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We analyze the scalar radiation emitted by a source interacting with a nonminimally coupled scalar field
in four-dimensional Schwarzschild–de Sitter spacetime. We obtain the emission probability using quantum
field theory in curved spacetimes at tree level. We find that the source emits synchrotron-type radiation for
orbits near the photon sphere for all allowed values of the parameters. We also find that the emitted power
strongly depends on the coupling to the curvature scalar. In particular, the previously observed
enhancement in the contribution of lower multipoles to the emitted power in this spacetime with minimal
coupling is absent when conformal coupling is considered.
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I. INTRODUCTION

Radio and gravitational wave astronomy [1–4] have
reached important milestones for gravitational physics with
their groundbreaking results. These results have not only
provided strong support for the experimental validity of
general relativity (GR), but have also drawn increasing
attention to black hole (BH) physics.
Black holes provide one of the best strong gravity

settings to extract information about the physics of space-
time. One reason is that BHs can be exact solutions of the
nonlinear GR field equations. These solutions are reason-
ably simple, as they can be described by a small set of
parameters. Another important reason is that the strong
field regime provided by these compact objects plays a
crucial role in the theory of GR and alternative theories of
gravity [5,6]. Despite GR being an exceptionally effective
theory of gravity, it is a classical theory and breaks down
near the Planck scale. This fate is usually signaled by the
presence of singularities [7], which cause a loss of predic-
tability in certain regions of the spacetime. A quantum
theory of gravity is expected to circumvent many of those
problems in classical GR. However, the formulation of this
quantum theory remains one of the outstanding problems in
fundamental physics [8,9].
In the absence of a quantum theory of gravity, we com-

monly resort to a semiclassical approach [10,11] in which
fundamental fields are quantized in fixed classical back-
grounds. While this semiclassical framework is regarded as
an approximation, it is believed that it can provide insights
into the quantum nature of gravity. Quantum field theory

(QFT) has yielded significant results, such as the creation
of particles by dynamic spacetimes [12] and the predic-
tion that BHs radiate (Hawking radiation), raising the
possibility of their disappearance through thermal evapo-
ration [13,14].
Furthermore, there exists experimental evidence indicat-

ing that our Universe is currently experiencing an accel-
erated expansion [15–17], which suggests the presence
of a nonzero cosmological constant [18]. In particular, the
period of exponential inflation postulated to explain the
very beginning of our Universe, can be approximately
described by the de Sitter (dS) solution [19]. It is also
conceivable that our Universe is approaching a dS solution
at late times [20] and there is no reason to believe that
stellar-mass BHs (or supermassive ones, for that matter)
would have disappeared in the late dS-dominated era by, for
instance, thermal evaporation [21].More importantly, during
inflation, density perturbations might have given rise to
primordial BHs [22], and their role in the early structure
formation dynamics is still poorly understood. In this way, it
is interesting to investigate BH physics in asymptotically dS
solutions of GR. A particular solution of this type is the
Schwarzschild–de Sitter (SdS) metric, which describes the
spacetime of a static and uncharged BH inside an asymp-
totically dS universe. This family of solutions is also very
important in the proposed dS/CFT correspondence [23].
Within the semiclassical approach, we investigate inter-

action processes in which, for instance, a classical source
(e.g., a pointlike particle orbiting a BH) excites the
quantum field. This phenomenon is interpreted as radiation
emission, which depends on the motion of the source. In
particular, when the source is a particle moving along
ultrarelativistic circular geodesics, the resulting emitted
radiation is of the synchrotron type (excitation of high-
frequency harmonics beamed at narrow angles bisected by
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the orbital plane), featuring the so-called geodesic syn-
chrotron radiation. These phenomena are astrophysically
interesting, as BHs are expected to be surrounded by
accretion disks. The pioneering works on geodesic syn-
chrotron radiation [24,25], arose as an attempt to interpret
the observational data of Weber’s gravitational wave
experiments [26], in which a reasonable explanation was
the emission of gravitational synchrotron modes inferred by
a detailed analysis of the scalar field. Nonetheless, it
became apparent shortly thereafter that, in this particular
scenario, the field spin holds significant importance [27].
The lower multipole modes, especially the quadrupole one,
are the predominant contributors to the emitted power, even
for most unstable orbits [28]. Even though Weber’s results
were not indeed replicated, the analysis of geodesic
synchrotron radiation scenarios is important because
(i) the radiation emitted by matter spiraling into BHs plays
a substantial role in high-energy astrophysics, and (ii) the
understanding of the geodesic synchrotron radiation and
the influence of the spin of the field on the emitted power is
interesting in its own right [29].
We can analyze the geodesic synchrotron radiation

using QFT in curved spacetimes, in particular in spherically
symmetric spacetimes [30]. The series of papers using
this formalism started with Ref. [31], in which the scalar
radiation emitted from a source rotating around a
Schwarzschild BH in stable orbits was presented (see also
Ref. [32] for both stable and unstable orbits and Ref. [33]
for an analytical account). Other interesting scenarios have
been investigated. The source coupled to a massive scalar
field was reported in Ref. [34], showing that the field mass
decreases the emitted power by the source. The scalar
radiation emitted from a rotating source around a Reissner–
Nordström BH was investigated in Ref. [35], around a
Kerr BH in Ref. [36], around a Bardeen BH in Ref. [37],
and around a Schwarzschild–(anti-)de Sitter BH in
Refs. [38–40]. The electromagnetic and gravitational emit-
ted radiation was investigated in Refs. [28,29,41]. The
present study is a generalization of the one reported in
Ref. [38], in which the emitted power was computed
considering the minimally coupled1 scalar field in SdS
spacetime.
Although numerous studies in the literature address the

minimal coupling of the scalar field to gravity, massless
(free) quantum fields in flat spacetime possess the property
of conformal invariance, whereas their extension via
minimal coupling to curved backgrounds generally does
not [42,43]. Moreover, one can consider a generalization to
curved backgrounds of the equation for a massive scalar
field in flat spacetime, namely

ð∇μ∇μ − μ2 − ξRÞΦ ¼ 0; ð1Þ

where ξ is a general coupling constant to the curvature
scalar R. In this case, if we require that the associated
Green’s function of Eq. (1) locally reduces to the one
associated with the massive scalar wave equation in flat
spacetime, one arrives at the so-called conformal coupling
ξ ¼ 1=6 (in four dimensions). This requirement on wave
propagation is related to the equivalence principle [44,45].
We note that, in the massless case (μ ¼ 0), the conformal
coupling value makes Eq. (1) conformally invariant,
irrespective of the value of R. Therefore, one can consider
a general value of the coupling ξ, which forms a one-
parameter family of possible couplings, paying close
attention to the special case of conformal coupling.
We use QFT in curved spacetime at tree level to compute

the scalar radiation emitted by a scalar source moving
along circular geodesics around a SdS BH. We consider the
general setting of a nonminimally coupled scalar field. The
differences in observable quantities between the cases of
minimal and nonminimal coupling arise in curved back-
grounds with R ≠ 0, which is the case for the spacetime of a
SdS BH. We show that our results are substantially influ-
enced by the value of ξ. The rest of this paper can be
summarized as follows. In Sec. II, we review some important
aspects of the SdS spacetime. In Sec. III, we study the
dynamics and quantization of the nonminimally coupled
scalar field in the physical region of the SdS spacetime. In
Sec. IV, we present the prescription of scalar radiation
computation using numerically obtained radial mode sol-
utions. In Sec. V, we show our selected results. In Sec. VI, we
present some final remarks. We adopt geometrized units
(c ¼ G ¼ ℏ ¼ 1) and the metric signature ð−;þ;þ;þÞ.

II. SCHWARZSCHILD–DE SITTER BLACKHOLES

Kottler’s metric [46] is a spherically symmetric vacuum
solution of the GR field equations:

Rμν ¼ Λgμν; ð2Þ

where Rμν and gμν denote the Ricci and metric tensor
components, respectively, and the Ricci scalar is defined
by gμνRμν ≡ R. From Eq. (2), we have R ¼ 4Λ. The SdS
spacetime is described by two (positive) parameters: the
cosmological constant Λ and the central BH geometric
mass M. The SdS line element is given by [47]

ds2 ¼ −fΛðrÞdt2 þ
dr2

fΛðrÞ
þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

with

fΛðrÞ≡ 1 −
2M
r

−
Λ
3
r2: ð4Þ

The metric given by Eq. (3) describes physics for
radii r between the BH horizon rh and the cosmological

1The minimal coupling to gravity is implemented by making
the substitution ∂μ → ∇μ in the flat spacetime field equations.
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horizon rc [47–49]. The radial positions rh and rc are
positive solutions of the third-degree polynomial
fΛðrÞ ¼ 0, and delimit a physical static region of the
spacetime, which exists only if

0 ≤ Λ < 1=9M2: ð5Þ

The lower limit of Eq. (5) corresponds to Schwarzschild
spacetime, and the upper limit corresponds to the extreme
SdS spacetime; in the latter case, the radial positions
of the two horizons coincide with that of the photon
sphere, r0 ≡ 3M. For Λ > 1=9M2, the physical region
disappears and the spacetime presents no horizons. In
Sec. III, we review the quantization of the scalar field in
the physical region of the SdS spacetime.
We shall consider a source rotating around a SdS BH.

The existence region of timelike circular geodesics is given
by (see Ref. [38])

3M < r ≤
�
3M
Λ

�
1=3 ≡ rmax; ð6Þ

and the angular velocity Ω of such orbits is expressed as

Ω≡ dϕ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
r3

−
Λ
3

r
; ð7Þ

which goes to zero at r ¼ rmax. We note that the maximum
of fΛðrÞ is found at rmax [fΛðrmaxÞ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2Λ3

p
],

where the BH attraction is balanced by the cosmological
constant repulsion and the angular (transverse) tidal force
changes sign [50]. Stable circular geodesics exist only
for Λ ≤ ð64=9Þ × 10−4M−2.

III. NONMINIMALLY COUPLED SCALAR FIELD

The following action can be used to derive the dynamics
of a massless nonminimally coupled scalar field ΦðxÞ∶

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½∇μΦðxÞ∇μΦðxÞ þ ξRΦðxÞ2�; ð8Þ

where g ¼ −r4 sin2 θ is the metric determinant and ξ is the
dimensionless coupling constant where ξ ¼ 0 corresponds
to the so-called minimal coupling and ξ ¼ 1=6 corresponds
to the conformal coupling (in which the field theory is
invariant under conformal transformations of the metric).
For the massless scalar field (μ ¼ 0), Eq. (1) can be

written as2

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νΦðxÞ� − ξRΦðxÞ ¼ 0: ð9Þ

Making use of the spacetime spherical symmetry, the
solutions of Eq. (9) may be cast in the form

ukωlmðxÞ ¼
ffiffiffiffi
ω

π

r
Ψk

ωlðrÞ
r

Ylmðθ;ϕÞe−iωt ðω > 0Þ: ð10Þ

Equation (10) expresses the positive-frequency solution
with respect to the timelike Killing vector field ∂t, where
Ylmðθ;ϕÞ represents the scalar spherical harmonics [52,53].
The index k in Eq. (10) indicates two types of modes.

The k ¼ up (in) solutions denote modes purely incoming
from the past event horizonH−

h (from the past cosmological
horizon H−

c ), interacting with the effective potential, being
partially reflected down to the future event horizon Hþ

h (to
the future cosmological horizon Hþ

c ) and being partially
transmitted to Hþ

c (Hþ
h ).

We obtain the differential equation for the radial wave
functions,

�
−fΛ

d
dr

�
fΛ

d
dr

�
þ Veff

�
Ψk

ωlðrÞ ¼ ω2Ψk
ωlðrÞ; ð11Þ

by substituting Eq. (10) into Eq. (9), with the effective
potential defined as

VeffðrÞ≡ fΛðrÞ
�
lðlþ 1Þ

r2
þ 2M

r3
−
2Λ
3

þ ξR

�
; ð12Þ

which vanishes at the position of both horizons, rh and rc.
We note in passing that the effective potential diverges for
r → ∞, which is outside the physical region. This diver-
gence does not occur if and only if the conformal coupling
is considered (ξ ¼ 1=6). In this case, Veffðr → ∞Þ →
−lðlþ 1ÞΛ=3 (resembling the null geodesic potential
with angular momentum lþ 1=2 for l ≫ 1). From
Fig. 1, we see that the potential barrier increases with ξ.
There is a point of maximum in the physical region for each
l. For l ¼ 0, the effective potential changes sign for some
ξ values (at r ¼ rmax, for ξ ¼ 0), featuring a point of
minimum inside the physical region. We note that, for a
given Λ, the potential is less sensitive to ξ in the physical
region near the event horizon and for large l. For a given
choice of ξ, the potential barrier decreases as Λ increases.
The approximate analytical solutions of Eq. (11) on

the vicinity of the horizons, for both up and in modes, are
given by

Ψup
ωl ¼ Aup

ωl

�
eiωr

� þRup
ωle

−iωr� ; r≳ rh;

T up
ωle

iωr�; r≲ rc;
ð13Þ

and

2Equation (9) has the same form as the equation of motion of
the minimally coupled massive scalar field with mass parameter
μ2 ≡ ξR [51].
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Ψin
ωl ¼ Ain

ωl

�
e−iωr

� þRin
ωle

iωr� ; r≲ rc;

T in
ωle

−iωr� ; r≳ rh;
ð14Þ

where r� is the tortoise coordinate, implicitly defined by
dr� ¼ fΛðrÞ−1dr, and appropriate boundary conditions at
Hh andHc have been chosen. The quantity Ak

ωl denotes the
overall normalization constants to be determined. The
transmission (reflection) amplitudes are represented by
the quantities T k

ωl (Rk
ωl). Note that we have considered

a unitary outgoing flux at the past event horizon for up
modes and a unitary incoming flux from the past cosmo-
logical horizon for the in modes. It is straightforward to
show, from the Wronskian properties of the solutions, the
conservation of the flux, expressed by

jT k
ωlj2 þ jRk

ωlj2 ¼ 1: ð15Þ

The transmission coefficient in asymptotically flat space-
times goes to zero in the limit ω → 0 and to unity for
sufficiently high frequencies. This is only the case in SdS
spacetime if ξ ≠ 0 (nonminimal coupling) [54].
The scalar field is canonically quantized in the

usual way [10,11,31,51,55]. We expand the quantum
field operator Φ̂ðxÞ in terms of positive and negative
frequencies, i.e.,

Φ̂ðxÞ ¼
X
k;l;m

Z
∞

0

dω½ukωlmðxÞâkωlm þ uk�ωlmðxÞâk†ωlm�; ð16Þ

in which the coefficients âkωlm stand for annihilation
operators and those âk†ωlm stand for creation operators.
We orthonormalize the modes ukωlmðxÞ by considering

the inner product [10]

ðΦ;ΨÞ≡ i
Z
Σ
dΣμ½Φ�ð∇μΨÞ −Ψð∇μΦ�Þ�; ð17Þ

where dΣμ ¼ dΣnμ, with nμ being a future-directed
unit vector orthogonal to a Cauchy surface Σ (e.g., the
t ¼ constant hypersurface Σt). Since Φ̂ and Ψ̂ satisfy
Eq. (9), the inner product (17) is independent of the
particular Cauchy hypersurface Σ used [11,56]. By requir-
ing the orthogonality conditions

ðukωlm; uk
0
ω0l0m0 Þ ¼ δkk0δll0δmm0δðω − ω0Þ ð18Þ

and

ðukωlm; uk
0�
ω0l0m0 Þ ¼ ðuk�ωlm; uk

0
ω0l0m0 Þ ¼ 0; ð19Þ

one can readily show that the creation and annihilation
operators satisfy the following nonvanishing commutation
relations:

½âkωlm; âk
0†
ω0l0m0 � ¼ δkk0δll0δmm0δðω − ω0Þ: ð20Þ

The vacuum state is defined as

âkωlmj0i≡ 0; ∀ ðk;ω;l; mÞ; ð21Þ

and the one-particle-state, described by the quantum
numbers l, m, and energy ω, is written as

âk†ωlmj0i ¼ jk;ωlmi: ð22Þ

From Eqs. (17)–(19) and the radial modes differential
equation (11), written in terms of the tortoise coordinate,
we obtain the modulus of the overall normalization con-
stants, namely

jAup
ωlmj ¼ jAin

ωlmj ¼
1

2ω
: ð23Þ

IV. SCALAR RADIATION
AND EMITTED POWER

We consider a nonminimally coupled scalar field inter-
acting with a classical source. The radiation process can be
analyzed by calculating the transition amplitude from the
vacuum-state to the one-particle-state, defined in Eqs. (21)
and (22), respectively.
The source is a pointlike particle moving along a

timelike circular geodesic at the radial position r ¼ R0

with angular velocity Ω in the equatorial plane (θ ¼ π=2
and θ̇ ¼ 0). Thus, it is described by the following normal-
ized current:

jðxÞ ¼ σffiffiffiffiffiffi−gp
v0

δðr − R0Þδðθ − π=2Þδðϕ −ΩtÞ; ð24Þ

where σ is a constant. The quantity v0 is the t–component
of the particle’s 4–velocity, vμ, which is given by

FIG. 1. The effective potential Veff , given by Eq. (12), for two
values of l and different choices of the coupling constant ξ.
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vμ ¼ ð1; 0; 0;ΩÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fΛðR0Þ − R0
2Ω2

q
; ð25Þ

with Ω defined in Eq. (7). It is worth noting thatR
dζð3ÞjðxÞ ¼ σ, where the hypersurface ζð3Þ is a Cauchy

hypersurface.
The interaction action operator is denoted as

ŜI ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
jðxÞΦ̂ðxÞ; ð26Þ

where the magnitude of the interaction is determined by the
constant σ.
At the lowest order in perturbation theory, the transition

from the vacuum-state, as defined in Eq. (21), to the one-
particle-state, as defined in Eq. (22), has the following
amplitude [57]:

Ak;ωlm
em ¼ hk;ωlmjiŜIj0i ¼ i

Z
d4x

ffiffiffiffiffiffi
−g

p
jðxÞuk�ωlm: ð27Þ

The expansion of Eq. (27) yields Ak;ωlm
em ∝ δðω −mΩÞ,

indicating that only scalar quanta with ωm ≡mΩ are
emitted. Recall that m is an integer, so that, for a given
circular orbit, the emitted spectrum is discrete.
For fixed values of k, l, and m, the (partial) emitted

power is given by

Wk;lm
em ¼

Z
∞

0

dωω
jAk;ωlm

em j2
T

: ð28Þ

We consider the case in which the source radiates during
the whole range of coordinate time t, with −∞ < t < ∞.
Thus, we can write T ¼ R

dt ¼ 2πδð0Þ [58,59]. As a result,
Eq. (28) becomes

Wk;lm
em ¼ 2σ2ω2

m

�
1 −

3M
R0

�����Ψ
k
ωml

R0

����
2
����Ylm

�
π

2
; 0

�����
2

; ð29Þ

where the dependence in R0 can be written in terms ofΩ by
using Eq. (7). We can see from Eq. (29) thatWk;lm

em vanishes
for R0 → 3M. At R0 → rmax, the partial emitted power also
vanishes due to Ω being zero, which means ωm ¼ 0.
We note that one can regard the ξR term in Eqs. (8) and

(9) as a mass term μ2. In Schwarzschild spacetime, the
partial emitted power exhibits a step-function behavior
Θðω − μÞ [34]. This is because the emitted quanta asso-
ciated with the in-modes must have frequency restricted by
ω ≥ μ, i.e., the quantum energy cannot be less than the
mass parameter. The up-modes have no such restriction
[60]. However, in SdS, the in-modes are the ones coming
from the past cosmological horizon, which implies no
restriction on their frequencies. This is because the effective
potential, given by Eq. (12), vanishes at the cosmological

horizon. In contrast, the effective potential in the
Schwarzschild case tends to a constant value at infinity.
Summing the contributions of all partial powers for both

in and up modes, we obtain the total emitted power, i.e.,

Wem ¼
X∞
l¼1

Xl
m¼1

Wlm
em ; ð30Þ

where

Wlm
em ¼ Win;lm

em þWup;lm
em : ð31Þ

By solving Eq. (11) numerically in the physical region,
we obtain the modes Ψk

ωl for any arbitrary position r and
frequency ω. Some key results are presented in the next
section.

V. RESULTS

In this section, we analyze the emitted power for
representative values of the cosmological constant Λ and
the coupling constant ξ. In particular, we compare the
results with minimal and conformal coupling. The plots
range from ΩðrmaxÞ≡Ωmin ¼ 0 up to Ωðr0Þ≡Ωmax. The
quantity Ωmax, i.e., the angular velocity of the source at
the photon sphere, is indicated by the vertical (gray) line in
the figures.
We recall that the major contribution to the emitted

power for orbits close enough to the photon sphere
comes from the modes with l ¼ m. Note that the factor
jYlmðπ=2; 0Þj2, on the right-hand side of Eq. (29), is
maximum for l ¼ m, and decays exponentially as m
decreases from m ¼ l for a given large l. Considering
l ¼ 20 and M2Λ ¼ 150−1, with R0 ¼ 0.9rmax, the con-
tribution of the mode with l ¼ m to the emitted power is
approximately 97% and it is larger than 97% for smaller R0.
This dominance of the l ¼ m modes holds true for all
allowed values of the parameters.
We define a quantity Ξlm as the ratio between the emitted

power with ξ ¼ 1=6 and the one with ξ ¼ 0, namely

Ξlm ≡Wlm
em jξ¼1=6

Wlm
em jξ¼0

: ð32Þ

The quantity Ξlm, given by Eq. (32), is illustrated in Fig. 2
for two representative values of M2Λ and different choices
of l ¼ m. ForM2Λ ¼ 150−1, we see that Ξlm decreases as
MΩ decrease. The differences in emitted power between
the minimal coupling case and the conformal one increase
as we consider lower multipoles. For M2Λ ¼ 15−1, these
differences are much more pronounced across the entire
MΩ range as one can see from the ratio Ξlm, especially for
low values of l ¼ m. This is consistent with the behavior of
the effective potential (12), which increases with increasing
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ξ, especially for small l ¼ m and large R0. Figure 2 implies
that the emitted power with ξ ¼ 1=6 can differ significantly
from that with ξ ¼ 0. The influence of ξ is enhanced by
increasing Λ.
Figure 3 shows the partial emitted power for l ¼ m ¼ 1,

l ¼ m ¼ 5 and different choices of the coupling constant ξ.
We see that the power is enhanced as the coupling constant
decreases from 1=3 to zero. We note that for higher
multipoles, this enhancement becomes fainter, so that for
l ¼ m ¼ 20 the peak of the power with ξ ¼ 1=3 is
approximately 8% smaller than the one with ξ ¼ 0.
The total emitted power, given by Eq. (30), is plotted in

Fig. 4 for a representative value ofM2Λ. The sum in l was
truncated to a chosen maximum value, lmax. We see that, in
the vicinity of the photon sphere, the contribution of higher
multipoles becomes predominant, indicating the emission
of synchrotron-type radiation. Furthermore, as the coupling
constant increases from zero, the total emitted power for
each lmax decreases (see Ref. [34]).
Figure 5 shows separately the contribution of the in and

up modes to the emitted power with ξ ¼ 1=6, for some
choices of l ¼ m and four values of M2Λ, including the
Schwarzschild case (M2Λ ¼ 0). The radial position of the
peak of Wk;lm

em approaches Ωðr0Þ as l increases, exhibiting

a characteristic behavior [32,36–38]. Note that these results
are quite different from the ones with minimal coupling
(see Fig. 7 of Ref. [38]). In particular, the enhancement
observed in the contribution of lower multipoles to the
emitted power with minimal coupling is absent in the
conformal coupling case.

FIG. 3. The emitted power Wl¼1;m¼1
em (top) and Wl¼5;m¼5

em

(bottom), given by Eq. (31), as a function of MΩ for M2Λ ¼
15−1 and different choices of the coupling constant ξ.

FIG. 4. The total emitted power Wem as a function of Ω, given
by Eq. (30), for M2Λ ¼ 15−1 and some choices of lmax.

FIG. 2. The function Ξlm, given by Eq. (32), forM2Λ ¼ 150−1

(top) and M2Λ ¼ 15−1 (bottom), with some choices of l ¼ m.
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FIG. 5. The emitted power Wk;lm
em with ξ ¼ 1=6 as a function of MΩ, given by Eq. (29), for modes in (left) and up (right), with some

choices of l ¼ m. The plots are shown for four values of M2Λ, from M2Λ ¼ 0 to M2Λ ¼ 15−1.
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VI. FINAL REMARKS

We have analyzed the scalar geodesic synchrotron
radiation in Schwarzschild–de Sitter spacetime using
quantum field theory in curved spacetimes at tree level.
In particular, using numerical computations, we have
compared the results for the scalar emitted power mini-
mally and nonminimally coupled to the curvature scalar in
the entire allowed range of the parameter Λ.
Our results indicate that the emitted power depends on

the coupling constant ξ. As a general rule of thumb, the role
of the coupling here is to reduce the amount of emitted
radiation, when compared to the minimal coupling case.
These results complement other studies of the scalar field
and are important for understanding dynamical processes in
asymptotically de Sitter spacetimes (see, e.g., Refs. [54,61]
and references therein).
We have also shown that the source emits synchrotron-

type radiation while orbiting the black hole near the photon
sphere for all allowed values of Λ and ξ. Considering a
conformally coupled scalar field, we have also presented

the total emitted power and the contribution of each in and
up modes separately. In the conformal coupling case, the
emitted power behavior, for a nonvanishing cosmological
constant, is quite similar to the minimal coupling case with
a vanishing cosmological constant.
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