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This paper explores the evolution of the overdense region of dark matter in the presence of a
nonminimally coupled scalar field which is used to model quintessence and phantomlike dark energy. We
focus on algebraic coupling, where the interaction Lagrangian is independent of the derivatives of the scalar
field. To make our model more relativistic, like the minimal coupling scenario we studied earlier, we
consider a spacetime structure that is internally closed Friedmann-Lemaître-Robertson-Walker (FLRW)
spacetime and externally the generalized Vaidya spacetime. This structure allows nonzero matter flux at the
boundary of the overdense region. Our investigation reveals that an increment of the coupling strength
causes dark energy to cluster with dark matter at a certain cosmological scale where the influence of dark
energy cannot be ignored. This phenomenon arises from the specific nature of the nonminimal coupling
considered in this paper. While the evolution of matter’s energy density remains unchanged, the scalar
field’s Klein-Gordon equation is modified, causing dark energy to deviate from its homogeneous state and
cluster with dark matter. Similar to minimal coupling scenarios, closed spherical regions do not collapse
within certain parameter ranges, exhibiting eternal expansion within the spatially flat FLRW spacetime and
acting as voids with decreasing matter density. The study extends our understanding of the cosmological
scenarios where the virialization of the overdense regions of dark matter is influenced by the nonminimally
coupled dark energy.
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I. INTRODUCTION

The exploration of the emergence of structures in a
homogeneous and isotropic universe is an intriguing topic
in astrophysics and cosmology, rooted in linear perturba-
tion theory in cosmology [1,2]. As we know, after recom-
bination, perturbation modes deviate from linearity, serving
as the pillars for future structural formations. Before
entering into the nonlinear regime, phenomena such as
Jeans instability play an important role in growing the
primordial perturbations [1,2]. Gravitationally bound struc-
tures, from galaxy clusters to smaller scales, are believed to
originate from nonlinear instabilities, with the dark matter
sector playing a central role [3–6]. Since dark matter seems
to be weakly interacting, it decouples from the “primordial
matter soup” long before baryonic matter, initiating a

collapse to form structures. Consequently, these overdense
regions are conventionally believed to predominantly con-
sist of dark matter. When the baryonic matter decouples, it
accumulates inside the overdense regions of dark matter
and eventually forms galaxies, galaxy clusters, etc.
As an initial approximation, the primordial overdense

patches of dark matter are considered to be spherically
symmetric, and their evolution is commonly modeled using
the “top-hat collapse model” [7]. In this model, these over-
dense regions are described using a spherically symmetric
closed Friedmann-Lemaître-Robertson-Walker (FLRW)
metric. On the cosmological scale, the universe is nearly
flat, and therefore, the background of the overdense regions is
described by a spatially flat FLRW metric. According to the
top-hat collapse model, the overdense regions of dark matter
initially expand in an isotropic, homogeneous manner along
with the background flat FLRW spacetime. The fluid within
these spherically symmetric overdense regions is considered
to be homogeneous and pressureless. Eventually, the dynam-
ics of these overdense regions detach from the background
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cosmic expansion, and these regions begin to behave like
subuniverses. These overdense subuniverses start to collapse
under gravity after reaching a turnaround. However, within
general relativity (GR), it is well-known that the outcome of a
collapse involving a homogeneous pressureless fluid (dust) is
always a black hole [8]. Consequently, using the top-hat
collapsemodel alone, it is impossible to relativistically obtain
desired small-scale equilibrium configurations as the even-
tual end-states of the gravitational collapse of overdense
regions. To address this limitation, Newtonian virialization
techniques are employed to obtain such equilibrium states,
providing an explanation for galaxy formation.
Virialization is a process wherein a system of N particles

attains an equilibrium state at a large system time, given by

hTiτ→∞ ¼ −
1

2

*XN
i¼1

Fi · ri

+
τ→∞

; ð1Þ

where Fi is the net force on the ith particle, ri is its position,
T is the total kinetic energy of the system, and the system
reaches the virialized state over a large system time τ. The
angular bracket denotes time averaging. If the particles in
such a system interact solely gravitationally, the system
achieves its final equilibrium state when the following
condition is met:

hTi ¼ −
1

2
hVTi; ð2Þ

where VT is the total gravitational potential of the system.
Four processes primarily govern the virialization of a
collapsing system, consisting only of gravitationally inter-
acting particles; violent relaxation, phase mixing, chaotic
mixing, and Landau damping [9,10]. Using the principle of
energy conservation, one can establish that spherically
symmetric overdensities undergo virialization when
η ¼ Rvir

Rmax
¼ 0.5, where Rvir and Rmax are the physical radius

of the overdense region at the virialization time tvir and the
turnaround time tmax, respectively. One can show that the
time tvir is equal to 1.81 times the time tmax if the overdense
region is modeled by closed FLRW spacetime.
In the top-hat collapse model, the aforementioned

virialization argument is invoked to stabilize a collapsing
system. As discussed previously, in this model, dark matter
is considered homogeneous and dustlike throughout the
evolution of the overdense regions, mainly because such a
fluid can satisfactorily explain the large-scale structure of
our Universe. Models in which dark matter is regarded as
pressureless and nonrelativistic are known as cold dark
matter (CDM) models [11,12]. Conventionally, the role of
the cosmological constant, Λ, in the structure formation
process is often overlooked. However, some authors have
attempted to integrate the effects of Λ into the gravitational
collapse process [13–16]. Traditional ΛCDM models face
inherent challenges [17,18]. As a response to these

challenges, dynamical dark energy models based on scalar
fields have been introduced. One frequently used scalar
field in this paradigm is the quintessence field.
Additionally, phantomlike scalar fields, characterized by
a negative kinetic term, are also employed to model dark
energy [19–23].
At a certain cosmological scale, dark energy may have a

nonzero contribution to the total gravitational potential VT
of the overdense region of dark matter. VT of the overdense
region in a two-fluid system consisting of dark matter (DM)
and dark energy (DE) is given by [24]

VT ¼ 1

2

Z
v
ρDMϕDMdvþ

1

2

Z
v
ρDMϕDEdv

þ 1

2

Z
v
ρDEϕDMdvþ

1

2

Z
v
ρDEϕDEdv; ð3Þ

Here ϕDM and ϕDE are the gravitational potentials of dark
matter and the dark energy components and ρDM and ρDE
are overdensities of the dark matter and the dark energy
components. The four distinguishable scenarios arising
from the nonzero values of these integrations can be
categorized as follows:

(i) Isolated subuniverse (no dark energy clustering): In
this scenario, only the first integration in Eq. (3) is
nonzero. Spherical overdensities of dark matter
behave like an isolated subuniverse and virialize
at a certain radius, and this scenario aligns precisely
with what the top-hat collapse model describes [7].

(ii) Homogeneous dark energy model: This scenario
arises when the first two integrations in Eq. (3)
contribute to the total gravitational potential. The
nonzero values of the second integration in Eq. (3)
imply a Non-negligible effect of dark energy on the
virialization process of spherically symmetric over-
dense regions of dark matter. However, in this
scenario, dark energy cannot cluster and virialize
with dark matter; the dark energy density inside the
overdense region remains similar to the external dark
energy density [25–28].

(iii) Clustered dark energy scenario: In the third scenario,
dark energy does not undergo virialization with dark
matter, yet it can cluster within overdense regions.
Here, it is assumed that since the beginning of the
matter-dominated era, dark energy synchronously
follows the motion of dark matter on both the
Hubble scale and the galaxy cluster scale. This
scenario is referred to as the clustered dark energy
scenario [24,29–33].

(iv) Dark energy clustering and virialization: In this
scenario, dark energy can cluster and virialize with
dark matter inside the spherical overdense re-
gions [24].

In [25,26], the authors studied a cosmological scenario
where dark energy exhibits homogeneity, meaning that
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internal and external dark energy densities are identical. In
[26], the focus was on investigating the impact of the
cosmological constant on the virialization of spherical
overdensities. Whereas, Wang et al. [25] considered the
homogeneous quintessence dark energy model. As men-
tioned earlier, in scenarios with homogeneous dark energy,
dark energy does not cluster or virialize within the spherical
overdensities of dark matter. However, the virialization
process of these overdensities is altered due to the
presence of nonzero energy density and negative pressure
of dark energy, leading to distinct values of η which is, as
mentioned previously, the ratio between the Rvir and Rmax.
It can be shown that the η is always less than 0.5 when Λ
dark energy is considered [26,27,34]. In the homogeneous
dark energy model, a significant challenge arises because,
following the virialization of overdense regions, the
density of dark energy within the virialized region con-
tinues to change with the continuous expansion of the
background universe. This issue is thoroughly examined
in [24]. However, this problem does not appear for the Λ
dark energy scenario, since the energy density of the dark
energy remains constant throughout the evolution. In
order to resolve the problem with homogeneous dark
energy, clustered dark energy models are introduced,
where, at the scale of galaxy clusters, dark energy can
cluster and virialize within overdense regions. For this
scenario, one can verify that η is always greater than 0.5.
Whereas, in the case where dark energy can cluster but
cannot virialize inside the overdense region, the virialized
radius of the spherical overdense region becomes smaller
than half of the turnaround radius (i.e., η < 0.5) [24,34].
In [34], we show that the above-mentioned behavior of η is
true for both the quintessence and phantomlike dark
energy.
For the homogeneous dark energy scenario, the problem

that we discussed above is addressed in most of the
literature devoted to this topic, by not considering the
formal general relativistic approach but instead using a pure
phenomenological method. In this method, the problem is
approached nonrelativistically. It involves using an FLRW
metric with a positive spatial curvature constant and
subsequently formulating the Friedmann equations. The
first Friedmann equation, which incorporates the square of
the first derivative of the local scale factor, poses chal-
lenges, especially as it necessitates estimating all the known
energy sources within the spherical patch. Given that
energy may not be conserved, this equation becomes
redundant. The majority of prior research in this domain
relies predominantly on the other Friedmann equation,
which encompasses the second derivative of the scale
factor. This equation is treated as a second-order ordinary
differential equation in time and is solved with suitable
initial conditions.
In recent work [34], we addressed this issue of the

homogeneous dark energy model by employing a more

relativistic method. In that paper, we studied the evolution
of overdense regions of dark matter in the presence of a
minimally coupled scalar field representing homogeneous
dark energy. We tackled the problem in the homogeneous
dark energy model by matching the internal closed FLRW
spacetime with an external generalized Vaidya spacetime
resulting in a leaking of scalar field through the boundary
of the overdense region. The nonzero flux of the scalar field
through the boundary of the overdense region shows how
the dark energy retains its homogeneous nature through-
out the evolution. Therefore, in the regime of general
relativity, using our model, we showed how homogeneous
dark energy influences the virialization process of the dark
matter. However, it should be noted that our method is
relativistic up to the virialization. We employed the
Newtonian virialization technique to investigate the virial-
ized end states of the overdense regions.
In this paper, we investigate the evolution of the over-

dense region of dark matter in the presence of a non-
minimally coupled scalar field. We adopt a spacetime
structure similar to the one examined in [34]. This choice
is crucial as the specified spacetime structure plays an
important role in preserving the homogeneous behavior, if
indeed it exists, of dark energy modeled by a nonminimally
coupled scalar field. Therefore, in the present paper, we
consider an external generalized Vaidya spacetime which is
smoothly matched at the boundary of the internal closed
FLRW spacetime. It is important to emphasize that our
focus here is solely on the algebraic coupling between the
scalar field and matter. By algebraic coupling, we mean that
the interaction Lagrangian does not depend on derivatives
of the scalar field [35–37]. Utilizing algebraic nonminimal
coupling, we explore the evolution of overdense regions of
dark matter in the presence of quintessence and phantom-
like dark energy. The main motivation behind examining
the nonminimal coupling between dark matter and dark
energy is to gain insights into how this coupling can impact
the virialized structures of dark matter on a certain
cosmological scale where the influence of dark energy
cannot be ignored. As previously mentioned, our earlier
study focused on minimal coupling, and the results
diverged significantly from those obtained with the top-
hat model. These disparities prompt us to investigate the
same scenario with nonminimal coupling. Similar to our
prior study [34], we observe that, for some suitable small
values of parameters, the dark energy component remains
predominantly unclustered and homogeneous. However,
our findings also reveal that an increment of the non-
minimal coupling between dark matter and dark energy
leads to the clustering of dark energy within the overdense
region of dark matter. This clustering arises due to the
specific nature of the nonminimal coupling considered in
our study. It can be shown that the energy density of matter
remains unaffected by the non-minimal interaction, staying
proportional to 1

aðtÞ3, where aðtÞ is the scale factor. On the

GRAVITATIONAL COLLAPSE OF MATTER IN THE PRESENCE … PHYS. REV. D 109, 104023 (2024)

104023-3



other hand, the Klein-Gordon equation of the scalar field
undergoes modification with an additional interaction term.
Consequently, an increase in the coupling strength compels
the dark energy to deviate from its homogeneous state and
cluster with the dark matter inside the overdense region. In
essence, we can describe this phenomenon as the dark
matter pulling the dark energy inward as the coupling
strength increases.
As the scenario with minimal coupling, which we

investigated earlier, is a subset of the current scenario,
similar to the previous case, closed spherical regions do not
undergo collapse for certain parameter ranges; instead, they
exhibit eternal expansion within the spatially flat FLRW
spacetime. These expanding regions act as voids, with
decreasing matter density. Like our previous study, here our
approach is relativistic up to the virialization. We consider
the Newtonian virialization technique to stabilize the
collapsing overdense region of dark matter. The quest
for a comprehensive understanding of the general relativ-
istic counterpart to the Newtonian virialization process
remains a challenging problem. Dey et al. [30] present a
dynamic solution within the framework of general rela-
tivity, illustrating a gravitational collapse leading to an
equilibrium state. However, they do not assert that this
equilibrium state directly corresponds to the Newtonian
virialization state. Recently, in [38] the authors derived the
possible form of the scalar field potential which can lead to
an end equilibrium state of the gravitational collapse of the
scalar field, using the general relativistic equilibrium
conditions mentioned in [30]. Meyer et al. [39] introduce
a general relativistic virial theorem based on the Tolman-
Oppenheimer-Volkoff solution for perfect-fluid spheres
in the Einstein-de Sitter and ΛCDM cosmologies. How-
ever, they do not clarify how a collapsing matter cloud
reaches the virialization state. In another work [40],
Friedman and Stergioulas introduce a virial theorem
definition in stationary spacetimes, explored in Sec. 3.3
of their monograph. A focused exploration into deriving the
relativistic virial condition for dynamic spacetimes, build-
ing upon the introduced condition in the monograph, could
offer valuable insights.
The work in this paper is organized in the following way.

In Sec. II, we elaborately discuss the nonminimal coupling
between the matter and the scalar field, where we review
the basic foundation of the works done in [35–37]. In
Sec. III, we discuss the spacetime structure considered in
this paper and explore the impact of nonminimal coupling
on the evolution of the overdense region of dark matter by
solving a differential equation derived from the Friedmann
equations. At last, in that section, we discuss the results and
their possible physical interpretation. Section V gives a
summary of the work presented in this paper. Throughout
the paper, we use a system of units in which the velocity of
light and the universal gravitational constant (multiplied by
8π), are both set equal to unity.

II. NONMINIMAL COUPLING OF MATTER WITH
SCALAR FIELD

In this section, we briefly discuss the nonminimal
coupling of matter with a scalar field which is worked
out elaborately in [35–37]. The action we will consider is

S ¼
Z

d4xðLgrav þ Lm þ Lϕ þ LintÞ; ð4Þ

where the gravitational sector is given by the standard
Einstein-Hilbert Lagrangian,

Lgrav ¼
ffiffiffiffiffiffi−gp

R

2
; ð5Þ

where g is the determinant of the metric tensor gμν and R is
the Ricci scalar. Within Brown’s framework, the
Lagrangian for the relativistic fluid can be written as

Lm ¼ −
ffiffiffiffiffiffi
−g

p
ρmðn; sÞ þ Jμðφ;μ þ sθ;μ þ βAα

A
;μÞ; ð6Þ

where ρm is the energy density of the matter. We assume
ρmðn; sÞ to be prescribed as a function of n, the particle
number density, and s, the entropy density per particle. φ,
θ, and βA are all Lagrange multipliers with A taking the
values 1, 2, 3, and αA are the Lagrangian coordinates of the
fluid. The vector density or the current density of particle
number Jμ is related to n as

Jμ ¼ ffiffiffiffiffiffi
−g

p
nUμ; jJj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνJμJν
p

; n ¼ jJjffiffiffiffiffiffi−gp ;

where Uμ is the timelike 4-velocity of matter satisfying
UμUμ ¼ −1. The scalar field Lagrangian is given by

Lϕ ¼ −
ffiffiffiffiffiffi
−g

p �
1

2
ϵ∂μϕ∂

μϕþ VðϕÞ
�
; ð7Þ

where ϵ ¼ 1;−1 are for quintessence and phantomlike
scalar field, respectively and VðϕÞ is the potential of the
scalar field ϕ. Lastly, the Lagrangian for the interacting
sector is

Lint ¼ −
ffiffiffiffiffiffi
−g

p
fðn; s;ϕÞ; ð8Þ

where fðn; s;ϕÞ is an arbitrary function of n, s and ϕ. Now
as we know, the total energy-momentum tensor can be
written as

Tμν ¼
−2ffiffiffiffiffiffi−gp δL

δgμν
: ð9Þ

Therefore, the energy-momentum tensors for the scalar
field, matter, and interaction part are
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TðϕÞ
μν ¼ ϵ∂μϕ∂νϕ − gμν

�
1

2
ϵ∂μϕ∂

μϕþ VðϕÞ
�
; ð10Þ

TðmÞ
μν ¼ pmgμν þ ðρm þ pmÞUμUν; ð11Þ

TðintÞ
μν ¼ pintgμν þ ðρint þ pintÞUμUν; ð12Þ

where the pressure in the matter sector pm can be written as

pm ¼ n
∂ρm
∂n

− ρm;

ρint ¼ fðn; s;ϕÞ;

and

pint ¼ n
∂fðn; s;ϕÞ

∂n
− fðn; s;ϕÞ:

Now, the total energy-momentum tensor for the physical
system can be written as

TðtÞ
μν ¼ TðmÞ

μν þ TðϕÞ
μν þ TðintÞ

μν

and the Einstein equation gives us

Gμν ¼ TðtÞ
μν: ð13Þ

Variation of the Lagrange multipliers in the total
Lagrangian gives,

Jμ∶ Uμðμint þ μÞ þ φ;μ þ sθ;μ þ βAα
A
;μ ¼ 0; ð14Þ

s∶ −
�
∂ρ

∂s
þ ∂f

∂s

�
þ nUμθ;μ ¼ 0; ð15Þ

ϕ∶ Jμ;μ ¼ 0; ð16Þ

θ∶ðsJμÞ;μ ¼ 0; ð17Þ

βA∶JμαA;μ ¼ 0; ð18Þ

αA∶ðβAJμÞ;μ ¼ 0; ð19Þ

where μ is the chemical potential given by μ ¼ ∂ρ
∂n and

μint ¼ ∂f
∂n. Here μint is a new variable defined for our case

and it is not the standard chemical potential as μ ¼ ðρþ
pÞ=n [35–37].
Equations (16) and (17) stand for the particle number

conservation constraint and the entropy exchange con-
straint, respectively. Both of these can be written as

∇μðnUμÞ ¼ 0 and ∇μðsnUμÞ ¼ 0: ð20Þ

Now, the modified Klein-Gordon equation is

□ϕ −
∂V
∂ϕ

−
∂f
∂ϕ

¼ 0: ð21Þ

III. SPACETIME STRUCTURE AND THE
GOVERNING COSMOLOGICAL EQUATIONS

A. Spacetime configuration

In this paper, as we mentioned before, in order to model
the dynamics of the overdense region of dark matter in the
presence of nonminimally coupled dark energy, we use
closed FLRW spacetime,

ds2 ¼ −dt2 þ a2ðtÞ
1 − kr2

dr2 þ r2a2ðtÞðdθ2 þ sin2 θdΦ2Þ;
ð22Þ

where the constant k can be 0;�1, and aðtÞ is the scale
factor of the overdense region. A value of k ¼ 0 signifies a
flat spatial component, while negative and positive values
indicate an open or closed spatial section, respectively. We
consider closed FLRW metric to model the overdense
region of dark matter since the dynamics of a flat universe
are always monotonic. A flat universe either expands or
collapses depending upon the initial values of ȧðtÞ i.e., the
flat universe cannot have a turnaround scenario if we do not
include bounces.
Like the minimal coupling scenario we studied earlier

[34], here also we want to generalize the top-hat collapse
model in the presence of nonminimally coupled dark
energy, and therefore, we choose closed FLRW spacetime
to model the overdense region. At the initiation of the
gravitational collapse (t ¼ 0), aðtÞ can assume any positive
definite value, which can always be rescaled to one.
Therefore, we set aðt ¼ 0Þ ¼ 1. To account for the pres-
ence of dark matter and dark energy in the ever-expanding
background of the overdense regions, we model the back-
ground using the flat FLRW spacetime,

ds2 ¼ −dt2 þ ā2ðtÞdr2 þ r2ā2ðtÞðdθ2 þ sin2 θdΦ2Þ; ð23Þ

where the scale factor of the background is denoted by āðtÞ.
Henceforth, any parameter with an overbar denotes its
association with the background. As done in our previous
work, we utilize an external generalized Vaidya spacetime to
depict the matter flux through the boundary of the overdense
region within its immediate vicinity. Importantly, Vaidya
spacetime is not regarded as a background spacetime; rather,
the background at the Hubble scale is modeled using flat
FLRWspacetime.Vaidya spacetime is exclusively employed
to depict the localized dynamics of matter around the
boundary of the overdense regions. Therefore, in our model,
at a timelike hypersurface Σ ¼ r − rb ¼ 0; ∀rb < 1, the
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internal closed FLRW spacetime smoothly matches the
external generalized Vaidya spacetime,

dS2− ¼ −dt2 þ a2ðtÞ
�

dr2

1 − r2
þ r2dΩ2

�
¼ −dt2 þ a2ðtÞdΨ2 þ a2ðtÞsin2ΨdΩ2; ð24Þ

dS2þ ¼ −
�
1 −

2Mðrv; vÞ
rv

�
dv2 − 2dvdrv þ r2vdΩ2: ð25Þ

Here, we define the co-moving radius as r ¼ sinΨ and rv
along with v represent the coordinates associated with the
generalizedVaidya spacetime. For the smoothmatching atΣ,
as we know, we need to match the induced metric (hab) and
the extrinsic curvature (Kab) on the Σ from both sides. From
the induced metric matching we get�

v̇2 −
2Mðrv; vÞ

rv
v̇2 þ 2v̇ṙv

�
¼ 1; ð26Þ

rv ¼ aðtÞ sinΨb; ð27Þ

and the matching of the extrinsic curvature gives us [34],

cosΨb ¼
1 − 2M

rv
þ drv

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rv
þ 2 drv

dv

q ; ð28Þ

Mðrv; vÞ;rv ¼
F

2 sinψbaðtÞ
þ sin2ψbaä: ð29Þ

Here, F denotes the Misner-Sharp mass of the internal
collapsing spacetime, and it must satisfy the following
condition at the boundary,

Fðt; sinψbÞ ¼ 2Mðrv; vÞ: ð30Þ

The matter flux at the boundary depends on the scale factor
and the Misner-Sharp mass (F) of the collapsing spacetime,
as indicated inEq. (29). In this case, theMisner-SharpmassF
of the internal spacetime is a time-dependent function only
since the internal spacetime is spatially homogeneous. Aswe
know, the internal pressure p ¼ − Ḟ

ṘR2, and therefore, the
existence of nonzero pressure at the boundary signifies a
nonzero matter flux through it. This is why we incorporate
the use of the generalizedVaidya spacetime in the immediate
vicinity of the internal two-fluid system. The negative
pressure at the boundary implies an inward matter flux for
an expanding scenario and an outward matter flux for a
collapsing scenario. It is seen in the next subsection that the
nonminimal coupling we consider here does not have any
impact on the evolution of the matter part, whereas it
modifies the Klein-Gordon equation of the scalar field.
Therefore, dustlike matter evolves like 1

a3ðtÞ, and there is

zero-flux of the matter at the boundary of the overdense
region. Only the scalar field leaks out of the boundary since
the pressure at the boundary is negative. This result is similar
to the results we demonstrated in our previous work with
minimal coupling. However, it is also shown in the next
subsection that the nonminimal coupling indeed causes dark
energy to deviate from its homogeneous nature. An incre-
ment of the strength of the nonminimal coupling results in a
lesser outward flux of the scalar field, and consequently, ρϕρ̄ϕ
becomes greater than one. Therefore, the nonminimal
coupling forces the dark energy to cluster inside the over-
dense region.

B. Governing cosmological equations of the
nonminimally coupled matter and scalar field

From (20), one can obtain the conservation equation for
the number density and entropy as

ṅþ 3Hn ¼ 0 and ṡ ¼ 0: ð31Þ

Now, from Eqs. (10)–(12), we get

TμðmÞ
ν ¼ diagð−ρm; pm; pm; pmÞ;

TμðintÞ
ν ¼ diagð−ρint; pint; pint; pintÞ;

and

T0ðϕÞ
0 ¼ −

�
1

2
ϵϕ̇2 þ VðϕÞ

�
; TiðϕÞ

i ¼ 1

2
ϵϕ̇2 − VðϕÞ:

Substituting the above expressions for the energy-momen-
tum tensors of matter, scalar field, and the interaction
component into the Friedman equations associated with the
internal metric we obtain,

3ȧ2

a2
þ 3k

a2
¼

�
ρm þ 1

2
ϵϕ̇2 þ VðϕÞ þ ρint

�
; ð32Þ

2ä
a

þ ȧ2

a2
þ k
a2

¼ −
�
pm þ 1

2
ϵϕ̇2 − VðϕÞ þ pint

�
: ð33Þ

Now, from the conservation of the total energy-momentum
tensor we can write,

∇μT
μν
ðtÞ ¼ ∇μT

μν
ðmÞ þ∇μT

μν
ðϕÞ þ∇μT

μν
ðintÞ ¼ 0; ð34Þ

which implies,

ρ̇m þ 3
ȧ
a
ðρm þ pmÞ þ ϕ̇

�
ϵϕ̈þ 3Hϵϕ̇þ ∂V

∂ϕ
þ ∂ρint

∂ϕ

�
¼ 0:

ð35Þ
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Therefore, the modified Klein-Gordon equation [Eq. (21)]
becomes,

ϵϕ̈þ 3Hϵϕ̇þ ∂V
∂ϕ

þ ∂ρint
∂ϕ

¼ 0; ð36Þ

and the matter equations of motion is

ρ̇m þ 3
ȧ
a
ðρm þ pmÞ ¼ 0: ð37Þ

From above Eqs. (36) and (37), it can be observed that the
nonminimal coupling alters the Klein-Gordon equation,
while the equation of motion for matter energy density
remains similar to that in the minimal coupling scenario.
Now, if we take the matter as dust then pressure pm ¼ 0 and
from (32) and (33) we get,

3ȧ2

a2
þ 3k

a2
¼

�
ρm þ 1

2
ϵϕ̇2 þ VðϕÞ þ ρint

�
; ð38Þ

2ä
a

þ ȧ2

a2
þ k
a2

¼ −
�
1

2
ϵϕ̇2 − VðϕÞ þ pint

�
; ð39Þ

and with pm ¼ 0, Eq. (37) implies ρm ¼ ρm0

a3ðtÞ, where ρm0
is

the initial density of matter in the overdense region. Using
ρϕ ¼ 1

2
ϵϕ̇2 þ VðϕÞ in (38) we get

ȧ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρm þ ρϕ þ ρintÞa2

3
− k

s
: ð40Þ

Differentiating (40) with respect to comoving time (t)
we get

ä ¼ a
3

�
ρm þ ρϕ þ ρint þ

a
2
ðρm;a þ ρϕ;a þ ρint;aÞ

�
; ð41Þ

where ρϕ;a, ρm;a, and ρint;a are derivatives of the scalar field
energy density, the fluid energy density and the interaction
part energy density respectively, with respect to the scale
factor a. Similarly, using pϕ ¼ 1

2
ϵϕ̇2 − VðϕÞ we obtain,

ρϕ þ pϕ ¼ ϵϕ2
;aȧ2 and pϕ ¼ ρϕ − 2VðϕÞ: ð42Þ

Substituting the expression of ȧ from Eq. (40) in the
Eq. (42) we get

ρϕ

�
1 −

ϵϕ2
;aa2

3

�
− ðρm þ ρintÞ

ϵϕ2
;aa2

3
þ pϕ þ kϵϕ2

;a ¼ 0:

ð43Þ

Now, putting the value of pϕ from Eq. (42) in Eq. (43)
we get

ρϕ ¼
ðρmþρintÞϵϕ2

;aa2

6
þ VðϕÞ − kϵϕ2

;a

2�
1 − ϵϕ2

;aa2

6

� : ð44Þ

Now using (39)–(42) we get

ρϕ;a ¼ −
��

ρm
a

þ ρint
a

�
ð3þ ϵϕ2

;aa2Þ þ ρϕϵϕ
2
;aaþ 3pint

a
−
3kϵϕ2

;a

a

�
− ρm;a − ρint;a: ð45Þ

Now, differentiating Eq. (44) with respect to a and using equation Eq. (45) we obtain the following second-order differential
equation:

−
�ðρm þ ρintÞð3þ ϵϕ2

;aa2Þ þ ρϕϵϕ
2
;aa2 þ 3pint − 3kϵϕ2

;a

a

�
− ρm;a − ρint;a

¼ 1

3

�
1 − ϵϕ2

;aa2

6

�
2

�
3V;ϕϕ;a þ

ðρm;a þ ρint;aÞϵϕ2
;aa2

2
−
ðρm;a þ ρint;aÞϵ2ϕ4

;aa4

12
þ ðρm þ ρintÞϵϕ2

;aa

þ ðρm þ ρintÞϵϕ;aϕ;aaa2 −
ϵV;ϕϕ

3
;aa2

2
þ ϵVðϕÞaϕ2

;a þ ϵVðϕÞa2ϕ;aϕ;aa − 3kϵϕ;aϕ;aa −
kϵ2ϕ4

;aa
2

�
: ð46Þ
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C. Construction of the model

We aim to characterize our system using an autonomous
system of differential equations involving three variables,
ensuring its self-containment as done in [35]. The autono-
mous equations take the form,

x0 ¼ f1ðx; y; zÞ; y0 ¼ f2ðx; y; zÞ; z0 ¼ f3ðx; y; zÞ;

where x, y, and z represent three dynamic variables of the
system, and the prime notation denotes differentiation with
respect to the time parameter. The functions fiðx; y; zÞ for
i ¼ 1; 2; 3 do not explicitly depend on the time parameter;
they solely rely on x, y, and z.
The background evolution modeled by flat FLRW

spacetime can be parametrized in terms of phase-space
variables σ, X, Y, and Z, defined as follows:

X ¼ ϕ̇ffiffiffi
6

p
H
; Y ¼

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp
ffiffiffi
3

p
H

; Z ¼ ρint
3H2

; σ ¼
ffiffiffiffiffiffi
ρm

pffiffiffi
3

p
H
:

These variables allow the background Friedmann equation
to be expressed as

1 ¼ σ2 þ X2 þ Y2 þ Z;

serving as a constraint equation permitting the replacement
of (σ) with other variables. With these variables, the
cosmological field equations can be written in terms of
X0, Y 0, Z0, X, Y, Z, A, and B, where prime denotes the
derivative with respect to Hdt. Here,

A ¼ pint

2H2
; B ¼ 1ffiffiffi

6
p

H2

∂ρint
∂ϕ

:

In selecting our model, we define functions ρint and pint
such that A and B become functions of X, Y, and Z only.
This ensures the system is closed at both the background
and perturbation levels, and consequently, we can write the
following expression of ρint and pint [35]:

ρint ¼ γραme−βϕ; pint ¼ ðα − 1Þρint; ð47Þ

where γ, α, and β are real constants and play important roles
in the dynamics of the system consisting of nonminimally
coupled scalar field and dustlike matter. In the next section,
we will discuss how these constants influence the dynamics
of the overdense regions. From Eq. (37), it can be
demonstrated that ρm ∝ 1

a3, leading to ρm ¼ ρm0
ða0a3Þ, where

a0 and ρm0
is the initial value of the scale factor and the

matter-energy density, respectively. Throughout this paper,
we consider a0 ¼ 1. For the case of closed FLRW space-
time, one can do a similar parametrization as done above
and get a similar expression of ρint and pint as shown in
Eq. (47). We also assume the potential of the scalar field
as VðϕÞ ¼ V0e−λϕ for quintessencelike and phantomlike
scalar fields.
Now, for quintessence like scalar field, we take ϵ ¼ 1,

Now for k ¼ 1, Substituting these expressions in Eq. (46),
one can get the following second-order differential equa-
tion of ϕðaÞ:

−4V0e−λϕϕ;aa3þ9ϕ;aaþ
V0e−λϕϕ3

;aa5

2
þρm0

ϕ3
;aa2

4
−ϕ3

;aa3þ3λa2V0e−λϕ−
5ρm0

ϕ;a

2
−ρm0

aϕ;aaþ3a2ϕ;aa−V0e−λϕa4ϕ;aa

−
λV0e−λϕϕ2

;aa4

2
þ γðρm0

Þαe−βϕ
a3α

�
3βa2−

βϕ2
;aa4

2
−4ϕ;aa3þ

ϕ3
;aa5

2
−
αϕ3

;aa5

4
þ3αϕ;aa3

2
−ϕ;aaa4

�
¼ 0; ð48Þ

and for k ¼ 0, we get

− 4V0e−λϕϕ;aa3 þ
V0e−λϕϕ3

;aa5

2
þ ρm0

ϕ3
;aa2

4
þ 3λa2V0e−λϕ −

5ρm0
ϕ;a

2
− ρm0

aϕ;aa − V0e−λϕa4ϕ;aa

−
λV0e−λϕϕ2

;aa4

2
þ γðρm0

Þαe−βϕ
a3α

�
3βa2 −

βϕ2
;aa4

2
− 4ϕ;aa3 þ

ϕ3
;aa5

2
−
αϕ3

;aa5

4
þ 3αϕ;aa3

2
− ϕ;aaa4

�
¼ 0: ð49Þ

It is generally considered that the phantomlike scalar field has negative kinetic energy and therefore, for the phantom field
ϵ ¼ −1. For the phantom field, substituting these expressions in Eq. (46), one can get the following second-order
differential equation of ϕðaÞ:

4V0e−λϕϕ;aa3 − 9ϕ;aaþ
V0e−λϕϕ3

;aa5

2
þ ρm0

ϕ3
;aa2

4
−ϕ3

;aa3 þ 3λa2V0e−λϕ þ
5ρm0

ϕ;a

2
þ ρm0

aϕ;aa − 3a2ϕ;aa þV0e−λϕa4ϕ;aa

þ λV0e−λϕϕ2
;aa4

2
þ γðρm0

Þαe−βϕ
a3α

�
3βa2 þ βϕ2

;aa4

2
þ 4ϕ;aa3 −

ϕ3
;aa5

2
−
αϕ3

;aa5

4
−
3αϕ;aa3

2
þϕ;aaa4

�
¼ 0; ð50Þ

SAHA, DEY, and BHATTACHARYA PHYS. REV. D 109, 104023 (2024)

104023-8



and for k ¼ 0, we get

4V0e−λϕϕ;aa3 þ
V0e−λϕϕ3

;aa5

2
þ ρm0

ϕ3
;aa2

4
þ 3λa2V0e−λϕ þ

5ρm0
ϕ;a

2
þ ρm0

aϕ;aa þ V0e−λϕa4ϕ;aa

þ λV0e−λϕϕ2
;aa4

2
þ γðρm0

Þαe−βϕ
a3α

�
3βa2 þ βϕ2

;aa4

2
þ 4ϕ;aa3 −

ϕ3
;aa5

2
−
αϕ3

;aa5

4
−
3αϕ;aa3

2
þ ϕ;aaa4

�
¼ 0; ð51Þ

where ϕ;aa is the second-order derivative of the scalar field
with respect to a. Here the last terms involving factor γ is
coming due to the nonminimal interaction between matter
and scalar field. If we put γ ¼ 0 in this equation then we
will get the equation where there is no coupling between
scalar field and dark matter. We can now solve the above
differential equation to get the functional form of ϕðaÞ.
Consequently, using the solution of ϕðaÞ and the differ-
ential Eqs. (38) and (39), we can obtain the expression of
scale factor a as a function of comoving time t. In the next
section, we discuss the results of our work elaborately.

IV. RESULTS OBTAINED FROM THE
COLLAPSING PROCESS

In our prior study of structure formation of dark matter in
the presence of a minimally coupled scalar field [34], we
identified a bounded region in a region plot that links the
initial value of the dark matter, ρm0

, with the scalar field
potential parameter V0. The specific values of ρm0

and V0

within this region are indicative of the dynamics exhibited
by overdense regions, characterized by a collapsing phase
following an initial expansion akin to the top-hat collapse.
The allowed parameter space for ρm0

and V0 reveals that for
larger values of V0, ρm0

must take smaller values, and vice
versa, in order to achieve dynamics similar to the top-hat
collapse. In this paper, we conduct a comparable study for
nonminimal scenarios and our results reveal a distinct

contrast from the preceding minimal scenario. Figures 2(a),
2(b), 3(a), and 3(b) depict the allowed shaded region of ρm0

and V0 associated with dynamics resembling the top-hat
collapse when nonminimal couplings are taken into
account, where we consider different values of α for
nonminimally coupled quintessencelike [i.e., Figs. 2(a)
and 2(b)] and phantomlike scalar fields [i.e., Figs. 3(a)
and 3(b)]. On the other hand, the unshaded regions in those
figures correspond to those dynamics that expand eternally.
The region plots demonstrate that while the allowed region
for ρm0

and V0 remains similar to that of the minimal
coupling scenario for lower values of α, its characteristics
undergo a change for higher values of the same parameter.
From Figs. 2(b) and 3(b), it can be seen that for α ¼ 7, there
exists a range of values of V0 for which two allowed ranges
of ρm0

are possible. However, it is also noteworthy that there
exists a range ofV0 forwhich all values of ρm0

are permitted.
This type of nature is absent if we consider a minimally
coupled scalar field. Based on the aforementioned findings,
it can be broadly asserted that the inclusion of nonminimal
coupling expands the parameter space of ρm0

and V0 in
which overdense regions exhibit initial expansion followed
by subsequent contraction, whereas the region for continual
expansion decreases due to the nonminimal coupling. It’s
important to highlight that the features of the allowed
regions are not as strongly influenced by variations in the
values of other nonminimal coupling parameters, specifi-
cally γ and β, as they are by α. However, for all cases, as

FIG. 1. Figure shows region plot of ϕ0 vs ϕ for a ¼ 1 initially. Here the values of λ ¼ 1, ρm0
¼ 5, V0 ¼ :001, α ¼ 1, β ¼ 1,

γ ¼ 0.0006 are fixed. The values resides inside this region will provide sufficient acceleration for the background. (a) Region plot for
quintessence field. (b) Region plot for phantom field.
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stated before, the shaded region increases as we increase the
value of any of the nonminimal coupling parameters.
Now, we have solved the second-order differential

Eqs. (50) and (51) of ϕðaÞ. Since the differential equations
are second-order differential equations, we must consider
two initial conditions, namely ϕða ¼ 1Þ and ϕ0ða ¼ 1Þ, for
their solution.
To facilitate a comparison between our model and the

standard top-hat collapse model, we restrict our discussion
in this paper to scenarios where the initial value of ȧ is
positive. This positive value ensures an initial expansion
phase of the overdense region, aligning with the conditions
of the standard top-hat collapse model. The present model
of gravitational collapse is a complicated model as it
involves various model parameters as, V0, λ, α, β and γ.
Depending upon the values of these parameters one has to
set the initial conditions of the problem. In our specific case
we require four initial conditions; ρm0

, ϕðt ¼ 0Þ, ϕ0ðt ¼ 0Þ,
and aðt ¼ 0Þ. Fixing α, β, and γ the initial conditions can be
found from different constraints. We list the conditions
which constrain the initial values below:

(1) We can always assume að0Þ ¼ 1 without loss of any
generality.

(2) The initial conditions must be such that it produces
sufficient acceleration for the background universe.
This condition constrains the initial values of
ϕða ¼ 1Þ and ϕ0ða ¼ 1Þ.

(3) The initial conditions must be such that ȧð0Þ is a
positive real number for the collapsing spherical
perturbation. This condition gives a bound on the
initial value of ρm0

, as the initial value of ρϕ will
already be fixed with the previous condition.

(4) The initial conditions should be such that the
spherical perturbation proceeds towards a turn over
in the future.

The possible values of ϕða ¼ 1Þ and ϕ0ða ¼ 1Þ satisfying
the second condition are shown in region plots in Figs. 1(a)
and 1(b). Our initial values of ϕða ¼ 1Þ and ϕ0ða ¼ 1Þ are
chosen from this region. For particular initial values of
ϕða ¼ 1Þ and ϕ0ða ¼ 1Þ we have then found out all the
corresponding possible values of ρm0

and V0 which can
give rise to a gravitational collapse (see Figs. 2 and 3).

FIG. 2. Figure shows variation of region plot of V0 vs ρm0
for increasing values of α for the quintessence field. (a) Region plot with

α ¼ 1. (b) Region plot with α ¼ 7.

FIG. 3. Figure shows variation of region plot of V0 vs ρm0
for increasing values of α for the phantom field. (a) Region plot with α ¼ 1.

(b) Region plot with α ¼ 7.
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FIG. 4. Figure shows variation of different variables with variation of γ for scalar potential VðϕÞ ¼ V0e−λϕ for the quintessence field.
Where amax is the maximum value of scale factor and tmax is the time when it will reach that value. V0 has the dimension of inverse
length squared. Discussion on the unit of V0 can be found in the main text. Here the top-hat collapse is represented by yellow dotted line
whereas for the blue curves interaction is zero, so it represent minimal coupling. For red curves γ ¼ :0006 and for green curves
γ ¼ :0005. Here β ¼ 1 and α ¼ 1 are fixed. (a) Variation of a=amax with t=tmax. (b) Variation of ωϕ with t=tmax. (c) Variation of

ρϕ
ρ̄ϕ
with

t=tmax. (d) Variation of ωt with t=tmax. (e) Variation of ω̄t with t=tmax.
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FIG. 5. Figure shows variation of different variables with variation of β for scalar potential VðϕÞ ¼ V0e−λϕ for the quintessence field.
Where amax is the maximum value of the scale factor and tmax is the time when it will reach that value. V0 has the dimension of inverse
length squared. Discussion on the unit of V0 can be found in the main text. Here the top-hat collapse is represented by a yellow dotted
line whereas for the blue curves interaction is zero, so it represents minimal coupling. For red curves β ¼ 1 and for green curves
β ¼ 100. Here γ ¼ :0006 and α ¼ 1 are fixed. (a) Variation of a=amax with t=tmax. (b) Variation of ωϕ with t=tmax. (c) Variation of

ρϕ
ρ̄ϕ
with

t=tmax. (d) Variation of ωt with t=tmax. (e) Variation of ω̄t with t=tmax.
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FIG. 6. Figure shows variation of different variables with variation of α for scalar potential VðϕÞ ¼ V0e−λϕ for the quintessence field.
Where amax is the maximum value of scale factor and tmax is the time when it will reach that value. V0 has the dimension of inverse
length squared. Discussion on the unit of V0 can be found in the main text. Here the top-hat collapse is represented by yellow dotted line
whereas for the blue curves interaction is zero, so it represent minimal coupling. For red curves α ¼ 1 and for green curves α ¼ 2. Here
γ ¼ :0006 and β ¼ 1 are fixed. (a) Variation of a=amax with t=tmax. (b) Variation of ωϕ with t=tmax. (c) Variation of ρϕ

ρ̄ϕ
with t=tmax.

(d) Variation of ωt with t=tmax. (e) Variation of ω̄t with t=tmax.
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FIG. 7. Figure shows variation of different variables with variation of β for scalar potential VðϕÞ ¼ V0e−λϕ for the phantom field.
Where amax is the maximum value of scale factor and tmax is the time when it will reach that value. V0 has the dimension of inverse
length squared. Discussion on the unit of V0 can be found in the main text. Here the top-hat collapse is represented by yellow dotted line
whereas for the blue curves interaction is zero, so it represent minimal coupling. For red curves β ¼ 5 and for green curves β ¼ 20. Here
α ¼ 1 and γ ¼ :0001 are fixed. (a) Variation of a=amax with t=tmax. (b) Variation of ωϕ with t=tmax. (c) Variation of ρϕ

ρ̄ϕ
with t=tmax.

(d) Variation of ωt with t=tmax. (e) Variation of ω̄t with t=tmax.
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FIG. 8. Figure shows variation of different variables with variation of γ for scalar potential VðϕÞ ¼ V0e−λϕ for the phantom field.
Where amax is the maximum value of scale factor and tmax is the time when it will reach that value. V0 has the dimension of inverse
length squared. Discussion on the unit of V0 can be found in the main text. Here Top hat collapse is represented by yellow dotted line
whereas for the blue curves interaction is zero, so it represent minimal coupling. For red curves γ ¼ :0005 and for green curves
γ ¼ :0006. Here α ¼ 1 and β ¼ 1 are fixed. (a) Variation of a=amax with t=tmax. (b) Variation of ωϕ with t=tmax. (c) Variation of

ρϕ
ρ̄ϕ
with

t=tmax. (d) Variation of ωt with t=tmax. (e) Variation of ω̄t with t=tmax.
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FIG. 9. Figure shows variation of different variables with variation of α for scalar potential VðϕÞ ¼ V0e−λϕ for the phantom field.
Where amax is the maximum value of scale factor and tmax is the time when it will reach that value. V0 has the dimension of inverse
length squared. Discussion on the unit of V0 can be found in the main text. Here the top-hat collapse is represented by yellow dotted line
whereas for the blue curves interaction is zero, so it represent minimal coupling. For red curves α ¼ 1 and for green curves α ¼ 2. Here
β ¼ 1 and γ ¼ :0006 are fixed. (a) Variation of a=amax with t=tmax. (b) Variation of ωϕ with t=tmax. (c) Variation of ρϕ

ρ̄ϕ
with t=tmax.

(d) Variation of ωt with t=tmax. (e) Variation of ω̄t with t=tmax.
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We have chosen ρm0
and V0 values from the last two figures

for α ¼ 1, β ¼ 1, and γ ¼ :0006. Similarly, plots for other
regions can be generated by varying the parameter values
accordingly, to obtain the initial condition for different
parameter values. Our final choice of initial conditions are
based on such considerations. There are multiple ways one
can choose the initial conditions as we have various
constraints. We have presented one of the ways in which
we have found out reasonable initial values for the
collapsing problem.
In our system of geometrical units, the scalar field, λ, α,

and β are dimensionless, while a has the dimension of
length, ρm0

and V0 have dimensions of inverse length
squared and γ has dimension L2ðα−1Þ, where L represents
the length dimension. Similar to the work with minimal
coupling [34], in the current investigation, we choose
values of ρm0

that consistently remain proximate to the
critical density of the background at the onset of the
collapse. For a specific epoch where collapse occurs, if
we express ρm0

in conventional units, we can easily convert
it into geometrized units by multiplying ρm0

by Gc−4,
where G is the universal gravitational constant and c is the
velocity of light. This conversion yields a value of L−2.
This value in units of L−2 serves as a suitable scale in our
context to express the values of V0, ρm0

, and γ.
We consider the initial conditions ϕða ¼ 1Þ ¼ 0.001 and

ϕ0ða ¼ 1Þ ¼ 0.00001 for solving the differential equations
[Eqs. (50) and (51)]. Now, to investigate the impact of
nonminimal coupling on the evolution of overdense regions,
we set the values of λ, ρm0

, and V0 to λ ¼ 1, ρm0
¼ 5, and

V0 ¼ 0.001, respectively. We then vary one of the coupling
parameters, α, β, or γ, while keeping the values of the
remaining two fixed. Figures 4–6 depict the evolution of
dynamic quantities, such as a, ωϕ ¼ pϕ=ρϕ, δϕ ¼ ρϕ=ρ̄ϕ,
ωt ¼ pϕ=ðρm þ ρϕÞ, and ω̄t ¼ p̄ϕ=ðρ̄m þ ρ̄ϕÞ, with time for
different values of γ, β, and α, respectively. Here, ωϕ

represents the equation of state of the quintessencelike scalar
field in the overdense region,ωt denotes the effective or total
equation of state of the internal fluid comprising matter and
the quintessencelike scalar field, and ω̄t represents the total
equation of state of the background fluid consisting ofmatter
and the quintessencelike scalar field. On the other hand,
Figs. 7–9 illustrate the evolutionofa,ωϕ, δϕ,ωt, and ω̄twhen
the scalar field exhibits phantomlike nature. The evolution of
the scale factor a [as depicted in Figs. 4(a), 5(a), 6(a), 7(a),
8(a), and 9(a)] reveals that nonminimal coupling accelerates
the overdense region’s transition to the virialization state
compared to bothminimal coupling scenarios and the top-hat
collapse.Whereas the nature of the evolution ofωt illustrated
in Figs. 4(d), 5(d), 6(d), 7(d), 8(d), and 9(d) suggests that as
we increase the values of nonminimal coupling parameters,
the resulting fluid begins to exhibit behaviormore akin to that
of dust. The reason behind this lies in the fact that, as
demonstrated, the energy density of matter remains

unaffected by the nonminimal interaction, staying propor-
tional to 1

aðtÞ3. However, the Klein-Gordon equation of the

scalar field undergoes modification with an additional
interaction term [Eq. (36)]. Consequently, the presence of
dark matter slows down the flux of dark energy through the
boundary, causing less pressure at the boundary and through-
out the overdense region. Aswe are aware, the expression for

pressure is given by p ¼ − Ḟðr;tÞ
ṘR2 . This implies that when the

pressure is zero, it corresponds to aMisner-SharpmassF that
is independent of time. Therefore, in the scenario of
negligible pressure, we can express F as F ¼ F0r3þ
δF0ðtÞr3, where δF0ðtÞ → 0 and F0 is a positive valued
constant. Since at the boundary Fðrb; tÞ ¼ 2Mðrv; vÞ
[Eq. (30)], the total internal mass measured from the external
Vaidya spacetime becomes nearly time independent. This
suggests that the internal system behaves almost like an
isolated universe akin to the top-hat collapse model.
Additionally, contemplating larger values for the nonmini-
mal coupling parameters facilitates the transition of dark
energy from its homogeneous state, causing it to clustermore
within the overdense region. This phenomenon is evident in
the evolution of δϕ ¼ ρϕ=ρ̄ϕ as depicted in Figs. 4(c), 5(c),
6(c), 7(c), 8(c), and 9(c).

V. DISCUSSION AND CONCLUSION

In this paper, we investigate how a nonminimally
coupled scalar field influences the evolution of the over-
dense region of dark matter. We adopt a spacetime structure
crucial for preserving the homogeneous behavior of dark
energy, as seen in a previous study [34]. Our focus is on
algebraic coupling, where the interaction Lagrangian is
independent of derivatives of the scalar field. We explore
the impact of nonminimal coupling on the virialized
structures of dark matter, particularly on a cosmological
scale where dark energy’s influence cannot be disregarded.
The motivation for exploring nonminimal coupling comes
from notable deviations observed in earlier results with
minimal coupling when compared to the standard top-hat
collapse model. Moreover nonminimal coupling in the dark
sector cannot be ruled out in principle [41–45]. As because
we do not know exactly the components of the dark sector
and there exists no thermodynamic rule to prevent energy-
momentum exchange in the dark sector, in general one can
always assume some nonminimal coupling. These cou-
plings will have interesting cosmological consequences
which have been reported in the previous references. In the
present work we have implemented the idea of nonminimal
coupling in the dark sector in the level of the action and
worked out the whole theory. The effective nature of the
coupling although remains phenomenological, as shown in
Eq. (47). One can choose various forms of this interaction
term, out of various possibilities we have chosen one that
keeps the dynamics tractable and simple. The question of
the exact form of this interaction term remains open as it
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cannot be dictated by any formal theory. Our study reveals
that increased nonminimal coupling induces the clustering
of dark energy within the overdense region of dark matter
and the energy density of matter remains unaffected, being
proportional to 1

aðtÞ3. On the other hand, the Klein-Gordon
equation of the scalar field undergoes modification with an
additional interaction term, influencing dark energy to
cluster with dark matter.
In a previous work [46] it was argued that if the dark

energy component of the Universe is modeled by a scalar
field whose Lagrangian density contains a nontrivial
function of the kinetic term, then in those cases the sound
speed in the dark energy sector can be really small. In such
cases, the dark energy sector can nontrivially affect
structure formation. In our case, the dark energy component
is modeled by a scalar field which has the standard kinetic
term but still affects the structure formation process non-
trivially. This happens due to the nonminimal coupling in
the dark sector. Due to the specific nonminimal coupling
used in our work we see that although in the expanding, flat
background FLRW spacetime the equation of state is
effectively like dark energy the effective equation of state
of matter in the detached collapsing spacetime is approx-
imately equal to the equation of state of dust. Gravitational
contraction in a closed FLRW spacetime with nonminimal
coupling in the matter components produce such a state. As
a result of this the gravitational collapse in nonminimally
coupled dark sector becomes a bit more easy to handle than
the case where the components are not coupled. In the
simplest case the external matched spacetime just turns out
to be the Schwarzschild spacetime when the equation of
state of the collapsing matter practically nears zero because
in this case the internal spacetime has a dustlike effective
component, the whole collapse process conserves mass.
In this paper we have used general relativistic paradigm

to formulate the collapsing process. This was a necessity as
we have started at the level of the action which has the
gravitational as well as the matter and nonminimal coupling
terms. The minimization of the action produced all the
equations of motion which we have used in this paper. In
spite of this formal approach our work has a heavy
phenomenological flavor as because the form of the non-
minimal coupling and the scalar field potential were chosen
from the widely used forms by various authors working in
this field. These forms can reasonably reproduce the late-
time cosmology results. Our semi-formal approach ends
near virialization. Our work does not analytically predict
virialization but virialization is also phenomenologically
implanted. This feature is not new, the concept of

virialization at the end phase of top hat collapse was also
implemented in the same manner. Our work predicts that
this final virialized form of the effective matter inside the
detached spherical overdensity is rather exotic. This effec-
tive matter is a combination of the dark energy component
and the pressureless dark matter component. Both the
sectors are exchanging energy and momentum in such a
way that the effective matter also behaves almost as dust.
This prediction can have interesting consequences in
theories of structure formation. Our work predicts that
the essential input for clusters of galaxies may have dark
energy components hidden somewhere. We would like to
explore this topic in the near future.
We extensively explore the permissible parameter space

of V0 and ρm0
, identifying conditions under which over-

dense regions demonstrate dynamics akin to the top-hat
collapse which has an initial expansion phase followed by a
collapsing phase culminating in the virialization state. The
study encompasses both quintessencelike and phantomlike
scenarios, revealing distinct changes in the parameter space
for nonminimal coupling compared to minimal coupling.
We show that the allowed parameter space increases as we
increase the values of nonminimal coupling parameters.
Additionally, we study the impact of nonminimal coupling
on the virialization process. We present the evolution of
dynamic quantities, such as a, ωϕ, δϕ, ωt, and ω̄t, for
different values of the nonminimal coupling parameters.
Our results imply that the nonminimal coupling accelerates
the transition to the virialization state and leads to behavior
resembling that of dust in the resulting fluid. Furthermore,
we highlight the nearly time-independent behavior of the
total internal mass in the presence of negligible pressure,
implying the internal system behaves similarly to an
isolated universe, as in the top-hat collapse model.
Larger values of nonminimal coupling parameters facilitate
the transition of dark energy from its homogeneous state,
causing increased clustering within the overdense region.
Our findings have the potential to enhance our compre-
hension of the cosmological implications associated with
nonminimal coupling of dark matter and dark energy in the
context of dark matter structure formation, along with its
possible observational signatures.
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