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The decay behavior of a massless scalar field in the Schwarzschild-de Sitter spacetime is well-known to
follow an exponential law at asymptotically late times t → ∞. In contrast, a massive scalar field in the
asymptotically flat Schwarzschild background exhibits a decay with oscillatory (sinusoidal) tails enveloped
by a power law. We demonstrate that the asymptotic decay of a massive scalar field in the Schwarzschild-de
Sitter spacetime is exponential. Specifically, if μM ≫ 1, where μ andM represent the mass of the field and
the black hole, respectively, the exponential decay is also oscillatory. Conversely, in the regime of small
μM, the decay is purely exponential without oscillations. This distinction in decay regimes underscores the
fact that, for asymptotically de Sitter spacetimes, a particular branch of quasinormal modes, instead of a
“tail,” governs the decay at asymptotically late times. There are two branches of quasinormal modes for the
Schwarzschild-de Sitter spacetime: the modes of an asymptotically flat black hole corrected by a nonzeroΛ
term, and the modes of an empty de Sitter spacetime corrected by the presence of a black hole. We show
that the latter branch is responsible for the asymptotic decay. When μM is small, the modes of pure de Sitter
spacetime are purely imaginary (nonoscillatory), while at intermediate and large μM they have both real
and imaginary parts, what produces the two pictures of the asymptotic decay. In addition, we show that the
asymptotic decay of charged and higher-dimensional black hole is also exponential.

DOI: 10.1103/PhysRevD.109.104018

I. INTRODUCTION

The evolution of perturbations around a number of
asymptotically flat black hole solutions can be condition-
ally divided into three stages: the initial outburst, dependent
upon the initial conditions for the perturbations; the
damped oscillations governed by the quasinormal modes;
and, at asymptotically late times t → ∞, the power-law
decay. For massless scalar and gravitational fields in the
Schwarzschild background, the decay law is given by [1]

Ψ ∝ t−ð2lþ3Þ; t → ∞: ð1Þ

J. Bičák found that the asymptotic decay in the Reissner-
Nordström background is also power-law [2],

Ψ ∝ t−ð2lþ2Þ; if Q < M; ð2Þ

Ψ ∝ t−ðlþ2Þ; Q ¼ M: ð3Þ

For a massive field in the asymptotically flat
Schwarzschild (or Reissner-Nordström) black hole space-
time, the decay at asymptotically late times is qualitatively
different. It is oscillatory with a power-law envelope,

Ψ ∝ t−5=6 sinðμtÞ; t → ∞: ð4Þ

This kind of oscillatory tails was also observed for a scalar
[3–5], Proca [6], and Dirac fields [7], and for a massive
graviton in the Randall-Sundrum models [8] and massive
gravity [9], though the law is different for brane localized
black holes [10]. The power-law enveloping decay rate
might be slightly different at intermediate times, following
the ringdown phase, but before the asymptotic falloff. Thus,
for a massive scalar field, the decay law at intermediate
times is [11]

Ψ ∝ t−l−3=2 sinðμtÞ; ð5Þ

where l is the multipole number. Observational aspects for
massive fields in experiments with very long waves [12]
was discussed in [9].
It was shown long ago that in asymptotically de Sitter

spacetimes, the asymptotic decay law for massless scalar
and gravitational fields is purely exponential (nonoscilla-
tory) [13]. Additionally, it was known that fields of various
spins in empty de Sitter space are characterized by
quasinormal modes which can be found exactly [14,15].
However, only recently was it demonstrated that the
asymptotic purely exponential falloff of gravitational
[16] and massless scalar [17] fields in Schwarzschild–de*roman.konoplya@gmail.com
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Sitter spacetime is, in fact, the branch of (nonoscillatory)
quasinormal modes of pure de Sitter space, deformed by
the presence of a black hole. This new branch of modes,
irrespective of the question of asymptotic decay, was first
found for a massless scalar field in the Schwarzschild–
de Sitter background [18]. The idea that the signal can
be expanded into a set of quasinormal modes in the
asymptotic regime was also elucidated in some mathemati-
cal works [19–23], at least for some fields and ranges
of parameters.
Despite the enormous number of interesting publica-

tions on the evolution of perturbations and quasinormal
modes of asymptotically de Sitter black holes (see, for
instance, [24–27] and references therein), to the best of our
knowledge, the question of quantifying and interpreting the
decay of a massive field at asymptotically late times t → ∞
has not been fully answered so far. Here, we will try to fill
this gap and show that the quasinormal spectrum of pure de
Sitter space, deformed by the presence of a black hole,
governs the asymptotic decay of a massive scalar field.
Unlike the massless case, there are different regimes of this
decay depending on the values of μM and Λ. Additionally,
we will demonstrate that, rather unexpectedly, the Wentzel-
Kramers-Brillouin (WKB) method is quite accurate in the
regime μM ≫ 1 and nonzero Λ term because the effective
potential has a single maximum between the event and
cosmological horizon in this case.
The paper is organized as follows. In Sec. II, we briefly

review the wave equation and the method used for the
analysis of the late-time decay, while Secs. III and IV
are devoted to the analysis of asymptotic decay in D ¼ 4
and D > 4 dimensional spacetimes, respectively. In the
Conclusion, we summarize the obtained results.

II. THE METRIC AND THE WAVE EQUATION

The D-dimensional Schwarzschild–de Sitter black hole
is described by the metric,

ds2 ¼ fðrÞdt2 − dr2

fðrÞ − r2dσD−2; ð6Þ

where

fðrÞ ¼ 1 −
2M
rD−3 −

2Λr2

ðD − 2ÞðD − 1Þ :

For the most part of this work, we will consider the D ¼ 4
case, where M represents the black hole’s mass, and Λ is
the cosmological constant.
The Klein-Gordon equation for a massive scalar field in a

curved spacetime is given by

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ − μ2Φ ¼ 0; ð7Þ

which can be reduced to the following master wavelike
equation:

∂
2Ψ
∂r2�

−
∂
2Ψ
∂t2

− VðrÞΨ ¼ 0; ð8Þ

Here, the “tortoise coordinate” r� is defined as follows:

dr� ≡ dr
fðrÞ : ð9Þ

The effective potential takes the form (see, for in-
stance, [28]),

VðrÞ ¼ fðrÞ
�ðD − 2Þf0ðrÞ

2r
þ ðD − 4ÞðD − 2ÞfðrÞ

4r2
þ lðDþ l − 3Þ

r2
þ μ2

�
; ð10Þ

where l is the multipole number resulting from the
separation of the angular variables θ and ϕ, and μ is the
mass of the field. We will be using units M ¼ 1.
The effective potentials for a scalar field are shown in

Fig. 1, where one can see that while for zero and small μM
the effective potential has a negative gap at a distance from
the black hole, at larger μM the gap disappears.

III. METHODS

Quasinormal modes of an asymptotically de Sitter black
holes are proper oscillation frequencies ω for which Ψ
satisfies the following boundary conditions purely ingoing
wave at the event horizon and purely outgoing waves at the
de Sitter horizon. Depending on the value of μM different
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FIG. 1. Effective potential for the l ¼ 0 massive scalar field in
the background of theD ¼ 4 Schwarzschild–de Sitter black hole.
From bottom to top: μM ¼ 0 (bottom), 0.1, and 0.2 (top),
ΛM2 ¼ 0.1.
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methods can be efficient. Here we will briefly review the
three used methods; time-domain integration, WKB
method and the Bernstein polynomial method.

A. Time-domain integration

Asymptotic tails could be constructed for this process via
integration of the above wavelike equation in the time
domain at some fixed value of the radial coordinate. For
this purpose, we use the null-cone variables u ¼ t − r� and
v ¼ tþ r� and the Gundlach-Price-Pullin discretization
scheme [29],

ΨðNÞ ¼ ΨðWÞ þ ΨðEÞ −ΨðSÞ

− Δ2VðSÞΨðWÞ þ ΨðEÞ
4

þOðΔ4Þ: ð11Þ

Here, the points are designated as follows: N ≡ ðuþ Δ;
vþ ΔÞ, W ≡ ðuþ Δ; vÞ, E≡ ðu; vþ ΔÞ, and S≡ ðu; vÞ.
An essential aspect of computations involves the highly

precise construction of the effective potential as a function
of the tortoise coordinate r�. Such precision is crucial at this
stage to prevent the accumulation of numerical errors in
subsequent integration steps. One approach is to integrate
Eq. (9), derive r� as a function of r, and then use the inverse
function to construct the effective potential. However, a
more efficient method, which we employ here, is to treat
Eq. (9) as a nonlinear differential equation r0ðr�Þ ¼ fðrÞ
and integrate it using the built-in function NDSolve in
Mathematica, thereby obtaining the function rðr�Þ. This
approach immediately provides us with the effective
potential as a function of the tortoise coordinate.
The dominant quasinormal frequencies can be extracted

from the time-domain profiles using the Prony method
[30]. Although the Prony method typically cannot extract
higher overtones, it accurately determines the dominant
modes, except for l ¼ 0 cases where the ringing period
comprises only a few oscillations. However, even in such
cases, the modes governing the asymptotic decay are well-
determined, and it’s noticeable that altering the fitting
period via the Prony method to reproduce ω does not
change the results for the obtained dominant frequencies.
To ensure the stability of our results, we also reduce the
integration step and overall precision of the procedure,
verifying that neither the time-domain profile nor the
extracted frequencies change significantly.
This method has been used with confirmed high accu-

racy in a number of works (for instance, [31–34]), so we
refer the reader to these works and references therein.

B. WKB method

In the frequency domain for large and intermediate μM,
we used the WKB method [28,35,36], based on the
expansion of the solution in the sixth-order WKB series
in the asymptotic regions (near the event horizon and at the
de Sitter horizon) and matching them with the Taylor

expansion near the peak of the effective potential. This is
possible because for μM larger than some critical value and
nonzero cosmological constant the effective potential has a
single maximum and decays monotonically at the event and
de Sitter horizons. For small and zero μM the effective
potential has a negative gap and there are three turning
points in this case, making the WKB method much less
accurate.
The semianalytic WKB approach was first applied by

Will and Schutz [35] to determine quasinormal frequencies.
Later, the Will-Schutz formula was extended to higher
orders [28,36,37] and considerably improved by imple-
menting the Padé approximants [37,38].
The general form of the WKB formula has the form (see,

for instance [39]),

ω2 ¼ V0þA2ðK2ÞþA4ðK2ÞþA6ðK2Þþ…

− iK
ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p
ð1þA3ðK2ÞþA5ðK2ÞþA7ðK2Þþ…Þ;

ð12Þ
where K ¼ nþ 1=2 is a half-integer. The corrections
AkðK2Þ, of order k are polynomials of K2 with rational
coefficients. These corrections depend on the values of
higher derivatives of the potential VðrÞ at the maximum.
We will use here a more accurate extension of the method
by Matyjasek and Opala [37] who suggested to apply Padé
approximants. We employ the sixth-order WKB method
with m̃ ¼ 4; 5, where m̃ is defined in [37,39], because this
choice is the most accurate in the Schwarzschild limit.
Application of the Padé approximant to the WKB expan-
sion [37] diminishes the relative error usually by quite a few
times. The higher WKB method with Padé approximants
have been effectively used in a great number of recent
works (for example, [40–42]). Therefore, we do not repeat
technical aspects of this method here. For more references
and details, see a review in [39].

C. Bernstein polynomial method

In the regime of small μM, the method based on the
expansion of the solution into Bernstein polynomials [43]
is an effective tool. The details of this method, when
applied to asymptotically de Sitter black holes, can be
found in [44].
For asymptotically de Sitter spacetimes the purely out-

going wave is required at the de Sitter horizon. Following
the procedure suggested in [43], we introduce a new
compact coordinate as follows:

u≡
1
r −

1
R

1
rþ
− 1

R

; ð13Þ

whereR is de Sitter radius and rþ is the event horizon radius.
Then we define the new function ψðuÞ, which is regular at
0 ≤ u ≤ 1, provided ω is a quasinormal frequency,
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ΨðuÞ ¼ u−iΩcðωÞð1 − uÞ−iΩþðωÞψðuÞ: ð14Þ

Here ΩcðωÞ and ΩþðωÞ are obtained from the characteristic
equations at the singular points, u ¼ 0 and u ¼ 1, of the
wavelike equation.
In order to satisfy the quasinormal mode boundary

conditions, we choose the values of ΩcðωÞ and ΩþðωÞ,
in such a way that,

dΩc

dω
> 0;

dΩþ
dω

> 0: ð15Þ

Then, the function ψðuÞ can be written as the following
sum,

ψðuÞ ¼
XN
k¼0

CkBN
k ðuÞ; ð16Þ

where

BN
k ðuÞ≡ N!

k!ðN − kÞ! u
kð1 − uÞN−k

are the Bernstein polynomials.
Substituting (14) into the wave equation and using a

Chebyshev collocation grid of N þ 1 points,

up ¼ 1 − cos p·πN
2

¼ sin2
p · π
2N

; p ¼ 0; N;

we obtain a set of linear equations with respect toCk, which
has nontrivial solutions if the corresponding coefficient
matrix is singular. Since the elements of the coefficient
matrix are polynomials (of degree 2) of ω, the problem is
reduced to the eigenvalue problem of a matrix pencil (of
order 2) with respect to ω, which is solved numerically.
Then, we calculate the coefficients Ck and explicitly
determine the polynomial (16), which serves as an approxi-
mation for the solution to the wave equation.
For excluding of the spurious eigenvalues, which appear

due to finiteness of the polynomial basis in (16) and do not
represent true quasinormal modes, we compare both the
eigenfrequencies and corresponding approximating poly-
nomials at various N. First, from each set of the solutions
we take the eigenvalues that differ less than the required
accuracy. Then, following [16], for each pair of the
corresponding eigenfunction, ψ ð1Þ and ψ ð2Þ, one finds

1 −
jhψ ð1Þjψ ð2Þij2
kψ ð1Þk2kψ ð2Þk2 ¼ sin2 α;

where α is the angle between the vectors ψ ð1Þ and ψ ð2Þ in the
L2-space. If all values of α are sufficiently small, then the
obtained eigenvalues ω are reliable approximation for
quasinormal frequencies, and the larger N is, the better
approximation we have.

IV. DECAY AT ASYMPTOTICALLY LATES

First of all, we will consider the limit μM ≫ 1, where the
effective potential has a single maximum, and the WKB
method can be applied for checking the time-domain
integration. In a semilogarithmic plot in Fig. 2, it can be
seen that at asymptotic times, the decay is oscillatory with
an exponential envelope, suggesting the interpretation that
the signal is represented in terms of quasinormal modes at
asymptotic times. A similar behavior takes place for
intermediate values of μM, as shown in Fig. 3. However,
we can observe that a particular mode dominates in the
asymptotic decay. The real oscillation frequency, given by
ReðωÞ, is roughly proportional to μ, while the damping
rate almost does not change when μ is increased, what
can be seen on Figs. 5–7. We also notice that once the

FIG. 2. Time domain profile for the l ¼ 0 massive scalar field
in the background of the D ¼ 4 Schwarzschild-de Sitter black
hole: μM ¼ 10, ΛM2 ¼ 0.01. The asymptotic decay is governed
by the quasinormal frequency ωM ¼ 7.43036 − 0.0384134i.
Time t is measured in units of mass M ¼ 1.

FIG. 3. Time domain profile for the l ¼ 0 massive scalar field
in the background of the D ¼ 4 Schwarzschild-de Sitter black
hole: μM ¼ 1, ΛM2 ¼ 0.11. The asymptotic decay is governed
by the quasinormal frequency ωM ¼ 0.057035 − 0.009589i.
Time t is measured in units of mass M ¼ 1.
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cosmological constant goes to zero,

ωn¼0 → μ; Λ → 0: ð17Þ
In the limit of the extreme black hole, when the event

horizon radius approaches the cosmological horizon, qua-
sinormal frequencies tend to zero,

ωn¼0 → 0; Λ → Λext; ð18Þ
which is in agreement with [45].
To understand to which of the two branches of the

Schwarzschild–de Sitter quasinormal spectrum the above
modes belong, we need to remember that in the limit
Λ → 0, quasinormal modes of a massive field exhibit
peculiar behavior; the damping rate of each mode dimin-
ishes when μM is increased, such that every mode, for some
particular threshold values of μM, has a vanishing damping
rate. This phenomenon is called quasiresonances [46], and
in [47], it was shown that no such effect is possible for

FIG. 4. Time domain profile for the l ¼ 0 massive scalar field
in the background of the D ¼ 4 Schwarzschild–de Sitter black
hole: μM ¼ 0.1, ΛM2 ¼ 0.11. The asymptotic decay is governed
by the quasinormal frequency ωM ¼ −0.001933i. Time t is
measured in units of mass M ¼ 1.
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FIG. 5. Quasinormal frequencies governing the asymptotic decay at l ¼ 0; 1; 20 from bottom to top for the D ¼ 4 Schwarzschild–de
Sitter black hole, μM ¼ 10.
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FIG. 6. Real (left panel) and imaginary (right panel) parts of quasinormal frequencies governing the asymptotic decay at l ¼ 0 for
D ¼ 5 dimensional Schwarzschild–de Sitter black hole; μM ¼ 5 and μM ¼ 10, from bottom to top. The damping rate for different μM
is almost indistinguishable.
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asymptotically de Sitter black holes. Moreover, in [48], it
was shown that in the regime of large μM, the fundamental
frequencies go toω → μ only inD > 5, while inD ¼ 4 and
5, this is not the case. Notice that the quasiresonances may
not exist even in the background of asymptotically flat
black holes [49].
In the limit μM ≪ 1, the modes become purely imagi-

nary (nonoscillatory), as can be seen in Table II and Fig. 4,
while the Schwarzschild’s modes in this regime are
oscillatory. Notice that similar purely exponential non-
oscillatory tails are observed for lower-dimensional asymp-
totically de Sitter spacetime [50,51].
In the limit μM ≠ 0 and Λ → 0, the modes do not go

over into the Schwarzschild ones for a massive field,
neither for large nor for small values of μM.
When Λ ≠ 0 and μM → 0 from Table II, we can see

that the frequencies governing the asymptotic decay do not
transition to the quasinormal modes of the massless scalar
field in the Schwarzschild–de Sitter background.
On the other hand, in the limit of a vanishing black

hole mass M → 0, the quasinormal modes of the empty
de Sitter spacetime can be found exactly in the following
form [14,15]:

iωnR ¼ lþ 2nþD − 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2

4
− μ2R2

r
; ð19Þ

for

ðD − 1Þ2
4

> μ2R2; ð20Þ
and as follows:

iωnR ¼ lþ 2nþD − 1

2
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2R2 −

ðD − 1Þ2
4

r
; ð21Þ

for

ðD − 1Þ2
4

< μ2R2: ð22Þ

Here, R ¼ ffiffiffiffiffiffiffiffiffi
3=Λ

p
is the de Sitter radius.

One can notice that in the case of small μM, the
quasinormal modes of the pure de Sitter space are purely
imaginary, which is in concordance with the limit μ → 0 for
which nonoscillatory exponential modes dominate in the
asymptotic decay [16].
We can observe that for the fundamental quasinormal

mode of the empty de Sitter spacetime with μ ¼ 0.05
and ΛM2 ¼ 0.005, ωn¼0 ¼ −0.0258819i, while for μM ¼
0.05 of Schwarzschild–de Sitter spacetime, according to
Table II, we have ωn¼0 ¼ −0.025295i. This signifies that
for small μM, the quasinormal modes of black holes tend to
the modes of pure de Sitter space.
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FIG. 7. Real (left panel) and imaginary (right panel) parts of quasinormal frequencies governing the asymptotic decay at l ¼ 0 for
D ¼ 6 dimensional Schwarzschild–de Sitter black hole; μM ¼ 5 and μM ¼ 10, from bottom to top. The damping rate for different μM
is almost indistinguishable.

TABLE I. Quasinormal modes ωM governing the asymptotic decay in the regime μM ≫ 1 found by the fitting of the time-domain
integration at about t=M ∼ 800 and via the sixth-order WKB method with the Padé approximants.

ΛM2 μM ¼ 10 (TD) μM ¼ 10 (WKB) μM ¼ 20 (TD) μM ¼ 20 (WKB) μM ¼ 30 (TD) μM ¼ 30 (WKB)

0.01 7.430359 − 0.038413i 7.428721 − 0.037140i 14.862790 − 0.037103i 14.857448 − 0.037143i 22.304228 − 0.037053i 22.286173 − 0.037143i
0.02 6.598719 − 0.046644i 6.598255 − 0.046652i 13.200346 − 0.046623i 13.196609 − 0.046656i 19.807592 − 0.046561i 19.794941 − 0.046657i
0.04 5.372423 − 0.053709i 5.372165 − 0.053718i 10.746621 − 0.053688i 10.744606 − 0.053722i 16.123812 − 0.053660i 16.116986 − 0.053723i
0.06 4.308859 − 0.052767i 4.308733 − 0.052770i 8.6189063 − 0.052758i 8.617865 − 0.052773i 12.930437 − 0.052722i 12.926908 − 0.052774i
0.08 3.220306 − 0.045542i 3.220251 − 0.045543i 6.4413764 − 0.045540i 6.440942 − 0.045545i 9.6630035 − 0.045527i 9.661535 − 0.045545i
0.09 2.604175 − 0.039064i 2.604148 − 0.039065i 5.2089387 − 0.039062i 5.208710 − 0.039066i 7.8139577 − 0.039054i 7.813180 − 0.039066i
0.10 1.857488 − 0.029372i 1.857478 − 0.029372i 3.7153769 − 0.029370i 3.715294 − 0.029373i 5.5733168 − 0.029368i 5.573035 − 0.029373i
0.11 0.578221 − 0.009591i 0.578238 − 0.009590i 1.1565626 − 0.009591i 1.156595 − 0.009590i 1.7348824 − 0.009592i 1.734925 − 0.009590i
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To determine which branch of modes, either de Sitter or
Schwarzschild, governs the asymptotic decay at intermedi-
ate μM, we calculate the dominant quasinormal modes of
both branches for fixed ΛM2 and various μM, from μM ¼
0.06 to μM ¼ 0.07. This way we can see in detail the
transition to an oscillatory regime. The results are sum-
marized in Table III. It is evident from the table that the
fundamental mode of the Schwarzschild branch remains
almost unchanged, whereas the de Sitter mode transitions
gradually from a purely nonoscillatory state (at zero mass)
to an oscillatory regime. During this transition two purely
imaginary modes merge to a pair of complex conjugate
modes with opposite signs of ReðωÞ. The same takes place
for a modes of empty de Sitter spacetime, as can be
seen from Eq. (19). Notice also that the transition to
the oscillatory regime occurs in pure de Sitter space at
μ ≈ 0.061237 which is very close to the point of transition
in Schwarzschild–de Sitter μ ≈ 0.0607 (M ¼ 1).

Overall, we conclude that quasinormal frequencies domi-
nating in the asymptotic decay of amassive scalar field in the
D ¼ 4 Schwarzschild–de Sitter background are nonpertur-
bative inΛ. In other words, the branch ofmodes representing
the empty de Sitter spacetime but deformed by the intro-
duction of the black hole dominates at asymptotic times.
In the regime of large μM, the quasinormal modes that

dominate during the asymptotic decay can be found
analytically by using the higher-order WKB expansion
and expansion in terms of the inverse field’s mass 1=μ. This
approach is similar in spirit with the 1=l expansion in [52].
Using the designation of [52],

K ¼ nþ 1

2
; ð23Þ

and introducing, for convenience and compactness of the
resultant analytic expressions, a new quantity σ,

TABLE II. Quasinormal modes ωM governing the asymptotic decay for small and intermediate μM found by the fitting of the time-
domain integration at about t=M ∼ 800 and via the Bernstein polynomial method.

μM ΛM2 ¼ 0.11 (TD) ΛM2 ¼ 0.11 (Bernstein) ΛM2 ¼ 0.005 (TD) ΛM2 ¼ 0.005 (Bernstein)

0.02 −0.000070i −0.0000699i −0.003196i −0.00319645i
0.05 −0.000445i −0.0004455i −0.025295i −0.0252999i
0.07 −0.000894i −0.0008944i 0.037010 − 0.057920i 0.0373763 − 0.0584804i
0.1 −0.001933i −0.0019346i 0.081531 − 0.052189i 0.0818266 − 0.051095i
0.2 0.0064552 − 0.009680i 0.0064598 − 0.0096870i 0.170307 − 0.031797i 0.170298 − 0.0318068i
0.3 0.0144845 − 0.009616i 0.0144956 − 0.0096183i 0.246358 − 0.026401i 0.246341 − 0.026411i
0.5 0.0272925 − 0.009590i 0.027313 − 0.00959693i 0.402049 − 0.0266894i 0.40202 − 0.0266974i

TABLE III. Quasinormal modes ωM found by the Bernstein polynomial method for ΛM2 ¼ 0.005, l ¼ 0. Left
column is the fundamental mode of the Schwarzschild branch (very close to the mode of massless field in the
Schwarzschild limit ω ¼ 0.110455 − 0.104896i), while the right columns belong to the de Sitter branch, governing
the asymptotic decay. Special attention is paid to the transition to oscillatory regime which occurs at μM ≈ 0.0607.
Here nS and ndS are numbers of overtones in the Schwarzschild and de Sitter branches respectively. At the transition
two purely imaginary modes merges to form a pair of complex conjugate modes with opposite signs of ReðωÞ.
μM Schwarzschild branch (nS ¼ 0) de Sitter branch (ndS ¼ 0) de Sitter branch (ndS ¼ 1)

0.06 0.108272 − 0.101755i −0.0510347i −0.0714397i
0.0602 0.108279 − 0.101735i −0.0525371i −0.0697937i
0.0604 0.108286 − 0.101714i −0.0543986i −0.0677913i
0.0606 0.108293 − 0.101693i −0.0571186i −0.0649330i
0.0607 0.108296 − 0.101683i −0.0600614i −0.0619237i
0.060702 0.108297 − 0.101682i −0.0602298i −0.0617540i
0.060704 0.108297 − 0.101682i −0.0604561i −0.0615263i
0.060706 0.108297 − 0.101682i 0.0001294 − 0.0609905i
0.06071 0.108297 − 0.101682i 0.0007790 − 0.0609891i
0.06072 0.108297 − 0.101681i 0.0014411 − 0.0609858i
0.0608 0.108300 − 0.101672i 0.0037793 − 0.0609579i
0.0609 0.108304 − 0.101662i 0.0053544 − 0.0609252i
0.061 0.108307 − 0.101651i 0.0066191 − 0.0608911i
0.062 0.108345 − 0.101544i 0.0138321 − 0.0605723i
0.064 0.108425 − 0.101325i 0.0220608 − 0.0599923i
0.068 0.108613 − 0.100858i 0.0329903 − 0.0589618i
0.07 0.108726 − 0.100610i 0.0373763 − 0.0584804i

TWO REGIMES OF ASYMPTOTIC FALL-OFF OF A MASSIVE … PHYS. REV. D 109, 104018 (2024)

104018-7



σ ¼ ð9M2ΛÞ1=6; ð24Þ

we have the position of the maximum of the effective
potential r0 in the following form:

r0 ¼
3M
σ2

þ ðσ2 − 1Þðl2 þ lþ σ2Þ
3Mμ2

þO

�
1

μ

�
4

: ð25Þ

Then, we use the above expansion in terms of 1=μ when
applying the sixth-order WKB formula [28,35,36],

iðω2 − V0Þffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

p −
Xi¼6

i¼2

λi ¼ nþ 1

2
: ð26Þ

Here λi is the ith order WKB correction term, n ¼
0; 1; 2;… is the overtone number, V0 and V 00

0 is the value
of the effective potential in its maximum. The WKB
corrections λi depend on derivatives of orders up to 2i
of the effective potential in its peak and explicit form of the
corrections can be found in [28,35,36]. This gives us the
analytic approximate value for the quasinormal modes,

ωn ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
−
iKσ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p

3M
−
σ4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
ð−72l2 − 72lþ 12K2ðσ2 − 1Þ þ 29σ2 − 11Þ

1296M2μ

þ iKσ5ð1 − σ2Þ3=2ð864l2 þ 864lþ 76K2ðσ2 − 1Þ þ 865σ2 þ 167Þ
46656M3μ2

þO

�
1

μ

�
3

: ð27Þ

The above analytic expression is in very good agree-
ment with the data obtained in Table I. For example,
μM ¼ 20, ΛM2 ¼ 0.08, gives ωn¼0M ¼ 6.44094−
0.0455447i, while the time-domain integration result is
ωn¼0M ¼ 6.4413764 − 0.045540i, which means that the
relative error is much less than one percent.

V. HIGHER-DIMENSIONAL BLACK HOLES

While four-dimensional black holes are our primary
focus, the study of perturbations in higher-dimensional
black holes has its own significance. First and foremost,
the higher-dimensional (Tangherlini) generalization of the
Schwarzschild solution to the vacuum Einstein equations
describes a black hole within the framework of extradimen-
sional gravity, provided that the size of the extra dimensions
is much smaller than the radius of the event horizon [53–55].
Within this context, numerous papers have delved into the
exploration of perturbations and quasinormal modes of such
black holes (see, for instance, [56,57] and references therein).
Simultaneously, gauge/gravity duality [58] implies that

the quasinormal modes of (Dþ 1)-dimensional black
holes may be interpreted as the poles of the retarded
Green function in D-dimensional field theory at finite
temperature, which corresponds to the Hawking temperature
of the horizon [59–61]. Although this application primarily
concerns asymptotically AdS black holes, exploration of the
correspondence between asymptotically de Sitter spacetimes
and conformal field theory has also been undertaken [62].
Thus, understanding the quasinormal modes of higher-
dimensional black holes has multiple implications, spanning
from higher-dimensional gravity to gauge/gravity duality.
The Green functions in even and odd D for asymptoti-

cally flat black holes are qualitatively different; so is the
asymptotic decay of fields because the power-law tails are
contributions from the branch cut integral in the complex

frequency plane. The asymptotic decay of massive fields in
Schwarzschild–de Sitter spacetime, at least in D ¼ 4 as we
have seen in the previous section, is governed by quasi-
normal modes instead of power-law tails. The natural
question then is what happens for higher dimensions,
especially taking into account that the limit ω → μ;Λ → 0;
μM ≫ 1 coincides for D > 5 with the quasinormal modes
of the Schwarzschild black hole [48].
From Figs. 6 and 7, we see that the same limits given by

Eqs. (17) and (18) take place in higher dimensions.
However, for D > 5, the limit Λ → 0 coincides with the
fundamental mode of the asymptotically flat Schwarzschild
black hole [48]. The typical time-domain profiles forD ¼ 6
are shown in Figs. 8 and 9. There one can see that the two
regimes of asymptotic decay (oscillatory or purely expo-
nential) takes place, depending on the value of μM in
accordance with the general formula for quasinormal modes
of empty de Sitter spacetime given by Eqs. (19) and (21).
Here we observe that the quasinormal modes of D ¼ 5-

dimensional asymptotically de Sitter black holes are pertur-
bative in μ and nonperturbative in Λ, which is similar to the
D ¼ 4 case. On the contrary, forD ≥ 6, the situation is more
intriguing because at least the fundamental mode might be
perturbative inΛ. Indeed,whenΛ ≠ 0, butΛ→0 andμM≫1,
the limits, given by Eqs. (17) and (18), again take place,

ωn¼0 → μ; μM ≫ 1; Λ ≠ 0; ð28Þ
which is the same limit for Λ ¼ 0.
The analytical formula for quasinormal modes in the

regime of large μM can be derived in the same way as in
previous section for higher D, though this time it is more
convenient to choose, for D ¼ 5,

σ ¼ ð9ΛM7Þ14: ð29Þ
Then, we obtain the position of the potential’s peak at
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r0 ¼ −
3ð ffiffiffi

2
p

M2Þ
σ

þ ð9M3 − 2σ2ÞðM3ð4l2 þ 8lþ 3Þ þ 2σ2Þ
48

ffiffiffi
2

p
M5μ2σ

þO

�
1

μ

�
3

; ð30Þ

and the analytic expression for the quasinormal modes,

ωn ¼
1

3
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 −

2σ2

M3

r
−
i

ffiffiffi
2

p
Kσ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9M3 − 2σ2Þ3

p
243M8 − 54M5σ2

þ
σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 2σ2

M3

q
ð3M3ðlþ 1Þ2 − σ2Þ
324M7μ

þO

�
1

μ

�
2

: ð31Þ

For D ¼ 6 we choose

σ ¼ ð304ΛM4Þ15: ð32Þ
Then, the position of the maximum of the effective potential is

r0 ¼
30M
σ

−
ð5400M2 − σ3Þð1350M2ðl2 þ 3lþ 2Þ þ σ3Þ

121500μ2ðM3σ2Þ þO

�
1

μ

�
3

: ð33Þ

The quasinormal modes are

ωn ¼
1

30
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
900 −

σ3

6M2

s
−

iKσ5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5400M2 − σ3Þ3

p
54000

ffiffiffi
3

p
M3ð5400M2 − σ3Þ

þ
σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
900 − σ3

6M2

q
ð1350M2ð36l2 þ 108l − 12K2 þ 85Þ þ ð3K2 − 28Þσ3Þ

2624400000M4μ
þO

�
1

μ

�
2

: ð34Þ

Analytic approximations for ωn can be obtained for
higherD in a similar fashion. However, the higher the D is,
the more cumbersome is the resultant analytical formula.
From the above formulas we can see that again ω → μ,
when Λ → 0 (σ → 0).

VI. REMARKS ON TWO RECENT WORKS

During the preparation of this paper for publication,
another work [63] appeared on arXiv, which also addresses
the asymptotic decay of a massive scalar field in an

FIG. 8. Time-domain profile for a D ¼ 6 case: l ¼ 0,
μM ¼ 10, M ¼ 1, λM2 ¼ 0.001. At asymptotic time the fre-
quency ωM ¼ 9.95182 − 0.011187i is dominant. Time t is
measured in units of mass M ¼ 1.

FIG. 9. Time-domain profile for a D ¼ 6 case: l ¼ 0,
μM ¼ 0.1,M ¼ 1, ΛM2 ¼ 0.1. At asymptotic time the frequency
ωM ¼ −0.0208512i is dominant. Time t is measured in units of
mass M ¼ 1.
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asymptotically de Sitter background. However, it is note-
worthy that the work in question does not establish any
connections with the quasinormal modes of empty de Sitter
spacetime, which constitutes the main focus of our findings
presented here.
After the initial version of this paper appeared on arXiv,

I became aware of the work by Fontana et al. [64]. In
contrast to [63], Fontana et al. associated quasinormal
modes of asymptotically de Sitter black holes with the
modes of empty de Sitter spacetime. However, in their
significant work, quasinormal modes were not linked to the
asymptotic decay, and furthermore, while their time-
domain integration shown in Fig. 6 of [64] suggests that
at late times the decay is exponential, self-contradictory, in
Fig. 7 of [64] the late time tails are power-law ones even for
a massless scalar field. We believe that such a power-law
tail as in Fig. 7 of [64] is due to chosen very small value of
ΛM2 ∼ 10−6, so that integration with high precision is
necessary to distinguish tiny Λ from asymptotically flat
spacetime. On the contrary to [64] we always find expo-
nential tails (either oscillatory or not) at asymptotic times,
which are consistent with a general observation made in
[13,16,17]. For this purpose we added here the time-
domain profile (a semilogarithmic plot Fig. 10) for a
charged black hole with the same charge and mass as

in [64], but for a much larger value of ΛM2 ¼ 10−3. There
we can see, that the asymptotic decay is clearly exponential.

VII. CONCLUSIONS

While perturbations and quasinormal modes of
Schwarzschild–de Sitter spacetime have been extensively
studied over the past two decades, the question of the
asymptotic (t → ∞) decay of massive fields in this simple
background has remained unclear. The asymptotic decay
exhibits qualitative differences depending on whether the
spacetime is asymptotically flat or de Sitter, and whether
the field under consideration is massive or massless.
In this work, we demonstrate that the asymptotic

decay of the massive scalar field in D ¼ 4 and D ¼ 5
Schwarzschild–de Sitter spacetimes is governed by a parti-
cular branch of quasinormal modes: the modes of empty de
Sitter spacetime deformed by the introduction of a black
hole. This finding explains the peculiar behavior of the
asymptotic decay, which is oscillatory at large μM and
purely exponential at small μM. Further studies in the case
of D ≥ 6 would be desirable. While the overall picture of
asymptotic decay in D ≠ 6 is similar, in the regime Λ → 0
and large μM, the asymptotically flat limit is reproduced for
the fundamental mode. This limit coincides with the limit
of pure de Sitter modes when Λ is small but nonzero.
In a similar vein, our work could be extended to other

asymptotically de Sitter black holes in various alternative
theories of gravity. In the regime of large μM, we anticipate
that the WKBmethod will yield sufficiently accurate values
of quasinormal modes governing the asymptotic decay.
This extension may hold intriguing applications, par-

ticularly considering that the dimensionless product of
masses, μM, is equivalent to μM=m2

P, where mP denotes
the Planck mass. For an electron, for instance, this implies
that μM ∼ 10 for black holes of mass M ∼ 1015 kg,
representing the regime of large μM corresponding to
massive Standard Model particles and black holes spanning
from primordial to large astrophysical scales.
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