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The Laser Interferometer Space Antenna (LISA) will be launched in the mid-2030s. It promises to
observe the coalescence of massive black-hole (BH) binaries with signal-to-noise ratios (SNRs) reaching
thousands. Crucially, it will detect some of these binaries with high SNR in both the inspiral and the
merger-ringdown stages. Such signals are ideal for tests of general relativity (GR) using information from
the whole waveform. Here, we consider astrophysically motivated binary systems at the high-mass end of
the population observable by LISA and simulate their signals using the newly developed multipolar
effective-one-body model: pSEOBNRv5HM. The merger-ringdown signal in this model depends on the
binary properties (masses and spins) and also on parameters that describe fractional deviations from the GR
quasinormal mode (complex) frequencies of the remnant BH. Performing full Bayesian analyses, we assess
to which accuracy LISA will be able to constrain deviations from GR in the ringdown signal when using
information from the whole signal. We find that these deviations can typically be constrained to within 10%
and in the best cases to within 1%. We also show that with this model we can measure the binary masses
and spins with great accuracy even for very massive BH systems with low SNR in the inspiral. In particular,
individual source-frame masses can typically be constrained to within 10% and as precisely as 1%, and
individual spins can typically be constrained to within 0.1 and, in the best cases, to within 0.001. We also
probe the accuracy of the SEOBNRv5HM waveform family by performing synthetic injections of GR
numerical-relativity waveforms. Using a novel method that we develop here to quantify the impact of
systematic errors, we show that, already for sources with SNR Oð100Þ, we would measure erroneous
deviations from GR due to waveform model inaccuracies. One of the main sources of error is the
mismodeling of the relative alignment between harmonics. These results confirm the need for improving
waveform models to perform tests of GR with binary BHs observed at high SNR by LISA.
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I. INTRODUCTION

We are now well into the era of gravitational-wave (GW)
astronomy, with 90 observations of compact-object binaries
[1,2] by the LIGO-Virgo-KAGRA (LVK) Collaboration
[3–5] and other claimed detections [6,7]. The fourth
observing run of the LVK Collaboration has just started,
with the promise of many new detections thanks to
improved sensitivity [8]. In addition to unveiling an
otherwise hardly detectable population of binary black
holes (BBHs) [9–13], constraining the equation of state of

neutron stars [14,15] and inferring astrophysical and
cosmological information [16,17], GWs allow us to test
general relativity (GR) [18–21] in the strong-gravity and
high-velocity regime, which is not accessible to other
experiments. Indeed, by comparing predictions for the
GW signal of a BBH within GR to the observed data,
we can constrain deviations from GR.
One of the most promising approaches to probe devia-

tions from GR with GWs are the so-called “ringdown
tests.” In the last stage of the coalescence of a BBH, after
the two BHs have merged, the remnant BH is in a perturbed
state and relaxes to a steady state configuration through
GW emission. This stage is called the ringdown. In this
final stage, the signal is a superposition of damped
sinusoids with frequencies and damping times that depend
exclusively on the properties of the remnant [22–27].
Within GR, the “no-hair” conjecture [28] tells us that
those are the mass and the spin of the final BH, since
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astrophysical BHs are expected to carry no electric charge.
Some gravity theories predict additional “hairs” for BHs,
due, for instance, to cosmological boundary conditions
or the presence of nearby matter [29–31] or to additional
fields [32–39]. In any case, the exact relation between the
properties of the remnant and the spectrum of quasinormal
modes (QNMs) (i.e., the sets of frequencies and damping
times) is theory dependent [40–54]. By measuring two or
more QNMs, we can test if the signal agrees with GR. This
is the basic idea behind BH spectroscopy [55,56]. On the
other hand, the amount to which each mode is excited (i.e.,
its amplitude) and the relative phases between them do
depend on the properties of the BHs in the binary and the
binary dynamics [57–60]. Therefore, a consistent modeling
of the merger-ringdown together with the inspiral can
improve our ability to measure the QNMs and to constrain
deviations from GR during the ringdown. This is the
approach followed in Refs. [61,62], where the authors
developed a parametrized model of the ringdown signal as
part of the full inspiral-merger-ringdown (IMR) waveforms
[63,64] in the effective one-body (EOB) formalism [65,66].
Such a model can be used to perform parametrized (or
theory-agnostic) ringdown tests of GR by allowing the
QNMs to deviate from their GR prediction: A departure
from the Kerr spectrum would be indicative of non-GR
effects. The model has also been extended to parametrize
the plunge-merger stages in Ref. [67] and to carry out
theory-specific tests of GR in the ringdown in Ref. [68].
Here, we employ the parametrized ringdown test, which
has already been applied to analyze the GW signals
observed by the LVK Collaboration, showing so far
consistency with GR [20,21,61,62,67]. The precision of
the test has so far been limited by the low signal-to-noise
ratio (SNR) of the sources, which has led to measurement
errors for the frequency and decay time of the dominant
QNM on the order of 10% and 20%, respectively,
when combining events in a hierarchical way [21].
More specifically, for LIGO-Virgo observations, this test
can be applied only when both the pre- and postinspiral
regimes have at least SNR ∼ 8, which has been the case
for 12 binary systems [21]. The best single-event meas-
urement [20] has been obtained with GW150914, which
has a total SNR of 24 [69]. Other approaches have also
been developed to do BH spectroscopy with LIGO-Virgo
data [20,21], using a superposition of damped sinusoids
[70,71], in some cases augmented with QNM amplitudes
calibrated to numerical-relativity (NR) simulations.
Scheduled for launch in the mid-2030s, the Laser

Interferometer Space Antenna (LISA) [72] will detect
massive BH binaries (MBHBs) with SNRs reaching
thousands, sometimes both in the inspiral and in the
merger-ringdown [73–75]. MBHBs are therefore promising
candidates for performing ringdown tests that use infor-
mation from the full signal. Previous studies on ringdown
analysis with LISA [58,74,76] focused on “pure” ringdown

tests (i.e., using a superposition of damped sinusoids after
the merger) and employed simplified methods and criteria
such as the Fisher matrix formalism [77,78] to estimate the
measurement accuracy and the distinguishability between
QNMs. In this paper, we simulate LISA observations of
MBHBs and run full Bayesian analyses on those in order
to assess to which accuracy putative deviations from GR
in the ringdown could be constrained from such observa-
tions when using information from the whole signal.
Furthermore, we make use of parametrized EOB wave-
forms developed using the state-of-the-art multipolar
aligned-spin model SEOBNRv5HM1 developed in
Refs. [79–82]. Henceforth, we denote the parametrized
model as pSEOBNRv5HM. Crucially, this model includes
higher harmonics, which are expected to play an important
role in LISA parameter estimation [83].
Since the expected population of MBHBs is highly

uncertain [73,84–89], here we focus on a few astrophysi-
cally realistic systems, compatible with the predictions
of models where MBHs form from heavy seeds [90]. For
simplicity, in this work we neglect the effect of spin
precession and eccentricity. Our study is performed by
using the same waveform model for generating mock
injections and for estimating the parameters of the source.
However, it is crucial to assess if such tests of GR could be
spoiled by the limited accuracy of our theoretical models
when performed on real data. Therefore, we assess the
impact of systematics in waveform modeling on ringdown
tests by simulating mock LISA injections with waveforms
from NR and using pSEOBNRv5HM waveforms to per-
form the Bayesian analysis. Developing a new approach,
we estimate from which SNR we expect to erroneously
measure deviations from GR due to systematic effects.
Finally, we assess to which extent a consistent modeling of
the full signal allows us to measure the binary parameters in
GR also for systems that are merger-ringdown dominated
and have low SNR in the inspiral.
This paper is organized as follows. In Sec. II, we present

the details of our parametrized EOB model, describe
how the synthetic LISA observations are generated, and
lay down the basis of our Bayesian analyses. In Sec. III, we
summarize the astrophysical systems that we simulate. We
present our results when using the pSEOBNRv5HMmodel
for both injection and parameter estimation in Sec. IV; then
in Sec. V we discuss the impact of systematics and using a
novel method, we show that our models are not yet accurate
enough for the signals we expect with LISA. Finally, we
present our conclusions in Sec. VI. In the appendixes, we
discuss how the settings of pSEOBNRv5HM waveforms
impact the parameter estimation, and we show that, in GR,

1The generic name SEOBNRvnEPHM indicates that the version
vn of the EOB model is calibrated to NR simulations (NR),
includes spin (S) and precessional (P) effects, eccentricity (E), and
higher modes (HM, i.e., higher harmonics).
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SEOBNRv5HM and IMRPhenomTHM [91], a time-
domain waveform model from the IMR phenomenological
family [92–94], predict similar measurement errors for the
parameters of the source, that their measurement is little
affected by adding the QNM deviation parameters in the
pSEOBNRv5HM model, and additional results of our
study of systematic effects. Throughout this paper, we will
use natural units in which c ¼ G ¼ 1.

II. METHODS

A. Parametrized waveform model

We consider a binary with BH component (detector-
frame) masses m1 and m2 and define the mass ratio
q ¼ m1=m2 ≥ 1 and the total mass Mt ¼ m1 þm2. We
limit to BHs moving on quasicircular orbits with aligned
or antialigned spins (aligned spins for short) and define
the (dimensionless) spin variables χ1 ¼ S1=m2

1 and
χ2 ¼ S2=m2

2, which range between −1 and 1. We denote
the luminosity distance of the source as DL and the
cosmological redshift as z. We adopt the cosmology
determined by the Planck mission (2018) [95]. Masses,
times, and frequencies are in the detector frame, unless they
carry a subscript s. Source-frame masses m1;s and m2;s are
related to the detector-frame ones by mi ¼ ð1þ zÞmi;s.
The GW polarizations can be expanded in the basis of

spin-weight −2 spherical harmonics as

hþðΘ; ι;φ0; tÞ − ih×ðΘ; ι;φ0; tÞ

¼ 1

DL

X
l;m

−2Ylmðι;φ0ÞhlmðΘ; tÞ; ð2:1Þ

where the parameters ðι;φ0Þ denote the binary’s inclination
angle with respect to the direction perpendicular to the
orbital plane and the azimuthal direction to the observer,
respectively, and Θ denotes the intrinsic parameters
(masses and spins) of the binary. We build our parametrized
model using the SEOBNRv5HM model [81] in GR, which
includes several higher harmonics, notably the ðl; jmjÞ ¼
ð2; 1Þ, (3, 3), (3, 2), (4, 4), (4, 3), and (5, 5) harmonics, in
addition to the dominant (2, 2) harmonic. For aligned-spin
binaries, hlm ¼ ð−1Þlh�l−m; therefore, we focus on ðl; mÞ
harmonics with m > 0.
In the EOB framework [66], the GW harmonics are

decomposed as

hlmðΘ; tÞ ¼ hlmðΘ; tÞinsp-plungeθðtlmmatch − tÞ
þ hlmðΘ; tÞmerger-RDθðt − tlmmatchÞ; ð2:2Þ

where θðtÞ is the Heaviside step function, hinsp−plungelm
corresponds to the inspiral-plunge part of the waveform,
while hmerger-RD

lm represents the merger-ringdown waveform.
In particular, as explained in Ref. [81], tlmmatch is chosen to be

the peak of the (2, 2) harmonic amplitude for all ðl; mÞ
harmonics except (5,5), for which it is taken as the peak
of the (2, 2) harmonic minus 10Mt. In the following, we
suppress the Θ dependence for ease of notation.
For all harmonics, except for ðl; jmjÞ ¼ ð3; 2Þ and

(4, 3) which exhibit postmerger oscillations due to mode
mixing [96,97], the merger-ringdown waveform employs
the following ansatz [64,81,98]:

hmerger-RD
lm ðtÞ ¼ νÃlmðtÞeiϕ̃lmðtÞe−iσlm0ðt−tlmmatchÞ; ð2:3Þ

where ν ¼ m1m2=ðm1 þm2Þ2 is the symmetric mass ratio
of the binary and σlm0 is the complex frequency of the
least-damped QNM, having overtone number zero, of the
remnant BH. We define the corresponding oscillation
frequency flm0 and the damping time τlm0, respectively, as

flm0 ¼
1

2π
Reðσlm0Þ ¼ −

1

2π
σIlm0; ð2:4aÞ

τlm0 ¼ −
1

Imðσlm0Þ
¼ −

1

σRlm0

: ð2:4bÞ

The functions ÃlmðtÞ and ϕ̃lmðtÞ are given by
[64,81,98–100]

ÃlmðtÞ ¼ clm1;c tanh½clm1;fðt − tlmmatchÞ þ clm2;f� þ clm2;c ; ð2:5aÞ

ϕ̃lmðtÞ¼ϕlm
match−dlm1;c log

"
1þdlm2;fe

−dlm
1;fðt−tlmmatchÞ

1þdlm2;f

#
; ð2:5bÞ

where ϕlm
match is the phase of the inspiral-plunge harmonic

ðl; mÞ at t ¼ tlmmatch.
The coefficients dlm1;c and clmi;c (i ¼ 1, 2) are constrained

by the requirement that the amplitude and phase of hlmðtÞ
are continuously differentiable (C1) at t ¼ tlmmatch. This
allows us to write the coefficients clmi;c as [64,81]

clm1;c ¼ 1

clm1;fν
½∂tjhinsp-plungelm ðtlmmatchÞj

− σRlmjhinsp-plungelm ðtlmmatchÞj�cosh2ðclm2;fÞ; ð2:6aÞ

clm2;c ¼
jhinsp-plungelm ðtlmmatchÞj

ν
−

1

clm1;fν
½∂tjhinsp-plungelm ðtlmmatchÞj

−σRlmjhinsp-plungelm ðtlmmatchÞj�coshðclm2;fÞsinhðclm2;fÞ ð2:6bÞ

and dlm1;c as

dlm1;c ¼ ½ωinsp-plunge
lm ðtlmmatchÞ − σIlm�

1þ dlm2;f
dlm1;fd

lm
2;f

; ð2:7Þ
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where ωinsp-plunge
lm ðtÞ is the frequency of the inspiral-plunge

EOB harmonic. The coefficients clmi;f and dlmi;f are obtained
through fits to a large set of NR waveforms (∼440),
spanning mass ratios up to 20 and spins up to 0.998,
and BH perturbation-theory merger-ringdown waveforms
for mass ratio 1000. Crucially, the fits depend on the
binary’s masses and spins Θ and can be found in
Appendix D in Ref. [81]. As an example, we illustrate
in Fig. 1 how the GWamplitude and frequency of the (2, 2)
harmonic changes, during the late inspiral, merger, and
ringdown, as the component spins are varied, for a binary
with mass ratio 2 and equal spins.
For the (3, 2) and (4, 3) harmonics, the mode-mixing

behavior is modeled by applying the previous construction
to the spheroidal harmonics [101] (3, 2, 0) and (4, 3, 0),
which feature a monotonic amplitude and frequency
evolution [102]. The spheroidal (3, 2, 0) and (4, 3, 0)
harmonics can be related to the spherical harmonics by [81]

Sh320ðtÞ ≃
h32ðtÞμ�2220 − h22ðtÞμ�2320

μ�2330μ
�
2220

; ð2:8aÞ

Sh430ðtÞ ≃
h43ðtÞμ�3440 − h33ðtÞμ�3430

μ�3330μ
�
3440

; ð2:8bÞ

where μmll0n are harmonic mixing coefficients, obtained
using fits from Ref. [103]. Thus, the (3, 2) and (4, 3)
harmonics are obtained by combining the (3, 2, 0) and
(4, 3, 0) harmonics with the (2, 2) and (3, 3) harmonics,
inverting Eqs. (2.8a) and (2.8b)).
Though overtones are not explicitly included in the

merger-ringdown signal ansatz, unlike older versions of
the model [63,104], their effect should be captured by the
functions ÃlmðtÞ and ϕ̃lmðtÞ. They contain free coeffi-
cients fitted against NR simulations and allow our ansatz to

be more than a simple damped sinusoid with damping time
and frequency given by the fundamental QNM. Moreover,
we do not expect the linear perturbation description used in
the ringdown to be valid right at the time used to transition
from inspiral to merger-ringdown [105], which for most
modes is the peak of the (2,2) harmonic. Thus, the choice
of modeling in SEOBv5NRHM allows one to better
capture such nonlinearities without having to include a
transition phase.
In the SEOBNRv5HM model constructed in Ref. [81],

the complex QNM frequencies in GR are obtained for each
ðl; mÞ harmonic as a function of the BH’s final mass and
spin using the QNM PYTHON package [106]. The BH’s mass
and spin are, in turn, computed using the fitting formulas
of Refs. [107,108], respectively. In this work, following
the strategy of Refs. [61,62,67,71,109–111], we introduce
parametrized fractional deviations to the QNM frequencies,
which are free parameters of the model (see Ref. [68],
where the deviations were mapped to specific gravity
theories alternative to GR). More explicitly, we perform
the substitutions

flm0 → flm0ð1þ δflmÞ; ð2:9aÞ

τlm0 → τlm0ð1þ δτlmÞ; ð2:9bÞ

where for ease of notation we have dropped the zero
overtone subscript in the deviation parameters. We shall
denote this parametrized model as pSEOBNRv5HM. We
note that allowing σlm0 to vary freely also modifies the clmi;c
and dlm1;c coefficients in Eqs. (2.6a), (2.6b), and (2.7), which

enter the amplitude and phase functions ÃlmðtÞ and
ϕ̃lmðtÞ. As a consequence, such a modification can lead
to deviations from the GR prediction in the ringdown signal
starting soon after the merger. The plunge-merger stage of
the waveform could be, in principle, also modified, as done,
for example, in Ref. [67], by introducing deviations with
respect to the GR predictions to the time at which the
amplitude peaks and to the value of the amplitude and
frequency at this instant, for each waveform harmonic.
Finally, the inspiral-plunge EOB waveforms (2.2)

are computed based on the two-body dynamics that are
computed by solving Hamilton’s equations with a suitable
EOB Hamiltonian and radiation-reaction force (see
Refs. [80,81] for details).

B. Generation of LISA signals

We use the long-wavelength approximation [112] to
compute the response of LISA to an incoming GW, which
is valid when the GW wavelength is much larger than the
LISA arm length L (i.e., in terms of the GW frequency,
when 2πfL=c ≪ 1). Given that L ¼ 2.5 × 108 m, this
condition is satisfied for sources reaching maximum
frequencies of ∼10−3 Hz, such as the MBHBs we consider

FIG. 1. Time evolution near the merger, which occurs at t ¼ 0,
of the SEOBNRv5HM (2, 2) harmonic amplitude (top panel) and
instantaneous frequency (bottom panel) when varying the spin
components of a binary with mass ratio 2, assuming equal and
aligned spins.
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in this work. Under this approximation, LISA is somewhat
similar to two LIGO- or Virgo-type detectors rotated
with respect to each other by π=4 and with angles of π=3
between the arms.
Transforming Eq. (47) in Ref. [113] to the time domain,

we find that under the long-wavelength approximation
the time-delay-interferometry (TDI) variables A, E, and
T [114] (which, for an interferometer with equal arms and
equal noise levels in each optical link, provide three noise-
uncorrelated datasets) are given by

A ¼ −3
ffiffiffi
2

p �
L
c

�
2

½Fþðλ; β;ψÞḧþ þ F×ðλ; β;ψÞḧ×�;

E ¼ −3
ffiffiffi
2

p �
L
c

�
2

½Fþðλþ π=4; β;ψÞḧþ
þ F×ðλþ π=4; β;ψÞḧ×�;

T ¼ 0; ð2:10aÞ

where Fþ and F× are the antenna pattern functions:

Fþðλ; β;ψÞ ¼ cosð2ψÞFþ;0ðλ; βÞ þ sinð2ψÞF×;0ðλ; βÞ;
ð2:11aÞ

F×ðλ; β;ψÞ ¼ − sinð2ψÞFþ;0ðλ; βÞ þ cosð2ψÞF×;0ðλ; βÞ;
ð2:11bÞ

Fþ;0ðλ; βÞ ¼
1

2
ð1þ sin2 βÞ cosð2λ − π=3Þ; ð2:11cÞ

F×;0ðλ; βÞ ¼ sin2 β sinð2λ − π=3Þ: ð2:11dÞ

In the above equations, λ, β, and ψ are the longitude,
latitude, and polarization in the LISA frame, respectively.
We refer to Ref. [113] for the relation between the angles in
the LISA frame and those in the solar-system-barycenter
frame. As anticipated, this is similar to the response of
ground-based detectors. The main difference is that it is
the second derivatives of the waveform polarizations that
enter Eq. (2.10a). This comes as a consequence of taking
waveform differences in order to perform TDI, with a time
step that goes to zero in the long-wavelength approxima-
tion. Finally, because most of the SNR of the signals we
consider is accumulated in the last stages of the evolution
(i.e., from a few hours to a few days), we do not take into
account the motion of LISA about the Sun. Therefore,
λ, β, and ψ in Eq. (2.10a) are not varying with time.
Henceforth, we will use Ã and Ẽ to denote the Fourier
transform of A and E.
We generate EOB waveforms from the frequency fgen ¼

5 × 10−5½Mt;0=ð2 × 107M⊙Þ� Hz until the end of the signal.
After transforming to the frequency domain, we keep the

portion of the signal between fmin ¼ 2 × 10−4½Mt;0=ð2 ×
107M⊙Þ� Hz and fmax, to eliminate spurious features due to
Fourier transform. The maximum frequency is chosen such
that the frequency-domain amplitude is 1% of its maximum
value. We verified that our choice of fmin leads to a loss in
SNR of less than 2%.
The time and phase alignment of the signals is done in

the following way. We define the time to coalescence tc
as the moment the amplitude of the (2, 2) harmonic
reaches its peak and define the phase of coalescence φc
as the phase of the (2, 2) harmonic contribution to the
total waveform at tc. In practice, the last step is done by
choosing the azimuthal angle φ0 such that the phase of

−2Y22ðι;φ0Þh22ðtcÞ is φc. This choice of φ0 is then propa-
gated consistently to other harmonics. We use tc to split
between the inspiral and merger-ringdown regimes. We note
that tc for EOB waveforms coincides with tlmmatch in Eq. (2.2),
for all ðl; mÞ harmonics except (5, 5).

C. Bayesian analysis

We define the noise-weighted inner product between two
data streams d1 and d2 as

ðd1jd2Þ ¼ 4Re

�Z þ∞

0

d1ðfÞd�2ðfÞ
SnðfÞ

df

�
; ð2:12Þ

where SnðfÞ is the power spectral density (PSD). In this
work, we use the SciRDv1 noise curve [115], which
corresponds to the scientific requirement for the LISA
mission and defines pessimistic noise levels compared to
current predictions. For a given choice of the PSD, the SNR
of a signal h is defined as SNR ¼ ffiffiffiffiffiffiffiffiffiffiffiðhjhÞp

.
To quantify the precision with which LISA observations

will estimate the parameters of a source, we work in a
Bayesian framework and compute the posterior distribution
on the source parameters, θ, given an observed dataset d,
using Bayes’ theorem:

pðθjdÞ ¼ pðdjθÞpðθÞ
pðdÞ ; ð2:13Þ

where pðdjθÞ is the likelihood, pðθÞ is the prior, and pðdÞ
is the evidence. As long as we are not interested in model
selection, the latter acts as a normalization constant and,
thus, can be discarded. We take the prior to be flat in the
(detector-frame) total mass Mt, the mass ratio q, the spins
−1 ≤ χ1 ≤ 1 and −1 ≤ χ2 ≤ 1, the time to coalescence tc,
and the phase at coalescence φc. For the systems we
consider here, the intrinsic parametersMt, q, χ1, and χ2 are
typically well measured, so that the actual priors have
little importance. We take a flat prior on ψ , cosðιÞ, and
log10ðDLÞ and fix the sky location (λ, β) to its true value to
facilitate the convergence of the chains. Those parameters
are not expected to correlate strongly with intrinsic
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parameters [113], at least for aligned-spin binaries, and so
this simplification should not significantly affect our
conclusions. Finally, we take a flat prior between −1
and 1 for the fractional deviations to the QNMs, δflm
and δτlm. Assuming noise to be stationary and Gaussian,
the likelihood reads

pðdjθÞ∝
Y

c∈½A;E�
exp

�
−
1

2
ðdc−hcðθÞjdc−hcðθÞÞ

�
: ð2:14Þ

The posterior distribution is then sampled via a Markov-
chain Monte Carlo algorithm (MCMC). We use the Eryn
sampler [116,117] for this purpose.

III. ASTROPHYSICAL BINARY SYSTEMS

We consider a set of 16 binary systems, defined from
all possible combinations of the following choices of
parameters:

(i) Mt;0 ¼ 2 × 107M⊙ or Mt;0 ¼ 2 × 108M⊙,
(ii) q0 ¼ 2 or q0 ¼ 4,
(iii) χ1;0 ¼ χ2;0 ¼ 0.9 or χ1;0 ¼ 0.2; χ2;0 ¼ 0.1, and
(iv) z0 ¼ 2.2 (DL;0 ¼ 18 331 Mpc) or z0 ¼ 3.7 (DL;0 ¼

33 691 Mpc).
Subscripts 0 indicate the true value of the parameter used
to generate the synthetic injections. This set of systems
lies in the high-mass end of predictions for the popula-
tion visible to LISA, as predicted from semianalytic
models of MBH populations that use heavy seeds for the
MBH progenitors [73,84–89]. Different heavy-seed sce-
narios have been proposed, such as the collapse of
protogalactic disks as a result of bar instabilities [118],
the runaway collision of stars at the center of galaxies
[119], or the direct collapse of gas at the center of
galaxies [120] (see Ref. [90] for a review). Such heavy
systems are the ones expected to have higher SNR in the
merger-ringdown [74,75] and are, therefore, the most
relevant ones to our analysis. In particular, very heavy
systems (Mt;0 ¼ 2 × 108M⊙) are expected to have very
little SNR in the inspiral, and it is interesting to assess
how well the parameters of such systems can be
measured. Focusing on such massive systems is even
more well motivated following the latest results from
pulsar-timing-array observations [121–124]. If the ap-
parent signal in the pulsar-timing-array data is generated
by massive black hole inspirals, it indicates that MBHs
might be more massive than originally expected.
Semianalytical models predict a wide range of values
for the mass ratio, but the vast majority of systems are
predicted to have comparable masses. This is also the
domain where our current IMR models are the most
reliable. The spin of a MBH typically depends on the
amount of gas surrounding it and on how it has acquired
mass and angular momentum through accretion [125].

We consider two possibilities in order to cover both the
case where MBHs are efficiently spun up and the case
they are not. The relative alignment of the spins in a
MBHB also depends on the presence of gas around the
binary. Mergers happening in a gas-rich environment
tend to have aligned spins due to the Bardeen-Peterson
effect [126,127]. Binaries formed through triplet inter-
actions can also have misaligned spins, in addition to
having high eccentricity [86]. As discussed, we neglect
eccentricity and spin precession here for simplicity and
focus on quasicircular binaries. Exploring different val-
ues for q, χ1, and χ2 is interesting, because they affect
how much higher harmonics are excited and, therefore,
how well it is possible to constrain the QNMs other
than the fundamental one. Finally, the redshifts at which
MBHBs coalesce depend on when MBH seeds form and
on the different timescales at play during the hardening
of the binary [128–130]. In heavy-seed models, MBHBs
are expected to merge dominantly at late times (i.e., low
redshift). Since Mt is the detector-frame total mass,
changing the redshift affects only the SNR of the system.
Based on the predictions of semianalytical models
[73,84–89], we expect to observe up to a few tens of
systems similar to the ones we defined during the
nominal mission duration (four and a half years). For
all binary systems we take ι0 ¼ π=3, ψ0 ¼ π=3,
λ0 ¼ π=3, β0 ¼ π=3, and φc;0 ¼ 0.
In Fig. 2, we plot the frequency-domain amplitude of the

TDI variable A for the systems with Mt;0 ¼ 2 × 107M⊙
and z0 ¼ 2.2 and the four combinations of mass ratio and
spins. We show the contribution of each harmonic, Ãlm,
using Eq. (2.1) when computing the TDI variables [see
Eq. (2.10a)]. The black dashed lines indicate the GW
frequency at tc, which we choose as the separation between
the inspiral and merger-ringdown regimes. As expected, the
(2, 2) harmonic is the loudest, but higher harmonics are also
important, in particular, the (3, 3), (4, 4), and (5, 5). This is
better quantified in Fig. 3, where we show the total SNR
and the contribution of each harmonic. We observe that
the relative importance of the subdominant (2, 1), (3, 2),
and (4, 3) harmonics depends primarily on the spins: (2, 1)
is more dominant for low-spin systems, whereas (3, 2) and
(4, 3) are more dominant for high-spin systems.We note the
very high SNR of some of these systems, reaching a few
thousands. Figure 3 also shows the inspiral SNR, defined
by using the GW frequency at tc as the upper limit in the
integral in Eq. (2.12). As anticipated, the signals of the
systems we consider are merger-ringdown dominated. In
Table I, we give the IMR, merger-ringdown, and inspiral
SNR of the systems at z0 ¼ 2.2. Although systems with
Mt;0 ¼ 2 × 107M⊙ (upper panel) still have high SNR also
in the inspiral, ∼1000, it is not the case for the very massive
systems (Mt;0 ¼ 2 × 108M⊙, lower panel), with inspiral
SNRs as low as ∼30.
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IV. MEASURING SOURCE PROPERTIES AND
QNMS WITH MBHB OBSERVATIONS

We work with zero-noise injections, as these are well
suited to the goals of understanding systematics and meas-
urement uncertainties [131], and perform three types of
analyses using the SEOBNRv5HM and pSEOBNRv5HM
models as synthetic-signal injections and templates.
(1) We inject a synthetic signal without deviations from

GR (i.e., SEOBNRv5HM) and use templates in the
Bayesian analyses not allowing for deviations from
GR (i.e., SEOBNRv5HM);

(2) we inject a synthetic signal without deviations from
GR (i.e., SEOBNRv5HM) and use templates in the
Bayesian analyses allowing for deviations from GR
(i.e., pSEOBNRv5HM);

(3) we inject a synthetic signal with deviations from GR
(i.e., pSEOBNRv5HM) and use templates in the

Bayesian analyses allowing for deviations from GR
(i.e., pSEOBNRv5HM).

The first type of analysis will estimate how well the
parameters of MBHBs can be constrained assuming GR
is correct. It is the first study of this kind using EOB
waveforms. The second will tell us how well the deviation
parameters of QNMs can be constrained, and the third for
which values of the deviation parameters we can detect
non-GR effects in the ringdown. We perform these mock
injections for all MBHBs described in Sec. III.

A. Measurement of source parameters in GR

We show in Fig. 4 the width of the 90% confidence
interval centered around the median for the intrinsic
parameters (i.e., the masses and spins) as a function of
the SNR of the system. The color, shape, and filling of the
point indicate, respectively, the total mass, spin, and mass

FIG. 2. Amplitude in frequency domain in the TDI channel A broken into the contributions of each of the harmonics included in the
pSEOBNRv5HM model, Ãlm. The latter is computed using the harmonic decomposition of Eq. (2.1) in the TDI equations (2.10a). The
thin black line shows the LISA PSD and the black dashed lines the GW frequency at tc (i.e., the separation between the inspiral and
merger-ringdown regimes). We recall that tc is defined from the peak of h22 and that the computation of the TDI variables involves
second derivatives of the GW polarization, leading to an offset between the maximum of h22 and those of A and E. Moreover, these
quantities are defined in time-domain, whereas we show here the frequency-domain amplitudes, and the time-domain peak typically
corresponds to lower frequencies than the frequency-domain one. We plot the amplitudes only forMt;0 ¼ 2 × 107M⊙ and z0 ¼ 2.2. For
systems at z0 ¼ 3.7, one should simply rescale the amplitudes by 18 331=33 691 ≃ 0.54, and for systems with Mt;0 ¼ 2 × 108M⊙, one
should multiply the amplitudes by 102 and the frequencies by 10−1. As expected, the (2, 2) harmonic is the loudest, followed by the
(3, 3), (4, 4), and (5, 5) harmonics. For high-spin systems (upper row), the (3, 2) and (4, 3) harmonics are louder than the (2, 1) harmonic,
whereas the opposite is true for low-spin systems (lower row).
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ratio of the system, indicated in the legends. Each point is
doubled because of the two redshifts used: z0 ¼ 2.2
(z0 ¼ 3.7) corresponds to the largest (smallest) SNR and
the smallest (largest) measurement error. Note that we show
the detector-frame total mass in the top row and the source-
frame individual masses in the middle one. For all systems
the parameters are well constrained, and we find that the
error (or relative error for the mass parameters) goes as
1=SNR, as expected in the high SNR regime [77,78,132].
This relation is more scattered for the spin parameters,
especially for χ1: Systems with q0 ¼ 4 have better spin
measurement, in agreement with [75]. This is because, for
such systems (nonfilled points), higher harmonics become

more dominant (see Figs. 2 and 3) and help improve the
measurement of the spins. It is remarkable that even for
very massive systems (red points), which usually have
low SNR in the inspiral, we get tight constraints on their
parameters, similarly to what [133] found. This is the benefit
of using a fully consistent modeling of the IMR signal, since
in our model the merger-ringdown signal also informs us on
the parameters of the component BHs in the binary.
For very massive systems with low SNR, we find

a multimodality in intrinsic parameters, as illustrated in
Fig. 5. Secondary modes arise from combinations of
parameters that yield remnant parameters compatible with
the true ones within the measurement uncertainty, as shown

TABLE I. Full IMR SNR and its decomposition into the contribution of the merger-ringdown and inspiral stages
for the systems considered in this work at z0 ¼ 2.2. Values at z0 ¼ 3.7 can be obtained by rescaling by
18 331=33 691 ≃ 0.54. We recall that the inspiral and merger-ringdown SNRs add quadratically. All the systems we
consider are merger-ringdown dominated, although some of them have high SNR in the inspiral as well, up to
thousands.

Mt;0 ¼ 2 × 107M⊙ Mt;0 ¼ 2 × 108M⊙

IMR Merger-ringdown Inspiral IMR Merger-ringdown Inspiral

χ1;0 ¼ χ2;0 ¼ 0.9 q0 ¼ 2 5505 5253 1645 623 616 98
q0 ¼ 4 5174 5017 1269 672 668 75

χ1;0 ¼ 0.2, χ2;0 ¼ 0.1 q0 ¼ 2 2678 2558 795 241 238 40
q0 ¼ 4 1832 1741 571 167 165 29

FIG. 3. Total SNR (black) and SNR in the individual harmonics (colors) for all the systems at z0 ¼ 2.2. The values at z0 ¼ 3.7 can be
obtained by rescaling by 18 331=33 691 ≃ 0.54. Circles show the full IMR SNR and squares the SNR in the inspiral stage.
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in the upper-right part in Fig. 5. As a consequence, the
merger-ringdown signal remains quasi-identical to the syn-
thetic injection. This can be seen in Fig. 6, where we
compare the waveform of the injected parameters (in blue in
Fig. 5) to the one with parameters from one of the secondary
maxima (in red in Fig. 5). The early part of the inspiral signal
is fairly different, but this has little importance because the
system is merger-ringdown dominated, and the SNR in the
inspiral is small compared to the total SNR (∼30; see Fig. 3
and Table I).
In Appendix A, we discuss the impact of the tolerance

of the integrator used to solve the Hamilton equations
and compute the EOB waveforms. In Appendix B,
we compare the measurement errors obtained with
pSEOBNRv5HM to the ones obtained with the IMR
phenomenological model IMRPhenomTHM [91], finding
comparable results.

B. Measurement of QNMs
and possible deviations from GR

We now turn our attention to QNM measurements and
constraints on deviations from GR using MBHB observa-
tions with LISA.

1. GR injections

First, we consider the case where the injected signal is
compatible with GR and allow for nonzero deviations when
running the Bayesian analysis. In Figs. 7 and 8, we show
the width of the 90% confidence interval centered around
the median on the deviation parameters (i.e., Δδflm and
Δδτlm). We find that deviations to the frequency are
generally better constrained than those to the damping
time. As a consequence of the higher SNR of the dominant
(2, 2), (3, 3), (4, 4), and (5, 5) harmonics, fractional
deviations to their QNMs are better constrained than those
to the subdominant (2, 1), (3, 2), and (4, 3) harmonics. For
the former, δflm and δτlm are typically constrained within
0.1 and even within 0.01 for the systems with Mt;0 ¼
2 × 107M⊙ (blue points) and follow the 1=SNR trend, with
some scatter for higher harmonics [especially the (3, 3) and
(5, 5) harmonics] that depends on the mass ratio. Here
again, the reason for this is that, for systems with q0 ¼ 4
(nonfilled points), higher harmonics are more excited (see
Figs. 2 and 3), so we are able to better constrain deviations
in their QNMs, in agreement with [74]. Deviations
in subdominant harmonics are poorly constrained for very
massive systems (red points), Δδflm and Δδτlm ∼ 1,

FIG. 4. Measurement error (90% confidence interval centered around the median) of intrinsic parameters. For mass parameters, we
show the errors relative to the injection value. We inject signals within GR and recover them with GR templates (i.e., we employ
SEOBNRv5HM). All points are doubled because of the two redshift possibilities; z0 ¼ 2.2 (z0 ¼ 3.7) yields larger (lower) SNR and
lower (larger) errors. We show the detector-frame total mass and the mass ratio in the top row, the source-frame individual masses in the
middle one, and the dimensionless spins in the bottom row. At leading order, measurement errors follow the 1=SNR trend.
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which, given our prior range, translates into uninform-
ative measurements. This is due to the low SNR of these
harmonics. However, we get rather good constrains,
within 0.1, for systems with Mt;0 ¼ 2 × 107M⊙ (blue

points). We also find that for low-spin systems (circles)
deviations to the (2, 1) harmonic are better constrained
than the ones to the (3, 2) and (4, 3) harmonics, whereas
the opposite happens for high-spin systems (squares), in
agreement with our remark on their relative predomi-
nance in Sec. III. We show the impact of allowing for
deviations from GR on the measurement of intrinsic
parameters in Appendix C.
We translate these constraints on the fractional devia-

tions into measurements of the QNMs in Fig. 9, where we
show some representative examples of 90% confidence
regions on the QNMs of all the harmonics included in
pSEOBNRv5HM. The upper-left panel shows a best-case
scenario, where all QNMs can be perfectly distinguished.
It illustrates that applying the Rayleigh criterion [58] to
both the damping time and the frequency to decide on the
distinguishability of QNMs is too stringent. Indeed, as can
be seen from the upper-left panel in Fig. 9, the one-
dimensional projection of the 90% confidence regions onto
the y axis (damping time) can overlap [e.g., for the (4, 4)
and (4, 3) QNMs], although the two-dimensional regions
are well separated. Thus, one should really consider the
two-dimensional regions in order to decide on the distin-
guishability of QNMs, as pointed out in Ref. [71].
However, given the little correlation between τlm and
flm, it is often enough to apply the Rayleigh criterion
only to the damping time or to the frequency, as suggested
in previous works [58,59,134,135]. In the cases shown
here, the frequency is enough to decide on the distinguish-
ability. The upper-right and lower-left panels illustrate
cases where not all QNMs can be resolved. As expected
from our comments above, for a high-spin system such
as the one shown in the upper-right panel, deviations to the
(2, 1) QNM are poorly constrained, so its measurement
uncertainty contour encloses that of the (2, 2) mode.
Similarly, the lower-left panel shows a low-spin system,
for which the (4, 3) QNMmeasurement uncertainty contour
contains the (4, 4) one. Finally, the lower-left panel shows a
worst-case scenario where the QNMs cannot be distin-
guished due to the large uncertainty on the subdominant
harmonics. Note that the system in the lower-left panel has
a total mass of 2 × 107M⊙, illustrating that the confidence
regions of QNMs are not always all well separated for
systems with Mt;0 ¼ 2 × 107M⊙, although they do tend to
yield better results than for systems withMt;0¼2×108M⊙,
as illustrated in Figs. 7 and 8.
We find some cases of multimodality in the deviation

parameters, as illustrated in Fig. 10. They can be under-
stood by looking at the corresponding values of QNMs.
Indeed, the frequency of the secondary mode in the (2, 1)
QNM matches the frequency of the (3, 2) QNM. Because
their damping times are poorly constrained, they are
fairly compatible. Thus, this multimodality can be under-
stood as the subdominant harmonics trying to “match”
each other.

FIG. 5. Corner plot for the system with Mt;0 ¼ 2 × 108M⊙,
χ1;0 ¼ 0.2, χ2;0 ¼ 0.1, q0 ¼ 4, z0 ¼ 2.2, and SNR ¼ 167. The
blues lines show the injection and the red ones a secondary mode.
Contours show the 68%, 90%, and 95% confidence intervals, and
dashed lines the 0.05 and 0.95 quantiles. On the upper-right part,
we show the inferred properties of the remnant. The multi-
modality observed in the binary parameters is due to combina-
tions of intrinsic parameters that yield remnant properties
compatible with the true values within the measurement un-
certainty, as can be seen from the absence of clear multimodality
in Mf and af.

FIG. 6. Comparison between synthetic-injection waveform and
the one at a secondary maximum (same color code as in Fig. 5).
The late inspiral and merger-ringdown signals match almost
perfectly. The early inspiral signals are dephased, but the SNR in
the inspiral is so low that it makes little difference.
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FIG. 7. Width of the 90% confidence interval on δflm centered around the median for GR injections.

FIG. 8. Width of the 90% confidence interval on δτlm centered around the median for GR injections.
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2. Non-GR injections

We now consider non-GR injections, and we generate
synthetic signals with nonzero deviations to the QNMs.
Deviations to GR in the QNM frequencies have been
derived in non-GR theories and typically vary in the range
0.01–0.1 or even smaller. In the spherically symmetric
case (i.e., nonspinning BHs), they were computed in
theories such as Einstein-Maxwell-dilaton [136], dynami-
cal Chern-Simons gravity [42], Einstein-dilaton-Gauss-
Bonnet gravity [40,41,137], higher-curvature gravity
theories [53], and for some solutions in massive (bi)gravity
[138–140]. Recently, the computation of QNMs for spin-
ning BHs in non-GR theories has received much attention,
since the remnant BHs we are observing with LIGO and
Virgo have typically spins of about 0.7. They include the
Kerr-Newman case in Einstein-Maxwell theory [44–47],

Einstein scalar Gauss-Bonnet gravity [50,51], higher-
curvature gravity theories [52,53], and dynamical Chern-
Simons theory [54]. Estimates for QNMs of spinning BHs
in non-GR theories have also used the connection between
the light ring and QNMs [41,141–143], which is formally
valid only in the eikonal l → ∞ limit, and are known to fail
to describe some families of QNMs when additional
degrees of freedom are present [41].
Here, we assume the fractional deviation to GR to be 0.01

for all harmonics, for both frequencies and damping times.
In Figs. 11 and 12, we show thewidth of the 90% confidence
interval centered around the median for δflm and δτlm.
As a rule of thumb, we consider that a deviation can be
measured when it is larger than the measurement error.
Graphically, this corresponds to the points that are below the
black dashed lines in Figs. 11 and 12. For this value of the

FIG. 9. 90% confidence interval on the QNMs for four different systems. Crosses indicate the true values. Between columns only the
total mass varies, and between rows mass ratio, spins, and redshift vary, keeping the same total mass. In every case, the synthetic
injection is GR. The top-left panel illustrates why applying the Rayleigh criterion to both the damping time and the frequency to decide
on the resolvability of QNMs is too stringent: Although the one-dimensional damping time posteriors overlap, the two-dimensional ones
are well separated. That case corresponds to a “best-case scenario.” The other panels show cases where not all seven QNMs can be
distinguished. The (2, 1), (3, 2), and (4, 3) modes are typically less well constrained due to their lower SNR (see also Figs. 7 and 8).
(a) Mt;0 ¼ 2 × 107M⊙, χ1;0 ¼ χ2;0 ¼ 0.9, q0 ¼ 4, z0 ¼ 2.2, SNR ¼ 5174. (b) Mt;0 ¼ 2 × 108M⊙, χ1;0 ¼ χ2;0 ¼ 0.9, q0 ¼ 4, z0 ¼ 2.2,
SNR ¼ 672. (c) Mt;0 ¼ 2 × 107M⊙, χ1;0 ¼ 0.2, χ2;0 ¼ 0.1, q0 ¼ 2, z0 ¼ 3.7, SNR ¼ 1457. (d) Mt;0 ¼ 2 × 108M⊙, χ1;0 ¼ 0.2,
χ2;0 ¼ 0.1, q0 ¼ 2, z0 ¼ 3.7, SNR ¼ 132.
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FIG. 10. Reduced corner plot of deviation parameters and QNMs for a GR injection of the system Mt;0 ¼ 2 × 108, χ1;0 ¼ χ2;0 ¼ 0.9,
q0 ¼ 2, z0 ¼ 3.7, and SNR ¼ 339. We find a multimodality in the δf21 posterior, which is the less-well-measured harmonic for this
system. This leads to a secondary mode in the f21 posterior at frequencies that match f32. Given that the damping times of the two
harmonics are poorly measured and their posterior fairly compatible, this suggests that the (2, 1) harmonic is trying to match the (3, 2)
harmonic and vice versa. (a) Deviation parameters. (b) QNMs.

FIG. 11. Width of the 90% confidence interval centered around the median for δflm for injections with δflm ¼ δτlm ¼ 0.01, as
indicated by the black dashed lines.
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deviation (i.e., 0.01), we find that it could be detected in the
frequency of the (2, 2), (3, 3), (4, 4), and (5, 5) harmonics of
systems with Mt;0 ¼ 2 × 107M⊙, and for the higher SNR
ones we could also detect this deviation in their damping
time. We note that the errors shown in Figs. 11 and 12 are
very similar to the ones we find when injecting GR signals
(see Figs. 7 and 8). We also perform injections with
deviations of 0.1 and 0.001 (not shown here) and find
again similar errors. Therefore, we can extrapolate the
results presented here and read from those figures which
values of the deviations would be needed to detect them.
For instance, a deviation of 0.1 could be detected for almost
all systems presented here, in both the frequency and the
damping time of the dominant harmonics (left column), and
for the higher SNR systems, even of the subdominant
harmonics (right column). Detecting a deviation in several
harmonics, preferably in both the frequency and the damp-
ing time, would reinforce our confidence that we are truly
observing effects in gravity theories alternative to GR.

V. IMPACT OF SYSTEMATICS

In order to assess if the lack of accuracy in waveform
modeling could spoil ringdown tests of GR, we generate
synthetic injections with NR waveforms and recover them
with pSEOBNRv5HM templates. We use the waveform
SXS:BBH:2125 from the Simulating eXtreme Spacetimes

Collaboration [144] at the highest available resolution. It
provides the signal of a BBH with mass ratio 2 and aligned
spins of magnitude 0.3. First, we perform injections for the
four total mass and redshift combinations detailed in
Sec. III, allowing for deviations from GR in the QNMs
when running our Bayesian analysis. Next, we investigate
more methodically how systematic effects come into play
and propose a novel method to assess their impact.

A. Results on astrophysical systems

First, we consider the case where the injected signal
contains only the dominant (2, 2) harmonic and include in
the pSEOBNRv5HM templates the same harmonic content.
We compare in Fig. 13 the posteriors obtained for injections
with different total masses, giving SNR ¼ 175 and 1312,
respectively. The injected values (blue lines) are well within
the 90% confidence regions for the heavier system (black),
having total mass Mt;0 ¼ 2 × 108M⊙. However, due to its
much higher SNR, the parameter estimation of the lighter
system (red), having total mass Mt;0 ¼ 2 × 107M⊙, is
strongly biased. In particular, a deviation from GR in
the frequency of the (2, 2) QNM is erroneously detected
with high confidence. We recall that our model does not
explicitly include overtones beyond n ¼ 0, as discussed in
Sec. II. Including them in the merger-ringdown signal
could, in principle, reduce this systematic bias but would

FIG. 12. Width of the 90% confidence interval centred around the median for δτlm for injections with δflm ¼ δτlm ¼ 0.01, as
indicated by the black dashed lines.
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require fitting for the amplitude, phase, and starting time of
each overtone, which has proven very difficult so far [145],
and could end up having the opposite effect on the accuracy
of the waveform. Next, we inject NR signals containing
all the harmonics included in pSEOBNRv5HM and use
templates with full harmonic content in the Bayesian
analysis. As can be seen in Fig. 14, once we include
higher harmonics (red), even for the more massive system
the posterior shifts further from the true values while
getting narrower, making it incompatible with the true
parameters at more than 95% confidence, in particular, for
the GR deviation ones. We stress that the worsening for the
system shown in Fig. 14 is less due to the moderate increase
in SNR than to the inclusion of higher harmonics, as we
demonstrate in Sec. V B. This is not surprising, since the
accuracy of the SEOBNRv5 model degrades when includ-
ing higher harmonics, as comprehensive comparisons to
∼440 NR waveforms and NR surrogate models have

shown [81]. One of the difficulties lies in the relative
alignment between harmonics. When considering har-
monics individually, we have freedom in the alignment (in
phase and time) of the waveforms. When including several
harmonics, we have a single phase shift and a single time
shift that can be varied for all harmonics simultaneously.
The relative alignments between them are fixed and might
not agree with the ones of NR waveforms. In the next
section, we further illustrate how such tests of GR become
less reliable when including higher harmonics.

B. Exploring systematic effects

Our goal here is to understand how systematic effects
come into play and, in particular, how they depend on
which portion of the signal (inspiral or merger-ringdown)
dominates. In addition to total masses of 2 × 107M⊙ and
2 × 108M⊙, we also consider Mt ¼ 2 × 106M⊙. The mini-
mum frequency used to analyze the signal remains
fmin ¼ 2 × 10−4½Mt;0=ð2 × 107M⊙Þ� Hz. This is a pessi-
mistic choice for signals with Mt ¼ 2 × 106M⊙, as they
can accumulate significant SNR in the early inspiral, but
with this choice, the length of the signal that is analyzed (in
geometric units) is kept fixed for different total masses.

FIG. 13. Corner plot of intrinsic and deviation parameters for
NR injections recovered with pSEOBNRv5HM templates. Con-
tours show the 68%, 90%, and 95% confidence intervals, and
dashed lines the 0.05 and 0.95 quantiles. We compare the results
for Mt;0 ¼ 2 × 108M⊙, z0 ¼ 2.2 (black) and Mt;0 ¼ 2 × 107M⊙,
z0 ¼ 3.7 (red); both have q0 ¼ 2 and χ1;0 ¼ χ2;0 ¼ 0.3. To ease
comparison, we have rescaled the total mass to the injected value.
In each case, both injection and templates contain only the (2, 2)
harmonic. The heavier system has lower SNR, and the impact of
mismodeling is small when including only the (2, 2) harmonic, so
that the injected values (in blue) are well within the 90% con-
fidence regions. It is nonetheless relevant for the lighter system,
due to its much higher SNR. In the latter case, one would be
misled into thinking that the frequency of the (2, 2) QNM departs
from the Kerr prediction. The spins are poorly measured for the
heavy system due to the absence of higher harmonics.

FIG. 14. The same as Fig. 13, but now comparing results when
including only the (2, 2) harmonic (black) versus when including
all harmonics of pSEOBNRv5HM (red), for Mt;0 ¼ 2 × 108M⊙
and z0 ¼ 2.2. The inclusion of higher harmonics worsens the
match between NR and pSEOBNRv5HM waveforms, leading to
significant biases in all parameters, in particular, the GR deviation
ones. Note that, when including all harmonics, the deviation
parameters for all QNMs are allowed to vary, and we find similar
biases for all of them, but we show only the posterior for
deviations in the (2, 2) harmonic because of space limitation.
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Moreover, we fix the SNR of the sources rather than their
distance, to allow for a fair comparison between systems.
Unless specified, we take the SNR to be 175 [as for the
system with Mt ¼ 2 × 108M⊙ at z ¼ 2.2 when including
only the (2, 2) harmonic shown in Sec. V]. We stress
that the long-wavelength approximation for the LISA
response is expected to break for Mt ¼ 2 × 106M⊙.
Overall, the signals considered in this section might not
be astrophysically realistic (e.g., we expect systems with
Mt ¼ 2 × 107M⊙ to have much larger SNR than 175), but
we seek to have a methodic understanding of how sys-
tematic effects appear for different signal morphologies.
We start by considering injections with the (2, 2) harmonic
only and then with all other harmonics included in
SEOBNRv5HM. In both cases, the injected signal and
templates have the same harmonic content. In Table II, we
give the merger-ringdown and inspiral SNR of the systems
we consider, assuming an IMR SNR of 175, for both
harmonic content options.

1. (2, 2) only

In Fig. 15, we compare the posterior distributions
obtained for different total masses. Note that, unlike in
previous plots, we show the chirp mass, defined as
Mc ¼ ðm3

1m
3
2=ðm1 þm2ÞÞ1=5, rather than the total mass.

This is the mass combination that is best measured during
the inspiral. We find that, as the total mass decreases, the
chirp mass and the mass ratio are better measured and in
better agreement with the true value. This is because the
fraction of the SNR in the inspiral is larger for lighter
systems, and this is the portion of the signal where our
templates are in better agreement with NR waveforms. In
Fig. 16, we compare the adimensionalized TDI strain A for
the highest likelihood point in each case. The upper panel
focuses on the inspiral, and we can see that the agreement is
better for lighter mass systems. The lower panel focuses
on the merger-ringdown portion [we recall that t=Mt ¼ 0
is the peak of the (2, 2) amplitude], and we can see that
the system with Mt ¼ 2 × 108M⊙ is the one in the best
agreement with the injection, as expected from the fact that
it is the system for which the fraction of SNR in the merger-
ringdown is the largest.
Looking at the caption in Fig. 15, it might appear

surprising that the system with Mt ¼ 2 × 106 is the one

for which the GR deviation parameters are the largest
(while still being very much consistent with 0). The
reason behind it is that the determination of intrinsic
parameters for this system really comes from the inspiral,
and the GR deviation parameters are then estimated to
maximize the match in the merger-ringdown portion
of the signal. In contrast, the intrinsic parameters of
the Mt ¼ 2 × 108M⊙ system are chosen to maximize the
match in the merger-ringdown. This becomes clearer if
we increase the SNR, as in Fig. 17, where we take the
IMR SNR to be 707. The posteriors become thinner and
the intrinsic parameters in the Mt ¼ 2 × 108M⊙ case are
no longer compatible with the true value. Moreover, for
Mt ¼ 2 × 106M⊙, we definitely favor nonzero deviations
from GR. The fact that this is needed to maximize the

TABLE II. Full IMR SNR and its decomposition into the contribution of the merger-ringdown and inspiral stages
for the NR waveform SXS:BBH:2125 [144], assuming a total SNR of 175. We show results both for when only
the (2, 2) mode is considered and when all harmonics modeled in SEOBNRv5HM are included.

Mt;0 ¼ 2 × 106M⊙ Mt;0 ¼ 2 × 107M⊙ Mt;0 ¼ 2 × 108M⊙

IMR Merger-ringdown Inspiral Merger-ringdown Inspiral Merger-ringdown Inspiral

(2, 2) only 175 102 101 161 68 168 49
All harmonics 175 106 140 165 58 171 35

FIG. 15. Corner plot for the parameters estimated using
pSEOBNRv5HM to analyze a mock NR injection for different
total masses, considering only the (2, 2) harmonic and fixing the
SNR of the injection to be 175. Contours show the 68%, 90%,
and 95% confidence intervals, and dashed lines the 0.05 and 0.95
quantiles. In the upper-right part, we show the posterior on the
fractional deviations to GR QNMs.
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match, even for an SNR of 175, is likely a consequence of
the model used for the merger-ringdown [see Eq. (2.3)
and below]. When changing the QNMs, the amplitude
and phase coefficients in Eqs. (2.6a) and (2.6b) change
consistently, possibly providing a better match, in par-
ticular, around the merger, where we use a purely pheno-
menological description, and discrepancies between our
templates and NR waveforms are larger. Moreover, our
model might not be accounting for higher overtones
accurately enough. Therefore, favoring a nonzero value
for the GR deviation parameters does not necessarily
reflect that the physical QNMs are different from the
Kerr ones but rather that, given the functional form
assumed, such QNM values provide overall a better
fit to data. It would be interesting to explore if we still
find such deviations from GR when allowing for the
additional modifications around the merger proposed
in [67].
Finally, in Fig. 18, we show the distribution of

log-likelihood values obtained from running parameter
estimation allowing or not for deviations from GR

(pSEOBNRv5HM versus SEOBNRv5HM) for the three
values of the total mass (fixing the SNR to 175). We find
that, as the total mass decreases, the likelihood values
increase, and allowing for deviations from GR improves
more the fit, in agreement with Fig. 15. We can use the
results shown in this plot to estimate the SNR from which it
will be favored to allow for deviations from GR. For this
purpose, we introduce the Akaike information criterion
(AIC) [146], defined as

AIC ¼ 2np − 2 ln L̂; ð5:1Þ

where L̂ is the maximum likelihood and np is the
number of free parameters. The latter accounts for the

FIG. 16. Comparison between the waveforms of the maximum
likelihood points (from the analyses shown in Fig. 15) and
the injection waveform. We plot the adimensionalized TDI
strain A as a function of time in geometric units to allow for
the comparison between different total masses. (a) Inspiral.
(b) Merger-ringdown.

FIG. 17. The same as Fig. 15 for an IMR SNR of 707.

FIG. 18. Distribution of log-likelihood values when analyzing
with SEOBNRv5HM and pSEOBNRv5HM for different total
masses.
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dimensionality penalty. When choosing between different
models to describe observed data, the one with minimum
AIC is favored. Moreover, we can estimate the log-Bayes
factor between model 1 and model 2 as

lnB ¼ −
1

2
ðAIC1 − AIC2Þ: ð5:2Þ

In [147], we justify the use of the expression above in the
case of Gaussian posteriors and discuss how it relates to
the standard indistinguishability criterion [148–152]. Here,
np is 9 when using SEOBNRv5HM and 11 when using
pSEOBNRv5HM. From the definition of the likelihood
[Eq. (2.14)], we can write the log-likelihood (up to an
additional constant that depends only on the noise proper-
ties of the detector) as

lnL ¼
X

c∈ ½A;E�
ðdcjscðθÞÞ −

1

2
ðdcjdcÞ −

1

2
ðscðθÞjscðθÞÞ ð5:3Þ

¼
X

c∈ ½A;E�
ðdcjdcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðscðθÞjscðθÞÞ

ðdcjdcÞ

s  
ðdcjscðθÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdcjdcÞðscðθÞjscðθÞÞ

p −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdcjdcÞ

ðscðθÞjscðθÞÞ

s
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðscðθÞjscðθÞÞ

ðdcjdcÞ

s !
: ð5:4Þ

For a zero-noise injection, dc ¼ s0;c, and ðdcjdcÞ ¼ SNR2
c

is the SNR of the signal in the TDI channel c. If we vary the
loudness of the injection by changing the distance (as we do
here) and rescale the template by the same factor, which
corresponds to rescaling the distance, then ðdcjdcÞ is the
only term that depends on the SNR. Thus, we get the simple
scaling for the log-likelihood:

lnL ¼ lnL175

�
SNR
175

�
2

: ð5:5Þ

Note that this scaling does not rely on approximating
the likelihood as a Gaussian on the event parameters.
Combining Eqs. (5.1), (5.2), and (5.5), we find that the
log-Bayes factor for pSEOBNRv5HM versus SEOBNRv-
5HM is

lnB¼ðlnL̂pSEOBNRv5HM;175− lnL̂SEOBNRv5HM;175Þ
�
SNR
175

�
2

−ðnp;pSEOBNRv5HM−np;SEOBNRv5HMÞ: ð5:6Þ

In general, it can be difficult to accurately estimate ln L̂
from the MCMC alone, because it lies in the higher-end tail
of the log-likelihood distribution (see Fig. 18). It becomes
harder as the dimensionality of the parameter space
increases. To get a better estimate of the maximum like-
lihood, we start from the Gaussian approximation. Under
this hypothesis,

lnL ¼ ln L̂ −
1

2
θtC−1θ ð5:7Þ

¼ ln L̂ −
1

2

Xnp
i

θ02i
σ02i

; ð5:8Þ

where θ0 are the coordinates of θ in the basis of eigenvectors
of the covariance matrix C and σ02i are the eigenvalues of C.
From Eq. (5.8), we can see that 2ðln L̂ − lnLÞ follows a χ2
distribution with np degrees of freedom. Since the mean of
a χ2 distribution with np degrees of freedom is np, denoting
the mean by h·i, we have

ln L̂ ¼ hlnLi þ np
2
: ð5:9Þ

The mean log-likelihood is less dependent on sampling
the tails of the distribution than the maximum log-
likelihood. Thus, we can use the log-likelihood samples
we get from MCMC to estimate it and then use Eq. (5.9)
to estimate L̂. We recall that our prior on θ is flat, so the
likelihood values obtained with MCMC are fair draws
of the distribution followed by the log-likelihood. In
Fig. 18, we overplot in full lines the probability density
function of the theoretical distribution of log-likelihood
values assuming that lnL ∼ ln L̂ − 1

2
χ2ðnpÞ, and L̂ was

estimated with the procedure described above. We can
see that the agreement between this prediction and the
distribution we obtain with MCMC is remarkable, even
though the likelihood is not actually Gaussian in the
event parameters. Moreover, we have verified that the
integrated weight of the theoretical probability density
function above the maximum likelihood we find with our
MCMC is typically below 1=Ns, where Ns is the number
of MCMC samples. This indicates that our sampling of
the log-likelihood function is compatible with its theo-
retical estimate.
Using this method to estimate L̂, we find that, for

SNR ¼ 175, we have lnB < 0 for all three total masses.
This is in agreement with Fig. 15, where the posteriors
are compatible with GR at least at ∼68% confidence. We
now estimate the SNR for which pSEOBNRv5HM would
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be definitely favored with respect to SEOBNRv5HM.
Following the Kass-Raftery scale [153], we adopt the
criterion lnB > 3 to estimate that a model is favored
with respect to another. For Mt ¼ 2 × 106M⊙, we estimate
SNR≳ 330, and, for Mt ¼ 2 × 107M⊙ and Mt ¼
2 × 108M⊙, SNR≳ 598 and SNR≳ 977, respectively.
These values are in agreement with Fig. 17, where having
a zero value for the GR modifications is supported for
Mt ¼ 2 × 108M⊙, but it is not in the other cases.

2. All harmonics

In Fig. 19, we show the equivalent of Fig. 18 when
including all harmonics, fixing the total IMR SNR to 175.
We consider one extra case: using for the template the
pSEOBNRv5HM model with the (2, 2) QNM fixed to its
Kerr value (i.e., δf22 ¼ δτ22 ¼ 0). The motivation for this
is the following: The rationale for this test of GR is that the
parameters of the binary are measured from the inspiral;
from there, we can estimate the final mass and spin and,
therefore, the QNM spectrum. We then seek to measure
deviations from this spectrum. However, for heavier
systems, most of the information comes from the
merger-ringdown and the measurements are no longer
“independent.” Thus, we want to investigate how the
parameter estimation changes when not allowing for
deviations in the dominant mode.
First, we note that the likelihood values we get when

including all harmonics are lower than when including
only the (2, 2) mode, despite the significant increase in
the number of free parameters in the pSEOBNRv5HM
case (23 versus 11), showing that the agreement with
the injected NR waveform worsens. Focusing on the
SEOBNRv5HM case first (in black), we find that the
hierarchy of likelihood values between the different
total masses is compatible with the values reported in
Table II: The best fit is for the Mt ¼ 2 × 106M⊙ system,
because most of its SNR comes from the inspiral, where
our templates are more reliable. In the pSEOBNRv5HM
case, we find that the quality of the fit improves

significantly, with a larger improvement for more massive
systems. Surprisingly, we find higher likelihood values for
the Mt¼2×107M⊙ system than for the Mt ¼ 2 × 106M⊙
one. This happens because, in the pSEOBNRv5HM case,
the additional parameters allow a substantial improvement
in the match in the merger-ringdown portion of the
signal but not in the inspiral. To better understand this,
we start from Eq. (5.4) and make the assumption that
ðdcjdcÞ ¼ ðs0;cjs0;cÞ ≃ ðscðθ̂Þjscðθ̂ÞÞ, where θ̂ is the maxi-
mum likelihood point. In other words, we assume that the
loudness of the recovered signal is virtually the same
as the one of the injection. If we further assume that
the contribution from each channel is roughly the same,
we can write

ln L̂ ¼ −2SNR2ð1 − FFðs0; hÞÞ; ð5:10Þ

where FF is the fitting factor between the true signal and
our templates defined as the maximized overlap:

FFðs0; hÞ ¼ maxθ Oðs0jhðθÞÞ; ð5:11Þ

Oðh1; h2Þ ¼
ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ

p : ð5:12Þ

In the previous equations, we can split between the
contribution coming from the inspiral (I) and the one
coming from the merger-ringdown (MRD):

ln L̂ ¼ −2ððSNR2ð1 − FFÞÞI þ ðSNR2ð1 − FFÞÞMRDÞ:
ð5:13Þ

From Table II, we see that the fraction of SNR coming
from the merger-ringdown for the Mt ¼ 2 × 107M⊙ sys-
tem is larger than the one coming from the inspiral for the
Mt ¼ 2 × 106M⊙ one. Thus, if introducing the QNM
deviations allows a sufficient improvement in the match
in the merger-ringdown for the Mt ¼ 2 × 107M⊙ system,
we can obtain higher likelihood values for it than for the
Mt ¼ 2 × 106M⊙ system, unlike in the SEOBNRv5HM
case. As in the case of the (2, 2) harmonic only, we can
estimate the SNRs for which pSEOBNRv5HM is favored
with respect to SEOBNRv5HM, now including all har-
monics. Note that now np ¼ 23 for pSEOBNRv5HM. We
find SNR≳ 68, SNR ≳ 93, and SNR ≳ 214 for Mt ¼
2 × 108M⊙, Mt ¼ 2 × 107M⊙, and Mt ¼ 2 × 106M⊙,
respectively. We stress that these values are below the
typical SNRs we expect for MBHBs, in particular, for
sources with Mt ¼ 2 × 106M⊙ and Mt ¼ 2 × 107M⊙.
Systems with Mt ¼ 2 × 108M⊙ could also have SNR
above the respective limit, as is the case for the system
shown in Fig. 14, for which GR is indeed excluded at
more than 95% confidence. Moreover, our estimates are in

FIG. 19. The same as Fig. 18, now including all harmonics and
considering an additional case where δf22 and δτ22 are fixed to 0.
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agreement with the corner plots shown in Figs. 25–27 in
Appendix D, where we show the posterior for the different
total masses in all three scenarios. For an IMR SNR of
175, only the lighter system is compatible with GR in the
pSEOBNRv5HM case. We note that, in Ref. [62], the
authors performed a similar study for LIGO detectors at
design sensitivity and found the GR value of QNMs to
be well within the 90% confidence interval even when
injecting an NR waveform with an SNR of 75. This
result is in qualitative agreement with our estimate of
SNR ≳ 214 for pSEOBNRv5HM to be favored with
respect to SEOBNRv5HM for the Mt ¼ 2 × 106M⊙ sys-
tem, which is the closest one among our systems (in terms
of relative contribution of the inspiral and merger-
ringdown) to the system considered in Ref. [62].
From Figs. 25–27, it is possible to see that the posteriors

in the pSEOBNRv5HM with fixed (2,2) QNM case are
slices of the pSEOBNRv5HM posteriors on the δf22 ¼
δτ22 ¼ 0 hypersurfaces, as they should be. It is harder to
see that the posteriors in the SEOBNRv5HM correspond
indeed to slices of the pSEOBNRv5HM posteriors on
the δflm ¼ δτlm ¼ 0 hypersurfaces, because this slice of
the posterior yields much lower likelihood values than
explored by the sampler in the pSEOBNRv5HM case, as
can be seen from Fig. 19, except in the Mt ¼ 2 × 106M⊙
case (Fig. 27). We find that the chirp mass and the mass
ratio tend to be in “better” agreement with their true
values in the pSEOBNRv5HM fixed (2,2) case than in the
full pSEOBNRv5HM one, but we have no conclusive
evidence of this. The spins are usually wrongly measured,
with only a secondary mode in the SEOBNRv5HM case
for Mt ¼ 2 × 106M⊙ containing the true values. This
suggests that the inclusion of spins in our waveforms
is one of the bottlenecks for performing accurate param-
eter estimation.
It might seem surprising that the likelihood values in the

pSEOBNRv5HM with fixed (2, 2) case are only a little
lower than in the full case, as illustrated in Fig. 19, even
more given that (2, 2) is the dominant mode. A likely
explanation for this is as follows. Deviations in the QNMs
can partially compensate for the misalignment in har-
monics between NR and pSEOBNRv5HM waveforms, as
they change the amplitude and phase of the different
harmonics, and improve the match, reinforcing our claim
in the discussion around Fig. 15: Measuring nonzero GR
deviations does not necessarily mean that the physical
QNMs are different from their predicted Kerr values.
However, the phase shift and the time shift that we fit
when doing parameter estimation are defined with respect
to the peak of the (2, 2) amplitude. Therefore, it is less
crucial to allow for deviations in this harmonic. It would
be interesting to investigate how the match worsens when
fixing other QNMs, in particular, the next-to-dominant
(3, 3), or when fixing several but not all of them. We leave
this for future investigation.

These studies show that, because of the high SNRs that
we will reach with LISA, the accuracy requirement for
waveforms is much more stringent than for current
ground-based detectors. Moreover, our results suggest
that particular attention should be paid to the modeling
of higher harmonics, as their inclusion increases biases,
and of spins, as their measurement tends to be very
biased. Let us stress that even the NR waveforms we
currently use are not accurate enough for SNRs of
thousands [81,152] and would need to be improved by
at least one order of magnitude.

VI. CONCLUSION

Gravitational-wave observations have provided us with
brand-new opportunities to test GR. In particular, ringdown
tests are one of the most promising possibilities to detect
deviations from GR. In this work, we have assessed how a
fully consistent modeling of the IMR signal will allow us to
perform high-precision ringdown tests with MBHB obser-
vations by LISA. To do so, we have performed synthetic
injections of astrophysically realistic systems and analyzed
them with templates in GR (SEOBNRv5HM) and with
parametrized deviations from GR (pSEOBNRv5HM),
using the newly released SEOBNRv5HMwaveform family
[79–82,154]. More specifically, the pSEOBNRv5HM tem-
plates allow for deviations to the QNMs (frequency and
damping time) of all the harmonics included in the model.
All our analyses have been done in a fully Bayesian
framework.
First, we have considered the case where we use the GR

SEOBNRv5HM templates for both the synthetic injection
and the Bayesian analysis. We find that having a consistent
modeling of the whole signal allows us to measure the
parameters of the binary accurately, even for signals with
very little SNR in the inspiral (e.g., very massive MBHBs
with total mass ∼108M⊙). Source-frame masses can
typically be measured within 10% and even within 1%
for systems with total mass ∼107M⊙. Spins can be
measured within 0.1 and down to 0.001 for the primary
BH. Second, we have shown that deviations to the QNMs
of the dominant harmonics [i.e., the (2, 2), (3, 3), (4, 4),
and (5, 5) harmonics] can be constrained within 10% and
down to 1% for systems with total mass of the order of
107M⊙. Those are also the magnitude of deviations that
we could measure in a non-GR signal. Converting the
measurement of fractional deviations into measurements
of QNM frequencies, we find that for most systems we
could accurately measure and distinguish the QNMs
of several harmonics, up to all seven included in the
pSEOBNRv5HM model in the most favorable cases
(i.e., total mass 107M⊙, mass ratio ∼2–4, highly spinning,
and at z ∼ 2).
Then, we have assessed the impact of systematics on

ringdown tests by using NR waveforms to perform synthetic
injections and analyzing them with pSEOBNRv5HM.
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In order to estimate at which SNRs we would expect to
erroneously measure deviations from GR, we have devel-
oped a novel approach based on the Akaike information
criterion. We have found that, in particular, when higher
harmonics are included, parameter estimation is significantly
biased already for SNRs ofOð100Þ, leading to the erroneous
detection of deviations from GR in high SNR signals. The
results we have obtained when using pSEOBNRv5HM for
the injection and the Bayesian analysis give us a sense of
the incredibly high precision to which we will be able to
perform ringdown tests with LISA. However, in order not to
jeopardize those tests, the accuracy of our waveform models
needs to be improved far beyond current standards, which is
one of the major challenges facing the GW community over
the next few years.
In this work, we have focused on MBHB systems that

are in the high-mass end of predictions for LISA obser-
vations, typically produced in astrophysical models where
MBHs form from the evolution of heavy seeds [90]. This is
because those are the ones for which we expect the highest
SNR in the merger-ringdown [74,75]. However, it would be
interesting to assess how observations of lighter systems,
which might be more numerous, could be used to detect
deviations from GR in the ringdown. Also, we have
neglected the effect of spin precession and eccentricity,
which might not be appropriate, in particular, if MBHBs
harden through triplet interactions [86]. Finally, the wave-
form model we used in this work allows for deviations
from GR only in the ringdown, whereas, if deviations are
present, we should expect them to affect the whole signal.
Different theory-agnostic formalisms have been proposed
to account for deviations in the inspiral [155–157], typi-
cally by modifying the post-Newtonian expansion of the
GW phase [158], and progress has recently been made to
account for deviations in the plunge-merger stage [67]. It
would be interesting to assess how to link modifications in
different parts of the signal or at least to assess how the
constraints change when accounting for all possible mod-
ifications. We leave these studies for future work.
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APPENDIX A: SETTINGS FOR THE SEOBNR
WAVEFORMS

SEOBNR waveforms are generated by numerically
integrating the EOB equations of motion (e.g., see
Ref. [81]). They are computed up to a given accuracy that
depends on the tolerance used in the integration. As a
consequence, at fixed tolerance, the waveform function is
not smooth on the manifold of waveform parameters, and
the inner product between waveforms [Eq. (2.12)] is an
oscillating function on that manifold. For low-SNR sys-
tems, these oscillations are negligible, since they corre-
spond to very small changes in the likelihood between
neighboring points, but for high SNRs these oscillations
become important. This is illustrated in Fig. 20, where we
plot the log-likelihood as a function of χ2 for “standard-
tolerance” and “low-tolerance” waveforms, keeping all the
other parameters at their true value. When using the
standard tolerance, the likelihood shows many local
extrema and can reach very small values even close to
the synthetic injection (indicated by the blue line). For
comparison, the minimum log-likelihood in the parameter
estimation runs done for this paper are typically ∼ − 15.
The smoothness of the log-likelihood improves signifi-
cantly when using low-tolerance waveforms. The counter-
part of this improvement is a slowing down of the
waveform computation. Our low-tolerance waveforms
are ∼5 times slower to compute than the ones with the
standard SEOBNRv5HM configuration. We stress that the
effect of these oscillations is exaggerated by looking at one
slice of the parameter space (i.e., keeping all the other
parameters fixed). Variations in other parameters compen-
sate for these oscillations and make these local extrema less

FIG. 20. Log-likelihood as a function of χ2 when using two
different tolerances, when integrating the EOB equations of
motion, for a system with Mt;0¼2×108M⊙, χ1;0 ¼ χ2;0 ¼ 0.9,
q0 ¼ 2, z0 ¼ 2.2, and SNR ¼ 623. When using waveforms
computed with standard tolerance, the likelihood can be a very
nonsmooth function of the binary parameters, inducing secon-
dary maxima and yielding very small values even close to the
injected value.
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pronounced. However, as we show in Fig. 21, the
existence of several local extrema makes the posterior
non-Gaussian and the marginal one-dimensional distri-
butions can peak away from the true value. This is similar
to the effect discussed in Sec. V C in Ref. [113] in the
context of sky localization with LISA. For the system
shown in Fig. 21, this apparent bias disappears when
using low-tolerance waveforms. Let us stress that this
apparent bias is an effect of projecting a non-Gaussian
posterior onto one-dimensional posteriors. As indicated
by the black and red lines, in each case, the maximum-
posterior points found by our sampler are close to the
injection point, as expected when using flat priors. All the
results presented in the main body of this paper were
obtained using low-tolerance waveforms.
For some systems, this apparent bias persists even

when using low-tolerance waveforms, as shown in Fig. 22.
In order to further validate the argument that this is
caused by the nonsmoothness of the waveform across
parameter space, we compare to the results obtained
using the IMRPhenomTHM waveform model [91]. This
is an IMR time-domain approximant, built from a

phenomenological approach, in the spirit of the fre-
quency-domain approximants of the phenomenological
family of templates [92–94,161–163]. It is based on
post-Newtonian expressions [158] augmented by phenom-
enological terms fitted against NR simulations and also
calibrated to SEOBNR waveforms (where NR data are
not available). It includes the same harmonics as
pSEOBNRv5HM, except for the subdominant (3,2)
and (4,3) harmonics. For nonprecessing systems, the
waveform is an analytic smooth function of the wave-
form parameters. Thus, the likelihood function is smooth
across the parameter space, and we observe no apparent
bias, even when looking at one-dimensional projections,
as can be seen from Fig. 22. We stress that, after the
waveform has been generated in the time domain, the
steps to compute the likelihood and perform parameter
estimation are exactly the same for the two models.

APPENDIX B: COMPARISON OF
MEASUREMENTS TO IMRPHENOMTHM

Here, we run Bayesian analyses for all the binary systems
described in Sec. III using the IMRPhenomTHM waveform,
for both the synthetic injection and parameter estimation.We
restrict ourselves to the GR case. In Fig. 23, we show how

FIG. 22. Comparison of the parameter estimation results
obtained using low-tolerance SEOBNRv5HM waveforms (black)
and IMRPhenomTHM (red) waveforms for a system with
Mt;0 ¼ 2 × 108M⊙, χ1;0 ¼ 0.2, χ2;0 ¼ 0.1, q0 ¼ 2, z0 ¼ 2.2,
and SNR ¼ 241. The latter shows no apparent bias when looking
at one-dimensional marginalized posteriors, because the IM-
RPhenomTHM waveform is a smooth function across the
parameter space, and so is the likelihood, and for high SNRs
the posterior is fairly Gaussian.

FIG. 21. Comparison between parameter estimation results
when using low-tolerance waveforms (black) and standard ones
(red) for the same system as in Fig. 20. Blue lines indicate the
injection point; black and red symbols indicate the maximum-
posterior point of the low-tolerance and standard-tolerance runs,
respectively. The nonsmoothness of the likelihood function
illustrated in Fig. 20 induces secondary maxima over the
parameter space. Those lead to very non-Gaussian distributions
and induce an apparent bias when projecting onto one-
dimensional posteriors. However, as indicated by the black
and red lines, the maximum-posterior point is close to the
synthetic injection, as expected when using flat priors.
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the measurement errors on intrinsic parameters compare when using the IMRPhenomTHM and the SEOBNRv5HM
waveforms. Black lines correspond to y ¼ x. We see that the estimates are in good agreement, with a slight discrepancy for the
error on spins, in particular, in the case of high-spin systems (circles). In this regime, our current waveforms are less accurate,
so the agreement between them is worse (see also comparisons between these two waveform models in Ref. [81]).

APPENDIX C: ERRORS ON INTRINSIC PARAMETERS
WHEN ALLOWING FOR DEVIATIONS TO GR

We show in Fig. 24 the error on intrinsic parameters in the case we inject a GR signal and allow for deviations from GR
when performing the Bayesian analysis, complementing the results in Sec. IV B 1. Black lines indicate y ¼ x. All
measurements worsen due to the higher number of parameters but remain comparable to the pure GR case.

FIG. 23. Comparison between the measurement errors with SEOBNRv5HM (x axes) and with IMRPhenomTHM (y axes). Black lines
show y ¼ x. Errors are similar, with a slightly higher discrepancy for the spins, in particular, for high-spin systems (circles).
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APPENDIX D: IMPACT OF SYSTEMATICS: CORNER PLOTS

We show here the corner plots comparing the posteriors in the three scenarios considered in Sec. V B for the three choices
of total mass.

FIG. 24. Comparison of the measurement error on intrinsic parameters when setting deviation parameters to 0 (x axes) and when
letting them vary (y axes) for a GR injection. Black lines show y ¼ x. Measurements worsen when allowing for deviations from GR to
vary but remain comparable to the GR case.
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FIG. 26. The same as Fig. 25 for Mt ¼ 2 × 107M⊙.

FIG. 25. Corner plot for the parameters estimated in three different scenarios for a total mass of 2 × 108M⊙ including all harmonics of
SEOBNRv5HM and fixing the SNR of the injection to be 175. Contours show the 68%, 90%, and 95% confidence intervals, and dashed
lines the 0.05 and 0.95 quantiles.

MEASURING SOURCE PROPERTIES AND QUASINORMAL MODE … PHYS. REV. D 109, 104019 (2024)

104019-25



[1] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 109, 022001 (2024).

[2] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), Phys. Rev. X 13, 041039 (2023).

[3] J. Aasi et al. (LIGO Scientific Collaboration), Classical
Quantum Gravity 32, 074001 (2015).

[4] F. Acernese et al. (Virgo Collaboration), Classical Quan-
tum Gravity 32, 024001 (2015).

[5] T. Akutsu et al. (KAGRA Collaboration), Prog. Theor.
Exp. Phys. 2021, 05A101 (2021).

[6] A. H. Nitz, S. Kumar, Y.-F. Wang, S. Kastha, S. Wu, M.
Schäfer, R. Dhurkunde, and C. D. Capano, Astrophys. J.
946, 59 (2023).

[7] S. Olsen, T. Venumadhav, J. Mushkin, J. Roulet, B. Zackay,
and M. Zaldarriaga, Phys. Rev. D 106, 043009 (2022).

[8] B. P. Abbott et al. (KAGRA, LIGO Scientific, and Virgo
Collaborations), Living Rev. Relativity 21, 3 (2018).

[9] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. Lett. 818, L22 (2016).

[10] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. Lett. 882, L24 (2019).

[11] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. Lett. 913, L7 (2021).

[12] R. Abbott et al. (KAGRA, Virgo, and LIGO Scientific
Collaborations), Phys. Rev. X 13, 011048 (2023).

[13] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. Lett. 900, L13 (2020).

[14] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 161101 (2017).

[15] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 121, 161101 (2018).

[16] B. P. Abbott et al. (LIGO Scientific, Virgo, 1M2H, Dark
Energy Camera GW-E, DES, DLT40, Las Cumbres
Observatory, VINROUGE, MASTER Collaborations),
Nature (London) 551, 85 (2017).

[17] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi GBM,
INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride
Imager Team, IPN, Insight-Hxmt, ANTARES, Swift,
AGILE Team, 1M2H Team, Dark Energy Camera GW-
EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, AS-
KAP, Las Cumbres Observatory Group, OzGrav, DWF
(Deeper Wider Faster Program), AST3, CAASTRO,
VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR,
CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS,
MAXI Team, TZAC Consortium, KU, Nordic Optical
Telescope, ePESSTO, GROND, Texas Tech University,
SALT Group, TOROS, BOOTES, MWA, CALET, IKI-
GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre
Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra
Team at McGill University, DFN, ATLAS Telescopes,

FIG. 27. The same as Fig. 25 for Mt ¼ 2 × 106M⊙.

TOUBIANA, POMPILI, BUONANNO, GAIR, and KATZ PHYS. REV. D 109, 104019 (2024)

104019-26

https://doi.org/10.1103/PhysRevD.109.022001
https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1093/ptep/ptaa125
https://doi.org/10.1093/ptep/ptaa125
https://doi.org/10.3847/1538-4357/aca591
https://doi.org/10.3847/1538-4357/aca591
https://doi.org/10.1103/PhysRevD.106.043009
https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.3847/2041-8205/818/2/L22
https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.3847/2041-8213/abe949
https://doi.org/10.1103/PhysRevX.13.011048
https://doi.org/10.3847/2041-8213/aba493
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1038/nature24471


High Time Resolution Universe Survey, RIMAS, RATIR,
SKA South Africa/MeerKAT Collaborations), Astrophys.
J. Lett. 848, L12 (2017).

[18] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 221101 (2016); 121, 129902(E)
(2018).

[19] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 100, 104036 (2019).

[20] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 103, 122002 (2021).

[21] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), Phys. Rev. D (to be published).

[22] C. V. Vishveshwara, Nature (London) 227, 936 (1970).
[23] W. H. Press and S. A. Teukolsky, Astrophys. J. 185, 649

(1973).
[24] S. Chandrasekhar and S. L. Detweiler, Proc. R. Soc. A 344,

441 (1975).
[25] K. D. Kokkotas and B. G. Schmidt, Living Rev. Relativity

2, 2 (1999).
[26] V. Ferrari and L. Gualtieri, Gen. Relativ. Gravit. 40, 945

(2008).
[27] E. Berti, V. Cardoso, and A. O. Starinets, Classical

Quantum Gravity 26, 163001 (2009).
[28] B. Carter, Phys. Rev. Lett. 26, 331 (1971).
[29] J. Healy, T. Bode, R. Haas, E. Pazos, P. Laguna, D.

Shoemaker, and N. Yunes, Classical Quantum Gravity 29,
232002 (2012).

[30] M.W. Horbatsch and C. P. Burgess, J. Cosmol. Astropart.
Phys. 05 (2012) 010.

[31] E. Berti, V. Cardoso, L. Gualtieri, M. Horbatsch, and U.
Sperhake, Phys. Rev. D 87, 124020 (2013).

[32] T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102
(2014).

[33] K. Yagi, L. C. Stein, and N. Yunes, Phys. Rev. D 93,
024010 (2016).

[34] E. Barausse and K. Yagi, Phys. Rev. Lett. 115, 211105
(2015).

[35] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E.
Berti, Phys. Rev. Lett. 120, 131104 (2018).

[36] C. A. R. Herdeiro, E. Radu, N. Sanchis-Gual, and J. A.
Font, Phys. Rev. Lett. 121, 101102 (2018).
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