacuum UG has a well-posed initial value
formulation.
Using Eq. (42) we can cast the evolution equation,

Eq. (22), as

0 ¼ ð3ÞRab þ KKab − 2Ka
cKcb þ N−1K̇ab

− N−1NcDcKab − 2N−1KcðaDbÞNc

− N−1DaDbN − Λhab; ð48Þ
which coincides with the evolution equation of GR with a
cosmological constant. Thus, the system of evolution
equations of vacuum UG, in BSSN variables, takes the
same form as the corresponding GR equations, namely,

∂th̃ij ¼ 2NÃij; ð49aÞ

∂tϕ ¼ 1

6
NK; ð49bÞ

∂tÃij ¼ e−4ϕðDiDjN − Nð3ÞRijÞTL
− NðKÃij − 2Ãi

kÃkjÞ; ð49cÞ

∂tK ¼ DkDkN − N
�
ÃijÃ

ij þ 1

3
K2 − Λ

�
; ð49dÞ

∂tΓ̃i ¼ −2N
�
Γ̃i

jkÃ
jk þ 6Ãij

∂jϕ −
2

3
h̃ij∂jK

�

þ 2Ãij
∂jN: ð49eÞ
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Given that GR with a cosmological constant is strongly
hyperbolic [32], then it follows from our analysis that the
evolution equations of vacuum UG are also strongly
hyperbolic, and thus, this theory has a well-posed evolution
in the sense of being unique, continuous, and causal.
We turn now to discuss the unimodular constraint. Using

the well-known expression
ffiffiffiffiffiffi−gp ¼ N

ffiffiffi
h

p
and Eq. (46a), we

get
ffiffiffiffiffiffi−gp ¼ Ne6ϕ. On the other hand, the unimodular

constraint is
ffiffiffiffiffiffi−gp ¼ f. By direct comparison, we can

conclude that the unimodular constraint is satisfied as long
as we take

N ¼ fe−6ϕ: ð50Þ

Notably, both sides of Eq. (50) must be positive, avoiding a
possible inconsistency. Moreover, the fact that the unim-
odular constraint can be solved by simply choosing the
lapse function is compatible with the result of Ref. [33],
where it is noted that one component of the metric is
sufficient to solve the unimodular constraint.
There are cases where the initial data must be given on

different charts covering Σ0. In this case, a “gluing” of the
different “evolutions” must be made. Fortunately, this pro-
cedure can be carried out in the same manner as in GR [3],
since this procedure relies on making coordinate transforma-
tions, which are available in UG. Likewise, there is no
obstruction to applying the GR proof [4] that shows that
there is a maximal evolution of the initial data. Therefore, we
can conclude that vacuum UG has a well-posed initial value
formulation that gives rise to amaximal evolutionof the initial
data. In the next subsection, we discuss UG with matter.

C. Initial value formulation with matter

The initial value formulation of a UG theory with matter
can only be studied once the matter action is given. Still, we
can provide a set of sufficient conditions to have a well-
posed initial value formulation for a UG theory with a
generic matter action. Of course, the methods we present
can be applied once a particular matter action is given.
The metric field equation is equivalent toEab ¼ 0. Again,

we do not assume that Eab vanishes inM, but only a weaker
assumption: the constraints vanish on Σ0 and the evolution
equations vanish in M. Importantly, we can check that

∇aEab ¼
1

4
∇bðR − 4κQþ κTÞ; ð51Þ

where we use Eq. (19).
The tangential-tangential projection andnormal-tangential

projection of Eab ¼ 0 are, respectively, given by

0 ¼ Eab − κ

�
Tcdhcahdb −

1

4
Thab

�
; ð52Þ

0 ¼ Ca − κTbcnbhca; ð53Þ

which are tangential tensors. Recall that, since Eabgab ¼ 0,
the normal-normal projection of Eab ¼ 0 can be obtained
from Eq. (52).
We know, from the vacuum UG analysis, that Eq. (52) is

an evolution equation. On the other hand, the normal-
tangential projection, Eq. (53), is a constraint provided that
Tbcnbhca can be written in such a way that it does not
contain second-time derivatives of hab or the matter fields.
Assuming this is the case, we find the conditions necessary
for the constraint to remain valid under evolution. This
analysis can be done as in Subsec. III A, the main differ-
ence is that now 4Λ ¼ R − 4κQþ κT is constant, as
expected from Eq. (51). The conclusion is that to have a
consistent evolution, the initial data must be subject to

DbKb
a −DaK ¼ κTbcnbhca; ð54Þ

ð3ÞRþ K2 − KabKab ¼ 2ðκTabnanb þ Λþ κQÞ; ð55Þ

where, to write Eq. (55) in this form, we take the trace of
Eq. (52) and we use T ¼ Tabhab − Tabnanb. Equation (55)
looks like the Hamiltonian constraint with matter and a
cosmological constant but it depends onQ, which, recall, is
closely related to ∇aTab; this is an important difference
when comparing with GR.
We can study the well-posedness of the evolution

equations with matter in a simple way. Mimicking the
analysis of vacuum UG in terms of BSSN variables, we can
show that the UG evolution equations have the same form
as those of GRwith matter and a cosmological constant, but
in this case Λþ κTabnanb þ κQ plays the role of the
cosmological constant. Now, it is known that GR with
matter and a cosmological constant has a well-posed initial
value formulation, in a weak hyperbolic sense [34,35],
provided that Tab only depends on the fields and its first
derivatives and that the matter equations of motion, Eq. (7),
are also well-posed. One can show this result using the fact
that the evolution equations for GR with matter, under these
assumptions, are quasilinear, diagonal, and second-order
hyperbolic, and we can apply Leray’s theorem [36], as done
in Ref. [3]. Extending this proof to our case, we can
conclude that UG has a well-posed initial value formulation
as long as neither Tab nor Q, which also appears in the
dynamical equations, have second derivatives of the fields,
and the matter field equations are well-posed. Observe that
this restriction on the energy-momentum tensor is enough
for Eq. (53) to be a constraint. Of course, these are
sufficient conditions; there could be cases that do not meet
this hypothesis and still have a well-posed initial value
formulation.

IV. CONCLUSIONS

One of the most important properties of any theory is its
capacity to make predictions out of initial data. Therefore,
if UG is to be considered as a viable physical theory, it
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needs to have a well-posed initial value formulation. Here,
we show that UG is well-posed, and we find all the
constraints. For the latter, we followed the well-known
Dirac method; the result is that there are primary con-
straints, Ca ¼ 0, and secondary constraints, Sa ¼ 0. Then,
we used these constraints in the evolution equations to cast
them in the form of those in GR, which have a well-posed
initial value formulation, completing the proposed analysis.
Remarkably, the unimodular constraint does not behave

as a constraint in the sense that it is not imposed on the
initial data and preserved under evolution. This feature
ought to be present in any theory with nondynamical fields
like the gravitational sector of the Standard Model
Extension [37]. In the present case, however, the unim-
odular constraint can always be satisfied by a choice of the
lapse function, shedding some light on the role of the UG
nondynamical function.
We found it interesting that the equivalence between GR

and vacuum UG, in the context of an initial value problem,
is not a priori obvious (not even when Q is constant).
Interestingly, only by requiring dynamical consistency does
a spacetime constant emerge (e.g., R ¼ 4Λ in vacuum) that
can be used to show this equivalence. Still, UG can be a
suitable test theory to perform numerical computation of
modified gravity theories. In addition, our results suggest
that one can run GR numerical calculations using only
the traceless part of the Einstein equations. Of course, to
look for new physical phenomena one needs to consider
∇aTab ≠ 0.
Finally, given that UG has fewer symmetries than GR

[38], it has more constraints. However, a detailed counting
of constraints is not direct [39], and, to our knowledge, has
only been studied perturbatively [40,41]. Interestingly, UG
has been analyzed nonperturbatively with Hamiltonian
methods to discuss the problem of time [42,43], yet, studies
of other theories with nondynamical fields [44,45] suggest
that a full Hamiltonian analysis is not straightforward.
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APPENDIX: SPACE AND TIME
DECOMPOSITION

In this appendix, we discuss fundamental aspects of the
3þ 1 formalism we use to describe these theories by
evolving geometrical objects, closely following Ref. [ [3],
Chap. 10.2]. Recall that we work assuming that M can be
foliated by Cauchy surfaces, Σt, parametrized by a global
time function, t. We further assume that the normal vector na

to Σt is timelike, points to the future, and is normalized
according to gabnanb ¼ −1. On each Σt, the spacetime
metric induces a Riemannian metric

hab ¼ gab þ nanb: ðA1Þ

The inverse of this metric is hab ¼ gab þ nanb (gab is the
only metric used throughout the text to raise/lower indices).
Additionally, habna ¼ 0 and hab acts as a projector onto Σt.
Consider an arbitrary spacetime vector field va. We can

express this field as

va ¼ v⊥na þ vak; ðA2Þ

where vak is tangential to Σt. When va ¼ vak , we can think of
va, restricted to Σt, as a vector field on Σt. More generally, a
spacetime tensor τa1���akb1���bl is said to be tangent to Σt if

τa1���akb1���bl ¼ ha1c1 � � � hakck hd1b1 � � � h
dl
bl
τc1���ckd1���dl : ðA3Þ

Let ta be a timelike vector field in M defined by

ta∇at ¼ 1: ðA4Þ

This vector field identifies points on infinitesimally close
hypersurfaces of constant t, providing the flow of time used
for the evolution. We can decompose ta into its normal and
tangential parts as

ta ¼ Nna þ Na; ðA5Þ

whereN is the lapse function andNa, which is tangential, is
the shift vector. Relevantly, the fact that ta points to the
future implies that N > 0. Broadly speaking, N gives the
rate of change of physical time as compared with t. On
the other hand, Na tells us how the coordinates are

FIG. 1. A spacetime diagram illustrating the definition of the
field ta, the shift vector, Na, and the lapse function, N.
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transported from Σt to Σtþdt. Figure 1 illustrates this
construction.
We define the derivative operator on Σt, Da, by

Deτ
a1���ak
b1���bl ¼ ha1c1 � � � hakck hd1b1 � � � h

dl
bl
hfe∇fτ

c1���ck
d1���dl ; ðA6Þ

where τa1���akb1���bl is a tangential tensor. Importantly, one can
readily show that this is the only (torsionless) derivative
operator such that Dahbc ¼ 0 [3]. Moreover, the time
derivative of any tangential tensor is defined by

τ̇a1���akb1���bl ¼ ha1c1 � � � hakck hd1b1 � � � h
dl
bl
£tτ

c1���ck
d1���dl ; ðA7Þ

where £t is the Lie derivative along ta. Observe that the
time derivative is, by construction, a tangential tensor.
We define Kab ≔ hca∇cnb, which can be shown to be

symmetric. The tensor Kab is known as the extrinsic
curvature, and it describes the embedding of Σt in M. If
we use the time derivative on hab, we obtain

ḣab ¼ 2NKab þ 2DðaNbÞ; ðA8Þ

showing thatKab is related to the time derivative of hab. We
also need some expressions that relate the Riemann tensor
associated with gab, Rabc

d, with objects in Σt. One can
show that the purely tangential projection of the Riemann
tensor satisfies a Gauss-Codazzi relation [3]:

Rabc
dhaehbfh

c
gh

j
d ¼ ð3ÞRefg

j þ KegKf
j − KfgKe

j; ðA9Þ

where ð3ÞRabc
d is the Riemann tensor associated with hab.

In addition, ð3ÞRab and ð3ÞR, respectively, represent the
three-dimensional Ricci tensor and curvature scalar. Other
projections of the Riemann tensor are

Rabc
dhaehbfh

c
gnd ¼ DeKfg −DfKeg; ðA10Þ

Rabc
dnahbehcfnd ¼ hbehcfn

a∇aKbc − aeaf

−DðeafÞ þ Ke
aKaf; ðA11Þ

where aa ≔ nb∇bna is a tangential vector field. Some
useful relations concerning the projections and the trace of
the Ricci tensor are given by

Rcdhcahdb ¼ ð3ÞRab þ KKab − 2Ka
cKcb þ N−1K̇ab

− N−1NcDcKab − 2N−1KcðaDbÞNc

− aaab −DðaabÞ; ðA12Þ

Rcdncnd ¼ −N−1hcdK̇cd þ N−1NcDcK þ acac

þ 2N−1KcdDcNd þ KcdKcd þDcac; ðA13Þ

Rbcnbhca ¼ DbKb
a −DaK; ðA14Þ

R ¼ ð3ÞRþ K2 − 3KcdKcd þ 2N−1hcdK̇cd

− 2N−1NcDcK − 4N−1KcdDcNd

− 2acac − 2Dcac; ðA15Þ

where K ≔ Ka
a. Also, we can show that

K̇ef ¼ Nhbehcfn
a∇aKbc þ NaDaKef

þ 2KaðeDfÞNa þ 2NKe
aKaf: ðA16Þ

With this result, Eq. (A11) can be written as

Rabc
dnahbehcfnd ¼ N−1K̇ef − N−1NaDaKef

− 2N−1KaðeDfÞNa − Ke
aKaf

− aeaf −DðeafÞ: ðA17Þ
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