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In the Randall-Sundrum (RS) II braneworld scenario, general relativity (GR) is modified by adding an
extra dimension such that it is indistinguishable from GR in the weak gravity limit. However, such
modifications may leave a mark in the strong field regime. We therefore analyze massive scalar
perturbations around rotating black holes in the RS II model. Unlike black holes in GR, these braneworld
black holes carry a tidal charge that contains information about the extra spatial dimension, and the rotation
parameter for such black holes can exceed unity. Through the method of continued fractions, we investigate
the quasinormal mode spectra, and the superradiant instabilities associated with the existence of
quasibound states, that is, gravitational atoms. In comparison to the four-dimensional Kerr black hole,
we report distinctive signatures of the tidal charge and the rotation parameter, which manifest as signals of
the extra dimension, on both the fundamental quasinormal mode and the formation of gravitational atoms.
These findings offer insights into testing modifications to GR and detecting ultralight bosonic particles
around black holes.
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I. INTRODUCTION

The first direct detection of gravitational waves emitted
during the merger of binary black holes and neutron
stars [1–3], along with the recent measurements related to
the shadows of supermassive black hole candidates likes
M87� and Sgr A� located at the center of the Messier 87 and
the Milky Way galaxies respectively [4–10] as well as the
observation of relativistic effects in the orbits of stars around
Sgr A� [11–13], has led to a renaissance in testing gravity in
the strong field regime [14–26]. To understand classical
gravitational interactions, one usually turns to Einstein’s
general theory of relativity (GR) which is extremely suc-
cessful as far as solar system experiments, or weak gravi-
tational fields, are concerned [27–30]. These recent
breakthroughs have now confirmed that the predictions of
GR agreewith observations to an unprecedented degree even
in the strong field regime [11–13,31–40], adding enormous
heft to decades of progress made in this direction [41–44]. In
the near future, pulsar timing arrays and space-borne
gravitational wave detectors are expected to put GR to even
more stringent tests [41,45–51]. But of course, this whole
enterprise is notwithout its caveats and onemust exercise due
caution while interpreting the results [43,52–56].
Moreover, in spite of its tremendous success across

various orders of the length scale, there are both theoretical

and observational aspects of general relativity and black
holes (BHs) that motivate us to consider alternatives to
Einstein’s theory. Such modified theories of gravity are
usually invoked to address issues like the existence of
spacetime singularities [57–59], the existence of Cauchy
horizons and the breakdown of determinism in GR [60–69],
the information loss paradox [70–72], explain the accel-
erated expansion of the universe [73–77], or the behavior of
galactic rotation curves [78,79]. But when it comes to
modifying gravity, we seem to be limited only by our
imagination [43,80–84]. However, such alternative theories
must be at par with GR when it comes to satisfying tests
of gravity, both in the local and strong field regime, which is
a tall order. We now know that it is indeed possible to
consistently modify the Einstein-Hilbert action such that we
end up with theories which can address one or more of these
issues while keeping the local physics unchanged. Some
popular alternatives to GR include fðRÞ theories [85,86],
Lanczos-Lovelock models [87], bimetric gravity [88–90],
Horndeski [91–93] and generalized Proca theories [94–96].
In the present work, we focus on one such modification

to Einstein’s theory which incorporates the presence of a
warped extra spatial dimension,1 the so-called braneworld
scenario [98–123], and try to infer its imprints in the strong
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1The existence of different kinds of extra spatial dimensions
have been invoked by physicists in variety of contexts over the
years, starting from the works of Kaluza and Klein [97] in their
attempt to unify classical electromagnetism and general relativity.
We refer the reader to [98] for a complete account.

PHYSICAL REVIEW D 109, 104021 (2024)

2470-0010=2024=109(10)=104021(25) 104021-1 © 2024 American Physical Society

https://orcid.org/0009-0007-8257-9245
https://orcid.org/0000-0001-9015-8837
https://orcid.org/0000-0001-9615-4909
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.104021&domain=pdf&date_stamp=2024-05-07
https://doi.org/10.1103/PhysRevD.109.104021
https://doi.org/10.1103/PhysRevD.109.104021
https://doi.org/10.1103/PhysRevD.109.104021
https://doi.org/10.1103/PhysRevD.109.104021


field regime by studying the behavior of massive scalar
field perturbations around a rotating black hole solution of
the said modified theory.
Here we specifically consider the Randall Sundrum

braneworld scenario, where we model the universe as a
four dimensional (4D) spacetime (or a 3-brane) embed-
ded in a five dimensional (5D) anti–de Sitter spacetime
called the bulk, the extra dimension being spacelike and
warped [99,100]. In such models, the matter fields are
confined to the brane and only gravitational interactions
can probe the bulk. The braneworld paradigm was initially
proposed as a solution to the hierarchy problem in particle
physics [99]. However, Randall and Sundrum proposed a
secondmodel, colloquially known as the RS-II model [100],
where the observable universe is a 3-brane with a positive
tension embedded in the 5D bulk spacetime with a warped
noncompact extra dimension and a negative cosmological
constant. It is particularly interesting to note that such a
model can give rise to the familiar Newtonian gravitational
potential on the 3-brane [100]. It was also demonstrated that
the such a theory is able to reproduce the features of 4D
Einstein gravity in the low energy limit [103–108] and
numerical black hole solutions in the bulk were explored
in [102] (also see Refs. [124–126]). Interestingly enough,
the RS-II model can also give rise to analytical black hole
solutions on the brane [111,112] that at first sight look
superficially familiar to the well known black hole solutions
in general relativity.
In fact, the rotating braneworld BH metric resembles that

of the Kerr-Newman (KN) black hole [112]. But the
solution is far from trivial since, unlike the KN solution,
the braneworld solution corresponds to a vacuum solution.
Moreover, the tidal charge, bearing the signature of the
extra dimension, can take on both positive and negative
values (unlike the electric charge). It is also important to
stress that unlike KN BHs of general relativity, the brane-
world BH can be superspinning, that is, they can possess
angular momentum greater than the BH mass. Note that the
black holes in our universe are supposed to be electrically
neutral. But even then electrically charged black holes are
routinely studied because they serve as theoretical labo-
ratories to probe various classical and quantum aspects of
gravity [127]. Therefore, by using the braneworld BH
solution, one can often directly leverage existing techniques
to investigate the consequences of the braneworld scenario
in the context of gravitational interactions. Such an
endeavor is important because it will complement the
popular program to search for extra dimensions through
particle physics experiments which may be inadequate to
probe the presence of the noncompact extra dimension built
into the RS-II model [128]. Against this backdrop, workers
have studied the imprint of the tidal charge on lensing and
BH shadows [129–136], BH perturbations and gravita-
tional waves [137–154], and have explored various other
aspects [155–164] as well.

In this work, we choose to explore two hitherto unex-
plored avenues: (i) the quasinormal mode spectra of
massive scalar perturbations, and (ii) the existence of
quasibound states and the associated superradiant insta-
bility, or the gravitational atom, in the braneworld scenario.
We focus on the regime μM < 1 such that one obtains
boson condensates around the black hole, forming a scalar
gravitational atom, μ being the mass of the scalar field and
M being the BH mass that sets a characteristic length scale
of the problem.
To the best of our knowledge, the existence of gravita-

tional atoms in the context of braneworld black holes has
not been examined before, and this work represents the first
step in a program to study the implications of the presence
of a noncompact extra dimension on the behavior of boson
clouds in binary black hole systems.
The paper is organized as follows. In Sec. II we

introduce the rotating braneworld BH metric and discuss
the region of the parameter space under exploration. In
Sec. III, we discuss the wave equation governing massive
scalar perturbation and elucidate the boundary conditions
required for studying quasinormal modes (QNMs) and
quasibound states (QBSs). We then discuss the numerical
method in Sec. IV and delineate a strategy to solve the
continued fraction using a simple root finding algorithm
that guarantees results up to the desired degree of
accuracy. We present our results in Sec. V where we
first analyze the stability of the braneworld BH under
massive scalar perturbations, highlighting interesting
aspects of the QNM spectrum, followed by a thorough
analysis of the quasibound states and the associated
superradiant instability. Finally, we conclude with a
few remarks in VI.
Notations and conventions: We set the fundamental

constants G and c to unity. Throughout this paper, we
will use the mostly positive signature convention, such
that the Minkowski spacetime will have the metric
ημν ¼ diagð−1; 1; 1; 1Þ. In our numerical computations,
we set the characteristic length scale given by the BH
mass M to unity.

II. ROTATING BLACK HOLE IN THE
BRANEWORLD SCENARIO

We had remarked that the rotating braneworld BH
resembles the Kerr-Newman BH, and to understand this
aspect we must look at how one arrives at the braneworld
black hole metric which is a solution to the (effective)
Einstein field equations on the brane [103–106]. So, in
order to construct black hole solutions localized on the
brane, one starts with the assumption that the 5D Einstein
field equations are satisfied by the bulk spacetime. Then, by
using an appropriate projector to the brane, and the Gauss-
Codazzi relations, one can figure out the 4D Einstein field
equations on the brane. In fact, if the bulk spacetime is
empty and there are no matter fields present on the brane,
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then the effective gravitational field equations on the brane
are given by [103–106]

ð4ÞRμν ¼ −Eμν; ð4ÞLμ
μ ¼ Eμ

μ ¼ 0; ð2:1Þ

where ð4ÞRμν is the 4D Ricci tensor and Eμν is traceless
electric part of the 5DWeyl tensor. Therefore, from (2.1) it
is clear that it is the bulk Weyl tensor that ushers in the
modifications to the vacuum Einstein field equations due to
the presence of the extra spatial dimension [103,106,110].
Now, one can show that Eμν is divergenceless as well if one
considers a vacuum brane [106]. Therefore, the effective
vacuum braneworld field equations closely resemble those
of the Einstein-Maxwell system. Dadhich et al. [111] used
this observation to consistently map the Reissner-Nordstöm
solution in GR to an exact static spherically symmetric
black hole solution localized on a brane, and soon
afterward the technique was generalized to construct a
stationary and axisymmetric solution of the vacuum brane-
world field equations describing a charged rotating black
hole localized on a 3-brane [112], the charge being an
induced tidal charge, inherited from the 5D Weyl tensor,
encoding nonlocal gravitational effects from the higher
dimensional bulk spacetime.
Formally, the line element for a rotating black hole

in the second Randall-Sundrum (RS-II) braneworld sce-
nario [112–114], with mass M and angular momentum
J ≡ aM in the usual Boyer- Lindquist coordinates, is
given by,

ds2 ¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ Σ

�
dr2

Δ
þ dθ2

�

þ sin2θ
Σ

ðadt − ðr2 þ a2ÞdϕÞ2; ð2:2Þ

where the metric functions Δ and Σ have the form,

Δ¼ r2þa2−2Mr−β; and Σ¼ r2þa2cos2θ; ð2:3Þ

and β is the tidal charge inherited from the bulk Weyl
tensor. The tidal charge β appears in the metric even
though there is no electric charge on the brane and its
origin lies in nonlocal Coulomb-type effects present in the
bulk space [111,112]. It is important to note that β can
take on both positive and negative values, and it is evident
that for negative values of β, the line element (2.2)
resembles the standard Kerr-Newman solution of the
Einstein-Maxwell system in GR,2 and for β ¼ 0 we simply
recover the celebrated Kerr solution. Therefore, positive
values of β differentiates this black hole solution from the

standard solutions in general relativity and carries the
imprint of the extra dimension. In fact, in the context of
braneworld models, a positive value of β is physically
more favorable [102,103,109]. We should also stress that
the tidal charge is a property of the spacetime geometry
itself and is different from a black hole hair, which is to
say that it is similar to how the cosmological constant is a
property of an asymptotically de Sitter black hole space-
time and has the same value for all such black holes,
whereas a black hole hair like the mass M, or electric
charge Q can be different for different black holes in the
universe. The rotating braneworld black hole is therefore
clearly quite distinct from its GR counterpart despite the
superficial similarity. Moreover, the presence of the tidal
charge β permits us to explore those values of the black
hole rotation parameter a that are not allowed in GR.
This fact is evident from examining the roots of
ΔðrÞ ¼ ðr − rþÞðr − r−Þ ¼ 0, viz.,

r� ¼ M � k; ð2:4Þ

where k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þ β

p
.

The black hole will have an outer event horizon
described by the largest root rþ provided,

ða=MÞ2 ≤ 1þ β=M2; ð2:5Þ

where the equality in the above relation corresponds to the
case where rþ ¼ r− ¼ M, that is, in the extremal limit
when the two horizons will coincide. The violation of (2.5)
results in a spacetime harboring a naked singularity. Now,
for the BH to achieve extremality, it is evident that for
positive values of β, we must allow for the possibility
a=M ≥ 1, a situation that is forbidden for black holes in
Einstein’s general theory of relativity and hence one that is
not discussed while studying rotating black holes in GR.
Therefore, to explore effects arising out of modifications to
general relativity, one has to explore the regime where the
rotation parameter a is greater than the massM of the black
hole in presence of a tidal charge β > 0. Furthermore, to
guarantee the existence of an inner horizon r−, according
to (2.4), one must ensure that

M > k ⇒ β < a2: ð2:6Þ

If (2.6) is not satisfied, the spacetime would still describe a
rotating black hole but with only one horizon, a geometry
whose global structure would be quite different from that of
the usual Kerr black hole. We shall therefore restrict our
investigation to those black hole geometries which have an
inner and outer horizon, that is, focus on values of β
satisfying,

ða=MÞ2 − 1 ≤ β=M2 < ða=MÞ2: ð2:7Þ

2The reader should note that our convention is different
from [112–114]. In their notation, Δ ¼ r2 þ a2 − 2Mrþ β.
So, in their case, a positive value of β corresponds to the KN
black hole.
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In Fig. 1, we have shown the portion of the parameter space
spanned by the allowed values a and β in the RS-II
braneworld scenario [keeping in mind (2.7)], and compared
it with the region described by the KN solution in general
relativity. Note that a and β are theoretically unbounded
from above. We have also indicated the values of a and β
which satisfy the equality in (2.5) by a thick dotted black
curve. We term this as the extremal curve, and later on we
shall call the modes corresponding to a and β lying close to
this curve as near-extremal modes. It is evident that the
braneworld black hole provides us with an opportunity to
explore a much larger portion of the parameter space
compared to GR and hence allows us to investigate the
imprint of an otherwise hidden extra dimension on various
physical phenomena in the strong field regime.

III. MASSIVE SCALAR PERTURBATIONS
AROUND THE ROTATING BRANEWORLD

BACKGROUND

The goal of the present work is to study the behavior of
(massive) scalar field perturbations propagating in the
rotating braneworld BH background. Since the seminal
work of Vishveshwara [165], quasinormal modes (QNMs),
or the characteristic frequencies, of black holes have
become ubiquitous to BH physics [166,167]. These modes

are triggered by the presence of perturbing fields near the
vicinity of the black hole, or due to perturbations to the
background metric itself. They carry unique fingerprints of
black hole parameters and spacetime geometry, remaining
independent of the initial perturbation. While gravitational
perturbations are pivotal from an observational standpoint,
the study of massive scalar perturbations is important in its
own right [42,168]. Setting aside the fact that studying the
quasinormal mode spectrum of fields of different spins is
the first step toward assessing the stability of the BH,
massive scalar fields can act as a useful proxy for more
realistic baryonic fields. Hence, they act as a useful
precursor to full-scale numerical relativity simulations.
Furthermore, in asymptotically flat spacetimes, the

presence of the scalar field mass fundamentally alters
the behavior of the scattering potential at infinity since it
now asymptotes to a constant value. This feature leads to an
interesting behavior in certain QNM frequencies which can
become arbitrarily long-lived, giving rise to the phenomena
called quasiresonance. Moreover, the massive scalar field
potential is now able to trap certain modes since due to the
presence of a mass barrier, the radial effective potential acts
as a reflecting surface. Such modes, called quasibound
states (QBSs), decay exponentially near infinity (in contrast
to QNM, even though they still leak away through the
horizon) and can be extremely long-lived. In fact, these
modes can further extract mass and angular momentum
from a rotating BH through the familiar superradiance
mechanism [168] and become superradiantly unstable due
to successive reflections from the potential barrier, leading
to the growth of a scalar condensate outside the BH
horizon. Such configurations are similar to the so-called
black hole bombs [169,170]. In the nonrelativistic limit,
these black hole systems carrying a boson cloud are also
called gravitational atoms since the system loosely resem-
bles that of a hydrogen atom [171–177]. These gravita-
tional atoms can be an invaluable tool when it comes to
probing the existence of ultralight bosons beyond the
Standard Model of particle physics [171–177]. Recently,
a relativistic framework for studying boson clouds has been
proposed as well [178].
In this section, we shall review the basics of the wave

equation governing massive scalar perturbations and the
appropriate boundary conditions to study QNMs and
QBSs. The derivation of the concerned equations and
boundary condition is operationally identical to that of
massive scalar perturbations in the KN background. We
therefore only highlight the major steps and results.

A. The wave equation

We start by considering a test field ψðt; r; θ;ϕÞ of mass μ
satisfying the Klein-Gordon (KG) equation.

1ffiffiffiffiffiffi−gp ∂μðgμν
ffiffiffiffiffiffi
−g

p
∂νψÞ − μ2ψ ¼ 0; ð3:1Þ

FIG. 1. The space of values of BH spin a and tidal charge β
which ensure that the rotating braneworld black hole possesses
two horizons is shown in orange. The blue region shows the
allowed values of a and β in the Kerr-Newman spacetime
provided β ¼ −Q2 is interpreted as the usual electric charge.
Although the two solutions are fundamentally different, the
braneworld BH being a vacuum solution, they are operationally
indistinguishable in the region of overlap (β < 0). The red crosses
in the parameter space indicate values of a and β sampled to
compute the quasinormal modes in the text, and extremal values
of a and β lie on the thick dotted black curve.
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where g is the determinant of the metric given by (2.2), and
we assume that the test field does not backreact on the
background [166,167].
Since the metric (2.2) possesses Killing vectors ∂t and

∂ϕ, the wave equation (3.1) can be solved by the method of
separation of variables, using the ansatz,

ψðt; r; θ;ϕÞ ¼ e−iωtþimϕSlmðθÞRlmðrÞ; ð3:2Þ

wherewehave introduced the frequencyω and the azimuthal
numberm which is an integer since exp ðimϕÞmust remain
unchanged under the transformationϕ → ϕþ 2π. Using the
ansatz (3.2), we can separate out the KG equation (3.1) into
two coupled ordinary differential equations (ODEs) satisfied
by the angular and the radial eigenfunctions, SlmðθÞ and
RlmðrÞ respectively. We therefore find that SlmðθÞ satisfies,

1

sinθ
d
dθ

�
sinθ

dSlmðθÞ
dθ

�

þ
�
a2ðω2−μ2Þcos2 θ− m2

sin2 θ
þAlm

�
SlmðθÞ¼ 0; ð3:3Þ

where Alm is the separation constant of the problem,
and (3.3) is known as the scalar spheroidal harmonic
equation [179]. In general, the separation constant is
arbitrary, but it takes a discrete set of values labeled by l,
m when we demand that Slm must be regular at the poles
located at θ ¼ 0 and θ ¼ π. Then, these solutions are called
the scalar spheroidal harmonics, and in the limit a → 0,
Slm → Ylm where Ylm denote the familiar spherical har-
monics, and Alm → lðlþ 1Þ with l ≥ jmj being a non-
negative integer. Therefore, l and m can also be used to
label the modes. Note that by introducing a new variable,
u ¼ cos θ where the range u is −1 ≤ u ≤ 1, (3.3) can be
transformed to the following form,

ð1 − u2Þ d
2SlmðuÞ
du2

− 2u
dSlmðuÞ

du

þ
�
Λ̄þ γ2 − γ2u2 −

m2

1 − u2

�
SlmðuÞ ¼ 0; ð3:4Þ

where we have introduced the constants γ and Λ̄ such that
γ ¼ ia

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

p
and Alm ¼ γ2 þ Λ̄. We can also show that

the radial eigenfunction RlmðrÞ satisfies,

Δ
d
dr

�
Δ
dRlmðrÞ

dr

�
þUlmðrÞRlmðrÞ ¼ 0; ð3:5Þ

where,

UlmðrÞ ¼ K2 − Δðλlm þ r2μ2Þ; ð3:6Þ

with λlm ¼ Alm þ a2ω2 − 2amω, K ¼ ωðr2 þ a2Þ − am
and Δ ¼ ðr − rþÞðr − r−Þ.

We see that although (3.1) is separable, the twoODEs (3.3)
and (3.5) that we have obtained are coupled and therefore to
solve the eigenvalue problem, we need to solve the two
equations simultaneously to determine the separation con-
stant Alm and the eigenfrequencies ω. Furthermore, we have
to also supplement Eqs. (3.3) and (3.5) with suitable
boundary conditions (BCs) dictated by the physics of the
problem which we shall now discuss.

B. Boundary conditions, quasinormal
modes and quasibound states

To determine the appropriate boundary conditions
required to study massive scalar perturbations, we intro-
duce the radial function R̄lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
Rlm and the

tortoise coordinate in the usual manner, viz.,

dr� ¼
r2 þ a2

Δ
dr; ð3:7Þ

and rewrite the radial equation (3.5) as,

d2R̄lm

dr2�
þ ŪlmR̄lm ¼ 0; ð3:8Þ

where,

Ūlm ¼
�
ω−

am
r2þa2

�
2

−
Δ

ðr2þa2Þ2
�
λlmþHðrÞ�; ð3:9Þ

with,

HðrÞ ¼ r2μ2 þ ðrΔÞ0
r2 þ a2

−
3Δr2

ðr2 þ a2Þ2 : ð3:10Þ

Here prime denotes a derivative with respect to r, and the
resultant equation (3.8) resembles the Schrödinger equation.
Now due to the presence of the event horizon at r ¼ rþ,

the black hole system is inherently dissipative or noncon-
servative: waves that fall into the black hole carry energy
out of the system and by the virtue of the definition of an
event horizon in classical gravity, nothing can emerge from
the event horizon as well. Therefore, the scalar waves must
satisfy perfectly ingoing boundary conditions at the hori-
zon. To figure out the form of the boundary condition near
the horizon, we need to solve (3.8) asymptotically as
r → rþ, or r� → −∞, such that ΔðrþÞ ∼ 0, which in turn
implies Ūlm ∼ ðω − ωcÞ2 where

ωc ¼
am

r2þ þ a2
: ð3:11Þ

Noting that near rþ, we can write

r� ∼
r2þ þ a2

rþ − r−
lnðr − rþÞ;
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we find that a solution that is purely ingoing at the event
horizon in v ¼ tþ r� coordinates is given by,

Rlmðr → rþÞ ∼ e−iðω−ωcÞr� ∼ ðr − rþÞ−iδ; ð3:12Þ

where,

δ ¼ ðr2þ þ a2Þω − am
rþ − r−

:

Now, depending on the boundary condition we choose to
impose at r → ∞, we can have different solutions to the
eigenvalue problem specified by (3.8). In addition to the
purely ingoing BC at rþ, if we demand that the modes are
perfectly outgoing at infinity, we would obtain the quasi-
normal modes (QNMs) of the black hole. However, if the
boundary condition is such that the modes decay exponen-
tially near infinity, we get the quasibound states (QBSs) of
the spacetime. Note that as r → ∞, or r� → ∞, the
potential (3.9) reduces to

Ūlm ∼ ω2 − μ2 þ μ2
ðrþ þ r−Þ

r
; ð3:13Þ

and hence we can find an asymptotic solution to (3.8) near
infinity to obtain [180–182],

Rlmðr → ∞Þ ∼ riðrþþr−Þμ2=2Ω−1eiΩr� ;

∼ riρ−1eqr; ð3:14Þ

where,

ρ ¼
�
2ω2 − μ2

2Ω

�
ðrþ þ r−Þ; ð3:15Þ

Ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

q
; ð3:16Þ

q ¼ iΩ ¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
: ð3:17Þ

Note that while obtaining (3.14), we have consistently
taken into account the contribution from the subleading
terms near infinity, this is important to ensure the accuracy
of the continued fraction method discussed in the next
section [180]. It is also interesting to note that (3.14)
enables us to study QNMs and QBSs in a unified manner,
based on our choice of the sign of q in (3.17). If ReðqÞ > 0,
then the solution diverges near r → ∞, and it is consistent
with purely outgoing boundary conditions at infinity.
Hence, ReðqÞ > 0 is suitable for studying QNMs. On
the other hand, the solution exponentially vanishes near
infinity for ReðqÞ < 0, and hence such a choice is suitable
for studying QBSs [183,184]. The eigenfrequencies ω
that we shall compute are in general complex, that is
ω ¼ ωR þ iωI, unlike the normal mode frequencies of

conservative system, and is therefore a hallmark of the
dissipative nature of the system due to the loss of energy
through the horizon (and also through the infinity for
QNMs). The real part of the frequency, ReðωÞ≡ ωR
represents the frequency of oscillation and the imaginary
part ImðωÞ≡ ωI represents the rate of growth or decay of
the perturbation. While studying QNMs, for stable pertur-
bations that decay with time, ImðωÞ < 0 and jImðωÞj can
be identified with the decay rate. Since we are studying
massive scalar field perturbations, the quasibound states
may be prone to superradiant instabilities. Such modes are
characterized by ImðωÞ > 0, and it represents the rate of
growth of the instability. Furthermore, the oscillation
frequency of these modes is supposed to satisfy [185–187],

0 < ReðωÞ < μ; and 0 < ReðωÞ < ωc: ð3:18Þ

The first of the above two conditions ensures that the modes
are reflected from the potential barrier at infinity while the
second one is the usual condition for superradiance. These
two condition together ensure the growth of the super-
radiant instability and formation of the gravitational atom.
We end this section by noting that the massive scalar field

propagating in the Kerr and Kerr Newman background has
received a lot of attention over the last ∼50 years since the
pioneering studies of Damour, Deruelle, and Ruffini [188],
Zouros and Eardley [189], and Detweiler [190], and it
continues to be an active area of investigation given its rich
phenomenology in light of strong field tests of GR; an
excellent description of both the history and the physics of
the subject can be found in [168]. In recent times, it is
worth mentioning that the massless scalar and gravitational
QNMs in the KN background were studied in [191]. The
QNM spectra of massive scalar fields for Kerr and Kerr
Newman black holes were studied in [192,193]. These
studies used the method of continued fractions developed
by Leaver [194]. Studies focusing on the instability of
the massive scalar field, or the gravitational atom, in the
Kerr background was carried out in [183,185,195–197],
the same for the Kerr Newman black hole was explored
in [184,187,198,199]. Similar studies have been carried out
for Kerr-like black holes [182] and galactic black holes as
well [200]. But before we move on to study the behavior of
massive scalar fields in the context of the braneworld
scenario, we discuss the numerical method used to obtain
our results in the next section.

IV. A NUMERICAL RECIPE FOR LEAVER’S
METHOD OF CONTINUED FRACTIONS

Armed with (3.4), (3.5), and the boundary conditions
(3.12) and (3.14), we now attempt to numerically determine
the QNMs and QBSs of the braneworld BH. We have
chosen the method of continued fractions proposed by
Leaver [194] to compute QNMs. The method itself was
first used by Jaffé to compute the electronic spectra of
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hydrogenmolecular ion, andover theyears it has beenwidely
used to compute the QNMs and QBSs of various black hole
geometries. We shall first write down the necessary recur-
rence relations which resemble those of the KN black hole,
and then discuss a strategy based on [182] to scan the
parameter space (cf., Fig. 1) in a manner that assures
convergence.

A. Radial equation

We begin by considering the following ansatz for the
radial differential equation that takes into account the
BCs (3.12) and (3.14), viz.,

RlmðrÞ ¼ eiΩr
�
r − rþ
r − r−

�
iδ
ðr − r−ÞiρPðrÞ; ð4:1Þ

where,

PðrÞ ¼
X∞
n¼0

dn

�
r − rþ
r − r−

�
n
:

We then plug in (4.1) into (3.5) to obtain a three term
recurrence relation satisfied by the coefficients an, namely,

αr0a1 þ βr0a0 ¼ 0; ð4:2Þ

αrndnþ1 þ βrndn þ γrndn−1 ¼ 0; n ≥ 1 ð4:3Þ

with,

αrn ¼ n2 þ ðc0 þ 1Þnþ c0; ð4:4aÞ
βrn ¼ −2n2 þ ðc1 þ 2Þnþ c3; ð4:4bÞ
γrn ¼ n2 þ ðc2 − 3Þnþ c4 − c2 þ 2; ð4:4cÞ

and,

c0 ¼ 1þ 2i
ðrþ − r−Þ

�
am − ωða2 þ r2þÞ

�
; ð4:5aÞ

c1 ¼ −2ðc0 þ 1Þ þ 4irþΩþ iμ2ðrþ þ r−Þ
Ω

; ð4:5bÞ

c2 ¼ c0 þ 2 − iðrþ þ r−Þ
�
2ω2 − μ2

Ω

�
; ð4:5cÞ

c3 ¼ c0

�
c0 þ

c1
2
þ iωðrþ þ r−Þ

�
− iωðrþ þ r−Þ

þ a2ω2 þ r2þð2ω2 − μ2Þ − Alm; ð4:5dÞ

c4 ¼ c0 − iðrþ þ r−Þðc0 − 1Þω −
ðrþ þ r−Þ2μ4

4Ω2

− iðrþ þ r−Þðc0 þ 1Þ ð2ω
2 − μ2Þ
2Ω

: ð4:5eÞ

We now divide the (4.3) by dn and then, after a minor
rearrangement, obtain

dn
dn−1

¼ −
γrn

βrn þ αrn
dnþ1

dn

: ð4:6Þ

Now (4.6) can be cast in the form of an infinite continued
fraction by substituting the expression for dnþ1=dn
[obtained by replacing n with nþ 1 in (4.6)] back
into (4.6), and iterating the process till we obtain,

drn
drn−1

¼ −
γrn

βrn − αrn
γrnþ1

βrnþ1
−αrnþ1

γr
nþ2

βr
nþ2

−���

: ð4:7Þ

Putting n ¼ 1 in (4.7) and equating it with (4.2) we
further get,

0 ¼ βr0 −
αr0γ

r
1

βr1−
αr1γ

r
2

βr2−
� � � α

r
nγ

r
nþ1

βrnþ1−
� � � : ð4:8Þ

The above continued fraction can be inverted n number of
times to yield,

βrn −
αrnγ

r
nþ1

βrnþ1−
αrnþ1γ

r
nþ2

βrnþ2−
� � � ¼ αrn−1γ

r
n

βrn−1−
� � � α

r
0γ

r
1

βr0
: ð4:9Þ

We note that putting n ¼ 0 in (4.9) gives back (4.8),
provided that for n < 0, αn ¼ βn ¼ γn ¼ 0. If we know
the value of the separation constant Alm appearing
Eq. (4.5d), we can truncate the continued fraction at a
suitably large valueN and solve the algebraic equation using
an appropriate root finding algorithm to determine the QNM
or QBS frequency ω depending on the sign of Ω (as
discussed in the previous section), thereby solving the radial
eigenvalue problem. The infinite continued fraction (4.9) in
principle has an infinite number of roots, however numeri-
cally, the nth inversion gives the nth stable root. So to study
the fundamental mode, we have to put n ¼ 0 in (4.9). The
inverse continued fraction is actually more useful in calcu-
lating the overtones.
Since we truncate the continued fraction at some N, the

remainder of the series RN ¼ −dNþ1=dN can be approxi-
mated following Nollert’s prescription [201]. Since RN
satisfies the recurrence relation,

RN ¼ −
γrNþ1

βrNþ1 − αrNþ1RNþ1

; ð4:10Þ

we can then expand RN as a power series, viz.,

RN ¼
X∞
k¼0

CkN−k=2;
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and then by equating the coefficients of each power of
ffiffiffiffi
N

p
to zero, we obtain the first three coefficients as,

C0 ¼ −1;

C1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2iΩðrþ − r−Þ

p
;

C2 ¼
3

4
þ 2iΩrþ þ iμ2ðrþ þ r−Þ

2Ω
:

Note that the sign ofC1 is chosen in such a way that ReðC1Þ
should be positive to ensure convergence. Now for a large
value of N, the contribution from the terms following N
become very small. So, including terms beyond the Nth

term should not significantly alter the value of the root the
continued fraction. However, rather than simply discarding
or selecting an arbitrary value for the remaining part, it is
preferable to apply Nollert’s prescription since Nollert
observed that it is crucial when one attempts to calculate
modes whose imaginary parts are much larger than their
real part, and as a result improves the overall convergence
of Leaver’s method.

B. Angular equation

We need to solve the angular equation (3.4) to determine
the separation constant Alm by imposing the boundary
condition that the function SlmðuÞ is regular at the poles
u ¼ �1. Taking this into consideration, the series solution
for the angular wave-function takes the form,

Slm ¼ eiΩuð1þuÞm=2ð1−uÞm=2
X∞
n¼0

cnð1þuÞn; ð4:11Þ

Substituting (4.11) into (3.4) yields the following three
term recurrence relation

αθncnþ1 þ βθncn þ γθncn−1 ¼ 0; ð4:12Þ

where

αθn ¼ 2ðnþ 1Þðnþmþ 1Þ; ð4:13aÞ

βθn ¼ −n2 þ nð4aΩ − 2m − 1Þ þ Alm

þ a2Ω2 þ ð2aΩ −mÞðmþ 1Þ; ð4:13bÞ

γθn ¼ −2aΩðnþmÞ: ð4:13cÞ

Although we can solve both the radial and angular
equations on an equal footing using Leaver’s method, in
practice we have found that it often much more computa-
tionally inexpensive to use a suitable library function [200]
to compute Alm.

C. Implementation

Since we have transformed the problem of finding out
the eigenvalues of the ODEs (3.4) and (3.5) into a problem
of finding the roots of an infinite continued fraction (4.9),
we can solve (4.9) to determine the eigenfrequency ω by
specifying the set of values B ¼ fa; β; μ; l; mg along with
the number of terms to include in the continued fraction N
and a suitable guess valueω0 for the root-finding algorithm.
To use (4.9), we also need to specify n, the number of
inversions of the continued fraction (4.8), and since we
shall be focusing on the fundamental mode, we set n ¼ 0.
We also set M ¼ 1 as the characteristic length scale which
means that all dimensionful quantities are suitably scaled
with respect to M and made dimensionless.
To ensure convergence of the mode ωðBÞ for a set of

values specified by B and ω0, we adopt the following
strategy: we first determine ωðBÞ for N ¼ N1, and then
increment N by dN and recompute the value of ωðBÞ. We
continue the iteration until N reaches a maximum value
Nmax, or the relative difference between the values of ωðBÞ
from two successive iterations falls below a specified
tolerance ϵ ¼ 10−p. Symbolically, if ωðB;NÞ is the value
of the root ωðBÞ obtained by keeping N terms in the
continued fraction, we break the iteration when

log10

				1 − ωðB;N þ dNÞ
ωðB;NÞ

				 < −p: ð4:14Þ

In our calculation, we have set p ¼ 7, ensuring that our
results converge up to at least six decimal places, unless
stated otherwise. The values of fN1; dN;Nmaxg are so
chosen as to ensure that the computation finishes in a
feasible amount of time on a workstation while ensuring
convergence, e.g.: for the l ¼ m ¼ 0 QNMs, we take,
N1 ¼ 100; dN ¼ 100; Nmax ¼ 5000. We have also noticed
that while computing QNMs, the continued fraction con-
verges for relative small values of N ∼ 300–600 when the
black hole is far from extremality, but for near-extreme
configurations it requires a high value of N ∼ 1000–3000
on average to ensure that the modes converge to six decimal
places. Since the scattering problem in black hole space-
times is inherently dissipative, the eigenvalue spectrum is
prone to numerical instabilities arising from rounding-off
errors due to machine precision arithmetic [202], therefore
it is customary and prudent to perform intermediate
calculations using extended precision. In our work we
have therefore set the internal precision to at least
4 ×MachinePrecision. The strategy outlined so far is used
in the computation of both the QNMs and QBSs.
In order to determine the quasinormal modes, we scan

the parameter space Fig. 1 in the following manner: we fix
the values of l, m and the mass μ of the scalar field and
choose a value of the tidal charge β. Since there is
theoretically no restriction on the value of the tidal charge,
we restrict ourselves to β ≤ βmax ¼ 1.5. We then increment
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the value of a from 0 to the maximum possible value
amax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βmax

p
in steps of da ¼ 0.01, and calculate the

corresponding fundamental QNM frequency ω for those
values of a given β such that the inequality given by (2.7) is
satisfied. For the first allowed value of a given β, we use a
value approximately equal to the of the fundamental
massless scalar quasinormal mode of a Schwarzschild
BH or a slowly rotating Kerr BH (a ¼ 0.000001) as the
initial guess value ω0 for the root-finding algorithm.3 But
for subsequent iterations, we use the value of the mode
found in the previous iteration as the new value of ω0. This
is advantageous because near extremality, we found that the
convergence of the root-finding algorithm is extremely
sensitive to the choice of ω0; for an “improper” choice of
ω0, the algorithm may also return a value of ω that
corresponds to an overtone instead of the fundamental
mode. We repeat the process described so far for other
values of β in parallel, and we choose values of β lying
between 0 and βmax in steps of dβ ¼ 0.05. The sampled
points are shown in Fig. 1 as red crosses.
To compute the quasibound states and the associated

superradiant instability, we follow a slightly modified
approach to scan the parameter space Fig. 1 since the root
finding algorithm is extremely sensitive to choice of guess
values for nonzero values of β and μ. We proceed in two
major steps. First, we fix the values of l, m, and μ and then,
by using a guess value ω0 [based on (3.18)] such that its
real and imaginary parts are Reðω0Þ ¼ 0.95μ and
Imðω0Þ ¼ 10−8 respectively, we calculate the QBSs for
a ∼ 0 and β ¼ 0. We now keep a ∼ 0 fixed and increase the
value of β by dβ ¼ 0.01. Then, using the value of the mode
we have just computed as the new guess value, we compute
the QBS for a ∼ 0 and β ¼ dβ. We then move horizontally
by incrementing β until we reach βmax ¼ 1.5, keeping a ∼ 0
fixed all the while. This step gives us the first rung of guess
values that we shall use in the second major step to scan the
parameter space by moving vertically upward, that is, by
keeping β fixed and incrementing a by da ¼ 0.01 for each
β in parallel. In subsequent iterations, we shall use the
mode computed in the previous step as new guess value.
This process is different from the one employed in
computing QNMs in two ways: first, we use a “custom-
ized” guess value for each β and second, we end up
computing the QBSs even for those geometries for which
β > a2. However, while plotting the results we discard

those values of a and β that violate the inequality given
by (2.7).
We are also interested in how the modes behave with

respect to variations in μ, focusing on a much smaller set of
values of a and β. So, now we fix the values of a, l, m, and
choose a set of values of β which satisfies (2.7). Then for
each pair of a and β, we calculate the quasibound state
starting with μ ¼ μmin. We then increment μ in steps of dμ
up to μmax. For the first iteration, while calculating the QBS
for μmin, we set the real and imaginary part of the guess
value to Reðω0Þ ¼ 0.95μmin and Imðω0Þ ¼ 10−8 respec-
tively, in accordance with (3.18). In subsequent iterations,
we use the value of the QBS computed in the previous step
as the new guess value. For quasibound states, the first
overtone tends to lie very close to the fundamental mode,
and hence the root-finding algorithm might be highly
sensitive to the choice of the guess value. In our approach,
this difficulty may be ameliorated by choosing a smaller
value of dμ. Furthermore, in the regime of the superradiant
instability, the imaginary part of the QBS has a very small
positive value compare to its real part. Therefore, to ensure
that the modes do indeed converge, we have to apply the
criteria given by (4.14) to both real and imaginary parts of
ω separately and simultaneously. We have observed that the
real part converges much faster than the imaginary part and
hence requires a stricter test.
Lastly, we have validated our approach by confirming

that it is able to reproduce existing results related to the
quasinormal modes and quasibound states of Kerr and
Kerr-Newman black holes [183,184,200].

V. NUMERICAL RESULTS

In this section, we shall present the results of our
numerical explorations, focusing first on the quasinormal
modes, and then on the quasibound states and the asso-
ciated superradiant instability.

A. Quasinormal mode spectra

The fundamental quasinormal modes of the rotating
braneworld black hole has been show in Fig. 2 for various
(normalized) values of the tidal charge β, BH spin a, and
scalar field mass μ, each subfigure corresponding to
different values of l and m. Each curve in the complex
plane is labeled by β, and the color of each point
corresponds to the value of a, whereas the value of μ is
indicated by the shape of the marker. In Fig. 2, we have
restricted ourselves to 0 ≤ β ≤ 1, with the value of a being
constrained by (2.7). However, theoretically there is no
upper bound on β. Hence, we have also explored the β > 1
regime as well, and to get an idea of how the QNMs behave
for different values of β, a, μ, we have presented contour
plots showing how the real and imaginary part of the QNMs
vary with respect to a and β for massless and massive

3The initial guess value, or an approximate value of the
fundamental mode of the Schwarzschild or the slowly rotating
Kerr black hole can itself be estimated by computing the
logarithm of the absolute value of right-hand side of (4.8) over
a suitable region of the complex plane, and checking for which
value of ω ¼ xþ iy, we get a minimum, since this point will lie
close to the root of the continued fraction that we are after. The
process can be repeated for two values of N to ensure that the
minima is not a numerical artifact.
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perturbations in Fig. 3, and in Figs. 5 and 6 for l ¼ 0; 1
respectively.
For QNMs, recall that ReðωÞ represents the frequency of

oscillation and jImðωÞj stands for the rate of decay of the
perturbations. For the l ¼ m ¼ 0 modes, we observe from
the top left panel of Fig. 2 that if we fix β, then the
frequency of oscillation increases with a until it reaches its

maximum value. After reaching the maximum, the fre-
quency of oscillation decreases with further increase in a,
while the decay rate becomes nearly constant as the black
hole approaches extremality.
From the top left panel of Fig. 2, we can also see that

when the mass μ of scalar field is turned on, the modes
move closer to the real axis. However, in the presence of

FIG. 2. The quasinormal mode spectra of the rotating braneworld black hole for l ¼ m ¼ 0 (top left), l ¼ m ¼ 1 (top right), l ¼ 1,
m ¼ 0 (bottom left) and l ¼ 1; m ¼ −1 (bottom right). Each curve in the complex plane is labeled by β, and the color of each point
corresponds to the value of a, whereas the value of μ is indicated by the shape of the marker. In these figures, we have set the
characteristic length scale given by the black hole mass M to unity.
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μ, the change in the decay rate ImðωÞ is much more
pronounced than that in the frequency of oscillation
ReðωÞ. In fact, if we keep β and a fixed, and gradually
increase μ, then the imaginary part of the QNM will
increasingly tend to a value very close to zero. Since
these modes will have a finite ReðωÞ and an extremely
small but negative ImðωÞ, these modes will be arbitra-
rily long-lived. Such modes are called quasiresonance
modes [90,180,183,203–213], and they satisfy the QNM
boundary conditions. They exist even for near extremal
configurations, and we explicitly demonstrate the same
in Fig. 4.
The contour lines in the top panel of Fig. 3 indicate that

the l ¼ m ¼ 0 modes with the largest oscillation frequency
occur for smaller values of the tidal charge (that is, toward
the left of the parameter space under consideration) and
from the bottom panel of the same figure, we can see that
these modes are also associated with a higher decay rate
indicating that they are the least long-lived modes. We also
see that the oscillation frequency is maximumwhen the two
horizons of the BH are moderately separated but when the
scalar field acquires mass, the maximum begins to shift
toward extremal configurations. It is also evident from the
bottom panel of Fig. 3 that the decay rate of perturbations in
extremal configurations are smaller and hence they are
more long-lived than their subextremal counterparts.
Turning on μ, we can see (from scales on the color bars)

the corresponding decay rates become smaller. Lastly, we
observe that the long-lived modes lie in the upper-right
region of the parameter space for both the massless and
massive cases, that is, in the regime of high values of both β
and a, and the corresponding modes have the lowest
frequency of oscillation.
Next we consider l ¼ 1 modes, and we notice in Fig. 2

that the behavior of the modes varies with azimuthal
number m ¼ −1; 0; 1. It is evident from Fig. 2 that all
the l ¼ 1 modes have a higher frequency of oscillation
compared to the l ¼ 0 modes for all the β and a values that
have been considered. Notice that for the m ¼ 0; 1 modes
(bottom left and top right panels respectively), if we keep β
fixed and increase a, then the frequency of oscillation
increases whereas for m ¼ −1 modes (bottom right panel),
it decreases. The decay rates for allm values decrease if a is
increased while keeping β fixed.
Let us first look closely at the l ¼ 1; m ¼ −1 modes: in

the extreme left panel of Fig. 5, we see the modes with the
smallest frequency of oscillation occur for larger values of
both β and a as they tend to cluster on the upper right side
of the parameter space, and from Fig. 6, it is evident that
these modes also have the smallest decay rates; the longest-
lived modes therefore occur for smaller values β and a. The
inclusion of μ does not change the qualitative behavior of
the modes even though they tend to reduce the values of
both the oscillation frequency and decay rate. In fact, from

FIG. 3. The real (top row) and imaginary (bottom row) parts of the scalar quasinormal mode spectra corresponding to the l ¼ m ¼ 0

mode for μM ¼ 0 (left column), μM ¼ 0.1 (middle column), μM ¼ 0.2 (right column) for the allowed values of a=M and β=M2.
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the bottom right panel of Fig. 2, it is clear that the change in
the decay rate is much more drastic in the presence of μ
compared to the change in the oscillation frequency.
Moreover, for sufficiently large values of β and μ one could
possibly obtain quasiresonance modes near extremality.
Now, based on the middle panels of Figs. 5 and 6, we

observed that the l ¼ 1, m ¼ 0 modes with the smallest
frequency of oscillation occurs for large values of β but
smaller values a. But the near-extremal modes (especially
those occurring near the top right corner of the parameter
space) are the ones with the smallest decay rates, and hence
they are longest-lived modes. The aforementioned figures
along with the bottom left panel of Fig. 2 also show that the
presence of the mass μ increases the oscillation frequency
of these modes but at the same time makes the modes long-
lived by significantly decreasing the decay rate. In fact, for
large enough values of β and μ, quasiresonance could be
achieved by these modes as well.
Let us finally talk about the l ¼ m ¼ 1 modes in detail:

from the extreme right panel of Fig. 5, we see that
oscillation frequencies of both massless and massive
perturbations are higher for black holes near extremality,
and since the contours are nearly parallel to the extremal

FIG. 4. The formation of quasiresonance state in a near-
extremal rotating braneworld black hole spacetime for l¼m¼0
and a=M > 1 with β > 0, such that r− ¼ 0.995538rþ. The
labels alongside the points indicate the value of the scalar field
mass μM.

FIG. 5. The real part of the scalar quasinormal mode spectra corresponding to l ¼ 1 and m ¼ −1 (left column), m ¼ 0 (middle
column), m ¼ 1 (right column) for the allowed values of a=M and β=M2 for μM ¼ 0 (top row) and μM ¼ 0.2 (bottom row).
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curve, it indicates that they approach a constant value. The
smallest values of both a and β corresponds to modes with
the smallest oscillation frequencies. When it comes to the
decay rates, from the extreme right panel of Fig. 6, it is clear
that the near-extremal modes have the smallest decay rates
and hence they are extremely long-lived. In fact, for
massless perturbations, they may be extremely close to
zero. This feature can also be extrapolated from the
trajectories in the complex plane as shown in the top right
panel of Fig. 2, and it points toward the existence of the
well-known zero damped modes (ZDMs) [193,214,215].
The ZDMs of near extreme and extreme Kerr and KN
family of BHs have been extensively studied in the past,
and they are quite distinct from the phenomenon of
quasiresonance mentioned earlier. The quasiresonance
modes are arbitrarily long-lived and have a very small
imaginary part: they are associated only with the presence
of massive fields whereas ZDMs can occur only for certain
values ofm for massless perturbations. Now the mass of the
scalar field has an intriguing effect on the behavior of the
modes: from Fig. 2 we see that for smaller values of β and
a, increasing μ enhances the oscillation frequency slightly
and reduces the decay rate but the effect is completely
washed out as one approaches extremality. Notice how the
modes corresponding to different values of μ clump
together as one increases a while keeping β fixed in

the top right panel of Fig. 2. It seems likely that near
extremality, the quasiresonance frequencies approach those
of the ZDMs. However, the interplay between ZDMs and
quasiresonance modes needs to be probed further numeri-
cally to arrive at a definite conclusion. We wish to return to
such questions in the future.
At this juncture, it would be pertinent to briefly review

some of the previous studies related to the quasinormal
mode spectra of braneworld black holes and put our present
work in its proper context. Notably, massless scalar and
gravitational QNMs were studied in [137,138] for the
spherically symmetric case. In [139], the authors studied
massive scalar and Dirac perturbations in a mutated
Reissner-Nordström black hole which is degenerate to the
spherically symmetric braneworld solution found in [111].
In the parameter space shown in Fig. 1, these solutions lie
along the x axis and have not been considered in the present
study as we have focused on rotating solutions with two
horizons.
The gravitational QNM spectrum for the rotating brane-

world BH has been investigated in [140] where the authors
focused on the l ¼ m ¼ 2; 3 modes. They had considered
rotating BHs with both single and double horizons. It is
interesting to ask how the behavior of the gravitational
modes compare to the scalar modes studied here. However,
such a comparison is restricted by the fact that while

FIG. 6. The imaginary part of the scalar quasinormal mode spectra corresponding to l ¼ 1 and m ¼ −1 (left column), m ¼ 0 (middle
column), m ¼ 1 (right column) for the allowed values of a=M and β=M2 for μM ¼ 0 (top row) and μM ¼ 0.2 (bottom row).
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analyzing gravitational perturbations, one has to implement
an approximation to separate the wave equation. Such an
approximation is similar in spirit to the one employed in the
Kerr-Newman case, and it restricts one to small values of β
and a [191]. For (massive) scalar perturbations, we do not
have to employ any approximation to separate the wave
equation, and hence we are allowed to explore the entire
length and breadth of the parameter space.
In the restricted portion of the parameter space explored

in [140], it was reported that for a particular value of β, if
one increases a, the frequency of oscillation increases while
the rate of decay decreases for the l ¼ m ¼ 2; 3 gravita-
tional mode. They further reported that the change in the
decay rate in such a situation was smaller compared to the
change in the oscillation frequency. Our study confirms that
a similar behavior is exhibited by the l ¼ m ¼ 1 modes.
They have also highlighted that for a fixed value of a, with
an increase in the value of the tidal charge β, both the real
and imaginary part of the l ¼ m ¼ 2; 3 gravitational QNM
decreases. The l ¼ m ¼ 1 scalar perturbations show a
similar behavior for small values of a, but the behavior
is not monotonically decreasing when one consider larger
values of a. Moreover, in this case as well, the change in the
imaginary part of the QNM frequency is smaller than the
corresponding change in the real part. We also note that
in [141], the authors tried to constrain the value of the tidal

charge using gravitational wave data. But it seems that
current observations are unable to strongly discriminate
between GR and the braneworld scenario.
Lastly, we end this section with the null result that we

could not to find any mode with ImðωÞ > 0 (in the region
of the parameter space explored in this work) which points
toward the stability of the rotating braneworld black hole as
far as QNMs are concerned.

B. Quasibound states and superradiant instability

We now focus on the effect of the tidal charge on the
quasibound states (QBSs) and the associated superradiant
instability. For massive scalar fields around the Kerr BH,
the most unstable modes are those corresponding to l ¼
m ¼ 1 and n ¼ 0 and the maximum superradiant instability
occurs for a near extreme Kerr BH when the mass of the
scalar field is μM ∼ 0.42 [183]. Furthermore, taking a hint
from the rich structure of the QBS spectrum of the KN
black hole [184], we shall also restrict ourselves to the l ¼
m ¼ 1 and n ¼ 0 modes, and first study the quasibound
states for three representative values of the scalar field
mass, viz., μM ¼ 0.3, 0.4, 0.45 over the entire parameter
space, the result of which has been shown in Fig. 7. We
shall then explore the superradiant instability for smaller set
of values of a and β, as shown in Figs. 8–11.

FIG. 7. The imaginary part (top row) of the fundamental quasibound state frequency and the difference between the corresponding real
part and ωc ¼ am=ðr2þ þ a2Þ (bottom row) for the l ¼ m ¼ 1massive scalar perturbations of mass μM ¼ 0.3 (left column), 0.4 (middle
column), and 0.45 (right column) of the rotating braneworld black hole. The red dashed curve represents the zero contour line.
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Before proceeding, we note that the effect of the tidal
charge on superradiance was recently studied in [142] by
analyzing the amplification factors of massless scalar
waves being scattered by the black hole. However, for
massive scalar fields, the analysis has been limited to
analytical examinations of extremal configurations [143]
where some interesting bounds were obtained on the tidal
charge and the BH parameters that ensured that the
configuration is superradiantly stable. But a complete
numerical analysis of quasibound states and superradiant
instabilities of rotating braneworld black hole spanning the
entire parameter space has been lacking, and the analysis
presented in this section aims to address this gap in the
literature.
In Fig. 7, the top row shows the imaginary part of the

QBS frequency and the bottom row shows the difference
between the corresponding real part and ωc [cf. (3.11)]
for three representative values of μM. The bottom row
helps us understand where the superradiance condition
given by (3.18) is satisfied. Now, the spectrum of quasi-
bound states contain frequencies whose imaginary parts
can be positive, negative, or zero. Furthermore, modes that
have a positive imaginary part can be very small and are of
the order 10−7 for the Kerr BH [183]. So in order to
visualize these modes, we use a “symmetric log” scale,
that is, we scaled the imaginary part of the frequency ωI as

ϖI ¼ Sgnðω̄IÞ
�
log10ðjω̄IMj þ 1Þ�;

where ω̄I ¼ ImðωÞ × 105 and Sgn denotes the signum
function. Also, in Fig. 7, the red dashed curve corresponds
to the zero contour line. From the left column of Fig. 7, we
see that for μM ¼ 0.3, the quasibound states with the

largest growth rate (ImðωMÞ > 0) occurs at the upper
right region of the parameter space and hence, is asso-
ciated with large values of β and a. These modes also
satisfy the superradiance condition. The modes lying on
the zero contour indicated by the red dashed line are
particularly interesting because they correspond to bound
states whose frequencies are purely real with ReðωÞ ¼ ωc.
The QBSs lying below the zero contour are damped, and
the rate of decay increases with the simultaneous decrease
of a and β. Moreover, as the damping increases, the
frequency of oscillation increases as well. If we now keep
increasing the mass of the scalar field, μM, the growing
modes tend to occur nearer and nearer to the extremal
curve (2.5) as evident from the middle and right columns
of Fig. 7, and eventually the growing modes will dis-
appear. It is also important to note that the maximum
instability for positive values of β is of the order of 10−7,
and hence comparable to the Kerr case [183].
One can also see that contour lines lying in the region

above the zero contour in the top left panel of Fig. 7 are
rather curved compared to the ones lying in the region
below. This feature suggests that the BH parameters and μ
together determine the maximum superradiant instability in
a rather nontrivial manner. But since Fig. 7 shows how
drastically the region above the zero contour shrinks as one
increases μM and how the zero contour remains roughly
parallel to the extremal curve, focusing on a small set of
values of a and β near a=M ¼ 1 is enough to establish the
order of the maximum superradiant instability in brane-
world black hole. In other words, in the region of the
parameter space that we have considered so far, since the
contour plots in Fig. 7 already indicate that the maximum
superradiant instability is comparable to that of the Kerr BH

FIG. 8. The superradiant instability associated with the quasibound state spectrum of a massive neutral scalar field (l ¼ m ¼ 1) for
different values of BH spin a=M < 1 and tidal charge β.
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and tends to occur near the extremal curve as we pro-
gressively increase μM, we can then focus on a set of values
of a and β lying around a=M ¼ 1, without loss of
generality, to estimate which values of μM can trigger
the maximum instability for a set of BH parameters. Such
an approach would be perhaps more economical than
scanning the entire parameter space for the maximum
instability [182].
So, first let us focus on the case when a=M < 1. The

results are summarized in Fig. 8 where we have considered
three values of the rotation parameter, a¼ 0.9M;0.99M;
0.997M. For each value of a we have considered a set of
values of tidal charge β normalized by the absoluteminimum
value ofβ, that is, β0=M2 ¼ jða=MÞ2 − 1j [cf., (2.5)] in order
to aid comparison across the a values. Furthermore, the
dashed curves in Fig. 8 correspond to β < 0 which are
operationally similar to the KN case discussed in [184], and
the solid curves correspond to β > 0. The solid black curve
indicates the Kerr case (β ¼ 0). In general, ImðωMÞ
increases with the mass μM of the scalar field and becomes
positive. It then reaches a maximum value4 for some value of
μM and on reaching this maximum, it decreases further with
increasing μM and eventually becomes negative. In the mass
rangewhere ImðωÞ > 0, ReðωÞ < ωc. It is interesting to note
from Fig. 8 that:

(i) for a ¼ 0.9M (left panel of Fig. 8), the presence
of a relatively large positive tidal charge suppresses
the superradiant instability by roughly two orders
of magnitude. For β ¼ −0.99β0, (i.e., when the BH
is near-extreme) we find the highest peak value
of ImðωMÞ ¼ 1.03832 × 10−7 at μM ¼ 0.446114
whereas for β ¼ 0.99β0, we observe the smallest
peak value ImðωMÞ ¼ 4.5619 × 10−9 at μM ¼
0.243645. Note that for β ¼ 0, we find a peak value
of ImðωMÞ ¼ 1.55244 × 10−8 at μM ¼ 0.293274.

(ii) for a ¼ 0.99M (middle panel of Fig. 8), we observe
that the peak of the instability does not vary mono-
tonically with β [184] and the peak occurs for a
negative value of the tidal charge (corresponding to a
subextreme configuration, in contrast to the previous
case). The presence of a positive tidal charge is unable
to significantly suppress the superradiant instability.
For β ¼ −0.8β0, we find the highest peak value
of ImðωMÞ ¼ 1.64681 × 10−7 at μM ¼ 0.452859
whereas for β ¼ 0.99β0, we find the smallest
peak value ImðωMÞ ¼ 1.16555 × 10−7 at μM ¼
0.393733. Note that for β ¼ 0, we find a peak value
of ImðωMÞ ¼ 1.50435 × 10−7 at μM ¼ 0.42082.
These results are consistent with [184].

(iii) for a ¼ 0.997M (right panel of Fig. 8), we obtain the
maximum instability of ImðωMÞ ¼ 1.72275 × 10−7

for β ¼ 0 at μM ¼ 0.450511 which is again consis-
tent with [184]. Interestingly enough, now the small-
est positive value of β that we had considered has a
higher peak than all the negative values of β. Note that
for β ¼ 0.8β0, we find the peak value of ImðωMÞ ¼
1.70475 × 10−7 at μM ¼ 0.439384 whereas for
β ¼ −0.99β0, we find the smallest peak value
ImðωMÞ ¼ 1.60246 × 10−7 at μM ¼ 0.449493.

(iv) If one were to solely focus on the positive values of
the tidal charge, i.e., β > 0 but a=M < 1, it is clear
from the three insets in Fig. 8, that decreasing β
enhances the superradiant instability, and the corre-
sponding peak values also increases with increase in
a. But they always remain smaller than the corre-
sponding peak values for β ¼ 0. This appears to be
consistent with the findings of [142] where the
author studied the superradiant instability by exam-
ining the amplification factors of massless scalar
fields scattered by a rotating braneworld BH.

Let us now talk about the case when a=M ¼ 1. The
results are visualized in Fig. 9. In this case, the value of
β0 ¼ 0 corresponds to the extreme Kerr BH. So we take a
few representative values of β=M2 > 0 to study the super-
radiant instability and do not normalize the value of β.

FIG. 9. The superradiant instability associated with the quasi-
bound state spectrum of a massive neutral scalar field
(l ¼ m ¼ 1) for a=M ¼ 1 and different values of the tidal charge
β (normalized with respect to M).

4We can find the maximum of the curve by constructing an
interpolating function using the data generated by the continued
fraction method. The function can then be maximized using
standard techniques.
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We do not study the β ¼ 0; a=M ¼ 1 case because our
numerical method is not equipped to handle extreme BHs.
To study extreme BHs, the modification of Leaver’s
original method suggested in [216,217] might be useful.
We notice that moderate values tidal charge (that is,
subextremal configurations) are able to significantly sup-
press the instability whereas the instability is enhanced in
the presence of small positive values tidal charges. But
intriguingly, the maximum instability does not occur
for the smallest value of β considered. The maximum
instability of ImðωMÞ ¼ 1.6912 × 10−7 occurs for β ¼
0.003M2 at μM ¼ 0.45278, and we get the smallest peak
value of ImðωMÞ ¼ 1.57103 × 10−9 for β ¼ 0.8M2 at
μM ¼ 0.202154. Note that for β ¼ 0.001M2, the peak
value is ImðωMÞ ¼ 1.64362 × 10−7 at μM ¼ 0.45062.
We now come to the case when a > 1. In Fig. 10, we

consider three values of a ¼ 1.002M; 1.02M; 1.2M and
suitably normalized values of the tidal charge β=M2 > 0 as
earlier. We summarize our findings below:

(i) for a ¼ 1.002M (left panel of Fig. 10), the value of
the peak of the instability increases with increasing
the tidal charge. In particular, the maximum value of
the peak ImðωMÞ ¼ 1.7595 × 10−7 occurs for β ¼
2.6β0 at μM ¼ 0.449823. Note that for the insta-
bility is the least for β ¼ 1.05β0 with a peak value of
ImðωMÞ ¼ 1.63817 × 10−7 at μM ¼ 0.449787.

(ii) for a ¼ 1.02M (middle panel of Fig. 10), we again
see that the peak of the instability does not vary
monotonically with β. The maximum peak occurs
for and intermediate value of β ¼ 1.15β0 at
ImðωMÞ ¼ 1.87952 × 10−7 for μM ¼ 0.451168.

(iii) for a ¼ 1.2M (right panel of Fig. 10), we notice a
behavior opposite to the one encounter fora ¼ 1.002.

We now see that increasing the tidal charge sup-
presses the superradiant instability by roughly a
couple of orders of magnitude. For β ¼ 1.05β0, we
find the highest peak value of ImðωMÞ ¼ 2.8151 ×
10−7 at μM ¼ 0.423676 whereas for β ¼ 2.6β0, we
observe the smallest peak value ImðωMÞ ¼
7.17095 × 10−9 at μM ¼ 0.230162.

(iv) if we focus on β ¼ 1.05β0 which by design corre-
sponds to a near-extreme BH for all the three values
of a that we have considered, we see from the insets
in Fig. 10 that the superradiant instability for near
extreme BHs with a=M > 1 intensifies with increase
in the value of a (and also the bare value of the tidal
charge β). Looking at the same for β ¼ 2.6β0, the
opposite conclusion holds for subextremal brane-
world black holes.

Lastly, in Fig. 11 we keep the tidal charge fixed at
β ¼ 0.5M2, and study the superradiant instability by
varying a whose values are normalized with respect to
amax=M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β=M2

p
. We note that the superradiant

instability intensifies as a increases. In particular, the
maximum value of the peak is ImðωMÞ ¼ 3.12115 ×
10−7 at μM ¼ 0.438173 for a near-extreme BH with
a ¼ 1.21974M2, or a ¼ 0.995918amax.
We summarize our results for the maximum peak of the

superradiant instability for various values of a and β in
Table I.
We end this section with a few comments: First, we

note that all of our figures clearly show that instability
ImðωÞ > 0 always occurs in the superradiant regime,
0 < ReðωÞ < ωc. Second, it is in general very difficult
to accurately determine for what values of a, β, μ, the
superradiant instability will be maximum. However, based

FIG. 10. The superradiant instability associated with the quasibound state spectrum of a massive neutral scalar field (l ¼ m ¼ 1) for
different values of BH spin a=M > 1 and tidal charge β.
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on our numerical study we may conclude that (i) for β > 0
and a=M < 1, a higher value of the tidal charge would
dampen the instability, (ii) for β > 0 and a=M ≥ 1, the
maximum superradiant instability does not vary monoton-
ically with β but the order of the maximum value is the
same as that of the Kerr black hole. The behavior is highly
nontrivial, especially when one compares it to results
reported previously for massless scalar fields [142].

VI. FINAL REMARKS

The RS II rotating braneworld black hole solution
provides us with a springboard to test the presence of an
extra noncompact spatial dimension on gravitational inter-
actions in the strong field regime. In this study, we have
focused on the behavior of a massive scalar field with

μM < 1 propagating in the said black hole spacetime. Since
the braneworld BH can be superspinning, we have focused
on the region of the parameter space where a=M>1 and
β > 0. First, we have made an in-depth study of the
quasinormal mode spectra of massive scalar perturbations
and have noted the intricate behavior shown by the modes
corresponding to different values of the azimuthal numberm
for l ¼ 1. The behavior is qualitatively similar to that of the
Kerr (Newman) black hole [191–193]. We have further
explored the formation of quasiresonance modes and dis-
cussed the existence of zero damped modes as well.
Next, we have studied the l ¼ m ¼ 1 quasibound states

and superradiant instability associated with such modes,
that is, the formation of the so-called gravitational atom.
Our analysis reveals a highly nontrivial dependence of the
peak of the superradiant instability on the tidal charge and
the angular momentum of the black hole. For a=M < 1, the
presence of the tidal charge always dampens the super-
radiant instability when one compares it to that of the Kerr
BH. However, the dynamics is much richer when one looks
at superspinning (a=M > 1) configurations. Notably, for
such near extremal BHs, the superradiant instability inten-
sifies with the tidal charge, although the maximum super-
radiant instability is comparable to that of the Kerr black
hole. These findings could have implications for ongoing
efforts to detect boson clouds around black holes in order to
constrain the mass of ultra light particles [172,173,177].
The present work offers numerous extensions. We are

attempting to investigate the phenomena of eigenvalue
repulsion [218,219] in the quasinormal mode spectra of the
rotating braneworld black hole. Moreover, it has been
pointed out that the QNM spectrum of black holes may
be unstable against small perturbations to the scattering
potential [202,220]. It would be worthwhile to study the
effect of the tidal charge on the instability of the QNM
spectrum. One can also construct braneworld BH solutions
which are not asymptotically flat [221] and one may use
these solutions to understand how the presence of both the
cosmological constant and the extra dimension change the
behavior of the QNM spectrum. It would also be interesting
to see how the presence of the tidal charge affects the
superradiant instability in the regime μ ∼ ωwhen the scalar
field is charged following [184,198]. Lastly, both scalar and
vector boson clouds around Kerr BHs have attracted a lot of
attention in recent years, especially in the context of
gravitational wave astronomy with binary black holes
and people have already explored various aspects of such
gravitational atoms [173–176,222–229]. It would be inter-
esting to extend these studies to the braneworld scenario.
Note that in [230], the superradiant instability and the
formation of the vector gravitational atom was studied for
the Kerr Newman black hole. Such a pioneering inves-
tigation was possible only after solving the difficult
problem of separating the Proca equation by exploiting
certain hidden symmetries of the spacetime. Our prelimi-
nary investigations indicate that many of these problems

TABLE I. Maximum peaks of superradiant instability.

a=M β=M2 μM ImðωMÞ
0.9 −0.1881000 0.446114 1.03832 × 10−7

0.99 −0.0159200 0.452859 1.64681 × 10−7

0.997 0 0.450511 1.72275 × 10−7

1.0 0.003 0.45278 1.6912 × 10−7

1.002 0.0104104 0.449823 1.7595 × 10−7

1.02 0.0464600 0.451168 1.87952 × 10−7

1.2 0.4620000 0.423676 2.8151 × 10−7

1.21974 0.5 0.438173 3.12115 × 10−7

FIG. 11. The superradiant instability associated with the quasi-
bound state spectrum of a neutral scalar field (l ¼ m ¼ 1) for
different values of BH spin a=M > 1 and fixed tidal charge β.
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can be extended in to the braneworld scenario and the
presence of the tidal charge will leave a clear mark of the
extra dimension on these systems. We wish to study some
of these aspects in the future.
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