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Space-based gravitational wave (GW) detectors are expected to detect the stellar-mass binary black holes
(SBBHs) inspiralling in the low-frequency band, which exist several years before the merger. Accurate GW
waveforms in the inspiral phase are crucial for the detection and analysis of those SBBHs. In our study,
based on post-Newtonian (PN) models, we investigate the differences in the detection, accuracy
requirement, and parameter estimation of SBBHs in the cases of LISA, Taiji, and their joint detection.
We find that low-order PN models are sufficient for simulating low-mass (≤50M⊙) SBBHs population.
Moreover, for detectable SBBHs in space-based GW detectors, over 90% of the GW signals from low-
order PN models meet accuracy requirement. Additionally, different PN models do not exhibit significant
differences in Bayesian inference. Our research provides a comprehensive reference for balancing
computational resources and the desired accuracy of GW waveform generation. It highlights the suitability
of low-order PN models for simulating SBBHs and emphasizes their potential in the detection and
parameter estimation of SBBHs.

DOI: 10.1103/PhysRevD.109.104014

I. INTRODUCTION

Gravitational waves (GWs) have revolutionized our
understanding of the Universe, providing us with a new
observation window. Among the various sources, one of the
most significant GW sources are stellar-mass binary black
holes (SBBHs), also referred to as stellar-origin binary
black holes, typically with primary component masses
ranging from a few M⊙ up to ∼100M⊙. In 2015, the
Advanced LIGO first detected a GWevent generated by the
merger of a SBBH with component masses 35.6M⊙ and
30.6M⊙ [1]. In the following years, GWevents from binary
neutron star [2,3] and neutron star-black hole [4] were
successively detected, opening the new area of multimes-
senger astronomy [5–8]. As of this year, the LIGO-Virgo-
KAGRA (LVK) Collaboration has detected over 90 GW
events, which are all from stellar-mass compact binary
systems [9–11], and commenced the Fourth Observing
Run (O4).
The GWs generated by SBBHs span multiple frequency

bands, encompassing the inspiral phase in the low-frequency
bands and themerger phase in the high-frequency bands [12].

Ground-based GW detectors like LVK have the potential to
detect the GWs emitted in the merger phase (or more
precisely, the very late inspiral, merger, and ringdown
phases) of SBBHs, which can last for several seconds to
several minutes at most [13–15]. Before the merger, a
significant number of SBBHs are inspiralling in the low-
frequency band, with the expectation of entering the sensi-
tivity range of space-based GW detectors. Space-based GW
detectors consist of various missions, such as the LISA
mission proposed by the European Space Agency and the
Taiji mission proposed by the Chinese Academy
of Sciences, which are scheduled for launch around the
2030s [16,17]. Each mission comprises a triangular con-
figuration of three spacecraft (S/C) orbiting the Sun, linked
by laser interferometers, and sensitive to the low-frequency
band around millihertz.
Compared to the instantaneous GWs emitted by SBBHs

in the merger phase, the low-frequency GWs emitted in the
inspiral phase could last from several months to several
hundred years, with many of them persisting longer than
the mission duration (assuming 4 years) [18]. In contrast to
the single chirp GW signal detected by ground-based GW
detectors, GWs emitted by SBBHs during the mission*cqujinli1983@cqu.edu.cn
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duration are detected simultaneously and slowly increase in
the frequency band of space-based GW detectors. A
minority of SBBHs are in close proximity to chirping,
where the frequency rapidly increases before exiting the
frequency band of the space-based GW detector [19],
which will subsequently enter the frequency band of
ground-based GW detectors, enabling the observation of
GW signals in multiband [20–22]. GW observations in the
frequency band of space-based GW detectors can provide
important information, such as the coalesce time and sky
position of SBBHs, which is beneficial for ground-based
GW detectors observations. Performing multiband GW
observations is of paramount importance as it contributes to
the comprehension of the formation mechanism of SBBHs,
the understanding of cosmic evolution, and the precise
verification of modified gravity theories [12,23]. Hence, the
observation of SBBHs using space-based GW detectors
holds particular significance. However, due to the lack of
available data from space-based GW detectors at present,
all relevant research is conducted based on simulations.
Therefore, understanding the population distribution and
signal simulations of SBBHs is crucial for advancing our
knowledge in this field.
In terms of the population model of SBBHs, the

ancestors of SBBHs observed by LVK are potential sources
of space-based GW detectors, and by analyzing the GW
events, it becomes feasible to infer the population model of
SBBHs [24–26]. In Ref. [27], Moore et al. assessed the
impact of signal-to-noise ratio (SNR) thresholds on the
astrophysical population of SBBHs observable by LISA,
considering various merger rates and observation durations.
In Ref. [28], Liu et al. utilized five different population
models to estimate the expected number of detectable
SBBHs and the accuracy of parameter estimation for
TianQin by Fisher information matrix (FIM). Furthermore,
in Ref. [29], Chen et al. reported on the potential of utilizing
both LISA and Taiji, along with their joint detection, for the
detection of SBBHs. Their work demonstrated the feasibility
of future multiband GW observations, highlighting the
possibilities and advantages of combining observations
from multiple detectors. Due to the variations arising from
different models and theoretical calculations, significant
differences may exist in the results presented across different
references. Meanwhile, our objective is not to delve into the
discussion of those discrepancies. Therefore, for the purpose
of our study, we chose to utilize the four population models
provided in Ref. [25] to establish our dataset, serving as the
foundation for subsequent signal simulations.
In terms of the signal simulation of SBBHs, inaccurate

waveforms can introduce deviations from the actual sig-
nals, leading to reduced detection rates, increased system-
atic errors, and even potential misinterpretation as effects
beyond general relativity (GR) [30–33]. Additionally,
incomplete removal of bright sources can impact the
detection of other GW sources [34]. Therefore, ensuring

precise GW waveform simulations is crucial for reliable
detection and accurate characterization of SBBHs and other
sources in the GW data. In the early inspiral phase, where
the merger is still far away, GW waveform construction
often relies on post-Newtonian (PN) formalism [35]. For
instance, popular waveform models such as EOBNR and
IMRPhenomD commonly utilize PN approximations to
accurately simulate the waveform in inspiral phase [36–39].
In Ref. [40], Mangiagli et al. provided a preliminary
estimation of the required PN model accuracy for
SBBHs with LISA. They derived the equations of motion
(EOM) using numerical methods and utilized a Fourier-
domain PN waveform from Ref. [41] to estimate the
minimum waveform accuracy requirement. Their results
indicated that for 90% of LISA-relevant SBBHs, a 2PN
waveform accuracy is deemed adequate, while SBBHs with
short time (i.e., τ ≤ 4 yr) require higher-order waveform
accuracy.
We employ various methods to estimate accuracy

requirement, with a particular focus on applications.
Compared to previous studies, our research not only
considers different population models provided by LVK,
but also investigates the relevant results in LISA, Taiji, and
their joint detection. By comparing factors such as mis-
match, detection rate, and accuracy requirement, we pro-
vide a comprehensive assessment of the minimum accuracy
required for SBBHs with space-based GW detectors.
This paper is organized as follows. In Sec. II, we

introduce the different PN models used in our paper, the
four population models provided by LVK, and the neces-
sary parameters for constructing the simulated dataset. In
Sec. III, we review the relevant aspects of space-based GW
detectors, including response functions, noise, and time-
delay interferometry (TDI). In Sec. IV, we present the
different methods employed for accuracy estimation, along
with the basic parameter estimation. In Sec. V, we present
the results of our simulations and analyses, providing
accuracy calculations for different PN models. Finally,
we summarize our results in Sec. VI.

II. GW SIGNAL

A. Post-Newtonian models

Most inspiralling SBBHs can be considered to possess
nearly circular orbits, as the emission of GWs causes their
orbital energies to decrease gradually, resulting in a chirp
signal with progressively increasing frequency and ampli-
tude [35]. SBBHs within the frequency band of space-based
GW detectors are predominantly in the early inspiral phase,
exhibiting minimal frequency variations. Consequently, the
GW waveforms can be expressed as follows [42]:

hþðtÞ ¼ A
1þ cos2ðιÞ

2
cos½ΦðtÞ�;

h×ðtÞ ¼ A cosðιÞ sin½ΦðtÞ�; ð1Þ
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with

A ¼ 4

DL

�
GMc

c2

�
5=3

�
πfðtÞ
c

�
2=3

; ð2Þ

where Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the chirp mass,
m1 and m2 are the masses of SBBH, DL is the luminosity
distance, ι is the inclination angle,ΦðtÞ ¼ R

2πfðtÞdt is the
GW phase, fðtÞ is the GW frequency, and G and c are the
gravitational constant and the speed of light.
In the cosmological distance, accounting for cosmic

expansion is essential when considering the propagation of
GWs from the source to the detector. The frequency and
mass of the GW sources are influenced by the underlying
cosmic expansion. It can be demonstrated that by utilizing
the cosmological redshift parameter z, the parameters
associated with the source can be corrected by a factor
of (1þ z). The parameters related to the GW source are
multiplied (or divided) by that factor, yielding the observed
parameters in the GW detectors [42]. In our paper, all
parameters are based on the observed parameters.
In the PN formalism, the small remainder terms resulting

from the PN expansion of EOM are typically denoted as
Oð1=cnÞ and referred to as n=2 PN terms [35]. Through
utilizing various PN approximations and considering pos-
sible effects, we can compute the energy flux F and total
energy E. In case of a circular orbit, there is no need to
employ the angular momentum balance equation or per-
form an averaging procedure [43]. Instead, the evolution of
frequency and phase can be obtained by solving the energy
balance equation dE=dt ¼ −F .
The GW phase Φ and the GW frequency f are related to

the orbital phase ϕ and the angular frequency ω of SBBHs,
which can be described as follows:

Φ¼ 2ϕ; ϕ¼
Z

ωdt; f¼ω=π: ð3Þ

For convenience, we employ dimensionless variables,

x¼
�
GMω

c3

�
2=3

; Θ¼ νc3

5GM
τ; ð4Þ

where M ¼ m1 þm2 is the total mass, ν ¼ m1m2=ðm1 þ
m2Þ2 is the symmetric mass ratio, τ ¼ tc − t is the time to
coalescence, and tc is the coalescence time. For instance, in
the lowest approximation, i.e., 0PN model, the orbital
phase ϕ with initial phase ϕ0 can be writen as [43]

ϕ¼ϕ0−
x−5=2

32ν
; x¼ 1

4
Θ−1=4: ð5Þ

In this paper, we consider the effects up to 3.5PN and
incorporate the influence of spin effects. We assume that
the spins of the SBBHs are aligned with the orbital angular

momentum, or equivalently, we neglect any components
where the spins are misaligned with the orbital angular
momentum. That assumption ensures that the orbital plane
and the spin direction remain fixed, i.e., nonprecessing. The
different PN models discussed in the paper are all in the
circular orbits and nonprecessing. The impact of eccen-
tricity and precession on waveforms is separately explained
in Sec. V E.
Typically, spin effects are divided into linear spin-orbit

(SO) effects and quadratic spin-spin (SS) effects.
Therefore, the overall orbital phase can be expressed as
a combination of nonspin (NS), SO, and SS contributions,

ϕ ¼ ϕ0 −
x−5=2

32ν

X
p

ðφNS
p þ φSO

p þ φSS
p Þxp; ð6Þ

where the specific expressions of x can be found
in Eq. (316) of Ref. [35], φNS

p and φSO
p can be found in

Eq. (16) and Eq. (19) of Ref. [43], and φSS
p can be found

in Eq. (14) of Ref. [44]. Through the analytical expressions
in Refs. [35,43,44], we can obtain the phase of different PN
orders in Eq. (6), and by substituting Eqs. (1) and (2), we
can obtain the GW waveform in the time domain.
The order of PN model, p, can be either an integer or a

half-integer, and the nonzero PN terms are listed in Table I.
For convenience, we denote 3.5NSþ 3.5SOþ 3.5SS as
3.5PNþ SOþ SS. Based on Table I, we select various PN
models incorporating different PN orders and effects. The
corresponding generation times are detailed in Fig. 1,
which shows that an increase in PN order and associated
effects lead to a proportional rise in the time required for
simulating GW signals. That result prompts a careful
consideration of how to strike a balance between the
distinctions among different PN models and the computa-
tional time involved.
For better demonstrating the distinctions among those

PN models, we calculate the frequency variations before
the merger and simulate the orbital evolution of the binary
system using the Kepler’s laws in Fig. 2. The GW
frequencies depicted in Fig. 2 are not in the frequency
band of space-based GW detectors, due to more distinct
frequency variations and marginal differences among PN

TABLE I. The PN terms of NS, SO, and SS. Checked items
indicate nonzero, while unchecked items indicate zero.

PN NS SO SS

0 ✓ � � � � � �
1 ✓ � � � � � �
1.5 ✓ ✓ � � �
2 ✓ � � � ✓
2.5 ✓ ✓ � � �
3 ✓ ✓ ✓
3.5 ✓ ✓ ✓
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models in the period close to the coalescence which is not
in millihertz band. Thus, to emphasize those distinctions,
we specifically chose the GWs from SBBHs close to the
coalescence; nevertheless for the subsequent signal simu-
lations and accuracy calculations, we utilize the GWs from
SBBHs within the frequency band of space-based GW
detectors.
From Fig. 2, it is significant for the influence of spin

effects, especially the SO effect. Considering the impact of
spin effects, even lower-order PN models are more accurate
than higher-order PN models; e.g., the 1.5PNþ SO model
is more accurate than 3.5PN, with the 3.5PNþ SOþ SS
model as the standard reference. Equation (6) and
Refs. [43,44] indicate that NS and SO effects positively
contribute to the phase and frequency, while the SS effect
has a negative contribution; e.g., the frequency of 2.5PNþ
SOþ SS model is lower than that of the 2.5PNþ SO
model. Meanwhile in the orbital evolution shown in Fig. 2,
the 2.5PNþ SO model is more compatible with the
3.5PNþ SOþ SS model than 2.5PNþ SOþ SS. That
suggests that in some cases considering more effects
may not lead to better results. In Sec. V C, we provide a
rigorous comparison of the accuracy among different PN
models.

B. Population models

To improve the realism of our simulations, we employ
various population models for SBBHs to generate diverse
datasets. We focus on four critical aspects: the mass
distribution, the spin distribution, the redshift evolution,
and the distribution of other parameters. Those aspects

collectively contribute to a more comprehensive and
accurate description of the observed SBBH population.
In our study, we explore four different models for the

mass distribution, and each offers a different method to
describe the mass distribution of SBBHs. Here is a brief
description of those models [24–26]:
(1) Truncated: The simplest mass model considered

is characterized by a power-law distribution for the
primary masses, with hard cutoffs at both low and
high masses. This model utilizes only four param-
eters to describe the mass distribution effectively.

(2) PowerLaw+Peak: Compared to the previous
model, this one incorporates additional features to
account for the low-mass and high-mass ends of the
distribution. It includes a smoothing function at low
masses and introduces a Gaussian peak at high
masses. Therefore, this model consists of eight
parameters to fully describe the mass distribution.

(3) Broken PowerLaw: This model consists of two
power-law distributions with different exponents,
connected by a break in the middle. It incorporates a
smoothing function at low masses and is described
by seven parameters to characterize the mass dis-
tribution.

(4) MultiPeak: Similar to PowerLaw+Peak, this
model includes two Gaussian peaks. Thus, the
model has eleven parameters.

The specific mathematical definitions and parameter
values for the four mass distribution models mentioned
can be found in Appendix B of Ref. [24]. In Figs. 3(a)
and 3(b), we present the normalized mass distribution of
those four models. Our subsequent simulations are based on
those distributions.
For the spin distribution of SBBHs, we use the simplest

DEFAULT spin model [18]. In this model, the dimension-
less spin amplitude distribution follows a beta distribution,
while the tilt angle of the spin is described by a combination
of the isotropic distribution and the Gaussian distribution.
Figures 3(c) and 3(d) show the distribution of spin
amplitude and tilt angle.
For the redshift evolution of the SBBH merger rate, we

adopt the NONEVOLVING model, assuming a constant
merger rate density RðzÞ that does not vary with redshift
z [24]. For PowerLaw+Peak, Broken PowerLaw, and
MultiPeak, after incorporating the constraints from the
LVK observations, the derivedR values are very close, and
we set R ¼ 23.9 Gpc−3 yr−1. Additionally, Truncated
has a slightly higher R value than the other models, but its
results remain consistent within the statistical uncertainties.
Hence, we set R ¼ 33 Gpc−3 yr−1 for Truncated.
The additional parameters for SBBHs, including the time

to coalescence τ, sky positions λ and β, inclination ι,
polarization ψ , and initial phase ϕ0, are generated based on
the prior data from Table II. With those known parameters,
we can calculate the remaining parameters, such as the

FIG. 1. Comparison of time for generating GW signals using
different PN models. The coordinates are expressed in units of
T0PN, which is the time required to generate GW signals using
0PN model. The time sets represent the cumulative time taken to
generate GW signals for hundreds of different parameters and
durations. For each time set of GW signals, all parameters except
the PN model remain the same.
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initial frequency f0 and luminosity distance DL, which can
be written as [42]

f0 ¼
1

8π

�
1

5

�
GMc

c3

�
5=3

τ

�
−3=8

; ð7Þ

DL ¼ cð1þ zÞ
H0

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þ ΩΛ

p ; ð8Þ

where we adopt the ΛCDM cosmological model
with parameters derived from the “Planck 2018
results” [45], corresponding to the Hubble constant H0¼
67.37 kms−1Mpc−1, matter density parameterΩm ¼ 0.315,
and dark energy density parameter ΩΛ ¼ 0.685.
To estimate the potential number of SBBHs detectable

by a space-based GW detector, we utilize a calculation
method similar to the one described in Refs. [19,20]. The
calculation for the number of SBBHs can be expressed as

N ¼
Z

RðzÞpðθÞ dVcðzÞ
dz

1

1þ z
dzdθdτ; ð9Þ

where θ collectively denotes different parameters, pðθÞ is
their probability density function, dVcðzÞ is the comoving
volume, and 1=ð1þ zÞ accounts for the cosmic expansion.
In our study, we limit the distance of the GW sources to the
range 10−3 ≤ z ≤ 2, and set the upper limit for τmax to be
100 yrs.
Using Eq. (9), we can calculate the variation and total

number of the SBBH with redshift. We use NumPy [46] for
weight sampling to generate samples that conform to the
parameter distribution in Fig. 3 and Table II. Using Eqs. (7)
and (8) to calculate the remaining parameters, we can
obtain parameter information containing several SBBH
sources and construct a dataset that conforms to the
population model. Based on the above, we construct four
different datasets representing different SBBH population
models, incorporating various parameters for the GW

FIG. 2. Comparison of frequency and orbit for different PN Models. Top panel: (a) shows the variation of frequency with time for
nearly 100 seconds before merger, with the parameters of the GW source listed in the figure. (b) is a magnified view of (a). Those signal
simulations are all based on the coalescence time tc ¼ 0. Bottom panel: The orbital evolution of the SBBHs, with the center of mass as
the origin, exhibits variations in GW within the frequency range of 25 to 35 Hz. The coordinates are in units of Schwarzschild radii
Rs ¼ 2GM=c2. The SBBHs have the same initial positions, using the initial position based on 3.5PNþ SOþ SS model as a reference to
compare the differences after a certain period of evolution.
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sources. In Sec. V B, we present a detailed analysis and
comparison of the results for high SNR sources in those
datasets.

III. DETECTORS AND TDI

A. Detector’s response

LISA and Taiji both consist of a triangular configuration
of three S/C and can be regarded as three dual-arm
Michelson laser interferometers. They detect GWs by
measuring the relative changes in the lengths of the two
arms, and to describe the response of the detectors to a GW,
we employ the method in Ref. [47]. As shown in Fig. 4, the
detector frame is established using a set of orthogonal unit
vectors fx̂; ŷ; ẑg, while the GW frame is constructed using
fp̂; q̂; ŵg, with ŵ representing the propagation direction of

the GW, and the unit vector Ω̂ ¼ −ŵ denoting the position
of the GW source. For the detector, the two arms have an
angle γ ¼ 60°, and the unit vectors û and v̂ representing the
arms are positioned on opposite sides of the x-axis. For the
GW, there exists an additional rotational degree of freedom
that can be fixed by specifying the polarization ψ . That
allows us to determine the GW polarization states
using fm̂; n̂; ŵg.
The detector frame and GW frame can be interchanged

through a Euler rotation, and all of those concepts can be
expressed using the observation angles of the detector, ϕd
and θd. The relationship between the GW signal in the
detectors and the polarization states of the GW can be
expressed as

hðtÞ ¼ F×h×ðtÞ þ FþhþðtÞ; ð10Þ

where h×ðtÞ and hþðtÞ are given in Eq. (1), and the antenna
response functions F× and Fþ are defined as

F× ¼ Dije×ij; Fþ ¼ Dijeþij: ð11Þ

We can define the polarization tensors using fm̂; n̂; ŵg as
follows:

eþij ¼ m̂im̂j− n̂in̂j; e×ij¼ m̂in̂jþ n̂im̂j: ð12Þ

FIG. 3. Distribution of mass and spin parameters. Top panel: (a) shows comparison of four types of SBBH mass distribution models:
Truncated, PowerLaw+Peak, Broken PowerLaw, and MultiPeak [24]. (b) is the mass ratio distribution of those four
population models. Bottom panel: (c) and (d) are the amplitude and tilt angle distributions of DEFAULT spin model [18].

TABLE II. Parameter distribution used in population produc-
tion [18]. U½a; b� represents a uniform distribution from a to b.

Parameter Distribution

Time to coalescence τ U½0; τmax=ð1þ zÞ� yrs
Ecliptic longitude λ U½0; 2π� rad
Ecliptic latitude β arcsinðU½−1; 1�Þ rad
Inclination ι arccosðU½−1; 1�Þ rad
Polarization ψ U½0; 2π� rad
Initial phase ϕ0 U½0; 2π� rad
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Also, the detector tensor Dij can be represented using
transfer function T [48],

Dij ¼ 1

2
½ûiûjT ðf; û · ŵÞ − v̂iv̂jT ðf; v̂ · ŵÞ�; ð13Þ

with

T ðf; â · ŵÞ ¼ 1

2

�
sin c

�
f
2f�

ð1 − â · ŵÞ
�

× exp

�
−i

f
2f�

ð3þ â · ŵÞ
�

þ sinc

�
f
2f�

ð1þ â · ŵÞ
�

× exp

�
−i

f
2f�

ð1þ â · ŵÞ
��

; ð14Þ

where sin cðxÞ ¼ sin x=x, f� ¼ c=ð2πLÞ is the transfer
frequency, and L is the arm length of the detector. The
arm length for LISA L ¼ 2.5 × 109 m, while for Taiji, the
arm length L ¼ 3 × 109 m. The transformations between
the detector coordinate system (ϕd; θd) and the ecliptic
coordinate system (λ, β) can be found in Refs. [47,49].
Additionally, for a space-based GW detector around the

Sun, the periodic motion will produce the Doppler phase,
which is given by [49,50]

ΦDðtÞ ¼ 2πfðR=cÞ cos β cosð2πfmt − λÞ; ð15Þ

where R ¼ 1 A:U: is the distance between the Sun and the
Earth, fm ¼ 1=year is the geocentric orbit modulation
frequency, and (λ, β) are the ecliptic coordinates of the
GW source. During the simulation of GW signals, we
consider the influence of the Doppler effect by incorpo-
rating the Doppler phase ΦDðtÞ from Eq. (15) into the
phase ΦðtÞ in Eq. (1). That ensures the Doppler effect is
properly accounted for in the simulated signals.

B. Time-delay interferometry and noise

For space-based GW detectors, TDI is essential to
suppress laser frequency noise and achieve detection
goals [51–53]. Different combinations of TDI channels
yield varying responses to GW signals and instrument
sensitivities [54].
We use the second generation Michelson XYZ channels,

and the laser path for the X channel is shown in Fig. 5.
Based on the laser path, the expression for the X-TDI 2.0
can be described as [55]

X2.0 ¼ η13 þD13η31 þD13D31η12 þD13D31D12η21

þD13D31D12D21η12 þD13D31D12D21D12η21

þD13D31D12D21D12D21η13

þD13D31D12D21D12D21D13η31

− ðη12 þD12η21 þD12D21η13 þD12D21D13η31

þD12D21D13D31η13 þD12D21D13D31D13η31

þD12D21D13D31D13D31η12

þD12D21D13D31D13D31D12η21Þ; ð16Þ

where Dij is the time-delay operator, DijηðtÞ ¼
ηðt − Lij=cÞ, ηij are the combined observables from
S=Cj to S=Ci, and Lij is the arm length from S=Ci to
S=Cj [56,57]. The expressions for Y-TDI 2.0 and Z-TDI
2.0 are in the same form as Eq. (16), with the notation of
S=Ci and S=Cj being interchanged.
Through employing TDI, we assume that laser frequency

noise is adequately suppressed and significantly lower than
other kinds of noise. Consequently, we only focus on the
instrumental noise of space-based GW detectors, which
can be primarily composed of two components: a low-
frequency noise component, characterized by acceleration
noise, and a high-frequency noise component, characterized

FIG. 4. Relationship between detector frame and GW frame.

FIG. 5. Michelson X channel of the second generation TDI.
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by displacement noise [55,58–60]. LISA and Taiji have the
same acceleration noise, described as

ffiffiffiffiffi
Sa

p
¼ 3×10−15

2πfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
0.4mHz

f

�
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
f

8mHz

�
4

s
:

ð17Þ
The displacement noise for LISA can be expressed as

ffiffiffiffiffi
Sd

p
¼ 15 × 10−12 ×

2πf
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2 mHz

f

�
4

s
; ð18Þ

while for Taiji, the displacement noise is

ffiffiffiffiffi
Sd

p
¼ 8 × 10−12 ×

2πf
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2 mHz

f

�
4

s
: ð19Þ

Considering the effects of acceleration noise
ffiffiffiffiffi
Sa

p
and

displacement noise
ffiffiffiffiffi
Sd

p
, we can derive the power spectral

density (PSD) of the noise and the sensitivity curve of the
detector [55]. In Bayesian statistical inference, we use the
PSDandGWresponse after TDI 2.0,while in other parts, we
utilize the non-sky-averaged PSD based on the sensitivity
curve mentioned in Ref. [61]. That is done to maintain
consistency with the Bayesian parameter estimation in
Ref. [62] and the SBBHs detection in Ref. [29]. Given that
both definitions are valid and serve as suitable calculation
conditions, and considering the focus of our paper is to
compare and apply different PN models, it is appropriate to
exclude the discussion of the differences between the two
definitions in our study.

IV. METHODOLOGY

A. Mismatch and SNR

To compare the differences between different PN mod-
els, we consider the 3.5PNþ SOþ SS model waveform as
the exact physical waveform, denoted as he, and the
waveforms from different PN models as hm. A useful
measure of how close the two waveforms are to each other
is given by faithfulness F (also known as match), that is, the
overlap maximized only over the coalescence time tc and
phase ϕc of the waveform [63],

Fðhe; hmÞ ¼ max
ϕc;tc

hhejhmiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhejheihhmjhmi
p ; ð20Þ

with the inner product h·j·i defined as

hajbi ¼ 4Re
Z þ∞

0

ã�ðfÞb̃ðfÞ
SnðfÞ

df; ð21Þ

where ãðfÞ and b̃ðfÞ are the Fourier transformations of aðtÞ
and bðtÞ, and SnðfÞ is the one-sided noise PSD. The value

of F reflects the degree of similarity between he and hm.
For two waveforms that are relatively close, we often prefer
to use the complementary measure, known as the mismatch
MM, which can be expressed as

MMðhe; hmÞ ¼ 1 − Fðhe; hmÞ: ð22Þ

In the matched filtering, a bank of discrete modeled
waveforms is used as filters [63]. The optimal value for
recovering SNR ρopt can be simply expressed as

ρopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhejhei

p
; ð23Þ

and with a finite bank of filter templates, the recovered SNR
ρ is expressed as [40]

ρ ¼ hhejhmiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhmjhmi
p ≈ Fðhe; hmÞρopt: ð24Þ

To evaluate the effective loss of SNR caused by
imperfect waveform models, measurement indicators such
as F or MM are commonly used. Apparently, less
accurate waveforms lead to lower F, resulting in a decrease
of SNR for a specific GW signal and potentially impeding
signal detection. From Eq. (24), if the used model deviates
from the actual GW signal by F, SNR will also experience a
loss of F. For high SNR sources, such as massive black
hole binary, even with some SNR loss, the detection rate
remains almost unaffected [64]. However, for relatively
quiet sources like SBBH, the impact on the detection rate is
significant, resulting in a decrease in the number of
detections by a factor of F3 [34]. Therefore, the accuracy
of the waveform model is crucial for the detection rate of
SBBHs, and improving the accuracy of the waveform
model becomes essential for maximizing the chances of
detecting SBBHs.

B. Accuracy requirements

In addition to considering the diversity between different
PN models, the accuracy requirement is equally important
when using them in GW data analysis. Setting an appro-
priate accuracy requirement ensures that the scientific
information can be extracted from GW data completely,
while avoiding unnecessary computational burden with
overly stringent accuracy during simulations.
In GW data processing, we approximate the parameter

estimation of fixed SBBHs for individual sources, which
means when we analyze a specific GW source, the
influence from other GW sources is not considered. In
such a case, there are several methods to assess accuracy
requirement for different waveforms. A simple and
conservative approach for waveform accuracy requirement,
which aims at avoiding the introduction of systematic
biases comparable to the statistical uncertainties of indi-
vidual sources, can be expressed by imposing constraints
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on the relationship between MM and the optimal SNR
ρopt [34],

MM < 1=ρ2opt: ð25Þ

In addition, we also adopt another simple yet strict
requirement described in Ref. [65]. The difference between
two waveforms, δh ¼ hm − he, can be assessed using FIM.
If the standard deviation σ calculated from FIM is greater
than 1, the waveforms are considered indistinguishable.
That condition can be equivalently written as

hδhjδhi < 1: ð26Þ

The accuracy requirement described in Eq. (26) establishes
a strict requirement for measurements. If a waveform
satisfies that requirement, it implies that the two waveforms
are indistinguishable to the detector. It represents an ideal
requirement where more precise waveforms beyond that
requirement would not result in further improvement in
scientific measurements. Conversely, less accurate wave-
forms may degrade certain measurements. In Sec. V C, we
discuss the accuracy requirement of different PN models,
particularly in terms of detection rates and measurements,
which primarily involve three equations: Eqs. (24)–(26).

C. Statistical inference

In our paper, we aim to simplify the investigation of the
bias generated by different PN models in statistical infer-
ence. Therefore, we offer a concise overview of the relevant
concepts without delving into excessive detail.
Based on Refs. [62,66,67], our statistical inference is

performed using the Bayesian framework, where the
posterior probability distribution pðθjdÞ with different
parameters θ is derived according to Bayes theorem,

pðθjdÞ ∝ LðdjθÞpðθÞ; ð27Þ

where pðθÞ represents the prior information. For the
Bayesian inference, we employ the likelihood function
LðdjθÞ defined as [62]

lnLðdjθÞ ¼ −
X
k

hdk − hkðθÞjdk − hkðθÞik
2

þ const; ð28Þ

where k stands for different TDI channels fk ¼ X;Y;Zg, d
is TDI output, and hðθÞ is PN waveform. When the prior
pðθÞ is specified, we can employ the Markov Chain
Monte Carlo (MCMC) method to sample and infer the
posterior pðθjdÞ from Eq. (27). In our paper, we utilize a
specific affine-invariant ensemble sampler emcee for
sampling and inference [68].

V. RESULTS

A. Mismatch

We simulate GW signal hm using different PN models,
with the 3.5PNþ SOþ SS model he as the reference. The
mismatches MM in LISA are calculated using Eqs. (20)
and (22). The initial frequency of all SBBHs is set to be
8 mHz, a highly sensitive frequency for LISA. The total
mass M ranged from Mmin to 200M⊙, assuming that the
total mass of the SBBHs should not be less than
Mmin ≥ ð1þ 1=qÞMNS, where MNS ∼ 1.4M⊙ is the mass
of a neutron star [69]. We systematically vary the mass ratio
q and spin χz1=2, considering different scenarios.
Specifically, we investigate the MM curves for different
q and χz1=2: q∈ ½0.1; 1�, χz1=2 ∈ ½−0.9; 0.9�. The MM
values for different PN models are computed based on
the above parameter space, and the results are depicted
in Fig. 6.
The results depicted in Fig. 6 clearly demonstrate the

significant advantage of incorporating spin effects in the
PN models. The average value of MM for the spin-
inclusive models is only around 1%. Based on our
calculations, for cases ranging from 0.26% to 0.41%,
MM ≥ 0.6%, indicating that cases exceeding 99.6%, the
match exceeds 0.994 (cf. Ref. [40]). From an overall
perspective, there is a clear increasing trend in MM
values as the total mass M increases. In Fig. 3, the SBBH
mass distribution pðm1Þ tends to decrease with higher
mass m1. Consequently, for the population, SBBHs with a
larger proportion of lower masses exhibit relatively
smaller MM.
In Fig. 6, for PN models of the same order, such as 1.5PN

and 1.5PNþ SO models, there is an orange line that looks
the same. That is because that line represents a special case
where a binary system has equal masses (q ¼ 1) and
opposite spins (χz1 ¼ 0.9; χz2 ¼ −0.9). According to
Eq. (6) and Refs. [43,44], when a binary system consists
of equal masses with precisely opposite spins, the effects of
SO/SS will be offset (φSO=SS

p ¼ 0), resulting in no con-
tribution to the phase ϕ. Consequently, PN models of the
same order yield exactly the same results for such
configurations.
An meaningful result from Fig. 6 is that higher-order PN

models do not necessarily yield smaller MM values than
lower-order PN models. For instance, the averageMM for
the 1.5PNþ SO model is actually smaller than that for the
3.5PNþ SO model. That phenomenon also occurs in the
frequency variation depicted in Fig. 2(b), which has been
analyzed in the final paragraph of Sec. II A. Hence, when
simulating GW signals, blindly using high-order PN
models will increase computational resource consumption
and may not achieve the accuracy achieved by low-order
PN models. The above discussion is related to the overall
analysis, and in Sec. V C, we investigate the accuracy of
different PN models for detectable SBBHs.
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B. Detection number and SNR

For the datasets, we employ the method described in
Sec. II B, which results in four different datasets. Then, we
utilize Eq. (23) to calculate the optimal SNRρopt and identify
SBBHs with ρopt greater than SNR threshold ρthr as
detectable SBBHs. In our analysis,we set ρthr ¼ 1, deviating
from the commonly used thresholds of 8 or 12, as we focus
on the accuracy requirement of different PN models to
accurately detect as many SBBHs as possible. Setting too
high ρthr would result in a smaller number of detectable
SBBHs, which would hinder our research objectives.
Within the context of LISA, we consider SBBHs with

ρopt ≥ ρthr to be detectable. That standard is consistently
applied throughout our study, including the examination of
Taiji and joint detection in Sec. V C. The relevant detailed
research on detectable numbers can be referred to in
Refs. [19–22,27–29], and our results are shown in Fig. 7.
According to Refs. [70,71], the probability distribution

function of SNR follows a power-law form, pðρÞ ∝ ρ−4.
Therefore, the approximate representation of the detectable
numbers Nthr above SNR threshold ρthr can be expressed
as [27]

Nthr ∝
Z
ρ>ρthr

ρ−4 ∝ ρ−3thr : ð29Þ

From Eq. (29), as the threshold increases, the number of
detectable SBBHs decreases significantly, indicating the
feasibility of choosing ρthr ¼ 1. Based on Fig. 7, the
detectable numbers show little variation among the four
mass distribution models. Additionally, Fig. 8 presents
SNR distributions for different PN models, providing
further insights into detection.
Figure 8 shows that, for different PN models, except for

0PN model, the SNR of most models is higher than the
threshold of ρthr ¼ 1. PN models with spin effects dem-
onstrate a clear advantage over those without spin effects,
resulting in more GW signals with SNR greater than ρthr.
Additionally, under the same conditions, joint detection
results are the best, while Taiji’s results are better than
LISA’s, as detailed in Table. III.

C. Accuracy of different PN models

In Sec. V B, we generate datasets for four population
models and extract GW signals with ρ ≥ 1. Then, we
analyze the accuracy requirement of those GW signals with
respect to different PN models according to Eq. (25) and
present them in Fig. 9. The data in Fig. 9 shows results
similar to those in Fig. 8. PN models with spin effects yield
more GW signals meeting accuracy requirement than those
without spin effects. Additionally, the proportion of GW
signals that meet accurate requirement is greater in high-
order PN models than in low-order ones.

FIG. 6. Comparison of mismatches MM for different PN models. The legend at the top represents different mass ratios
q ¼ m2=m1 < 1 and spins χz1=2. The titles of each subplot, enclosed in brackets, indicate the average value ofMM. The curves in the
figure are obtained by fitting a third-order polynomial in logarithmic space. Our calculation is based on the fitted curve, using 1000
points for each curve and calculating the proportion of points on all curves. The black curves represent the results under different
parameters, while the colored curves represent the results under extreme parameters.
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For GW signals that do not meet accuracy requirement
(red points), it is a challenge to establish a definitive and
absolute threshold for determining the parameter values
(e.g., m1, m2, DL, etc.) whether they meet accuracy
requirement. An insightful trend can be drawn from the
distribution of τ shown in the small charts of Fig. 9.
Specifically, GW signals that do not meet accuracy require-
ment tend to have smaller τ values than those meeting the
requirement. That is consistent with PN formalism, where
larger τ values correspond to a longer duration until the
binary system merges, resulting in a closer PN approxi-
mation to the true physical GW signal. Certainly, that trend
is statistical, and there can still be GW signals with small τ
values meeting accuracy requirement. More stringent
accuracy requirement and detailed results considering
different detectors can be found in Table. III.

In order to define detection rate, we calculate SNR ρ for
various PN models with Eq. (24) with a threshold ρthr ¼ 1
and the proportion of detectable GW signals for different
PN models relative to the total number of GW signals
detectable by LISA. We do not consider GW signals that
can be detected through Taiji or joint detection but cannot
be detected through LISA. According to Eqs. (25) and (26),
the proportions of GW signals that meet the different
accuracy requirements can be calculated. Overall, Table III
illuminates the results about detection rate and two

FIG. 7. The number of detectable SBBHs by LISA under
different SNR thresholds ρthr using four population models. The
curve is the result of fitting using the equation Nthr ¼ a · ρ−3thr þ b,
and the shaded region represents the 90% confidence interval of
the fitting result.

FIG. 8. SNR distributions obtained from different PN models in
the four population models. We present SNR distributions for
three scenarios: LISA, Taiji, and LISAþ Taiji. All considered
SBBHs are detectable sources for LISA with ρ ≥ 1.

TABLE III. The proportion of detection rate and accuracy requirements for different PN models with LISA, Taiji, and LISAþ Taiji.

Detection rate [%] MM < 1=ρ2opt [%] hδhjδhi < 1 [%]

PN model LISA Taiji LISAþ Taiji LISA Taiji LISAþ Taiji LISA Taiji LISAþ Taiji

0PN 0.49 0.82 1.48 15.32 0 0 0 0 0
1.5PN 38.88 67.38 69.85 78.09 47.12 42.01 54.53 34.93 29.49
1.5PNþ SO 87.48 92.09 93.57 96.54 89.79 88.47 90.61 87.81 87.48
2PN 35.42 66.56 70.51 78.42 44.98 38.39 51.24 31.47 26.52
2PNþ SO 91.76 95.22 96.38 97.69 93.57 93.41 94.23 92.09 91.27
2PNþ SOþ SS 91.60 95.22 96.21 97.36 94.23 93.25 94.40 92.75 91.93
2.5PNþ SO 94.07 95.88 96.71 98.52 95.55 95.22 95.72 94.73 94.23
3.5PN 35.42 66.56 71.0 78.42 44.81 37.4 51.57 31.47 26.52
3.5PNþ SO 94.23 96.05 96.87 98.52 95.72 95.39 96.05 95.06 94.89
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accuracy requirements of different PN models in LISA,
Taiji and LISAþ Taiji, which is consistent with the results
shown in Figs. 8 and 9. From Eqs. (18) and (19), Taiji has a
better sensitivity than LISA for the lower displacement
noise; therefore, in terms of detection rates, Taiji is
expected to detect more GW signals than LISA.
Furthermore, joint detection using multiple detectors is
expected to result in a higher detection rate than individual
detectors. For PN models with spin effects, except for the
1.5PNþ SO model in LISAwith a detection rate of 87.5%,
the detection rates for the other PN models are consistently
above 90%. The high-order PN model results in only a
slight improvement in detection rates.
For the accuracy requirement, a better sensitivity implies

stricter constraints, and thus, the joint detection has the
strictest constraints, while Taiji’s constraints are stricter
than LISA’s. Additionally, the requirement of Eq. (26) is

stricter than that of Eq. (25). Similar to the detection rates,
the differences in results for PN models with spin effects
are not significant. Even for 1.5PNþ SO, using joint
detection and the requirement hδhjδhi < 1, 87.5% of
GW signals meet accuracy requirement. However, under
the same conditions, the 3.5PN+SO model achieves nearly
95% of GW signals meeting accuracy requirement.
Considering the time comparison in Fig. 1, it depends
on specific needs and requirement to achieve the balance
between computational resources and the accuracy require-
ment of the final results.
In the above calculations, we do not consider the impact

of foreground noise ScðfÞ (also known as confusion noise
or confusion foreground). That is because based on our
previous work [49], the foreground noise generated by
galactic binaries (GBs) in the Milky Way falls within the
frequency band of approximately ∼0.3–3 mHz, but the

FIG. 9. Comparison and distribution of accuracy requirement for different PN models. We provide the distribution of GW signals in
the four population models with LISA, Taiji, and LISAþ Taiji, using Eq. (25) as the standard for accuracy requirement. The subplots
uses blue to indicate compliance with accuracy requirements and red to indicate noncompliance. The size of the points represents the
value of τ, where larger points indicate smaller values of τ, and vice versa. The small chart in each subplot displays the normalized
distribution of τ, with accompanying numbers indicating the percentage of GW signals that meet accuracy requirement.
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frequency distribution of the GW signals discussed in our
paper shows little overlap with the foreground noise (see
Figs. 9 and 10). Therefore, we do not separately consider
the influence of foreground noise. Furthermore, unlike the
clearly defined spatial distribution (ecliptic coordinates) of
GBs in the Milky Way, the spatial distribution of SBBHs
assumes a random and uniform distribution, which means
that different orbital configurations for Taiji have negligible
differences. Consequently, we only consider the typical
orbital configuration of Taiji (i.e., Taiji-p) [49,56].

D. Parameter estimation

For parameter estimation, we randomly select a GW
signal from the generated dataset with a SNR of approx-
imately 1, which represents the most prevalent scenario.
The specific characteristics of GW signal are illustrated in
Fig. 11. Figure 11(a) clearly shows that the GW signal in
the time domain is overwhelmed by the instrumental noise.
The implementation of SNR above the detection threshold
largely relies on long-term observations. The inset in
Fig. 11(b) reveals that the frequency variation of the
GW signal is minimal, with a slight frequency variation
of only 0.02 mHz over a period of one year. Given those
observations, it is reasonable to speculate that the
differences among various PN models are unlikely to be
obvious.
Using the method described in Sec. IV C, we simulate

data for the XYZ-TDI 2.0 channels and employ a prior
range that allowed for fluctuations of approximately �20%

around the actual parameters. For parameter estimation, we
utilize the emcee package [68] and set up 25 chains, with
the likelihood function defined in Eq. (28). After running
the MCMC algorithm [62] for several thousand steps, we
obtain the results shown in Fig. 11.
Based on Figs. 11(c)–11(k), the results align with our

initial expectations. There are no significant differences
among the parameter estimates from different PN models,
as they all fall within the 90% confidence interval. An
interesting but unexpected result is that during the MCMC
run, 3.5PNþ SOþ SS model, representing the exact
physical GW signal injected, does not consistently yield
better parameter estimation than other PN models. For
instance, in terms of DL, the results from the 2.5PNþ SO
model is closer to the true values. Similarly, for β, the
1.5PNþ SO model, the lowest-order PN model used here,
surprisingly provides the closest estimate to the true value.
That result may be attributed to the extremely weak GW
signal with low SNR, which can also be influenced by the
selected population model and defined parameter ranges
(e.g., z, τmax, etc.), making few high SNR GW signals.
Furthermore, we also attempt MCMC analysis on GW

signals with relatively higher SNR, while increasing the
number of chains or steps. Same as previous results, the
parameter estimation results from different PN models
exhibited no significant differences. Therefore, we have
reason to believe that, in that particular MCMC parameter
estimation, the choice of PN models does not significantly
impact the final results.

E. Eccentricity and spin precession

All of our results above are based on the assumptions
of zero eccentricity and nonprecession, while in practice,
the SBBH system has elliptical orbits and precession.
Depending on different formation mechanisms, the eccen-
tricity andprecession distributionof SBBHare different [72].
The SBBH formed through isolated binary evolution is
expected to have a circular orbit, with its spin composition
almost aligned with the binary angular momentum. The
dynamically formed SBBH in globular clusters (GC) or
galactic nuclei may have nonzero eccentricity and random
spin direction due to the influence of interactions in dense
stellar environments [73,74].
In the research on PN, the development of eccentric

methods and spin-precessing methods has largely pro-
ceeded independently, and the development of models that
include both eccentricity and precession is still in the initial
stage [75]. A recent study has announced an effective-one-
body (EOB) numerical-relativity waveform model with
eccentricity and precession [76]. We employ the waveform
code pyWaveformGenerator [76,77], developed
based on that EOB model, to investigate the influences
of eccentricity and spin precession.
In the most sensitive frequency range of LISA, we use

pyWaveformGenerator to calculate the mismatches

FIG. 10. The impact of foreground noise on SBBHs. The
dashed lines represent the foreground noise ScðfÞ and the PSD
SnðfÞ, while the solid line represents their combined result. We
approximate the SBBHs with points, and the evolving tracks and
nonevolving points of binary systems in the frequency spectrum
are discussed in Ref. [58]. The red region represents the
frequency band affected by foreground noise, whereas the green
region represents the unaffected band.
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under different eccentricity and spin parameters using the
same method as in Sec. VA, as shown in Table IV. As
expected, for eccentricity, a larger eccentricity will result in
a largerMM. That is due to the GW generated by elliptical
orbits, whose frequency is different from the monotonic
variation of circular orbits and fluctuates within a certain

range. In addition, the larger the eccentricity is, the greater
is the GW frequency fluctuation. According to Eq. (2), the
amplitude also fluctuates, resulting in a larger MM. For
spin precession, different spin directions can lead to
different results. The influence of spin components in
the same direction (χx1 ¼ χx2 ¼ 0.1, χy1 ¼ χy2 ¼ 0) on

FIG. 11. Parameter estimation of an GW signal using MCMC. Left panel: here are enhanced descriptions of the time domain and
frequency domain images of GW signals. The yellow color represents the GW signal, while the blue color represents the instrumental
noise using X-TDI 2.0. To provide a closer view, a small inset is used to provide a magnified view of a specific region. Right panel: We
estimate nine parameters of GW source and visualize them using box plots. The upper and lower horizontal lines within each box plot
represent the 90% confidence interval. The edges of the box correspond to the upper and lower quartiles, while the line inside the box
represents the median. Furthermore, the specific values for the median and the 90% confidence interval are provided below each box.
The red dashed line indicates the true parameters of GW source, with their exact values enclosed in square brackets on the right side.

TABLE IV. Comparison of mismatches MM [%] for GW waveforms with different eccentricity e and spin parameters χ1=2. We
calculate the SBBH MM for different masses and mass ratios under each parameter with LISA. The values in the table represent the
median of these results, and the upper and lower limits represent the confidence interval of 1σ.

χ1∶ ðχx1; χy1; χz1Þ;χ2∶ðχx2; χy2; χz2Þ
e (0,0,0),(0,0,0) (0.1,0,0),(0,0,0) (0.1,0,0),(0.1,0,0) (0.1,0,0),ð−0.1; 0; 0Þ (0.1,0,0),(0,0.1,0) (0.1,0,0),(0.06,0.08,0)

0 0.0þ0.0
−0.0 0.91þ1.97

−0.86 3.15þ1.78
−3.02 0.51þ6.98

−0.4 1.08þ3.88
−1.0 2.48þ4.84

−2.11
10−3 0.71þ4.97

−0.68 1.15þ6.8
−1.05 3.2þ5.73

−3.12 0.81þ2.36
−0.76 1.8þ8.3

−1.76 2.9þ8.76
−2.76

10−2 2.05þ8.22
−1.98 6.67þ10.06

−4.78 11.93þ6.25
−8.61 7.83þ11.18

−6.26 13.73þ9.79
−9.67 11.37þ8.78

−8.22
0.1 11.35þ5.24

−4.7 13.16þ10.48
−8.46 12.75þ8.53

−6.36 13.68þ10.88
−7.02 12.08þ9.16

−7.24 12.77þ6.98
−5.71
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the GWwaveform is greater than that in different directions
(χx1 ¼ χy2 ¼ 0.1, χy1 ¼ χx2 ¼ 0), with the opposite direc-
tion (χx1 ¼ −χx2 ¼ 0.1, χy1 ¼ χy2 ¼ 0) having the smallest
impact. This is similar to the spin effect in Eq. (6), and there
should be some degree of cancellation in different direc-
tions. Moreover, the effect of spin precession on GW
frequency is not as significant as eccentricity, so the
resulting MM is smaller than that of eccentricity.
For small impacts,MM can still be controlled within an

acceptable range, but for large impacts, MM may reach a
larger level, and the differences in GWwaveform cannot be
ignored. However, when considering population models,
our PN model without eccentricity and spin precession is
not useless. As shown in Figs. 3(c) and 3(d), the spin
amplitudes in most SBBHs are very small, and the direction
is likely to be biased towards the z axis, resulting in very
small x and y components that generate precession. In
Ref. [73], Kremer et al. expect that within the frequency
band of LISA, approximately 30% of GC binary systems
have an eccentricity exceeding 10−3, and 18% have an
eccentricity exceeding 10−2. These results suggest that,
besides isolated SBBHs with zero eccentricity and non-
precession, most dynamically formed SBBHs also have
extremely small eccentricity and nonaligned spin compo-
nents. Therefore, our PN model can still be used in the vast
majority of SBBHs.
Due to the limitations of theoretical GW waveform

development, we have achieved a relatively complete level
at the current stage. One reason is the enormous computa-
tional time required, so we can only conduct basic analysis
and research onMM in Table IV. In spite of its limitations,
the study certainly adds to our understanding of the
differences in GW waveforms. Further studies need to be
carried out in order to comprehensively validate the effects
of eccentricity and spin precession on different PN models.

VI. CONCLUSION

In this paper, we investigate the comparison and appli-
cation of different PN models in detecting SBBHs using
space-based GW detectors. Specifically, we consider PN
models with spin effects and assume a nonprecessing
system with circular orbits. We examine three detector
scenarios, LISA, Taiji, and their joint detection, considering
the most general response functions and the Doppler effect
caused by the motion around the Sun. For the population
model, we utilize the four SBBH population models
provided by LVK and simulate detectable GW signals
based on LISA’s SNR threshold. In terms of comparison,
we conduct a comprehensive analysis of the different PN
models based on three key aspects: mismatch, detection
rate, and accuracy requirement. Furthermore, we employ
the MCMCmethod with TDI 2.0 to estimate the parameters
of a GW signal, providing insights into the application of
those models for parameter estimation.

Our research indicates that for PN models with spin
effects, over 99% of the cases achieved a high level of
match with a match of 0.994 or higher. Moreover, a high
match is observed for SBBHs with small total mass,
indicating superior performance of PN models for lower-
mass SBBHs. Given the prevalence of low mass (≤50M⊙)
in the population, the 1.5PNþ SO model is deemed
sufficient for simulating population-level GW signals.
In terms of detection rate, LISA achieves a detection rate

exceeding 90% with the 2PNþ SO model, while Taiji
achieves the same detection rate with the 1.5PNþ SO
model, demonstrating the feasibility of employing lower-
order PN models for GW detection. Applying the most
stringent accuracy requirement, we find that with the
1.5PNþ SO model, 90% of GW signals meet accuracy
requirement for LISA. It implies that for 90% of detectable
GW signals, LISA can not distinguish between the
1.5PNþ SO model and the exact physical GW signal.
Even in the joint detection, the 2PNþ SO model still meets
accuracy requirement for 91% of GW signals. From a
statistical perspective, GW signals that meet accuracy
requirement usually have larger τ values than those do
not meet it. In addition, the 1.5PNþ SO model achieves
those results in half the time compared to the 3.5PN model,
while delivering superior outcomes.
Furthermore, in parameter estimation using MCMC

Bayesian inference, there is no significant differences in
the results obtained from different PN models. Importantly,
a short generation times for GW waveforms in high-
dimensional parameter spaces implies a reduction of
computing resources and running time. In summary, the
selection of an appropriate PN model hinges on achieving a
balance between computational resources and the desired
accuracy.
In our future research, we plan to make improvements in

several aspects to enhance the study of SBBHs using space-
based GW detectors. First, we aim to further investigate the
application of low-order PNmodels, which will help reduce
computational resources. In our previous paper [78], we
utilized amodified 0PNmodel for simulating data and actual
GW signals in LIGO.We plan to employ a similar approach
for space-based GW detectors. Secondly, compared to
ground-based GW detectors, the influence of eccentricity
on GW signals is more pronounced in space-based GW
detectors [35,79]. Eccentric orbits introduce phase correc-
tion different from circular orbits, and we anticipate the
need for higher-order PN models to accurately simulate this
effect [40]. In addition, the PN series exhibits some
unpredictable alternating behavior, and recent works have
pushed the waveform to 4.5PN [80–82]. Therefore, we can
further extend our research to higher-order cases. For cases
beyond GR, the PNmodel may exhibit different effects. For
example, in the Einstein-Cartan theory, the correction of
1PN is considered detectable through the pulsar timing array
technique, and we can study the situation in space-based
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GW detectors [83–86]. Additionally, with the operation of
LVKO4 Run, we expect to obtain more reliable astrophysi-
cal population models and better constraints on various
parameters, which will contribute to further research on
detectable SBBHs. Finally, in MCMC Bayesian inference,
we plan to explore a different MCMC sampler or parameter
estimation methods, such as PyMC3 [87] and the hetero-
dyned likelihood method [88], to study the differences in
application of different PN models. In conclusion, with the
aforementioned in-depth investigations, we believe we can
advance the study of SBBHs, providing more valuable

information for space-based GW detector observations
and data analysis.
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