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Among the binary sources of interest for LISA some are quasimonochromatic, in the sense that the
change in the gravitational wave frequency Δf ≲ 1 yr−1 during the observation time. A significant fraction
of all Galactic double white dwarfs, as well as other kinds of compact binaries, are quasimonochromatic.
We revisit the stationary phase approximation (SPA) commonly used in Fisher matrix calculations in the
frequency domain (FD) for these sources, and we show how it is modified by the Doppler shift induced by
LISA’s motion and by the LISA pattern functions. We compare our results with previous work in the time
domain and discuss the transition from the quasimonochromatic case to the SPA, which applies when
Δf ≳ 1 yr−1. The SPA appears to work well when the gravitational wave (GW) frequency Δf is large
enough to result in a periodic modulation of the FD waveform associated with the LISA detector response,
although the shape of the modulation may differ from the one predicted by the conventional SPA.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) will be
sensitive to gravitational waves (GWs) with frequencies
between ∼10−4 Hz and 1 Hz [1–3], thus filling the gap
between the high-frequency window covered by present
and upcoming ground-based detectors (LIGO/Virgo/
KAGRA, Cosmic Explorer, and the Einstein Telescope [4–6])
and the low-frequency band accessible to pulsar timing
arrays [7–10]. By design, LISA is a space detector in the
shape of an equilateral triangle with sides of length 2.5 ×
106 km and a spacecraft at each vertex. The spacecraft
follow Earth-like orbits such that the triangle is inclined by
60° with respect to the ecliptic and cartwheels as the whole
satellite constellation trails the Earthwith a periodT ¼ 1 yr.
Time delay interferometry will be used to monitor changes
induced by passing GWs. Appropriate linear combinations
produce two independent GW data streams (called the “arm
I” and “arm II” data streams below).
LISA’s sensitivity to GWs is limited by noisewhich, in the

first approximation, can be assumed to be Gaussian and fully
characterized by its (one-sided) power spectral density SnðFÞ
in the frequency domain (FD). Here and below we use a
capital F to denote Fourier frequencies, and a lowercase f ¼
fðtÞ for theGWfrequency as a function of time.We also use a
subscript F to distinguish between time-domain waveforms
h ¼ hðtÞ and their Fourier transforms hF.
The noise power spectral density naturally leads to

the definition of an inner product between the Fourier

transforms of two GW signals hð1ÞF and hð2ÞF (hereafter, FD
waveforms):

ðhð1ÞF jhð2ÞF Þ ¼ 4Re
X
α¼I;II

Z þ∞

0

hð1ÞF;αðhð2ÞF;αÞ�
SnðFÞ

dF; ð1Þ

where the sum is over the two LISA arms, and hð1ÞF;α and h
ð2Þ
F;α

are the Fourier transforms of the time-domain (TD) signals

hð1Þα and hð2Þα measured by LISA. The subscript α indicates
that the signal recorded by each arm is different from the
actual GWas a result of two effects: the Doppler variation of
the GW frequency due to LISA’s motion around the Sun, and
the detector response encoded in the LISA pattern functions.
Also, since the observation time Tobs is limited, the signal is
effectively windowed, and the infinite integration range often
reduces to a narrow range of frequencies.
The inner product plays a pivotal role in assessing the

detectability of a source and inferring its parameters (e.g.,
the distance to a binary source and the masses of the binary
components). In particular, for a waveform hF that depends
on parameters θa, the signal-to-noise ratio (SNR) and the
Fisher information matrix Fab can be calculated as follows:

SNR ¼ ðhFjhFÞ1=2; Fab ¼
�
∂hF
∂θa

���� ∂hF
∂θb

�
: ð2Þ

The SNR gives a measure of detectability, whereas the
inverse of the Fisher matrix provides an estimate of the
uncertainties Δθa and correlation coefficients ρab,
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F−1
ab ¼ ρabΔθaΔθb; ð3Þ

where ρab ¼ 1whenever a ¼ b (a parameter is always fully
correlated with itself).
Although it is natural to write the inner product in the

FD, the inspiral of a binary that generates the GW h ¼ hðtÞ
happens in the TD. To relate the two, notice that the
product of two waveforms (as defined above) is an L2 inner
product which is invariant under Fourier transform (see
Appendix A). Therefore, if we define h̃α to be the inverse
Fourier transform of the noise-weighted waveform
hF;α=

ffiffiffiffiffiffiffiffiffiffi
Sn=2

p
, the TD counterpart of the inner product reads

ðh̃ð1Þjh̃ð2ÞÞ ¼
X
α¼I;II

Z
Tobs

0

h̃ð1Þα h̃ð2Þα dt: ð4Þ

By the convolution theorem, h̃α ¼ hα⋆Pn, where Pn ¼
PnðtÞ is the inverse Fourier transform of 1=

ffiffiffiffiffiffiffiffiffiffi
Sn=2

p
.

This rather convoluted FD–TD relation can be simplified
by invoking the stationary phase approximation (SPA). If
f ¼ fðtÞ is the frequency drift caused by the GW inspiral,
the SPA is based on the idea that the main contribution to
the Fourier integrals is from integration in the vicinity of the
stationary point t, fðtÞ ¼ F (for the direct Fourier trans-
form) or, equivalently, from the stationary point tðFÞ ¼ t
(for the inverse). For example, we can simply write
h̃ðtÞ ¼ hðtÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SnðtÞ=2
p

, where SnðtÞ ¼ Sn½fðtÞ�.
In this paper we revisit the use of the SPA in obtaining

FD waveforms of quasimonochromatic sources (QMS).
A numerous population of such sources that is of particular
interest for LISA are Galactic double white dwarfs (DWD)
emitting GWs at ∼1 mHz (a typical median value for
the population, e.g. [11]). While signals from most of
these binary systems will combine to produce a confusion
noise [12], LISA will be able to resolve ∼104 DWDs
individually (see e.g. [13,14], as well as the review
article [3] and references therein). A small portion of the
resolved sources, the so-called verification binaries, will be
known in advance from observations in the electromagnetic
spectrum and will play an important role in testing LISA’s
performance [15–17].
Let us elaborate on the meaning of “quasimonochro-

matic,” and on the reason why a straightforward application
of the SPA to such sources may not be consistent. In this
paper we call a source quasimonochromatic if the number
of extra cycles due to the increase in frequency during the
observation time is small, say, ≲10. More precisely, if
fðtÞ ¼ f0 þ ḟ0t at linear order in time t, the GW phase in
the TD reads

ψðtÞ ¼ 2π

Z
t

0

fðt0Þdt0 ¼ 2π

�
f0tþ

1

2
ḟ0t2

�
; ð5Þ

so that the number of extra cycles accumulated over the
LISA mission lifetime

N ≡ ψðTobsÞ
2π

− f0Tobs

¼ 1

2
ḟ0T2

obs ∼ f0tc

�
Tobs

tc

�
2 ≲ 10; ð6Þ

⇒ Δf ¼ ḟ0Tobs ∼ f0
Tobs

tc
≲ 10

Tobs
∼ 1 yr−1; ð7Þ

where Δf is the total frequency drift during the observation
time, and the coalescence time tc is given by [18,19]

tc ¼
5M
256

ðπMf0Þ−8=3

≈ 2.9 Myr

�
M

0.44M⊙

�
−5=3

�
f0

2 mHz

�
−8=3

∼ 1 Myr; ð8Þ

where M is the chirp mass of the source and the fiducial
value 0.44M⊙ corresponds to a 0.5M⊙ þ 0.5M⊙ binary.
Here and below we use geometrical units G ¼ c ¼ 1
(where G is the gravitational constant, and c is the speed
of light).
As noted above, Eq. (6) implies that the total change in

frequency during the observation time Δf ≲ 1 yr−1 is of
the same order as 1=T ¼ 1 yr−1, the frequency associated
with LISA’s motion around the Sun and encoded in the
LISA Doppler phase and pattern functions. This suggests
that care should be taken with the simple SPA prescription,
in which one substitutes t ¼ tðfÞ to go to the FD. The
caveat is especially evident for the LISA Doppler phase,
that modifies the stationary phase condition as follows:

fðtÞ½1þ vðtÞ� ¼ F ⇒
F − f
f

¼ v; ð9Þ

where v oscillates with the maximum amplitude v0 ≈
30 km=s=c ∼ 10−4 (for a source on the ecliptic plane).
Then, as long as ðF − fÞ=f ∼ Δf=f0 ≲ 10−4, the equation
has multiple solutions and, hence, multiple stationary
points.
In the rest of the paper we demonstrate in detail how this

multiplicity arises from the harmonics of the LISA Doppler
shift factor and those of the LISA pattern functions [20]
(see also the Appendix of Ref. [21]), and how it affects the
calculation of the SNR and of the Fisher parameter
estimation errors for QMSs. In Sec. II we summarize
our assumptions and further motivate the application of our
calculations to Galactic DWDs. In Sec. III we start off with
the case of a perfectly monochromatic source. We first
consider only the effect of the LISA Doppler modulation
(which allows us to carry out the calculation fully analyti-
cally) in Sec. III A, and we include the LISA pattern
functions in Sec. III B. In Sec. IV we deal with QMSs and
we illustrate how the transition to the conventional SPA
occurs. In Sec. V we summarize our results and outline
directions for future work.
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II. DOUBLE WHITE DWARFS AS
QUASIMONOCHROMATIC SOURCES

Before taking a closer look at the characteristics of the
GW signal from DWDs, let us emphasize the importance of
these sources for LISA.
In addition to being the most abundant remnants of

stellar evolution, white dwarfs that end up in binaries are
very likely to produce GWs that fall into the LISA
frequency band (0.1 mHz≲ f0 ≲ 103 mHz). For example,
the maximum GWemission frequency from an equal-mass
detached DWD with each component mass mWD ¼ 0.5M⊙
and radius RðmWDÞ ≈ 0.01R⊙ can be constrained by
requiring a minimum separation a ≈ a few × R to prevent
Roche-lobe overflow:

f0;max ≲ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffi
2mWD

a3

r
≈ 50 mHz: ð10Þ

Since these signals are relatively weak due to the small
mass of WDs, the main contribution to both the confusion
noise and the number of resolved sources comes from
Galactic DWDs. That said, a handful of these systems can
be detected in Milky Way satellites [22,23], and there is an
extragalactic contribution to the noise [24–26].
As the most numerous anticipated sources of GWs for

LISA, DWDs are extremely valuable for astrophysics. At
the very least, their detection in GWs unhindered by
interstellar extinction will provide novel information about
our Galaxy [27–30] and its satellites [31]. It will also shed
light on single and binary stellar evolution [32–35] (see
also Ref. [3] and references therein).
In Fig. 1 we show a synthetic population of Galactic

compact binaries (model FZ from Ref. [33]) in the
frequency–chirp mass plane (top panel) as well as the
corresponding cumulative distribution function for Galactic
DWDs (bottom panel, orange line). In addition to the
Galactic DWD population which consists of ≈16; 000
Galactic DWDs (including verification binaries), we also
show the populations [36] of a handful of binary neutron
stars (BNSs), black hole-neutron star binaries (BH-NS),
and binary black holes (BBHs). The levels of constant N,
Eq. (6), are shown in red, with sources to the left of the
N ¼ 10 line being quasimonochromatic. The cumulative
distribution function provides the fraction of Galactic
DWDs having a number of cycles smaller than the given
n. The dashed line marks the point n ¼ 10, which corre-
sponds to ≈90% of the QMSs. Two comments are in order:

(i) The cutoff N ¼ 10 we use is an order-of-magnitude
estimate, but it is clear that QMSs constitute at least
half of the Galactic DWDs and a significant portion
of the other compact binaries. This conclusion is
rather model-independent: in the bottom panel of
Fig. 1, for comparison, we show a different synthetic
DWD population (from Ref. [11]), which also
contains a significant fraction of QMSs.

(ii) Although we calculate the number of cycles under
the assumption that the binaries are detached (i.e.,
their inspiral is driven by GWemission), corrections
to the derivative ḟ0 induced by mass transfer and
tidal interactions are comparable to its GW value
(see e.g. [37–39]). Moreover, the non-GR correc-
tions are typically negative, so they tend to make a
GW source more monochromatic.

FIG. 1. Top: a synthetic population of Galactic compact
binaries [33,36] in the GW frequency–chirp mass plane overlayed
with three levels of the number of extra cycles accumulated due to
the GW-driven frequency drift: N ¼ 0.1, N ¼ 10, and N ¼ 1000.
The subpopulations marked in the legend are DWDs, verification
binaries (VB), binary neutron stars (BNS), black hole–neutron
star binaries (BH–NS), and binary black holes (BBH). Sources to
the left of the level N ¼ 10 are QMSs in the sense used in this
work: see Eqs. (6) and (7). Bottom: cumulative distribution
function of the number of cycles for two synthetic DWD
populations: model FZ from Ref. [33] (orange line; the sub-
population depicted with golden dots in the top panel) and the
population from Ref. [11] (blue line). The dashed vertical line
marks the fraction of DWDs that are quasimonochromatic
according to our definition.
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In any case, what follows applies to any GW sources with a
small enough ḟ0, regardless of what process is responsible
for the drift.
Note that the condition given by Eq. (6) also implies

Δf=f0 ∼ Tobs=tc ≪ 1. This justifies the use of the linear
approximation for the GW frequency drift of a QMS.
Indeed, to within numerical factors, the derivatives
ḟ0 ∼ f0=tc, f̈0 ∼ f0=t2c;…, and the expansion of fðtÞ is
an expansion in t=tc ∼ Tobs=tc. From Eq. (6), it then
follows that Tobs=tc ≲

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10=f0tc

p
∼ 10−5 ≪ 1, and we

can assume [40,41]
(i) Sn ≈ const and h̃ðtÞ ≈ hðtÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Snðf0Þ=2
p

. That is
because

ΔSn
Sn

≈ k
Δf
f

≪ 1; k≡ ∂ðln Snðf0ÞÞ
∂ðln fÞ ; ð11Þ

where typically the logarithmic slope jkj≲ 10 for
LISA [12]. This upper bound on k can be violated at
the high-frequency “wiggles” in the noise curve,
where k can increase to a few dozen. This, however,
hardly affects the approximations used for QMSs,
because typically Δf=f ∼ 10−5.

(ii) Similarly, the intrinsic GW amplitude of a TD
waveform A ≈ const, since A ∝ f2=3 and the relative
correction

ΔA
A

∼
Δf
f

≪ 1: ð12Þ

In the rest of this paperwewill oftenmeasure the frequency
drift inyr−1, the timederivative ḟ inyr−2, and, accordingly, the
time in years (yr). For reference, the conversion factors are:
1 yr−1 ≈ 3 × 10−8 Hz, 1 yr−2 ≈ 10−15 s−2, and the typical
frequency 1 mHz ≈ 3 × 104 yr−1. Also, throughout this
paper we assume an observation time Tobs ¼ 10 yr, which
is slightly larger than the nominal mission lifetime
(Tobs ¼ 4 yr) but probably achievable [1–3].

III. MONOCHROMATIC SOURCE

In this section we consider the case of a perfectly
monochromatic source (ḟ0 ¼ 0 at all times). We start off
with the simpler case in which only the LISA Doppler
phase is included, and follow it up by including the LISA
pattern functions. The FD decomposition into harmonics
presented below is similar to the one considered in
Ref. [20] (see also the Appendix of Ref. [21]).

A. LISA Doppler phase

The TD waveform of a Doppler-modulated monochro-
matic source reads

hðtÞ ¼ A cosψðtÞ; ð13Þ

ψðtÞ ¼ 2πf0tþ ψ0 þ ψD; ð14Þ

where ψ0 is the initial phase offset and ψD is the LISA
Doppler contribution [41–43], which is given in terms of
the sky location of the source ðθ̄S; ϕ̄SÞ and of LISA’s
angular position ϕ̄ðtÞ as follows:

ψD ¼ 2πf0R̄ cos ðϕ̄ðtÞ − ϕ̄SÞ; R̄≡ R sin θ̄S ð15Þ

with R ¼ 1 AU ≈ 500 s (in geometrical units). All angles
refer to a coordinate system with the Solar System bary-
center at the origin and the z axis perpendicular to the plane
of the ecliptic, so that

ϕ̄ðtÞ ¼ ϕ̄0 þ
2πt
T

; T ¼ 1 yr; ð16Þ

where ϕ̄0 determines the position of LISA at the start of
observation. Hereafter, we assume ϕ̄0 ¼ 0.
Let us now compute the SNR of the source and the Fisher

matrix for a set of parameters θa ¼ flnA; ln f0;ψ0; θ̄S; ϕ̄Sg
in both the TD and FD. The TD calculation partially
reproduces that by Takahashi and Seto [40] and, if not stated
otherwise, we use the same fiducial values for the angles:
cos θ̄S ¼ 0.3, ϕ̄S ¼ 5. The TD result will serve as a con-
sistency check for the subsequent FD calculation.
Note that LISA data analysis problems are more con-

veniently solved in the FD (see e.g. [44] and references
therein). One reason is that, to a first approximation, the
detector noise is Gaussian, with noise realizations at two
distinct frequencies being uncorrelated. This is encoded in
the inner product of Eq. (1), which gives rise to a likelihood
function ∝ ðΔhFjΔhFÞ, where ΔhF is the difference
between the data and a waveform model. In addition,
the typical signal/model is tightly localized in frequency, so
that the FD data can be split into narrow bands for a
subsequent search of signals in each band (see e.g. [45]).
There is also an added benefit from the computational point
of view: in the TD, integrating a typical signal that
completes ∼105 oscillations during the observation time
can be a challenge.

1. Time domain

The SNR of the source is (see Appendix B)

SNR ≈ A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs

Snðf0Þ

s
: ð17Þ

For the Fisher matrix calculation we note that
A∂hðtÞ=∂A ¼ hðtÞ. Since the SNR does not depend on
the subset θi ¼ fψ0; θ̄S; ϕ̄Sg, by the property of the inner
product, Eqs. (A2) and (A3), we have
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�
∂h

∂ðlnAÞ
���� ∂h
∂θi

�
¼
�
h

���� ∂h
∂θi

�
¼ 0: ð18Þ

Regarding ln f0, we modify Eq. (A3) to obtain:

1

SNR2

�
h

���� ∂h
∂ðln f0Þ

�
¼ ∂ðln SNRÞ

∂ðln f0Þ

¼ −
1

2

∂ðln Snðf0ÞÞ
∂ðln f0Þ

≡ −
1

2
k: ð19Þ

Recall that the logarithmic slope of the LISA noise curve
jkj ≲ 10. We find that this off-diagonal term introduces
only weak correlations between A and other parameters,
which is why we neglect it below (roughly speaking, this
term propagates the uncertainty in frequency to other
parameters, which has little effect, because the frequency
is measured precisely). Therefore, to within terms
∼ðf0TÞ−1, the Fisher matrix has a block structure:

Fab ≈ SNR2 ×

 
1 0

0
R Tobs
0

∂ψ
∂θi

∂ψ
∂θj

dt
Tobs

!
: ð20Þ

Table I shows the uncertainties and correlation coefficients
resulting from the inversion of the Fisher matrix. They are
consistent with the values listed in Table 1 of Ref. [40].
Note however that the case considered in that reference is
somewhat different, in that it assumes a nonzero ḟ0 and an
additional pair of angles resulting from the LISA pattern
functions (see also Sec. III B below).

2. Frequency domain

Since the FD inner product, Eq. (1), contains only
positive frequencies F, in the Fourier transform

hF ¼ 1

2
Aeiψ̄0

Z
Tobs

0

dte−2πiðF−f0ÞtþiψDðtÞ

þ 1

2
Ae−iψ̄0

Z
Tobs

0

dte−2πiðFþf0Þt−iψDðtÞ; ð21Þ

we can retain only the first integral. The second integral
almost vanishes outside of a vicinity of F ¼ −f0 < 0 and is
of the order of O½ðf0TÞ−1� at F ¼ f0 (as it is evident from
the result of the calculation below).
Using the expansion of the Doppler modulation in terms

of Bessel functions

e2πif0R̄ cos ðϕ̄−ϕ̄SÞ ≡X
m

ameimϕ̄

¼
Xþ∞

m¼−∞
imJmð2πf0R̄Þeimðϕ̄−ϕ̄SÞ; ð22Þ

it is straightforward to obtain:

hF ¼ 1

2
ATobseiψ̄0

X
m

hðmÞ
F ;

hðmÞ
F ≡ amumðνÞ; ν≡ ðF − f0ÞT; ð23Þ

with

umðνÞ ¼ e−iπKν
sin ðπKðm − νÞÞ

πKðm − νÞ ; ð24Þ

am ¼ imJmð2πf0R̄Þe−imϕ̄S ; ð25Þ
where we have used that K ≡ Tobs=T is an even integer.
Similar Bessel function expansions are also of use in the
treatment of eccentric GW sources (see e.g. [46]).
Before we use this expansion, it is useful to make two

observations. First, the tail of this sum at the negative F ¼
−f0 (jνj ¼ 2f0T) is indeed ∼ðf0TÞ−1 (the same argument
applies as in Appendix B). Second, the above expansion
can be be viewed as a result of a triple convolution: namely,
the function prior to the Fourier transform is the product of
a signal g ¼ e2πif0t, a rectangular window W that vanishes
outside of ½0; Tobs�, and the periodic function eiψDðtÞ. The
expansion (23) then arises as follows:

ðgWÞF ¼ gF⋆WF ¼ Tobse−iπKν
sin ðπKνÞ

πKν
; ð26Þ

ðeiψDðtÞgWÞF ¼ ðeiψDðtÞÞF⋆ðgWÞF
¼
X
m

am × ðgWÞF−m=T

¼ Tobs

X
m

ame−iπKν
sin ðπKðν −mÞÞ

πKðν −mÞ : ð27Þ

TABLE I. Correlation matrix obtained in the TD for the case of
a perfectly monochromatic source with the LISA Doppler phase
included. The diagonal entries are Fisher uncertainties normal-
ized by SNR ¼ 10, while the off-diagonal ones are the corre-
sponding correlation coefficients ρab. Also shown is the

localization error ΔΩS ¼ 2π sin θ̄SΔθ̄SΔϕ̄S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

θ̄Sϕ̄S

q
. The fi-

ducial parameters used in the calculation are: f ¼ 2 mHz,
Tobs ¼ 10 yr, cos θ̄S ¼ 0.3, ϕ̄S ¼ 5. The values in parentheses
are from a similar case studied in Ref. [40] (see Table 1 and Fig. 2
in that reference).

ΔA=A Δf0Tobs Δψ0 Δθ̄S Δϕ̄S

ΔA=A 0.1 (0.2) 0 0 0 0
Δf0Tobs 0.056 (0.055) −0.87 0.075 −0.022
Δψ0 0.20 −0.065 0.019
Δθ̄S 0.075 −0.0017
Δϕ̄S 0.024

Localization: ΔΩS ¼ 0.01½sr� ≈ 35½deg2�
ðΔΩS ≈ 0.01½sr�Þ
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Now, one useful way to interpret the series just obtained
is to notice that it is an expansion with respect to the set of
orthogonal functions umðνÞ:

K
Z þ∞

−∞
dνumðνÞu�m0 ðνÞ ¼ δmm0 ; ð28Þ

which means that the different terms contribute to the SNR
independently:

SNR2 ¼ 4

Z þ∞

−∞

jhFj2
Snðf0Þ

dF ¼ 4

T

Z þ∞

−∞

jhFj2
Snðf0Þ

dν

¼ ðATobsÞ2
Snðf0Þ

1

KT

X
m

J2mðxÞ ¼
A2Tobs

Snðf0Þ
; ð29Þ

where we have denoted x ¼ 2πf0R̄ and used a property of
the Bessel functions. By coincidence, an estimate of the
integrals for separate values of m yields the same result.
Namely, the width of each harmonic is Δν ∼ 1=K (the first
zero of the sinc function), or ΔF ∼ 1=ðKTÞ, and therefore

we have jhðmÞ
F jΔF ∼ J2mðxÞ=ðKTÞ, which coincides with the

result after exact integration. (Note also thatΔF ∼ 1=Tobs is
roughly the width of a single frequency bin, which in
practice makes the individual peaks delta-like.)
What we can learn from Eq. (29) is that, unless a source is

close to a celestial pole, the contributions to the SNR budget
from harmonics beyond the “natural” ones ðF − f0ÞT ¼
0;�1 cannot be neglected. Moreover, as we will now
demonstrate, the bandwidth of the signal exceeds the
typically assumed value ofΔF ≈ 4=T (see Ref. [20]) already
at moderate angles θ̄S. Figure 2 illustrates how the total
SNR2 is distributed over the harmonics (up to multiplication
by the width of a peak). The angle θ̄S, and hence the
parameter x ¼ 2πf0R sin θ̄S (with f0 ¼ 2 mHz), increase
from top to bottom. Already at θ̄S ¼ 10° (x ≈ 1) the
harmonics m ¼ �2 start emerging, and they become dom-
inant at θ̄S ¼ 30° (x ≈ 3), with a noticeable contribution
from the harmonics m ¼ �3. The further increase to the
fiducial value θ̄S ¼ arccos 0.3 ≈ 73° (x ≈ 6) pushes the
“comb teeth” as far as m ¼ �6, while the main harmonic
m ¼ 0 almost vanishes. For comparison we also show the
case θ̄S ¼ 90° (maximum x), which is qualitatively similar to
the previous one.
The fact that the higher harmonics have a non-negligible

contribution to the total power manifests itself in the Fisher
matrix as well. For example we have

∂hF
∂ϕ̄S

¼ 1

2
ATobseiψ̄0

X
m

ð−imÞamumðνÞ; ð30Þ

Fϕ̄Sϕ̄S
¼ SNR2

X
m

m2J2mðxÞ ¼ SNR2 ×
x2

2
; ð31Þ

where the factorm2 in the sum suppresses lower harmonics
and amplifies higher harmonics. For the case of θ̄S ≈ 73°,
in particular, this leads to the power being spread around
m ¼ �5 for this specific element of the matrix.
In order to demonstrate the effect of higher harmonics,

let us compute the Fisher uncertainties using only terms up
to jmj ¼ mmax in Eqs. (23) and (29). Since the uncertainty

FIG. 2. Squared modulus of the FD waveform of a mono-
chromatic source including the LISA Doppler phase contribution,
Eqs. (23)–(25), for four values of the parameter x ¼ 2πf0R sin θ̄S.
From top to bottom: x ≈ 1 (θ̄S ¼ 10°), x ≈ 3 (θ̄S ¼ 30°), x ≈ 6

(θ̄S ¼ arccos 0.3), and x ≈ 2π (θ̄S ¼ 90°). The fiducial value f0 ¼
2 mHz is assumed, and R ¼ 1 AU=c ≈ 500 s.
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in f0 is small (see Table I), we can as well exclude it from
the list of parameters to simplify the calculation. We have
already verified in the TD that, as expected, doing so hardly
affects the angular uncertainties and, thus, the localization
error ΔΩS.
In Fig. 3 we show the localization error for θ̄S ¼

arccos 0.3 and SNR ¼ 10 as a function of the highest
included harmonic, mmax. It is clear that the more harmon-
ics are included, the closer the uncertainty is to the TD
value (marked by the dashed horizontal line). If only the
lowest harmonics m ¼ 0;�1 are taken into account, the
localization estimate is extremely off.

B. LISA pattern functions

The LISA pattern functions Fþ;× encode the detector
response to the plus and cross polarizations of a GW:

hαðtÞ ¼ A cosψðtÞð1þ cos2ιÞFþ
α

þ 2A sinψðtÞ cos ιF×
α ; ð32Þ

Fþ;×
α ¼ Fþ;×

α ðt; θ̄S; ϕ̄S;φÞ; α ¼ I; II; ð33Þ

where ι is the orbital inclination, and φ is the polarization
angle [47]. To simplify notation, we omit the subscript α
labeling the LISA arms, and we focus on arm I for the plots
in this section. Results for arm II are qualitatively the same.
The introduction of the LISA pattern function results in

an extra factor in the computation of the Fourier transform
(see Sec. III A 2):

F ¼ ð1þ cos2 ιÞFþ − 2i cos ιF×: ð34Þ

Being periodic in ϕ̄ ¼ 2πt=T with a period of 2π, this
function can be decomposed into a Fourier series:

F ¼
X
m

bmeimϕ̄; Fþ;× ¼
X
m

bþ;×
m eimϕ̄; ð35Þ

bm ¼ bþmð1þ cos2 ιÞ − 2ib×m cos ι: ð36Þ

Then, the Fourier series for the product of the Doppler and
pattern functions factors is

FeiψDðϕ̄Þ ¼
X
m

ãmeimϕ̄; ð37Þ

ãm ¼
X
n

anbm−n ¼
X
n

am−nbn; ð38Þ

which is the discrete version of a convolution.
Therefore, to include the LISA pattern functions in

Eqs. (23)–(25), we simply substitute am → ãm:

h̃F ¼ 1

2
ATobseiψ0

X
m

ãmumðνÞ: ð39Þ

Unlike for the LISA Doppler factor, the Fourier coefficients
bm for the LISA pattern functions do not appear to have a
closed analytic form. However, their numerical computa-
tion is straightforward, and the generic behavior of their
relative amplitudes on the source angles can be easily
studied (see Appendix C).
Figure 4 shows the individual discrete Fourier spectra of

the LISA pattern functions (top panel) and the LISA
Doppler factor (middle panel). Their convolution ãm is,
in turn, convolved with the windowed FD signal, Eq. (26),
to yield the full FD waveform of a monochromatic source
(bottom panel). The asymmetry in the�m harmonics of the
LISA pattern functions [see also Eq. (36)] is due to the fact
that they are nontrivial superpositions of the symmetric
plus and cross harmonics (jbþmj ¼ jbþ−mj, jb×mj ¼ jb×−mj). It is
evident from this figure that the introduction of the LISA
response does not change the main conclusion of the
previous section: multiple harmonics induced by LISA’s
motion contribute to the power in the FD and, thus, must be
taken into account for a consistent SNR and Fisher matrix
calculation.

IV. QUASIMONOCHROMATIC SOURCE

Qualitatively, the introduction of a slight frequency drift
only leads to the widening of the FD peaks compared to the
monochromatic case of Fig. 4 (bottom panel). At least, this
is what we can expect if the widening does not exceed the
separation between the peaks, Δf ≲ 1=T ¼ 1 yr−1, which
is guaranteed by our definition of QMSs, Eqs. (6) and (7).
Equivalently, this condition can be expressed as

FIG. 3. Localization error of the source in the FD as a function
of the number of harmonics included in Eqs. (23) and (29) for the
Fisher matrix calculation. Each point corresponds to integration
over the peaks with m ¼ −mmax;…; mmax in the panel corre-
sponding to θ̄S ≈ 73° of Fig. 2. The dashed horizontal line shows
the TD value from Table I (see the table caption for a list of the
fiducial parameters).
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Δf ¼ ḟ0Tobs ≲ 1

T
⇒ ḟ0 ≲ 1

KT2
∼ 0.1 yr−2: ð40Þ

Of course, this upper limit on Δf is approximate, and
somewhat sensitive to numerical factors and to the obser-
vation time. This qualitative picture holds better for small
frequency drifts.
Quantitatively, the FD waveform obtained as a convo-

lution of the Fourier transforms of all relevant factors [see
Eqs. (27), (38), and (39)] is readily generalized to a version
of the fast-slow decomposition [21]:

h̃F ¼ 1

2
ATobseiψ0

X
m

ãmvν−m; ð41Þ

where vν is the Fourier transform of a windowed GW signal
(modulo the initial phase) with the linear frequency drift:

vν ¼
Zðξþ yÞ þ Zðξ − yÞ

2ξ
e−

1
2
iπðyþξÞ2 ; ð42Þ

y≡ νKffiffiffiffi
N

p −
ffiffiffiffi
N

p
; ξ≡ ffiffiffiffi

N
p

¼ 1

2
K

ffiffiffiffiffiffiffiffiffiffiffiffi
2ḟ0T2

q
; ð43Þ

and ZðyÞ≡ R y0 eiπz2
2 dz≡ CðyÞ þ iSðyÞ, with C and S being

the Fresnel integrals. Note that, since T ¼ 1 yr, the
dimensionless combination ḟ0T2 is, in fact, the time
derivative in yr−2.
In Fig. 5 we show the amplitude squared of the

FD waveform of a QMS with ḟ0 ¼ 0.05 < K−1 yr−2.

FIG. 4. Squared modulus of the FD coefficients of the LISA
pattern functions [top panel, Eqs. (33)–(36)], the FD coefficients
of the LISA Doppler factor [middle panel, Eq. (22)], and the FD
waveform which results from the convolution of the two [bottom
panel: cf. Eqs. (38) and (39)]. The fiducial values for the angles
are chosen to match those of Ref. [40]: θ̄S ¼ arccos 0.3, ϕ̄S ¼ 5,
θ̄L ¼ arccos ð−0.2Þ, and ϕ̄L ¼ 4 (or, ι ≈ 60° and φ ≈ 150°).

FIG. 5. Squared modulus of the FD waveform of a QMS
with the LISA Doppler and pattern modulation taken into
account. The GW frequency drift is assumed to be linear in
time with ḟ0 ¼ 0.05 yr−2 (e.g. a 0.6M⊙ þ 0.6M⊙ DWD emitting
at f0 ≈ 2.5 mHz). This is a weakly nonmonochromatic counter-
part of the FD waveform shown in Fig. 4 (bottom panel).
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As expected, the main difference between this waveform
and its perfectly monochromatic counterpart in Fig. 4 are
the wider peaks.
We now want to explore how summation over the

individual harmonics of the LISA Doppler and pattern
factors in Eq. (41) translates into the conventional SPA
when the drift Δf ≫ 1=T. In that limit the FD waveform vν
is so wide that it spans multiple harmonics. When evaluated
at the shifted frequencies (ν −m), it will vary only slightly,
with the main contribution coming from the variation of its
phase. Since vν is the “intrinsic” waveform (not filtered
through the detector response), we can apply the ordinary
SPA to it and write it in a more general form as a function of
the Fourier frequency as follows:

vF ¼ AFeiψF ; ð44Þ

ψF ¼ 2π

Z
tðFÞ

0

fðt0Þdt0 − 2πFtðFÞ

¼ −2π
Z

F

f0

tðf0Þdf0; ð45Þ

whence

vF−m=T ≈ AF expðiψF−m=TÞ

≈ vF exp

�
im

2πtðFÞ
T

�
; ð46Þ

X
m

ãmvF−m=T ≈ vF
X
m

ãm exp

�
im

2πtðFÞ
T

�

¼ vFðFeiψDÞjt¼tðFÞ: ð47Þ
That is, we get precisely the SPA prescription in which the
time in the LISA Doppler and pattern factors is substituted
for tðFÞ, the inverse of f ¼ fðtÞ. Note that the decom-
position of the phase is not valid for the QMSs. For a source
with a linear drift, the total change in the phase ΔψF ¼
−πḟ0T2

obs ¼ −2πN for F∈ ½f0; f0 þ ḟ0Tobs�, while the
correction 2πmt=T ∼ 2πK, which exceed jΔψFj as long
as N ≲ K ¼ 10.
In Fig. 6 we show the FD waveform [top panel, Eq. (41)]

and its SPA version [bottom panel, Eq. (47)] for a higher
frequency drift ḟ0 ¼ 5 yr−2 > 1=T. In order to mitigate
potential numerical issues with rapid oscillations in the
intrinsic waveform, Eq. (42), we use its SPA counterpart

vspaF ¼ eiψF

K
ffiffiffiffiffiffiffiffiffiffi
ḟ0T2

p ; ψF ¼ πðF − f0Þ2
ḟ0

þ π

4
; ð48Þ

when F∈ ½f0; f0 þ ḟ0Tobs�, and vF ¼ 0 otherwise (see
Appendix D for details of the transition). Also, the squared
amplitude of the FD waveform (top panel) is smoothed out
on a scale of ≈1 yr−1 to better illustrate the qualitative
resemblance. Although there are noticeable differences
between the waveform and its SPA, the SNR and the
localization uncertainty computed one way or the other

differ by ≈0.2% (specifically, ΔΩS ≈ 29.6 deg2; note that
this is lower than the value from Table I, because the pattern
functions introduce an additional modulation of the signal).
This small difference can be attributed to the fact that the
periodic structure associated with the LISA detector
response has already emerged in the FD waveform (notice
the periodic peaks in the upper panel of Fig. 6). Though the
shape looks somewhat different, the deviations are periodic,
and they integrate to zero in the calculation of the SNR or of
Fisher matrix. We emphasize, however, that the discrep-
ancy may increase in more complex data analysis setups
(e.g. if there are gaps in the data, or when we consider the
FD signals of multiple GW sources simultaneously). These
situations are more relevant to the global fit problem in
LISA (e.g. [44]), and we defer their study to future work.

V. CONCLUSIONS

We have considered the applicability of the conventional
SPA to QMSs, defined as sources that complete only a
few extra cycles due to their frequency drift through-

FIG. 6. Comparison of the squared modulus of the FD wave-
form obtained by convolution over individual harmonics of the
LISA response (top) and its SPA counterpart (bottom). It is
assumed that ḟ0 ¼ 5 yr−2 (e.g. a 0.6M⊙ þ 0.6M⊙ double WD
emitting at f0 ≈ 9 mHz), which results in a total frequency drift
well above the separation between harmonics (1 yr−1).
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out the duration of the LISA mission. Equivalently, for
these sources the total change in frequency during the
observation time is smaller than 1=T ¼ 1 yr−1, the char-
acteristic frequency of the LISA detector response. The
drift can be induced either by GW emission alone (for
detached binaries) or by other processes such as mass
transfer (in interacting binaries).
For these sources we have demonstrated that, in order to

obtain accurate results for their SNRs and Fisher matrix
uncertainties, it is necessary to use a modified SPA prescrip-
tion. The difference from the conventional SPA is in how the
angular dependence of a TD waveform is dealt with. (Recall
that the angular dependence comprises two pairs of spherical
angles used to specify the sky position and orbital orientation
of the source.) Ordinarily, the angular dependence is included
from the start, and the FD waveform is readily obtained as a
SPA to the Fourier transform of the angle-dependent TD
waveform. In the modified prescription, the angular depend-
ence is initially disregarded, and included at a later stage
through the Fourier harmonics of the LISA response. Inmore
detail, the modified prescription is as follows:
(1) start with the TD waveform disregarding any angular

dependence;
(2) use the conventional SPA to find an intermediate FD

waveform;
(3) compute the Fourier harmonics ãm, m∈Z, of the

LISA response (periodic with T ¼ 1 yr);
(4) for each coefficient ãm, shift the intermediate FD

waveform by m=T to the right in the frequency
domain, and multiply it by the coefficient;

(5) sum over m to obtain the final FD waveform (to
within a complex factor).

In other words, the LISA detector response results into a
“line splitting,” so that copies of the FD waveform of a
QMS appear at multiple frequencies F ¼ f0 þm=T (m is
an integer). We find that, unless a GW source is located
close to one of the poles relative to the plane of the ecliptic,
the contribution of higher harmonics jmj > 1 cannot be
neglected, and it even dominates at modest to low ecliptic
latitudes. That is, these harmonics must be taken into
account when computing the SNR of the source or the
components of the Fisher matrix.
We have shown that the modified prescription reduces to

the conventional one when the frequency drift of the source
Δf significantly exceeds the characteristic frequency, Δf ≫
1=T ¼ 1 yr−1. Qualitatively, this happens because the shifted
waveforms from step 4 above start to overlap, and eventually
they combine into a single FD waveform that spans a
bandwidth ≫ 1=T. This result turns out to be equivalent to
the one obtained by applying the conventional SPA to the
angle-dependent TD waveform. In this picture, a dimension-
less parameter that quantifies the applicability of the conven-
tional SPA to QMSs is TΔf. The conventional SPA works
best when this parameter is large. Themodified prescription is
always more accurate, but there is a trade-off between the
increased accuracy of the calculation in the modified pre-
scription and the simplicity of the conventional one.

We have also studied the dependence of this “line
splitting” on the four angles that specify the sky position
of the source and the orientation of its orbital plane. We have
demonstrated that it is the polar angle θ̄S (i.e., the ecliptic
latitude) that affects the magnitude of the effect the most.
Since theGalacticDWDsconcentrate (obviously) toward the
Galactic plane and center, their ecliptic latitudes aremoderate
to low, and the higher harmonics must be taken into account
inmost cases of interest. The same applies to heavier compact
binaries composed of either stellar-mass black holes or
neutron stars, if they emit GWs at f0 ≲ 1 mHz.
As a by-product of this study, we make publicly available

online a code snippet that interactively generates closed
contours of the inclination-weighted LISA pattern func-
tions in the complex plane and the respective Fourier
harmonics in the Fourier plane. Since these contours are
similar to Lissajous figures (the closed contours that result
from a superposition of two harmonic motions in two
perpendicular directions: see e.g. Ref. [48]) we name our
code LISAJOUS (from “Lissajous” and “LISA”).In Figs. 7
and 8 we show a few snapshots of the contours generated in
this way and of their Fourier coefficients.
Let us briefly discuss some technical aspects of the

calculation presented in this paper.
First, recall that we assumed Tobs ¼ 10 yr, while the

LISA mission lifetime may be shorter (e.g., 4 or 6 yr [2]).
Shorter observation times do not change the qualitative
picture: in fact, they would result into a larger number
of QMSs, because the GW frequency drift is smaller
for shorter observation times. By the same token, our
results are applicable to lower-frequency detectors such as
μAres [49], a proposed GW detector for μHz frequencies
whose detector response would also be periodic on a
timescale of 1.7 yr (the orbital period of Mars).
Second, in our calculations we used a rectangular

window to account for the finite length of the GW signal,
whereas in practice windows that prevent spectral leakage
(such as the Tukey window) are preferred. Qualitatively,
this choice does not affect our results either. The specific
choice of window only changes the shape of the functions
uν, Eq. (24), but not the fact that they fall off on a scale of
ΔF ∼ 1=Tobs (inverse window length).
Finally, we note that the decomposition of a QMS

waveform in the FD domain given by Eq. (41) is a
particular case of the so-called fast-slow decomposition
(see the Appendix of Ref. [21]), and it appears to be quite
convenient for the calculation of Fisher matrix uncertain-
ties, either numerically or through autodifferentiation [50].
In each term the angular dependence is decoupled from the
actual FD waveform and encoded in the coefficients ãm.
These coefficients, as well as their derivatives with respect
to the angular variables, are numerically well behaved, and
they can be evaluated rather quickly and robustly.
Regarding the linear-drift FD waveform itself, Eq. (42),
it is given in terms of the Fresnel integrals, which are
mathematically well studied and implemented in most

VLADIMIR STROKOV and EMANUELE BERTI PHYS. REV. D 109, 104013 (2024)

104013-10



scientific software packages. We leave an implementation
of the decomposition (41), either numerically or through
autodifferentiation, and its application to Fisher parameter
estimation studies, to future work.
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APPENDIX A: A REFRESHER
ON L2 INNER PRODUCT

Since the L2 product hf; gi ¼ RR fg�dt is invariant under
Fourier transform, for real-valued functions in the time
domain and for a single data stream I,

ðh̃ð1Þjh̃ð2ÞÞI¼hh̃ð1Þ;h̃ð2Þi¼hhð1ÞF ;hð2ÞF i

¼
Z þ∞

0

hð1ÞF ðhð2ÞF Þ�þhð1Þ−Fðhð2Þ−FÞ�
SnðFÞ=2

dF

¼4Re
Z þ∞

0

hð1ÞF ðhð2ÞF Þ�
SnðFÞ

dF¼ðhð1ÞF jhð2ÞF ÞI; ðA1Þ

where the additional factor of 1=2 for the noise spectrum is
due to the definition of Sn as a one-sided spectral density,
and we have also used the property h�F ¼ h−F for the
Fourier transform of a real-valued function.
If hF, or h̃, depends on a parameter θ while ðhFjhFÞ does

not, a useful property is that�
hF

���� ∂hF
∂θ

�
¼ 0: ðA2Þ

This can be seen as follows:

0 ¼ ∂

∂θ
ðhFjhFÞ

¼
�
∂hF
∂θ

����hF
�
þ
�
hF

���� ∂hF
∂θ

�

¼
�
hF

���� ∂hF
∂θ

��
þ
�
hF

���� ∂hF
∂θ

�

¼ 2Re

�
hF

���� ∂hF
∂θ

�
¼ 2

�
hF

���� ∂hF
∂θ

�
; ðA3Þ

where in the last step we omitted the real part, because the
inner product is real in our case [see Eq. (A1)].

APPENDIX B: SNR OF A MONOCHROMATIC
SOURCE IN THE TD

Using the definition of SNR, Eq. (4), and the TD
waveform, Eq. (13), we obtain for a source with a constant
frequency f0:

SNR2 ¼ 2

Z
Tobs

0

dt
h2ðtÞ
Snðf0Þ

¼ A2

Snðf0Þ
Z

Tobs

0

dt½1þ cos ð4πf0tþ 2ψ0 þ 2ψDÞ�

≡ A2Tobs

Snðf0Þ
ð1þ ΔIÞ; ðB1Þ

where

ΔI ≡ 1

Tobs

Z
Tobs

0

dt cos ½4πf0tþ 2ψ0 þ 4πf0R̄ cos ðϕ̄ðtÞ − ϕ̄SÞ�

¼ Re
Z

2πK

0

dϕ̄
2πK

e2if0Tϕ̄þ2iψ0þ4πif0R̄ cos ðϕ̄−ϕ̄SÞ ¼ Re
Xþ∞

m¼−∞
imJmð4πf0R̄Þe2iψ0−imϕ̄S

Z
2πK

0

dϕ̄
2πK

eiϕ̄ðmþ2f0TÞ

¼ Re
Xþ∞

m¼−∞
Jmð4πf0R̄Þe2iψ0−imϕ̄Sþimπ

2eiπKðmþ2f0TÞ sin ½πKðmþ 2f0TÞ�
πKðmþ 2f0TÞ

¼
Xþ∞

m¼−∞
Jmð4πf0R̄Þ cos

�
2πf0Tobs þ 2ψ0 −mϕ̄S þ

mπ

2

�
sin ½πKðmþ 2f0TÞ�
πKðmþ 2f0TÞ

: ðB2Þ
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Here we introduce the notation K ¼ Tobs=T and we
assume that K is an even integer.
Now, note that, for the applications under consideration,

f0T ≫ 1. In the sum above, there are essentially two
factors that contribute to the amplitude of each term: the
Bessel function and the sinc function sinc y≡ sin y=y.
The sinc function is of order unity when jmj≈2f0T≫ 1,
which implies

JmðxÞ ≈
1ffiffiffiffiffiffiffiffiffi
2πm

p
�
ex
2m

�
m
≪ 1; ðB3Þ

x ∼ 2πf0R ∼ 10; ðB4Þ

where the Bessel function at large m falls off very rapidly.
On the other hand, JmðxÞ ∼ 1 when m ∼ 1, which results in
the sinc function ∼1=ðf0TÞ, so that

ΔI ¼ O½ðf0TÞ−1�: ðB5Þ

APPENDIX C: LISA PATTERN FUNCTIONS

The LISA pattern function factor F , defined in Eq. (34),
is a complex-valued function of time with period T ¼ 1 yr.
Hence it traces a closed contour in the complex plane. Here
we provide a few examples of the contours. We also show
contours that the Fourier coefficients of F follow when all
angles but one are kept fixed. Recall that we use the fiducial
values [40] θ̄S ¼ arccos 0.3, ϕ̄S ¼ 5, θ̄L ¼ arccos ð−0.2Þ,
and ϕ̄L ¼ 4 (the second pair of angles is converted to the
inclination ι and polarization angles φ).
To illustrate the behavior of the LISA pattern function

contours and of their Fourier transforms for any combina-
tions of the angles, we provide LISAJOUS [58], a code for
interactive plots with sliders. The code name comes from
the fact that the contours generated by the LISA pattern
functions are reminiscent of Lissajous figures [48].
In Fig. 7 we show the complex plane ofF , where the real

and imaginary parts are the inclination-weighted plus and
cross polarization patterns: ð1þ cos2 ιÞFþ and −2 cos ιF×,
respectively. The three panels correspond to different
values of the angle θ̄S: 10° (top), 30° (middle), and
arccos 0.3 ≈ 73° (bottom). In the limit θ̄S ¼ 0° or
θ̄S ¼ 180°, the contour is degenerate and reduces to a point.
In Fig. 8 we show the complex planes of the Fourier

harmonicsm ¼ 0;�1;�2;�3 of the pattern function. Each
panel corresponds to the paths followed by the Fourier
coefficients when one of the angles (indicated in the
legend) varies, while the others are fixed to their fiducial
values. The black solid line depicts the constant harmonic
m ¼ 0, whereas the solid/dashed pairs of the same color are
the paths for the positive/negative coefficient of the same
order m. There is only a solid line for the double-frequency
harmonic, because the paths of m ¼ 2 and m ¼ −2

coincide (for arm I of the detector). The starred dots on
each curve mark the fiducial value of the varying angle.
Overall, one can see that the amplitudes of all the Fourier
coefficients are different from zero except for the case of
varying θ̄S, where the harmonics with m ≠ 0 vanish
when θ̄S ¼ 0°; 180°.

FIG. 7. Closed contours (“Lissajous curves”) traced by the
LISA pattern function factor F in the complex plane, with the
inclination-weighted plus and cross polarization patterns plotted
as real and imaginary parts, respectively: see Eq. (34). The source
angle θ̄S (i.e., the angular distance from the ecliptic pole)
increases from top to bottom: θ̄S ¼ 10° (top), θ̄S ¼ 30° (middle),
and θ̄S ¼ arccos 0.3 (bottom). The other angles are fixed at their
fiducial values: ϕ̄S ¼ 5, θ̄L ¼ arccos ð−0.2Þ, and ϕ̄L ¼ 4.
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On a final note, one way to interpret the Fourier series for
the LISA pattern function is view it as a superposition of
elliptically polarized waves with frequencies that are multi-
ples of 1=T. (This is, of course, only a helpful interpre-
tation, since the frequency 1=T is beyond LISA’s frequency
band). Proportions of the ellipse are defined by the relative
magnitudes and phases of the complex amplitudes

hðmÞ
þ ¼ ð1þ cos2 ιÞbþm; ðC1Þ

hðmÞ
× ¼ −2i cos ιb×m: ðC2Þ

APPENDIX D: SPA FOR A WAVEFORM WITH
LINEAR FREQUENCY DRIFT

Since the windowed FD waveform can be written
analytically in terms of the Fresnel integrals [see

Eq. (42)], the case of the linear drift gives us an opportunity
to better understand the relation between the exact FD
waveform and its SPA counterpart.
The range of GW frequencies exhibited by a source

during the observation period corresponds to 0 ≤ t ≤ Tobs,
or −ξ ≤ y ≤ ξ. For ξ ≫ 1, the prefactor in Eq. (42), which
we denote by I here, has its SPA value

I ¼ I0 ≈
2ZðξÞ

K
ffiffiffiffiffiffiffiffiffiffiffiffi
2ḟ0T2

p ≈
e
iπ
4

K
ffiffiffiffiffiffiffiffiffiffi
ḟ0T2

p ; ðD1Þ

where we have used the fact that Zðþ∞Þ ¼ −Zð−∞Þ ¼
1ffiffi
2

p e
iπ
4 . At the ends of the interval y ¼ �ξ, the amplitude is

smaller by a factor of two, I ≈ I0=2. Far beyond the
interval, where jy� ξj≳ ξ, the integral vanishes,
because Zðξþ yÞ þ Zðξ − yÞ ≈ ZðyÞ þ Zð−yÞ ¼ 0.

FIG. 8. Fourier harmonicsm ¼ 0;�1;�2;�3 of the LISA pattern factorF , Eqs. (34)–(36), as a function of the angles θ̄S, ϕ̄S, ι, and φ.
Each panel corresponds to the case in which one of the angles, indicated in the legend, starts from its fiducial value (marked with a star)
and varies, while the other angles are fixed to their fiducial values: θ̄S ¼ arccos 0.3 ≈ 73°, ϕ̄S ¼ 5, ι ≈ 64°, φ ≈ 113°. For m ≠ 0, solid
and dashed curves of the same color depict the positive and negative coefficients �jmj, respectively. The double-frequency harmonic
coincides with its negative counterpart (for the arm I case shown here).
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However, for the QMSs under consideration the approxi-
mation ξ ≫ 1 is barely satisfied, because ξ ¼ ffiffiffiffi

N
p

⪅ 3.
In Fig. 9 we compare the prefactor Ĩ ≡ I=jI0j (blue

lines) normalized by the SPA amplitude jI0j to its SPA
value (marked with a black star). We do so for different
values of the number of extra cycles that increase from
left to right: N ≈ 0.9 (left panel), N ≈ 3.7 (middle panel),
and N ≈ 26.8 (right panel). These values correspond to
specific combinations of the GW frequency f0 and chirp

mass M (see the legend). We also show the winding of
the main Fourier phase [orange line, see also Eq. (48)]
and indicate the number of loops in the legend. The
normalized prefactor Ĩ is shown for two ranges of the
frequencies: the conventional SPA range 0 < ðF − f0Þ <
ḟ0Tobs (solid line) and a range extended by ð−ḟ0TobsÞ on
each side (dashed line). Recall that, in the SPA, the FD
waveform is assumed to quickly fall off outside of the
SPA range.
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