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In the context of weak-field metric-affine (i.e. Palatini) gravity near Minkowski spacetime, we compute
the particle spectra in the simultaneous presence of all independent contractions quadratic in Ricci-type
tensors. Apart from the full metric-affine geometry, we study kinematic limits with vanishing torsion (i.e. a
symmetric connection) and vanishing nonmetricity (i.e. a metric connection, which is physically
indistinguishable from Poincaré gauge theory at the level of the particle spectrum). We present a detailed
report on how spin-parity projection operators can be used to derive systematically and unambiguously the
character of the propagating states. The unitarity constraints derived from the requirements of tachyon and
ghost freedom are obtained. We show that, even in the presence of all Ricci-type operators, only a narrow
selection of viable theories emerges by a tuning.
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I. INTRODUCTION

The success of the curvature-based geometrical formu-
lation of gravity has stimulated a search for the dynamical
interpretation of geometrical properties analogous to cur-
vature. This program has been directed to solve, or mitigate,
some of the main shortcomings of the current status quo,
mainly the lack of a perturbatively renormalizable quantum
theory of gravity, and the phenomenological need for a dark
sector. While hopes to address the renormalization issue
have, so far, had to rely on nontraditional routes [1–13], the
possibility of interesting phenomenology from particles of
geometrical origin is frequently used in cosmology and
dark-sector model building [14–27]. Metric-affine gravity
(MAG) [28–49] represents the principal realization of this
program. It broadens the matter content by considering the
affine connection as an independent three-index object,
giving rise to torsion and nonmetricity (see Fig. 1) as
dynamical fields. This results in a notable growth in
computational complexity, both in the number of allowed
operators and in the profiling of the multiple particle states
carried in by the affine connection. Such a broad param-
eter space is expected, as is often the case, to narrow
under the pressure of field-theoretical self-consistency

constraints, such as unitarity and elimination of tachyons
[28,32,33,35,44,45,50–57]. The imposition of these
requirements is a highly nontrivial task and has often
necessitated severe simplifications to arrive at positive
scenarios. Also, the analysis often has to rely on a very
indirect route without directly accessing the pole structure
of the propagator.
In this paper, we use the arena of Ricci-type MAG to

illustrate, in a detailed step-by-step fashion, how the
formalism of spin-parity projectors can unambiguously
and straightforwardly reveal the nature of the (tree-level)
particle spectrum. By Ricci-type we refer to all the
operators that may be added to the Einstein-Hilbert
Lagrangian which are quadratic in the rank-two traces
of metric-affine curvature (in MAG there are nine such
operators, whilst in standard GR there is only one).
Building on early work (see e.g. [58–63]), this particular
space of operators was first properly charted by Annala
and Räsänen [35]. The reparametrization-based methods
used in that work are particularly innovative, but they are

FIG. 1. The effects of metric-affine curvature F μν
ρ
σ in Eq. (2)

(vector rotation after parallel transport in a closed loop) torsion
T μ

α
ν in Eq. (1) [nonclosure of parallelograms formed from

(infinitesimally) parallel-transported vectors] and nonmetricity
Qλμν in Eq. (1) (change in vector length under parallel transport).
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only able to access a “punctuated” bulk of the full
parameter space due to certain degeneracy conditions
which must be avoided. In the present work we build
on these foundations by applying the spin-parity projection
formalism: our method does not come with any restriction
on the parameters of the model. Indeed, if the set of
projector operators is known, the approach adopted can be
applied to every tensor-valued Lagrangian admitting a
Minkowskian background expansion. We have authored a
new Wolfram Language implementation of this procedure
for all such theories, including the MAG: Particle
Spectrum for any Tensor Lagrangian (PSALTer). The
PSALTer software will be properly presented in a dedi-
cated paper [64],1 but in this paper we use it to confirm all
our results (see Appendices A to C). The body this paper is
set out as follows. In Sec. II we develop the underlying
theory by setting out the MAG conventions in Sec. II A and
briefly presenting our spectral algorithm in Sec. II B and
the computer implementation in Sec. II C. In Sec. III we
present all of the results, respectively for the vanishing
nonmetricity kinematic limit in Sec. III A and the vanish-
ing torsion kinematic limit in Sec. III B, and for the full
MAG in Sec. III C. Conclusions follow in Sec. IV. We will
use the “West Coast” signature ðþ;−;−;−Þ, other con-
ventions will be introduced as needed.

II. THEORETICAL DEVELOPMENT

The requirements of locality and Lorentz invariance
select tensor fields as the building blocks for most of the
theoretical speculations about high-energy physics. The
price to pay for using them is in the risk of uncontrolled
unitarity violations. It is a profound realization that the
consistent adjustments to recover unitarity restrict us to
Maxwell’s theory, for rank-one fields, as well as Einstein’s
theory of gravity, when applied to models of symmetric
rank-two fields [50,68–71]. The continuation of this pro-
gram within the intricate scenarios of higher-rank fields, as
well as multifield quadratic Lagrangians, is technically
prohibitive. Many indirect shortcuts have supported claims
of healthy particle propagation, but the proliferation of
indices often prevents a direct approach to the pole
structure of the propagator. The spin-parity projection
approach to spectral analysis has been most thoroughly
expostulated by Lin, Hobson, and Lasenby in [55], with
follow-up papers in [56,72]. Further information about the
method can also be found in, e.g., [28,33,50–52,54,73]—
but it is [55] which provides the most concise introduction
for our purposes.

A. Spin-parity kinematics of metric-affine gravity

To have full control over the particle spectrum we
introduce operators which project the Lorentz index struc-
ture onto the labels J and P of spin and parity, enumerating
the irreducible representation under the SU(2) little group.
In general, further reduction to the U(1) little group of
massless particles and helicity states can be done. This
results in no practical improvement, making the decom-
position into SU(2) representations generic enough. In the
case of MAG, the needed set of projection operators has
been recently completed [28,74], developing the past
studies of [32,33,50–52,54,75]. We present here a summary
of the main ideas regarding the use of projection operators
for the computation of the poles and residues of the
propagator. We refer to [28,51,55,76] for further details.
The independent MAG connection Aμ

ν
ρ carries in

64 new degrees of freedom (d.o.f.), which are not present
in the derived Levi-Civita connection Γμ

ν
ρ ≡ ΓðμjνjρÞ≡

gνλð∂ðμgρÞλ − 1
2
∂λgμρÞ. These new d.o.f. are often parti-

tioned into the torsion and nonmetricity tensors

T μ
α
ν ≡ 2A½μjαjν�; Qλμν ≡ −∂λgμν þ 2Aλ

αðμjgαjνÞ: ð1Þ

The two tensors in Eq. (1) are geometric counterparts to
the metric-affine (i.e. non-Riemannian) curvature

F μν
ρ
σ ≡ 2ð∂½μAν�ρσ þ A½μjραAjν�ασÞ: ð2Þ

The influences of these three geometric properties on
vectors which are being parallel transported through the
spacetime are shown in Fig. 1. We will be particularly
interested in the three Ricci-type contractions of the
metric-affine curvature

F μν≡F μνα
α; F ð14Þ

μν≡F αμν
α; F ð13Þ

μν≡F αμ
α
ν; ð3Þ

by which we just mean the contractions with two free
indices. The quantity F μν is the homothetic curvature
[77,78], while F ð13Þ

μν and F ð14Þ
μν are variously pseudo-

Ricci tensors [28], or F ð14Þ
μν is the co-Ricci [77]. The

Riemannian curvature of course yields only one Ricci-type
contraction: the homothetic curvature vanishes identically in
the absence of nonmetricity, and the (co)Ricci tensors
coincide in the absence of torsion. We define F ≡ F μν

μν

as the Ricci scalar: there is still only one such scalar in
metric-affine geometry.
In the first-order or Palatini parametrization of MAG,

we take the 10 d.o.f. in gμν and the 64 new d.o.f. in Aμ
ν
ρ to

be fundamental fields. An advantage of the first-order
parametrization is that the MAG field strength tensor in
Eq. (2) is free from second derivatives. In the second-order
or post-Riemannian parametrization, we keep gμν but
treat the tensor-valued difference Δμ

ν
ρ ≡ Aμ

ν
ρ − Γμ

ν
ρ

1See [65] for a recent application of PSALTer to theories
proposed in [66,67].
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(sometimes termed the distortion) as fundamental, effec-
tively partitioning the 64 d.o.f. among the 24 d.o.f.
in T μ

α
ν ≡ T ½μjαjν� plus the 40 d.o.f. in Qλμν ≡QλðμνÞ

according to

T μ
α
ν ≡ 2Δ½μjαjν�; Qλμν ≡ 2ΔλðμνÞ: ð4Þ

In the second-order parametrization Eq. (2) is expanded
into the Riemannian curvature (which naturally has
second derivatives in gμν) and many other terms which
are (Levi-Civita) covariant derivatives and second powers
of T μ

α
ν and Qλμν. The second-order parametrization has

an advantage in revealing the true nature of all MAG-type
theories: every MAG theory is a (non)minimal coupling
of standard metric-based gravity to an asymmetric rank-
three matter field Δμ

ρ
ν. We are free to work with either set

of variables due to reparametrization invariance of the
physics.
Working in the first-order formulation, the weak-field

regime near to Minkowski spacetime can be captured by an
inherently perturbative Aμ

ν
ρ and a metric perturbation

gμν ≡ ημν þ hμν. These perturbations carry multiple mas-
sive particle states

Aμνρ ⊃
�
3−1 ; 2

þ
1 ; 2

þ
2 ; 2

þ
3 ; 2

−
1 ; 2

−
2 ; 1

þ
1 ; 1

þ
2 ; 1

þ
3 ; 1

−
1 ; 1

−
2 ;

1−3 ; 1
−
4 ; 1

−
5 ; 1

−
6 ; 0

þ
1 ; 0

þ
2 ; 0

þ
3 ; 0

þ
4 ; 0

−
1

�
; ð5aÞ

hμν ⊃ f2þ4 ; 1−7 ; 0þ5 ; 0þ6 g; ð5bÞ

where we used the compact notation JPj in referring to the
jth representation of spin J and parity P. Enumeration
convention is adopted from [28]. From Eqs. (5a) and (5b)
the 64 and 10 d.o.f. can be recovered, respectively, by
summing the multiplicities 2J þ 1 over all states. The
PSALTer notation for these states differs from the subscript
notation in Eqs. (5a) and (5b), and full definitions of these
states are provided in Fig. 11.

B. Saturated propagator and particle spectra

Following [76], we use a synthetic notation to describe
the quadratic (i.e. perturbative) action in momentum space

S½Φ� ¼ 1

2

Z
d4k
�
Φð−kÞ; KðkÞΦðkÞ

þ J ð−kÞΦðkÞ þ J ðkÞΦð−kÞ�; ð6Þ

where KðkÞ is the Fourier-transformed kinetic term (wave
operator) and we have introduced a linear coupling between
the fields, collectively labeled as ΦðkÞ, and a source J ðkÞ.
Connecting this to the specific formulation in Sec. II A, we
identify Φ as the collection of perturbative fields hμν and
Aμ

ρ
ν. Within the quadratic approximation, the indices on

these fields are raised and lowered using ημν and ημν, which

are nondynamical, and the greek indices refer to Cartesian
coordinates on the Minkowski background.2 Conjugate to
Φ, the fields J in MAG are the symmetric matter stress-
energy tensor Tμν and the rank-three current Wμ

ρ
ν. This

latter current is sometimes called the hypermomentum
[14,27,79–83]. In the second-order formulation, a separate
current must be defined as conjugate to Δμ

ρ
ν—we do not

bother to ascribe it another symbol.
The propagating states will appear in the form of isolated

poles for the propagator DðkÞ defined through the equation
KðkÞ ·DðkÞ≡ 1̂. The use of projection operators Pi;i

fJ;Pg
drastically simplifies the solution of this inversion problem.
By exploiting the defining properties

X
J;P;i

Pi;i ν1ν2���νn
fJ;Pgμ1μ2���μn ≡ 1̂ ν1ν2���νn

μ1μ2���μn ; ð7aÞ

Pi;k ρ1ρ2���ρn
fJ;Pgμ1μ2���μn Pj;w ν1ν2���νn

fJ0;P0gρ1ρ2���ρn
≡ δk;jδJ;J0δP;P0Pi;w ν1ν2���νn

fJ;Pgμ1μ2���μn ; ð7bÞ

Pi;j ν1ν2���νn
fJ;Pgμ1μ2���μn ≡

�
Pj;i ν1ν2���νn
fJ;Pg μ1μ2���μn

��
; ð7cÞ

it is possible to decompose the kinetic term as

Z
d4kΦð−kÞKðkÞΦðkÞ

¼
Z

d4kΦð−kÞ
X
J;P;i;j

ðafJ;Pgi;j Pi;j
fJ;PgÞΦðkÞ; ð8Þ

where the tortuous fabric of the indices is reformulated in

terms of the simpler spin-parity matrices afJ;Pgi;j , obtained by
tracing over the Lorentz indices

afJ;Pgi;j ≡ 1

2J − 1
TrPi;j

fJ;PgKðkÞ: ð9Þ

The orthonormality of the projection operators in Eq. (7b)
reduces the computation of the propagator DðkÞ to an

inversion problem for the matrices afJ;Pgi;j

2Indeed, it should be explicitly stated that along with these
raising and lowering rules Aμ

ρ
ν is a dynamical tensor field in the

quadratic approximation. Geometrically, Aμ
ρ
ν is a connection, but

the physics does not know or care about the geometric founda-
tions of the theory: only the representations of the particle states
are important. Of course,Δμ

ρ
ν is already geometrically a tensor in

the second-order formulation of MAG. The reparametrization is
shown explicitly in Eq. (B1), and the key point is that the
linearized Levi-Civita connection is also tensorial at lowest order
in perturbations because the partial derivative ∂μ is covariant at
that order.
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DðkÞ≡ X
J;P;i;j

bfJ;Pgi;j Pi;j
fJ;Pg; bfJ;Pgi;j ≡ ðafJ;Pgi;j Þ−1: ð10Þ

When the degeneracy of the spin-parity matrices hampers
this inversion, the model displays gauge symmetry. It is a
bonus of this formalism that full control over the gauge
symmetries is provided by the inspection of such simple

objects as the null vectors Xr¼1;2;…;n
i of afJ;Pgi;j , so that

manipulations of linear algebra replace tensor operations.
In turn, this promotes a code-friendly implementation of
the spectral problem. The matrix structure not only allows
the identification of symmetries which are already present
in the model, but it also allows parameter-tunings to be
identified which lead to the emergence of new symmetries.
Finally, the gauge-invariant saturated propagator is
obtained by restricting the inversion to the nondegenerate
subspace in the spin-parity matrices, and contracting the
inverse matrix with constrained sources J̃ðkÞ

DSðkÞ≡ J̃�ðkÞ
 X

J;P;i;j

b̃fJ;Pgi;j Pi;j
fJ;Pg

!
J̃ðkÞ; ð11aÞ

X�r
jP

i;j
fJ;PgJ̃ðkÞ≡ 0; r ¼ 1; 2;…; n: ð11bÞ

C. Computer implementation

The saturated propagator in Eq. (11a) represents the
arrival point of our computation. Previous efforts in MAG,
even within the projection operators approach, generally
relied on an indirect determination for the signs of the
residues of the poles in DSðkÞ. Such methods avoid the
difficult computation of the source constraint equations
Eq. (11b) in the massless limit. However, as detailed in
[55,64,76], the constraint equations can be fully resolved by
choosing a suitable reference frame (with k2 ¼ 0 as a limit
of k2 > 0). This technique removes the main theoretical
challenges encountered in the computation of the spectrum
leaving, as the only limitation, the technical bounds in
manipulating large expressions. The simplifications
afforded by the use of projection operators, as well as
the unambiguous computational procedure, have encour-
aged the development of opportune tools to promptly and
automatically tackle the particle spectrum. Some of the
most recent results on this subject [57,65] and the core of
this work’s conclusions, are obtained with the use of
PSALTer [64], a Wolfram Language implementation of
these ideas. The PSALTer software can automatically return
the spectrum of any tensor-valued field theory up to
rank-three.
The PSALTer analyses of key theories to be considered

in Sec. III are presented in Figs. 3, 5–10, 12, and 13.
These are vector graphics which contain the following
information;

(1) The linearized (quadratic) action in Eq. (6), in the
position-space representation. This expression is the
only input to the PSALTer software, and it is not
necessary to perform any kind of decomposition of
fields into irreducible parts.

(2) Automatically computed: the elements afJ;Pgi;j in
Eq. (8) which encode the wave operator of the
theory, provided as one matrix for each spin sector.
Because the theories considered here are not parity
violating, it is reassuring to see that the matrices
are always block-diagonal across parity-even (red)
and parity-odd (blue) subsectors: the mixed-parity
(purple) blocks are empty.

(3) Automatically computed: the inverse bfJ;Pgi;j matrices
in Eq. (10) which encode the saturated propagator of
the theory. We believe our implementation to be the
first which uses Moore-Penrose inversion [84,85]
(i.e. a uniquely defined gauge fixing) to obtain these
coefficients.

(4) Automatically computed: the source constraints Xr
i

in Eq. (11b), which are guaranteed to encode all the
gauge symmetries present in the theory.

(5) Automatically computed: the spectrum of all mas-
sive and massless particles present in the theory. This
includes information about the particle spin J, parity
P, pole residue and mass. In the case of massless
particles, there is no physical notion of spin which
survives, but the number of independent polariza-
tions is given.

(6) Automatically computed: the overall unitarity con-
ditions which must be imposed on the Lagrangian
coupling coefficients. These conditions are derived
from the above pole residues and masses, so as to
support the no-ghost and no-tachyon criteria. There
is of course no guarantee that such conditions exist,
so the calculation is time limited to ten seconds. In
case of “timeout,” the masses and residues provide
all the relevant information for further tuning the
theory anyway.

Because these various outputs may be extremely cumber-
some and have uncertain dimensions after typesetting,
PSALTer uses a rectangle-packing algorithm to find the
most economical layout for each theory: consequently
some of the formulas in Figs. 3, 5–10, 12, and 13 are
rotated on the page. The various SO(3) irrep definitions are
provided separately, in Figs. 2, 4, and 11. Each of these
figures defines a “kinematic module” for the software: a
declaration of the fundamental tensor fields and their
conjugate sources which are present in a class of theories.
Within each module, the spectral analysis of infinitely
many distinct models can be performed, depending on the
admixture of operators in the quadratic action.
Two steps of the analysis are computationally expensive:

the Moore-Penrose inversion and the evaluation of massless
residues. When the theory contains more than two or three
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independent Lagrangian couplings (parameters) and tensor
fields of rank three or more, these calculations start to pose a
highly nontrivial computer algebra problem. Consequently,
many subroutines in PSALTer are automatically parallelized
to take advantage of the available infrastructure. For
expedience, analysis of each theory in this work was
performed using a dedicated compute node consisting of
112 Intel® Sapphire Rapids CPUs, or 64 AMD® Ryzen
Threadripper CPUs, depending on availability. The former
setup is close to the current state of the art in high-
performance computing. The resulting throughput is very
fast, and in fact each theory would only have taken
approximately 20 minutes to process on a modern PC with
four CPU cores.

III. RESULTS

Using the building blocks in Eq. (3) the most general
Ricci-type MAG in the first-order formulation is

S½g;A� ¼−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p h
−a0F

þF ð13Þμν
�
c7F ð13Þ

μνþc8F ð13Þ
νμ

�
þF ð14Þμν

�
c9F ð14Þ

μνþc10F ð14Þ
νμ

�
þF ð14Þμν

�
c11F ð13Þ

μνþc12F ð13Þ
νμ

�
þF μν

�
c13F μνþc14F ð13Þ

μνþc15F ð14Þ
μν

�i
; ð12Þ

where we borrow the numbering of Lagrangian couplings
directly from [28].3 As emphasized in Sec. II A, repar-
ametrization invariance leads to the equivalence S½g; A� ≅
S½g;Δ� with the second-order formalism. The computa-
tional algorithm sketched in Sec. II B can obviously handle
both representations of the dynamical fields and our tests
have adopted both approaches as a further self-consistency
check. While the final outcome does not change, the
particular form of the intermediate steps does. In this
regard, we find the second-order basis more convenient
for enumerating the spin-parity states in kinematically
restricted version of the MAG, due to the index symmetries
in Eq. (4).

A. Zero nonmetricity

The imposition of zero nonmetricity is easily realized in
a formalism with explicit distortion. From Eq. (4) it is clear
that a two-index-antisymmetric rank-three field Δλμν ≡
−Δλνμ nullifies Qλμν ≡ 0. This achieves a reduction of
the spin-parity sectors of Eq. (5a)

Δμνρ ⊃ f2þ3 ; 2−2 ; 1þ2 ; 1þ3 ; 1−3 ; 1−6 ; 0þ3 ; 0−1 g; ð13Þ

reflected by a further redundancy in the number of
independent Ricci-type contractions

F μν ≡ 0; F ð14Þ
μν ≡ −F ð13Þ

μν: ð14Þ

The action Eq. (12) is therefore simplified into

S½g; A� ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p h
−a0F

þ F ð13Þμν
�
g7F ð13Þ

μν þ g8F ð13Þ
νμ

�i
: ð15Þ

Note that we follow [28] in relabeling the dimensionless
coefficients from ci to gi when passing from Eqs. (12)–(15)
by kinematic restriction. The spectrum of this simple three-
parameter model can be promptly, and unambiguously
profiled within our formalism. Just within this section
(but not within Secs. III B and III C) the accompanying
PSALTer analysis in Appendix A will be made in the
Poincaré gauge theory (PGT) formulation of zero-
nonmetricity MAG. The kinematic structure of PGT is
more extensive than its MAG counterpart due to extra
antisymmetric parts of the tetrad fields (which are nullified
by an extra Lorentz gauge symmetry). This kinematic
structure is presented in Fig. 2, but is otherwise analogous
to that in Eqs. (5b) and (13). For now, we proceed with our
discussion as if we were working in the MAG formulation.
To access the singular structure of the propagator we first
identify the spin-parity sectors of the kinetic term. The PGT
matrices are shown in Appendix A, in Fig. 3. We can
immediately recognize in the absence of the 1−7 and 0þ6
sectors the hallmark of diffeomorphism invariance. All the
information concerning the quadratic terms is encoded in
such matrices and, from the arguments of Sec. II, a direct
link exists between the zeroes of their determinants and the
singularities of D̃SðkÞ. The shape of the residue and the
position of the singularity will determine the nature of the

propagating particles. Once the degeneracies of af1;−gi;j and

af0;þg
i;j are removed, we immediately find that no massive

poles are present. We can therefore extract the known
result [35]:
No massive states propagate in linearized zero-

nonmetricity Ricci-type theories.
The massless poles are present in the 2þ and 0þ sectors.

Again, these are known traits of graviton propagation. To
confirm that the graviton is present we explore the form of
these massless poles in the final, gauge invariant, propa-
gator. The constraints to be imposed are read off the null

vectors of af1;−gi;j and af0;þg
i;j . By choosing the lightlike frame

kμ ¼ ðE; 0; 0; EÞ the sources are constrained as

T00¼T03; T13¼T01; T23¼T02; T33¼T03: ð16Þ
3In that work, a more general MAG action is considered, in

which a total of 28 invariant operators are present in the
Lagrangian density.
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By substituting them into the propagator, we find the
following structure:

lim
k2↦0

DSðkÞ ¼
1

k2

	
2

−a0


X
i¼1;2

jSij2; ð17Þ

where the Si are linearly independent combinations of the
sources. Thus, Eq. (17) reveals the two (helicity) states
with a residue ∝ −1=a0. We conclude by refining the
previous statement:
Linearized zero-nonmetricity Ricci-type theories propa-

gate only a healthy massless graviton with a0 < 0.

B. Zero torsion

The zero-torsion case offers a stronger challenge to our
methods, displaying a larger parameter space and nontrivial
interplay among different operators. We will show that the
spin-parity formalism, followed by direct access to the
propagator, gives full access to the tree-level spectrum
without imposing simplifying restrictions. First, in terms of
the distortion tensor, the zero-torsion condition in Eq. (4) is
achieved by working with a two-index-symmetric rank-
three fieldΔλμν ≡ Δνμλ. The available particle content in the
symmetric distortion is then

Δμνρ ⊃
�
3−1 ; 2

þ
1 ; 2

þ
2 ; 2

−
1 ; 1

þ
1 ; 1

−
1 ; 1

−
2 ;

1−4 ; 1
−
5 ; 0

þ
1 ; 0

þ
2 ; 0

þ
4

�
; ð18Þ

which causes F μν ≡ −2F ð13Þ½μν�, leaving seven indepen-
dent combinations

S½g; A� ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p h
−a0F

þ F ð13Þμν
�
h7F ð13Þ

μν þ h8F ð13Þ
νμ

�
þ F ð14Þμν

�
h9F ð14Þ

μν þ h10F ð14Þ
νμ

�
þ F ð14Þμν

�
h11F ð13Þ

μν þ h12F ð13Þ
νμ

�i
: ð19Þ

Note once again that we follow [28] in relabeling the
dimensionless coefficients from ci to hi when passing from
Eqs. (12)–(19) by kinematic restriction. The kinematic
structures in Eqs. (5b) and (18) are reflected in the
PSALTer definitions of the states, which are fully defined
in Fig. 4. The computation of the spin-parity matrices
produces the remaining output in Appendix B, with the
general case Eq. (19) displayed in Fig. 5. After simple
inspections of the determinants, we find that it is impossible
to impose further gauge symmetries, unless a0, the only
dimensionful parameter, is set to zero. This would nullify the
graviton propagation and, therefore, we discard this option.

Taking into account the constraints of diffeomorphism
invariance as illustrated in Sec. III A, we can compute the
positions of the zeroes for all the determinants. Already for
the 2þ sector we find that a state of mass

m2
2
þ ¼ −

a0
h10 þ h9

ð20Þ

is allowed to propagate whenever h10 þ h9 ≠ 0. The com-
putation of the limit k2 ↦ m2

2þ gives rise to the following
pole residue, where we suppress the positive-definite quad-
ratic form in the 2þ sources

lim
k2↦m2

2þ
DSðkÞ ∝ 2

h
4h210 þ h211 þ h212 þ 2h11ðh12 − 2h9Þ

− 4h12h9 þ 4h29 − 2h9a0

− 2h10ð2h11 þ 2h12 − 4h9 þ a0Þ
i

×
h
ðh10 þ h9Þ2a0

i
−1
: ð21Þ

The positivity of the spin-two mass in Eq. (20) and the
residue in Eq. (21) select possible real values of the
parameters involved. Among these, the requirement is seen
for a positive a0. This shows that a massive spin-two is
incompatible with the healthy propagation of the graviton:
we must discard it. This, as can be seen from the determi-
nants, can be accomplished by demanding h10 ¼ −h9 or the
stronger h10 ¼ h9 ¼ 0. The consequences of these different
choices can be appreciated by observing that the theory also
propagates a massive spin-one particle whose mass and
residue is given by

m2
1þ ¼ a0

h9 − h10
; lim

k2↦m2

1þ
DSðkÞ ∝

4

h10 − h9
: ð22Þ

We can therefore explore the possibility of keeping such a
state by adopting h10 ¼ −h9 ≠ 0 and studying the conse-
quences for the rest of the spectrum. It is easy to show that
this requires h10 ¼ −h9 > 0 and a0 < 0, so that such
propagation can indeed be afforded without spoiling the
gravitational priorities of the model.
A more alarming scenario is presented by the degenerate

spin 1− sector, where the restricted determinant shows a
quartic equation in the momentum. Imposing, for instance,
h10 ¼ −h9 we would find

jaf1;−gi;j j ¼ a20
32

�
5
�ðh12−h11Þ2þ8h9ðh8−h7Þ

�
k4

−4a0ð3h11−3h12−h7þh8þ12h9Þk2þ12a20
�
:

ð23Þ
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The determinant in Eq. (23) can be read off the denom-

inators of the bf1;−gi;j matrix elements.4 Bona fide unitarity
demands the removal of the quartic term. The absence of a
ghostly massive spin-two particle and the spin-one dipole
motivates the defining constraint over the parameter space.
Many (apparently) different solutions can be found by
asking to solve such constraints in terms of different subsets
of the couplings. It is a great advantage that the algorithmic
disposition of the spin-parity approach allows a simple scan
over the broad space of solutions. We proceed by consid-
ering the two separate branches obtained from h10 ¼
−h9 > 0 and, for each of the two possibilities, gather
the different solutions yielded by nullifying the quadratic
coefficient of k4 in Eq. (23). The theories associated with
this scan are presented in [87]. Collecting all the masses
and residues for, besides the graviton, the two massive spin-
one states of opposite parity we find, in all cases that
Linearized zero-torsion Ricci-type theories do not admit

simultaneous propagation of massive spin-one states of
opposite parity.
We can naturally continue by asking for the dismissal of

the full 1− propagation by setting to zero the coefficient of
k2 in Eq. (23). Again, we do this by gathering all the
relevant equations and solving them for all the possible
subsets of the free parameters, and again we refer to [87].
We find that healthy solutions are available, although not
for all the given cases. In the healthy scenarios, we
rediscover the mass/residue ratio of Eq. (22) rephrased
in terms of the available couplings.
Finally, we can investigate the case h9 ¼ h10 ¼ 0 which

removes the propagation of the massive spin-one state of
positive parity Eq. (22) and, simultaneously, of the massive
spin-two. Under such circumstances, the cancellation of the
dipole propagation simplifies to demanding ðh11 − h12Þ2 ¼
0 in Eq. (23), namely h11 ¼ h12 ≠ 0 (see Figs. 9 and 10)
and h11 ¼ h12 ¼ 0 (see Figs. 7 and 8). For the second,
simpler scenario, we find in the second-order case Fig. 8

m2
1− ¼ −3a0

h7 − h8
; lim

k2↦m2
1−

DSðkÞ ∝
34

h7 − h8
: ð24Þ

Such a simple setup, which clearly presents a viable
propagation, is only slightly modified when considering
the branch h11 ¼ h12 ≠ 0, with only the residue’s form
being affected. Again, ghost- and tachyon-freedom can be
accounted for. We conclude, accordingly, stating that,
besides the graviton,

Either a healthy massive vector of negative parity or
positive parity propagates in linearized zero-torsion Ricci-
type theories.

C. Generic case

1. General properties

The transition to the case of an unconstrained affine
connection presents an obvious growth in computational
complexity induced by the multiple components of
Eqs. (5a) and (5b) and, consequently, by the independence
of all three Ricci-type tensors. The challenges of the
associated spectral problem are quite visible in the cum-
bersome spin-parity matrices of Appendix C. The general
spectrum associated with Eq. (12) is shown in Figs. 12
and 13, respectively, for the first- and second-order for-
mulations of the theory. The inclusion of all the compo-
nents considerably changes the nature of the unconstrained
spectrum. First, we notice how the massive state of spin-
two is no longer present, the determinant having a simple
proportionality to k2. Similarly, Eq. (23) is now of the form5

jaf1;−gi;j j ¼ 1

4
a40k

2ðf0a0 − 5f1k2Þ; ð25aÞ

f0 ≡ ðc10 − c11 þ c12 − 16c13 þ 4c14 þ 4c15

− c7 þ c8 − c9Þ; ð25bÞ

f1 ≡ ðc14 þ c15Þ2 þ 4c13ðc10 − c11 þ c12

− c7 þ c8 − c9Þ; ð25cÞ

and the dangerous dipole of Eq. (23) leaves space for a
massless vector. That this is indeed the case, and that the
pole is not a spurious feature of the determinant, is
demonstrated by the direct computation of the saturated
propagator in the massless limit. For this computation
we have to account for a further, associated peculiarity
encountered in this scenario. The rank of the spin 0þ sector
is now reduced by 2, signaling the emergence of an Abelian
symmetry. The presence of this symmetry was predicted by
Iosifidis and Koivisto [88]—it appears whenever squares of
the full metric-affine curvature are added to the Einstein-
Hilbert term, and is a remnant of the full projective
symmetry of that term. It is instructive to explicitly show
what this entails in terms of source constraints in the
lightlike frame k ¼ ðE; 0; 0; EÞ. We find, together with
Eq. (16), the following reduction:

W000 −W011 −W022 −W033

¼ W300 −W311 −W322 −W333: ð26Þ
4Unfortunately, the bf1;−gi;j matrices are very large expressions,

so PSALTer frequently suppresses them when attempting to
typeset the results for publication. Although Eq. (23) cannot
therefore be confirmed from Appendix B, the full results are
available in the Wolfram Mathematica notebook file from which
PSALTer is run: this document, along with the source script, is
made available in the Supplemental Material [87].

5Again, the bf1;−gi;j matrices are suppressed in Appendix C, for
full results see the Supplemental Material [87].
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Accounting for Eq. (26) we recognize four independent
states in the massless limit of the saturated propagator. Two
of these are precisely the helicity states of the graviton,
proportional to −1=a0 and recognizable in Eq. (17). The
residue of the other two states, while signaling unambig-
uously the propagation connected to the massless spin-one
state, has an extremely convoluted form due to the con-
currence of many different parameters in its definition.
Nevertheless, the requirement for its positivity has the
manageable structure

16c13 − 4ðc14 þ c15Þ þ c11 − c12 þ c7 − c8 þ c9 − c10 > 0:

ð27Þ

When searching for massive propagation, similarly to the
torsionless case, both spin-one sectors source one state
each, with masses

m2
1− ¼ �a0ðc10 − c11 þ c12 − 16c13 þ 4c14 þ 4c15

− c7 þ c8 − c9Þ
�
×
�
5ð4c13ðc10 − c11 þ c12

− c7 þ c8 − c9Þ þ ðc14 þ c15Þ2Þ
�
−1; ð28aÞ

m2
1þ ¼ −

a0
c10 − c11 þ c12 − c7 þ c8 − c9

: ð28bÞ

The overall survey of the propagating states points, there-
fore, to three additional particles populating the spectrum
besides the graviton. To solve the spectral problem we
analyze the conditions for their simultaneous propagation.

2. Allowing the massless vector

The presence of a spin-one massless state can be
included in our analysis. The related phenomenological
concerns can then be seen as suggesting incompleteness,
rather than an inconsistency: a mechanism to provide a
mass gap is expected. Under such a hypothesis, we can
investigate the coexistence of such a state with the others.
The computation of the residues of the massive states is
carried through the constrained propagator. The explicit
effect of the different gauge symmetries on the sources is
extracted in the rest-mass frame k ¼ ðm; 0; 0; 0Þ and gives

T00 ¼ T01 ¼ T02 ¼ T03 ¼ 0; ð29Þ

for diffeomorphism invariance, and

W000 −W011 −W022 −W033 ¼ 0; ð30Þ

for the extra Abelian symmetry. When testing the sign of
each residue, as well as the masses, with the requirement
a0 < 0, we immediately find an obstruction within the 1−

sector. Having committed to retaining the massless propa-
gation, we must simplify the model by removing its massive
counterpart. We proceed, therefore, by considering all the

11 solutions of f1 ¼ 0 in Eq. (25a) and recomputing the
residues for the remaining propagating states. Once more,
no viable solutions are found (see [87]). Finally, we kill the
massive 1þ propagation in Eq. (28b) by adding the further
condition

c10 − c11 þ c12 − c7 þ c8 − c9 ¼ 0: ð31Þ
To coherently include both constraints we consider pairs of
parameters which are solutions of the corresponding equa-
tion system. Twelve solutions are found (see [87]), all of
them with positive residues for the surviving massless
sector. We can therefore draw the following:
A healthy massless vector of negative parity propagates

in linearized generic Ricci-type theories.
Once again, we can make contact with the literature. We

notice that Eq. (31) does not eliminate c13, which controls
the square of the homothetic curvature. It is known that
when this operator is added to the Einstein-Hilbert term in
full MAG geometry, the resulting theory cannot be dis-
tinguished from the vacuum Einstein-Maxwell theory
[89,90]—the extra massless vector in this case is identified
with our 1− state.

3. Removing the massless vector

The only way to dispose of the massless vector is to
introduce a further degeneracy in the 1− sector. This can be
enforced by solving for f1 ¼ f2 ¼ 0 in Eq. (25a). Once
more, the spin-parity approach grants us the possibility to
explore the results in a systematic way. The analysis is
made more complicated by the peculiar challenges met in
this scenario, where each solution of the f1 ¼ f2 ¼ 0
system affects the form of the gauge symmetry, thus
necessitating, each time, a recomputation of all the main
features of the theory. Despite the demanding computa-
tional task (see [87]), the outcome turned out to be the same
for all the (20) different solutions defined in terms of pairs
of independent parameters. We can, consequently, present
the results for this scenario by focusing on a particular
solution:

c9 ¼ c10 − c11 þ c12 þ 16c13 − c7 þ c8; ð32aÞ

c15 ¼ 8c13 − c14; ð32bÞ

producing the following propagator poles

m2
1− ¼ a0

20c13
; m2

1þ ¼ a0
16c13

: ð33Þ

The correlation among the masses of the two spin-one
sectors is not an accident of the chosen solution but
illustrates a common feature: the strict proportionality
m2

1−=m
2
1þ ¼ 4=5. Such correlation signals the impossibility

of removing the propagation of one state without interfering
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with the other. To assess the nature of the states we need to
compute the saturated propagator in the presence of the
augmented gauge constraints defined, for instance, by
Eqs. (32a) and (32b). For the massive limit of k ¼
ðm; 0; 0; 0Þ for some m we must consider, on top of
Eqs. (29) and (30) the extra degeneracy of the 1− sector.
Being generated by a three-dimensional vector, these source
constraints take the form

W00i −W0i0 ¼ a0
m2

Wi00 −Wi11 −Wi22 −Wi33

c11 − c12 − 4c14 þ 2c7 − 2c8
: ð34Þ

The odd appearance of couplings within the definitions of
the symmetry is a curious feature of this analysis. This,
however, does not present any theoretical downsides if we
consider that such parameters will be normalized to pure
numbers in the quadratic, final Lagrangian. The massive
limit confirms the presence of the propagation of three states
as expected for massive spin-one particles. For the two
different sectors, and the representative selection of depen-
dent parameters shown in Eqs. (32a) and (32b), we find the
corresponding residue

lim
k2↦m2

1−

DSðkÞ ∝
1

50c13

�
11þ �50ð6c13 − c14Þðc12 − c11

þ 2ð6c13 þ c14 − c7 þ c8ÞÞ
�
×
�ðc12 − c11

þ 4c14 − 2c7 þ 2c8Þ2Þ−1
�
; ð35aÞ

lim
k2↦m2

1þ
DSðkÞ ∝ −

1

4096c313

�
c211 − 2c11ðc12 þ 2ð8c13 − c7

þ c8ÞÞ þ c212 þ 4c12ð8c13 − c7 þ c8Þ
þ 768c213 þ 64c13ðc8 − c7Þ þ 4ðc7 − c8Þ2

�
:

ð35bÞ

While the requirement of positivity of limk2↦m2
1−
DSðkÞ

does not challenge the unitarity of the graviton sector, nor the
tachyon-freedom conditions over the vector masses, this
is not the case for limk2↦m2

1þ
DSðkÞ > 0, which calls for

c13 < 0. Again, different choices in solving for f1 ¼ f2 ¼ 0
do affect the form of the residues, but no simultaneous
solutions are found (see [87]). The correlation existing for
the propagation of both massive vectors in Eq. (33) pro-
hibits, therefore, both massive states from appearing in a
healthy spectrum.

IV. CONCLUSIONS

It is difficult to overestimate the importance of accom-
modating the absence of ghosts and tachyons in quantum
field theory. Control over unitarity is key to understanding
the shape of possible new theories and future extensions of

the current models. Spin-parity projectors provide a com-
putational framework for fully controlling the propagation of
quadratic Lagrangian, which lends itself well to computer
implementation. Once the needed operators are collected,
the spectral problem is basically solved [55,56]. The output
is unambiguous, given the direct access to the propagator,
and does not rely upon intricate field redefinitions or the
introduction of spurious fields to achieve reductions to
known cases. In this work, we have adopted the spin-parity
formalism to illustrate its reach and the capacity to tackle a
broader set of operators than previously possible. We have
made a thorough survey of the Ricci-type MAG operator
space, but our analysis is not intended to be exhaustive. The
point we are making is that if further special cases turn out to
be of interest in the future, then it will be economical to test
them using our approach. Recently, some spectral analyses
of the PGT and Weyl gauge theory have been made
[55,56,72], which really are exhaustive. The trick to making
exhaustive surveys is to recursively search over the root
system of the wave operator determinant. This would make
an appealing (and apparently straightforward) extension to
our current PSALTer program, but we defer it to future work.
There are two key limitations to our approach. First, the

authors of [35] are able to extend their analyses to particle
spectra on Friedmann backgrounds: we cannot do this.
There is some hope for the extension of the spectral
algorithm to de Sitter backgrounds in the near future
[91], but further applications to nonmaximally symmetric
spacetimes are currently speculative [92]. Second, the
theories in Eqs. (12), (15) and (19) may propagate more
species in their full nonlinear dynamics than are revealed in
the spectral analysis. This is already known to happen in the
case of the theory in Eq. (19), for which the 1þ and 1−

torsion modes are strongly coupled near Minkowski space-
time [57]. When this happens, it means that the model is
inherently nonperturbative aroundMinkowski spacetime, so
the quadratic approximation in Eq. (6) is just a fictional
model which has nothing to do with the actual physics. It is
hard to see how this cannot be a pathology (with or without
ghost-tachyon freedom of the strongly coupled modes), and
the only sure way to diagnose it is via a nonlinear
Hamiltonian analysis [93]. It is possible that the methods
of [35] are also sensitive to strong coupling, if for example
propagating d.o.f. are lost as the Friedmann background is
deformed into the Minkowski background. However, it is
not clear that such an approach would always detect the
problem when it exists. Attempts at computer algebra
Hamiltonian analysis were made in [94], but the imple-
mentation was not theory agnostic (restricted to PGT). The
PSALTer software showcased here is theory agnostic by
design.6

6It can be downloaded from github.com/wevbarker/PSALTer.
In the longer term we hope that PSALTer will become an official
contribution to the xAct project [86,95–98].
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APPENDIX A: ZERO NONMETRICITY
WITH PSALTER

The full spectrum of the general theory in Eq. (15) is
given in Fig. 3. Whilst the formulation in Sec. III A is
consistent with the MAG conventions set out in Sec. II A,
we take the unusual approach of reformulating the theory as
a PGT [99] when presenting the PSALTer analysis. This
allows us to recycle a preexisting PGT kinematic module
within PSALTer, and meanwhile the spectral analysis of
Fig. 3 is already well-known anyway [57]. The PGT
kinematic module is displayed in Fig. 2.
Whilst our MAG conventions are designed to be iden-

tical to [28], our PGT conventions will be identical to those
in [65,93,100–103]. To define the PGT, we introduce eiμ
and eiμ as the cotetrad and tetrad components, which are
associated with Roman Lorentz (i.e. anholonomic) indices,
so that we can compare with the MAG metric eiμejνηij ≅
gμν and inverse eiμejνηij ≅ gμν with identities eiμeiν ≡ δνμ
and eiμejμ ≡ δij as kinematic restrictions. There is also a

FIG. 2. Kinematic structure of PGT, as used in Fig. 3. We repurpose the PGT kinematic module in PSALTer for the study of zero-
nonmetricity MAG in Sec. III A. Because of kinematic differences between the PGT and MAG (which are nullified by the extra Lorentz
symmetry in PGT), the irreps displayed here do not completely map to those in Eq. (5b) and (13). The key point is that the spin
connection A ij

μ ≡A ½ij�
μ maps to the antisymmetric distortion Δλμν ≡ Δλ½μν�, and the asymmetric tetrad perturbation fiμ contains at

least the d.o.f. in the symmetric metric perturbation hμν ≡ hðμνÞ. Note that the 2− state has a hidden multiterm cyclic symmetry on all its
indices, which is not accommodated by the C language implementation of the Butler-Portugal algorithm [86].
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FIG. 3. The full spectrum of the general theory in Eq. (15), but interpreted as a PGT in Eq. (A2). Kinematically, the 10 d.o.f. of the
metric are replaced with the 16 d.o.f. of the tetrad field. Consequently however, the additional gauging of the Lorentz group results in six
extra gauge generators on top of the diffeomorphism (translation) generators, so the formulations are not physically distinguishable. All
the quantities in this output are defined in Fig. 2.
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spin connectionA ij
μ ≡A ½ij�

μ, so that the PGT torsion and
PGT curvature are

T k
ij ≡ 2eiμejνð∂½μjekjν� þA k

m½μjemjν�Þ; ðA1aÞ

Rkl
ij ≡ 2eiμejνð∂½μjA kljν� þA k

m½μjA mljν�Þ: ðA1bÞ

The MAG torsion and curvature in Eqs. (1) and (2) are
precisely analogous to the PGT counterparts in Eqs. (A1a)
and (A1b), respectively, through the relations T μ

α
ν ≅

eiμekαejνT k
ij and F μν

ρ
σ ≅ eiμejνekρelσRk

lij, where we
pay attention to the different ordering of the indices
according to the two conventions. In terms of the PGT
field strength tensors, the action in Eq. (15) corresponds to

S½e;A � ¼
Z

d4xe½α0RþRijðα1Rij þ α2RjiÞ�; ðA2Þ

where S½e;A � ≅ S½g; A� and we adopt the dimensionful
coupling α0 and dimensionless couplings α1 and α2 in place
of a0, g1 and g2. The contractions are defined Rij ≡Rl

ilj

andR≡Ri
i with the measure e≡ detðeiμÞ ≅ ffiffiffiffiffiffi−gp

. In the
weak-field regime, we take A ij

μ to be inherently pertur-
bative, and we define the exact tetrad perturbation
eiμ ≡ δμi þ fiμ, i.e. the “Kronecker” choice of
Minkowski vacuum [65,104,105].
To lowest order in the quadratic action, the Greek and

Roman indices are then interchangeable—indeed PSALTer
only knows about one set of Lorentz indices on the
Minkowski background, and these are strictly associated
with Greek indices which represent Cartesian coordinates.
There are 16 d.o.f. in fiμ and 24 d.o.f. in A ij

μ. The latter
can clearly be accounted for, in the second-order formu-
lation, by the d.o.f. in Eq. (13). Most of the former are
accounted for by the metric d.o.f. in Eq. (5b), but there are
six further d.o.f. in the antisymmetric part of the tetrad
which do not appear in MAG. This is not a problem,
because, these six d.o.f. are immediately eliminated by the
six gauge generators of the Lorentz symmetry, part of the
Poincaré symmetry, which also is not visible in the MAG.
As a consequence, the spin-one matrices in Fig. 3 have
two rows and two columns more than they would do in
the MAG formulation, but the dimension of their null
space also increases by 2. Kinematic extensions of the
theory which are canceled by symmetries in this way do
not alter the physics, and in this sense we understand the
zero-nonmetricity MAG and the PGT to be equivalent
theories.
Conjugate to the tetrad perturbation fiμ and the spin

connection A ij
μ are the translational source (asymmetric

stress-energy tensor) τiμ and matter spin current σij
μ

[17,21,106]. The reduced-index SO(3) irreducible parts of
these fields and sources label the rows and columns of the
matrices in Fig. 3, and have spin-parity (JP) labels to
identify them. Duplicate JP states are distinguished by
additional parallel (k) and perpendicular (⊥) labels—but
there is no significant meaning behind these auxiliary labels.

APPENDIX B: ZERO TORSION WITH PSALTER

Unlike in Appendix A, our PSALTer analysis corre-
sponding to Sec. III B is fully grounded in the MAG
formulation. The zero-torsion MAG kinematic module is
displayed in Fig. 4. The first-order analyses in Figs. 5,7 and
9 share all our notational conventions above: the fields hμν
and Aμ

ρ
ν are perturbative. To reach the second-order

formulation, we only have to edit the quadratic action
before substituting into the ParticleSpectrum func-
tion (which is the main function provided by the PSALTer
package). The reparametrization used to transform the
quadratic action is

Aμ
ρ
ν ↦ Aμ

ρ
ν þ

1

2
ð2∂ðμjhλjνÞ − ∂λhμνÞ: ðB1Þ

To lowest order in perturbative fields, Eq. (B1) captures the
transition from Aμ

ρ
ν to Δμ

ρ
ν set out in Sec. II A. The

notation is slightly abusive, because Aμ
ρ
ν on the rhs of

Eq. (B1) is really Δμ
ρ
ν. But since there is no advantage in

defining a new kinematic module for PSALTer just to avoid
the notational conflict, we therefore lazily recycle the first-
order zero-torsion MAG module for all our second-order
calculations.
Conjugate to the metric perturbation hμν and the affine

connection Aμ
ρ
ν are the (symmetric) stress-energy tensor

Tμν and the current Wμ
ρ
ν which in MAG has become

known as the hypermomentum. As with the PGT notation in
Fig. 3, the JP states are labelled as such. To distinguish the
duplicate JP states, apart from the (k) and (⊥) symbols, we
use the letters (s), (h) and (t)—once again there is no
significant meaning behind these labels. Different labels
(numerical subscripts) are used in Eq. (18).
We show the general analysis of the theory in Eq. (19) in

Figs. 5 and 6, respectively, for the first- and second-order
formulations of the model. In Figs. 7–10 we consider tuned
special cases of the model in which the massive 1− state is
allowed to propagate.
Further theories considered in Sec. III B, whose matrices

are too cumbersome for the appendices, are presented
in [87].
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FIG. 4. Kinematic structure of zero-torsion MAG, as studied throughout Sec. III B. The SO(3) irreps precisely correspond to those in
Eqs. (5b) and (18), though the labelling of duplicate JP states is different from that in [28]. The key point is that the connection field
carries an extra symmetry restriction Aμ

ρ
ν ≡ AðμjρjνÞ, and by referring to Eq. (1) we see that this kills off the torsion in the first-order

formulation. In moving to the second-order formulation, we make a slight notational abuse in Eq. (B1), but from Eq. (4) we see that the
effect will still be as desired if we keep using this kinematic module. As with Fig. 2, the 2− and 3− states have extra cyclic symmetries
which are hidden. These definitions are used in Figs. 5–10.
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FIG. 5. The full spectrum of the general theory in Eq. (19). No general unitarity conditions are obtained, without further tuning. All the
quantities in this output are defined in Fig. 4.
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FIG. 6. The results in Fig. 5 repeated in the second-order formulation. Note that the quadratic action in this case contains very many
more operators than does Fig. 5. The matrix elements and the forms of the pole residues are expected to change, but the mass spectrum is
the same. Once again, the unitarity conditions are not obtained for the full theory: despite the apparent changes to the residues, such
conditions should be invariant under reparametrizations. All the quantities in this output are defined in Fig. 4.
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FIG. 7. The spectrum of the theory in Eq. (19) with the additional constraints c9 ¼ c10 ¼ c11 ¼ c12 ¼ 0. These are sufficient to
eliminate the 2þ and 1þ massive states, leaving only the massive 1− state in Eq. (24). The overall theory is clearly unitary. All the
quantities in this output are defined in Fig. 4.
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FIG. 8. The results in Fig. 7 repeated in the second-order formulation. Note the much larger quadratic expansion, but the consistent
mass spectrum and unitarity conditions. The results are used in Eq. (24). All the quantities in this output are defined in Fig. 4.
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FIG. 9. The spectrum of the theory in Eq. (19) with the additional constraints c9 ¼ c10 ¼ c11 − c12 ¼ 0. As with Fig. 7 these are
sufficient to eliminate the 2þ and 1þ massive states, leaving only the massive 1− state in Eq. (24). The overall theory is clearly unitary.
All the quantities in this output are defined in Fig. 4.
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FIG. 10. The results in Fig. 9 repeated in the second-order formulation. Note the much larger quadratic expansion, but the consistent
mass spectrum and unitarity conditions. All the quantities in this output are defined in Fig. 4.
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APPENDIX C: GENERIC CASE WITH PSALTER

As with Appendix B, our PSALTer analysis corresponding to Sec. III C is fully grounded in the MAG formulation. The
generic MAG kinematic module is displayed in Fig. 11. The generic first-order MAG kinematic module is of course larger

FIG. 11. Kinematic structure of the unrestricted MAG, as studied throughout Sec. III C. The SO(3) irreps precisely correspond to those
in Eqs. (5a) and (5b), though the labeling of duplicate JP states is different from that in [28]. As with Figs. 2 and 4, the 2− and 3− states
have extra cyclic symmetries which are hidden. These definitions are used in Figs. 12 and 13.
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than the zero-torsion counterpart in Fig. 4. By comparing Eq. (18) with Eq. (5a) we see that the spin-zero and spin-one
matrices will have extra rows and columns. As with Appendix B, the transition to the second-order formulation is made
using Eq. (B1). The PSALTer labeling of duplicate JP states is again different from that shown in Eqs. (5a) and (5b), and a
new label (a) is introduced.

FIG. 12. The full spectrum of the general theory in Eq. (12) using the first-order formulation. As with Figs. 5 and 6 completely general
unitarity conditions cannot be found automatically within one minute, but we investigate the conditions in Sec. III C based on the masses
and residues in these results. All the quantities in this output are defined in Fig. 11.
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The full spectrum of the general theory in Eq. (12) using the first-order formulation is given in Fig. 12. The equivalent
result in the second-order formulation is given in Fig. 13.
Further theories considered in Sec. III C, whose matrices are too cumbersome for the appendices, are presented in [87].

FIG. 13. The full spectrum of the general theory in Eq. (12) using the second-order formulation. Note that the matrix elements differ
from Fig. 12, and the form of the gauge symmetries and pole residues seem to differ, but the mass spectrum is the same. Moreover, the
number of gauge generators is the same, and the pole residues are expected to have the same implications for the unitarity. Note also the
much larger quadratic expansion of the action. All the quantities in this output are defined in Fig. 11.
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