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In this work, we study the behavior of null geodesics within a rotating Teo wormhole spacetime in
nonmagnetized pressureless plasma. The Teo wormholes are an explicit class of rotating wormholes that
generalizes the static, spherically symmetric ones, initially considered by Morris and Thorne. By focusing
on the dispersion relation of the plasma and disregarding its direct gravitational effects, we examine how
light rays traverse in the abovementioned spacetime. A key highlight of the work is the necessity of a
specific plasma distribution profile to establish a generalized Carter’s constant which represents a
conserved quantity for the motion around rotating compact objects, shedding light on the importance of this
parameter. Furthermore, we derive analytical formulas to distinguish the shadow boundary across various
plasma profiles, uncovering a fascinating trend of diminishing shadow size as plasma density increases.
Intriguingly, certain limits of the plasma parameters result in the complete disappearance of the shadow.
When calculating the deflection angle by a wormhole in plasma spacetime, we observe a distinct pattern:
The angle decreases as the plasma parameter rises in nonhomogeneous plasma spacetime, diverging from
the behavior observed in homogeneous plasma spacetime. Also, leveraging observational data from M87*,
we establish constraints on the throat radius. Furthermore, minimum shadow size provides valuable
constraints for the radial and latitudinal plasma parameters.
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I. INTRODUCTION

The concept of a wormhole, a hypothetical structure in
spacetime that connects different regions in spacetime, has
been extensively explored since the early work of Einstein
and Rosen [1]. Subsequent developments by Wheeler [2]
and the pioneering work of Morris and Thorne [3] on
traversable static wormholes further fueled interest in these
intriguing cosmic constructs. In a later work, Teo extended
this concept to include rotation in the wormhole geo-
metry [4]. The existence of wormholes challenges energy
conditions and requires the presence of exotic matter within
the throat [3]. Consequently, their plausibility has been
a subject of debate. Various proposals, such as the exis-
tence of a thin layer of negative energy density inside the
throat [5] or the incorporation of modified gravity theo-
ries [6,7] have been put forth to address these challenges.
Given the potential formation of wormholes in the early
Universe [8–10] and their existence subject to specific
conditions, it is essential to investigate them further and
discern their unique characteristics from other compact

objects. In the literature, different methods exist to get the
axisymmetric wormhole solutions; see [4,11–13], and
references therein.
It is believed that the center of the galaxies including

ours contains supermassive black holes; however the exis-
tence of the black hole can only be justified by the existence
of the event horizon. Therefore several tests have been
proposed to confirm the presence of an event horizon in
such compact objects [14–16]. Despite all the proof, a shred
of conclusive evidence is still lacking [17]. It is worth
mentioning that the existence of the event horizon along
with the set of unstable light rings commonly known as the
photon sphere in the exterior region of the compact object
form the shadow of the object with the help of the radiation
coming from the accretion disk around it [18]. Therefore,
since the publication of the image of the M87* super-
massive black hole [19] and supermassive compact object
at the center of our Galaxy known as Sagittarius A� (Sgr A�)
[20] by the Event Horizon Telescope (EHT), there has been
extensive discussion among researchers regarding the
nature of the object captured in the image including one
of the papers by the EHT Collaboration [21] and [22].
However, first Synge [23] and Luminet [24] studied the
Schwarzschild black hole shadow, and thereafter
Bardeen [25] looked into the shadow of Kerr black hole.
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Consequently, the shadow in different geometrical back-
grounds was studied in detail; see [26–28] for recent
reviews on the topic and a complete list of references. It
is important to understand that while the boundary of the
shadow is only determined by the underlying spacetime
metric since it is formed only by the observed apparent
shape of the photon sphere by the distant observer [26], the
intensity map of the image is influenced by the accretion
process around the compact object. Therefore, it is impor-
tant to note that the presence of a shadow or a photon
ring does not provide conclusive evidence that the object
is a black hole. This also has been shown in the recent
simulations by using the general relativistic magnetohy-
drodynamical and general relativistic radiative transfer
calculations that distinguishing the shadow image of the
Kerr black hole and nonrotating dilaton black hole is almost
impossible within the present observations [29,30].
In support of the argument, a number of other compact
objects have been studied where it has been shown that
the horizonless compact object such as naked singularities
[31–33], a hard surface [34], and nonrotating worm-
holes [35–37] and rotating traversable wormholes [38] can
also cast similar shadows. Along with the above worm-
holes, a parametrized Lorentzian, traversable, asymptoti-
cally flat, spherically symmetric wormhole spacetime in
arbitrary metric theory of gravity [39] is also constructed
and studied along the same directions as mentioned
above. It has to be mentioned here that such parametrized
spacetimes have recently been under the limelight for
several reasons and have been discussed on different recent
occasions: Parametrization of arbitrary static, spherically
symmetric black hole metric independent of a theory of
gravity for comparison with observations had been
proposed in [40], the parametrization to axisymmetric
spacetime was done in [41], and parametrization of
higher-dimensional black hole spacetime and analytical
representation of the numerical black hole spacetime
solutions were done in [42–44].
Previous studies have extensively investigated the shad-

ows of wormholes [38,45–51], discussing their similarities
with the shadow of the Kerr black hole [38,45,46].
However, one crucial aspect that has been overlooked in
these studies is the presence of plasma and its effects on
wormhole shadows. The effects of plasma on the shadows
of rotating wormhole spacetime have been explored in [45];
however, this study did not consider the contribution of
the wormhole throat [46]. Therefore, in this work, we will
be studying the Teo class of rotating wormholes [52] in the
presence of the plasma and will be taking care of the contri-
bution coming from the throat. Other than the shadow, a lot
of studies were performed on gravitational lensing for the
wormhole without the plasma medium [53–58] and with
the plasma medium [59,60]. Furthermore, investigations
into weak lensing in plasma spacetime have not been
limited to compact objects alone, as some researchers have

employed galaxy models to study the effects of nonuniform
plasma, revealing an increasing impact on the deflection
angle [61,62]. It is pertinent to mention at this stage the
reason for considering the compact object surrounded by
the plasma medium. If we consider a gravitating body
surrounded by a medium, the trajectories of light rays
generally are influenced by the gravitational field as well as
by the medium. The medium in all realistic astrophysical
scenarios is plasma which is a dispersive medium; i.e., the
influence on light rays depends on the photon frequency.
On the other hand, it is well known that in the general
theory of relativity, light rays considered as lightlike
geodesics of spacetime have either no or very negligible
influence of medium in optical or higher frequencies. There
is one range of frequencies however, where the above
statement does not hold and it is in the radio frequency
range [63–65]. One of the well-known and well-studied
examples is the influence of the solar corona on the travel
time as well as on the deflection angle of radio signals
which pass very close to the Sun. To explain such behavior,
one can assume that the medium is a nonmagnetized
pressureless plasma and a linearized theory is sufficient
to describe the gravitational field. It is, therefore, interesting
to consider the plasma medium and look at the effect of the
plasma on such radio frequency ranges. It is safe to assume
that exotic compact objects as well as black holes are
surrounded by a plasma in a realistic astrophysical setting
and it will therefore be an interesting approach to inves-
tigate observable effects of the plasma, if any, on radio
signals (a particular frequency range of the electromagnetic
spectrum) that come close to such exotic objects [64,65].
However, in these cases, the linearized theory of gravity
will not be enough, and a description of spacetime in terms
of the general theory of relativity will be essential.
Our goal is to derive analytical expressions for the

shadow boundary of the rotating wormhole in plasma-
filled spacetime for the observer situated at infinity,
similar to Bardeen’s calculation of the Kerr black hole
shadow [25]. It is known that including the plasma potential
in the Hamiltonian can affect the existence of Carter’s
constant, so one crucial aspect of our work will be to find
the necessary condition for the existence of Carter’s
constant [66]. Such a condition has also been pointed
out for the Kerr black hole and also for generalized
axisymmetric static spacetime [64,67]. Another aim is to
derive the deflection angle by a wormhole in homogeneous
and nonhomogeneous plasma spacetime and analyze their
impacts on the deflection angle. At last, our final goal
will be to constrain the wormhole and plasma parameters
using the EHT results of black hole shadows at the center
of M87*. A similar approach and calculations have been
taken in [68].
The paper is structured as follows: In Sec. II, we provide

an overview of the Hamiltonian formalism for null geo-
desics in plasma spacetime and discuss the necessary
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conditions for the existence of light rays in the outer
communication of the Teo wormhole plasma spacetime.
Section III focuses on determining the specific forms of
plasma profiles that satisfy the condition for the existence
of Carter’s constant. We derive the expressions for the null
geodesic equations in this context. In Sec. IV, we delve into
the role of the contribution of the wormhole throat to the
wormhole shadow. We discuss the significance of the throat
and derive the expressions for the celestial coordinates of
the shadow boundary in generalized plasma spacetime.
Moving on to Sec. V, we explore specific plasma profiles
that fulfill the separability condition. We also present a
comparison of the shadows for various plasma densities
of different plasma profiles. Section VI is dedicated to the
calculation of the deflection angle of a rotating wormhole
in weak field approximation for both homogeneous and
nonhomogeneous plasma spacetime. Finally, in Sec. VII,
we attempt to constrain the plasma parameters and throat
size of the Teo wormhole using the observational data
from M87*. Throughout the paper, we consider units
such that ℏ ¼ G ¼ c ¼ M ¼ 1 and our choice of signature
is ð−;þ;þ;þÞ.

II. HAMILTONIAN FORMALISM FOR LIGHT
RAYS IN A PLASMA SPACETIME

The Hamiltonian describing the light ray traveling in
nonmagnetized pressureless plasma is given as [64]

Hðx; pÞ ¼ 1

2

�
gαβðxÞpαpβ þ ωPðxÞ2

�
; ð1Þ

here gμν are the contravariant components of the metric
tensor and ωP represents the plasma electron frequency,
which is defined as

ωPðxÞ2 ¼
4πe2

m
NðxÞ; ð2Þ

where m and e are the mass and charge of the electron
respectively while NðxÞ defines the electron density dis-
tribution. Here x represents the spacetime coordinates
(t; r; θ;ϕ) while p represents the momentum coordinates
(pt; pr; pθ; pϕ) for the light ray. Please note that the plasma
frequency (ωP) and the photon frequency (ω) are related by
a general form,

nðx;ωðxÞÞ2 ¼ 1 −
ωPðxÞ2
ωðxÞ2 ; ð3Þ

where n is known as the refractive index, and it must be
greater than 0 so that the light rays reach the observer [64].
Since the light rays reaching the observer are gravitation-
ally redshifted, the observed redshifted frequency can be
expressed in terms of the known constant of motion pt as

ωðxÞ ¼ ptffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðxÞ

p : ð4Þ

The necessary and sufficient condition for the existence of a
light ray with a constant of motion pt is derived for the Kerr
black hole by Perlick and Tsupko [64] and based on a
similar approach, a similar condition for generalized rotat-
ing metric can be given by

p2
t > gttðxÞωPðxÞ2: ð5Þ

Finally, the geodesics equations can be derived using
Hamilton’s equations, which are given as

ṗα ¼ −
∂H
∂xα

; ẋα ¼ ∂H
∂pα

: ð6Þ

For our analysis, we have considered a stationary,
axisymmetric rotating metric for the Teo class of travers-
able wormholes in the Boyer-Lindquist coordinates [4],

ds2 ¼ −NðrÞ2dt2 þ
�
1 −

b0ðrÞ
r

�
−1
dr2

þ r2KðrÞ2ðdθ2 þ sin2θðdϕ − ωTðrÞdtÞ2Þ; ð7Þ

where r ≥ r0, r0 is the throat radius of the wormhole.
N, b0 are known as the redshift factor and shape function
respectively, the function K determines the areal radius
which is given by R ¼ rK, and ωT is the measure for the
angular velocity of the wormhole. N, b0, K, and ωT are in
general the functions of radial (r) and polar (θ) coordinates.
For simplicity, in this work, we have only considered r
dependency. Since the wormhole does not contain an
event horizon, the metric component NðrÞ should be
considered finite and nonzero throughout spacetime. The
shape function (b0) must satisfy the conditions ∂θb0jr¼r0 ¼
0; ∂rb0jr¼r0 < 1 and b0 ≤ r [3] in order to have the
geometry of a wormhole, as well as to avoid the curvature
singularity at the throat. In this work, we have considered
the following form of the metric functions in order to get
the traversable wormhole [4,69]:

N ¼ exp

�
−
r0
r

�
; b0ðrÞ ¼ r0 ¼ 2M;

K ¼ 1; ωT ¼ 2J
r3

; ð8Þ

where J is the angular momentum of the wormhole, which
is related to the spin parameter a as a ¼ J=M2 andM is the
mass of the wormhole [46,70]. Some comments about the
wormhole given by the specific choice Eq. (8) are in order
here. First, it has been shown in detail [46], that in the case
of the Teo wormhole, the ADM mass is given by mADM ¼
M ¼ r0=2 for the particular choice of the metric functions
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given in Eq. (8). Second, for the chosen metric functions,
there is no curvature singularity at the throat. However,
there is a need for exotic matter for the existence of the
traversable wormhole [71]. It can also be shown that the
null energy condition is violated in certain regions of
spacetime, while it is satisfied in some other regions.
Therefore, a freely falling observer into the wormhole
can avoid encountering the exotic matter as shown in [4].

III. SEPARABILITY OF HAMILTON-JACOBI
EQUATION FOR NULL GEODESICS IN PLASMA

ON TEO WORMHOLE SPACETIME

The geodesic motion in rotating spacetime enables two
constants of motion—the angular momentum of the par-
ticle about the axis of symmetry pϕ and its energy pt due to
the axisymmetric and stationary symmetries of the space-
time. However, Carter [66] showed that the geodesics in
the Kerr metric possess another constant of motion that
governs the motion of geodesics in the latitudinal direction.
Since the Kerr metric represents the rotating black hole
spacetime, Carter’s constant should also exist in the rotating
wormhole. This constant can be found using the method of
separation of variables. Therefore, let us consider the
Hamiltonian for the null geodesics as

H

�
x;

∂S
∂xα

�
¼ 1

2
gαβðxÞ ∂S

∂xα
∂S
∂xβ

þ 1

2
ωPðxÞ2 ¼ 0; ð9Þ

with the separation ansatz

Sðt; r; θ;ϕÞ ¼ pttþ pϕϕþ SrðrÞ þ SθðθÞ; ð10Þ

where SrðrÞ and SθðθÞ are functions of the r and θ
coordinates respectively. Now substituting Eq. (10) into
Eq. (9) will give

1

2
gttð∂tSÞ2 þ gϕtð∂tSÞð∂ϕSÞ þ

1

2
grrð∂rSÞ2

þ 1

2
gθθð∂θSÞ2 þ

1

2
gϕϕð∂ϕSÞ2 þ

1

2
ω2
P ¼ 0: ð11Þ

Now considering pr ¼ ∂rS and pθ ¼ ∂θS and solving the
above equation for Teo rotating wormhole spacetime
[Eq. (7)] will give

−
1

N2
p2
t − 2

ωT

N2
ptpϕ þ

�
1 −

b0
r

�
p2
r þ

1

r2K2
p2
θ

−
�
ω2
T

N2
−

1

r2K2sin2θ

�
p2
ϕ þ ω2

P ¼ 0: ð12Þ

Since we are considering plasma frequency which depends
on both radial (r) and polar (θ) coordinates, the above
equation is only separable if the general form of plasma
frequency is considered as

ωPðr; θÞ2 ¼
ΩrðrÞ þ ΩθðθÞ

r2K2
; ð13Þ

where ΩrðrÞ and ΩθðθÞ are r- and θ-dependent functions
respectively. Therefore, Eq. (12) can be rearranged as

−
r2K2

N2
ðpt þ ωTpϕÞ2 þ r2K2

�
1 −

b0
r

�
p2
r þ ΩrðrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

frðrÞ

¼ −p2
θ −

p2
ϕ

sin2θ
−ΩθðθÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fθðθÞ

; ð14Þ

here expressions frðrÞ and fθðθÞ are only the functions of r
and θ respectively and therefore can be considered as a
constant since they are now separated by equality. This
constant is known as Carter’s constant and can be written as

frðrÞ ¼ fθðθÞ ¼ −Q: ð15Þ

Therefore, by using these three constants of motion pt, pϕ,
and Q, one can write the impact parameters such as [69]

η ¼ L
ωo

; ξ ¼ Q
ω2
o
; ð16Þ

where we have considered pt ¼ −ωo and pϕ ¼ L. Now
solving for geodesics using Hamilton’s Eqs. (6) for
xμ ¼ t;ϕ, we get

ṫ ¼ 1

N2
ð1 − ηωTÞ; ð17Þ

ϕ̇ ¼ 1

N2

�
ωTð1 − ηωTÞ þ η

N2

r2K2 sin2 θ

�
: ð18Þ

By calculating the expressions for pr and pθ using Eq. (14),

pr ¼ � 1

N
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b0

r

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηωTÞ2 −

N2

r2K2

�
ξþ Ωr

ω2
o

�s
; ð19Þ

pθ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ −

η2

sin θ2
−
Ωθ

ω2
o

s
; ð20Þ

we can calculate the remaining two geodesic equations by
solving Eqs. (6) for xμ ¼ r, θ and we get

ṙ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b0

r

q
N

ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð21Þ

θ̇ ¼ � 1

r2K2

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð22Þ
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where RðrÞ and ΘðθÞ are expressed as

RðrÞ ¼ ð1 − ηωTÞ2 −
N2

r2K2

�
ξþ Ωr

ω2
o

�
; ð23Þ

ΘðθÞ ¼ ξ −
Ωθ

ω2
o
−

η2

sin θ2
: ð24Þ

Since the shadow is formed due to the last photon rings
which are unstable in nature, in order to have unstable
spherical orbits, null rays must satisfy the following
criteria [64]:

ΘðθÞ ≥ 0; R00ðrÞ > 0; ð25Þ

where the first condition ensures the existence of spherical
orbits around the wormhole while the second condition is
imposed to get unstable spherical orbits. A similar calcu-
lation for the general axially symmetric stationary space-
time case can also be found in [67].

IV. SHADOW OF THE TEO WORMHOLE
IN PLASMA SPACETIME

Since photon orbits offer valuable insights into the
optical appearance of wormholes, it would be insightful
to study the boundary of the last photon ring in plasma
spacetime. In a nonrotating spacetime, these orbits occur
within the equatorial plane due to the spherical symmetry
of the wormhole. However, in the case of rotating space-
time, photon trajectories cross the equatorial plane repeat-
edly [72]. Carter’s constant which remains conserved in the
latitudinal direction is crucial in order to determine the
spherical orbits.
The primary objective is to identify the last photon orbits

that distinguish between light rays moving outward and
those moving inward. To accomplish this, we rely on the
determination of critical orbits characterized by their
impact parameters: η and ξ. These parameters play a pivotal
role in delineating the boundary of the shadow cast by the
wormhole. Remarkably, the last photon orbits correspond
to the most unstable circular orbits, featuring the maximum
value of the effective potential, Veff . Well-established
criteria can be applied to identify these unstable circular
photon orbits [73]:

VeffðrcÞ ¼ 0; V0effðrcÞ ¼ 0; ð26Þ

where rc denotes the critical photon orbits and the prime
denotes the derivative with respect to r. The geodesic
equation, Eq. (21), can be expressed as

ṙ2 þ Veff ¼ 0; ð27Þ

where

Veff ¼ −
1 − b0=r

N2

�
ð1 − ηωTÞ2 −

N2

r2K2

�
ξþ Ωr

ω2
o

��
: ð28Þ

Hence, calculating the impact parameter with the help of
Eqs. (26), we get

ξ ¼
�
r2K2

N2
ð1 − ηωTÞ2 −

Ωr

ω2
o

�




r¼rc

; ð29Þ

η ¼ B −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A






r¼rc

; ð30Þ

where

A ¼ ωTω
0
T − ω2

TΣ; ð31Þ

B ¼ ω0
T − 2ωTΣ; ð32Þ

C ¼
�
Ωr

ω2
o

N2

r2K2
− 1

�
Σþ Δ; ð33Þ

Δ ¼ 1

2

d
dr

�
N2

r2K2

Ωr

ω2
o

�
; ð34Þ

Σ ¼ 1

2

d
dr

�
ln

N2

r2K2

�
: ð35Þ

Since we have discussed that these critical orbits are crucial
in determining the last photon rings, η and ξ can therefore
completely determine the boundary of the shadow; how-
ever in order to look for the shadow in the observer’s sky,
we have used the following definitions of celestial coor-
dinates [74]:

α ¼ lim
r→∞

�
−r2 sin θ

dϕ
dr

�
; ð36Þ

β ¼ lim
r→∞

r2
dθ
dr

; ð37Þ

and these celestial coordinates can be calculated with the
help of impact parameters, η, and ξ by following the
geodesic equations derived in Sec. III and given as

α ¼ −
η

sin θ
; ð38Þ

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ −

η2

sin2 θ
−
Ωθ

ω2
o

s
: ð39Þ

These expressions are not valid for calculating the celestial
coordinates in homogeneous plasma spacetime, which will
be discussed in the next section. It may be noted that these
celestial coordinates are the result of a backward ray tracing
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algorithm and using coordinate transformation; we are not
getting these coordinates here by integrating geodesic
equations, which is an entirely different approach and that
can be complex for plasma spacetime.
Another crucial factor to consider in the case of the

wormhole shadow is the existence of the extremum
potential at the throat of the wormhole. It becomes apparent
from Eq. (28) that the effective potential becomes zero at
the throat when r ¼ r0. This implies that stable or unstable
spherical orbits may exist depending on the sign of the
second derivative of the effective potential [V00effðr0Þ]. To
gain insights into the formation of the shadow, Fig. 1(a)
showcases the effective potential for values of α equal to
−2 (red), 8 (blue), and β equal to 0. It has been observed
that for positive values of α the potential exhibits two
extrema; however, unstable orbits are located outside the
throat. Consequently, the contribution to the shadow is
solely derived from the outer region. On the other hand, for
negative values of α, only one extremum is present at the
throat. Please note that Fig. 1(a) is not solely responsible for
the formation of a complete shadow, as shown in Fig. 1(b)
and not symmetric along the β axis; the plot is shown for
the individual value of α and β along the proper radial
distance. The potential is for illustration purposes for
showing the existence of extrema at the throat and outside
the throat. It is noteworthy to point out that previous studies
of the formation of wormhole shadows in plasma spacetime
failed to account for the contribution of the throat potential,
despite the throat contributions being highlighted in rotat-
ing wormholes [46].
In our quest to understand the intricate interplay of

factors contributing to shadow formation, we delve into the
analysis of spherical photon orbits that satisfy constraints

Eqs. (25). We solve Eq. (39) for β ¼ 0 along with satisfying
the constraint equations to find out the minimum (rmin)
and maximum (rmax) radius for the shadow formation.
Therefore, the shadow will consist of the orbit formed by
(rmin, rmax). However, it turns out that sometimes rmin can
be less than the throat radius r0. In such cases, the shadow
will be formed by the orbits consisting of (r0; rmax),
highlighting the contribution of the throat. This nuanced
differentiation ensures that we gain a comprehensive
understanding of the shadow formation mechanism, con-
sidering the varying contributions from different regions of
the wormhole’s geometry. However, in this work, we did
not consider the interior region of the wormhole simply
because of the symmetry. Since the wormhole is symmetric
about the throat, we expect the same contour plots; how-
ever, in the case of the higher-order rings, which can only
be seen with the higher-resolution simulation, we might be
able to see the other higher-order rings.
At the throat, the potential vanishes which also corre-

sponds to the extremum of the potential [see Fig. 1(a)];
therefore using Eq. (28),�

ð1 − ηωTÞ2 −
N2

r2K2

�
ξþ Ωr

ω2
o

��




r¼r0

¼ 0: ð40Þ

Celestial coordinates which are given by Eqs. (38) and (39)
contribute to the incomplete shadow of the wormhole, as
shown in the blue solid curve in Fig. 1(b). The remaining
part of the shadow is contributed by the unstable orbits at
the throat. Therefore from Eqs. (38) and (39), we can write

α2 þ β2 þ Ωθ

ω2
o
¼ ξ ð41Þ

FIG. 1. (a) Effective potential of the slowly rotating Teo wormhole with β ¼ 0 and α ¼ −2 (red), 8 (blue). These plots reveal that for
positive values of alpha, there is an extremum outside the throat, while for negative values of alpha, the extremum is located at the throat.
This distinction helps us understand the respective contributions of the potential in the formation of the shadow. (See text for more
details.) (b) Wormhole shadow (blue) due to maximum potential outside the throat and (red) due to unstable orbits at the throat with spin
parameter a ¼ 0.2. Here l is the proper radial distance given by lðrÞ ¼ � R

r
r0

drffiffiffiffiffiffiffi
1−r0

r

p .
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and using expressions of η from Eq. (38) and ξ from
Eq. (41) into Eq. (40), we get�
ð1þ αωT sin θÞ2

r2K2

N2
− α2 −

Ωr þ Ωθ

ω2
o

¼ β2
�





r¼r0

: ð42Þ

This contributes to the shadow which is shown in the red
curve in Fig. 1(b); therefore the shadow will be the bounded
region consisting of blue and red curves indicated by the
solid blue and solid red curves, respectively, while dis-
regarding the dashed red portion. Here the extreme left
point of the boundary of the shadow in the celestial plane is
found by setting β ¼ 0 in the expression (42) and using
Ωr þ Ωθ ¼ r2K2ω2

P from Eq. (13), we get

αL ¼
−rK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2K2N2ω2

Tω
2
P

ω2
o sin2 θ

þN2 − N4ω2
P

ω2
o

q
− r2K2ωT sinθ

r2K2ω2
T sin

2 θ−N2
: ð43Þ

However, this expression is not valid for the homogeneous
plasma distribution which will be discussed in the next
section. The wormhole shadows in vacuum are shown in
Fig. 2 for spin parameter a ¼ 0.99 (left) and different
inclination angles and similarly for fixed inclination angle
θ ¼ 90° (right) and different spin for reference purposes.

V. SHADOW FOR SPECIFIC PLASMA PROFILES

In this section, our focus shifts toward exploring the
effects of commonly discussed plasma distribution profiles
on the shadow of rotating wormhole spacetime. A crucial
criterion to consider is the satisfaction of the separability
condition outlined in Eq. (13) while choosing the plasma
distribution functions. Notably, Shapiro [75] made signifi-
cant advancements in accretion studies involving black holes
and determined that the plasma frequency is proportional

to r−3=2 for pressureless plasma. It is imperative to acknowl-
edge this radial decrease in plasma frequency when exam-
ining the dependence of plasma on θ, especially in the case
of inhomogeneous plasma distributions.
Furthermore, we must emphasize the importance of

investigating a generalized form of plasma distribution.
By doing so, we can highlight the distinguishing character-
istics and disparities it holds when compared to other
plasma distribution profiles. This comprehensive analysis
enables us to gain a deeper understanding of the intricate
relationship between plasma and the unique properties of
rotating wormhole spacetime.

A. Homogeneous plasma distribution

First, we have considered the homogeneous plasma dis-
tribution between the observer and the sourcewhich is widely
studied to understand the physical phenomena [60,64],

ω2
P

ω2
o
¼ k0; ð44Þ

where k0 denotes the homogeneous plasma parameter and it
varies from 0 to 1 in order to satisfy the constraint Eq. (5).
By using Eqs. (13) and (44) we can write the following
expressions:

ΩrðrÞ ¼ k0r2ω2
o; ΩθðθÞ ¼ 0: ð45Þ

Hence, the celestial coordinates for homogeneous plasma
are given by solving Eqs. (36) and (37) as

α ¼ −
η csc θffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k0

p ; β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ − η2 csc2 θ

1 − k0

s
; ð46Þ

FIG. 2. Wormhole shadows in vacuum with throat radius, r0 ¼ 2 (a) for various inclinations angles with spin parameter, a ¼ 0.99 and
(b) for various spin parameters with inclination angle, θ ¼ 90°.
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and the contribution from the wormhole throat for homo-
geneous plasma spacetime is given by

��
1þ αωT sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k0

p �
2 r2K2

N2ð1 − k0Þ
− α2

−
Ωr

ω2
oð1 − k0Þ

¼ β2
�





r¼r0

; ð47Þ

while αL as mentioned in Sec. IV is found by solving β ¼ 0,
Eq. (46). In Fig. 3(a), we have plotted this case for spin
a ¼ 0.99 and it provides valuable insights into the behavior
of the last photon ring, revealing that its radius expands in
conjunction with larger homogeneous plasma parameters.
This observation leads us to the inference that the Universe
is not filled with homogeneous plasma. If that were the
case, we would have been able to detect these compact
objects using low-resolution radio telescopes, given that the
radius of the photon ring increases as the plasma parameter
rises. Similar behavior has been observed for the lower spin
values as well.

B. Radial plasma distribution

For this analysis, we have specifically focused on the
radial plasma profile, where Ωθ is set to zero. We adopted
the plasma profile proposed by Shapiro [75] to look at its
effect on the rotating wormhole shadow as

ω2
P

ω2
o
¼ kr

r3=2
; ð48Þ

where kr denotes the radial plasma parameter and its value
should be in accordance with Eq. (5). We can calculate Ωr
and Ωθ by using Eqs. (13) and (48) as

Ωr ¼ krr1=2ω2
o; Ωθ ¼ 0; ð49Þ

and the celestial coordinates for this plasma profile using
Eqs. (38) and (39) are given by

α ¼ −η csc θ; β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ − η2 csc2 θ

q
: ð50Þ

FIG. 3. Comparison of wormhole shadows with throat radius r0 ¼ 2, spin parameter a ¼ 0.99, and inclination angle θ ¼ 90° with

various plasma parameters (k0, kr, kθ) for the plasma distributions: (a) ω2
P ¼ k0ω2

o, (b) ω2
P ¼ kr

r3=2
ω2
o, (c) ω2

P ¼ kθ sin2 θ
r2 ω2

o,

and (d) ω2
P ¼ kr

ffiffi
r

p þkθ sin2 θ
r2 ω2

o.
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In this scenario, the contribution of the throat to the shadow
can be determined using Eq. (42). We have demonstrated
this case in Fig. 3(b) for spin parameter a ¼ 0.99 which
illustrates the shadow of the wormhole for various radial
plasma parameters, with kr equal to 0,2,4,6, and 8. Notably,
it becomes evident that the plasma density has a negative
impact on the shadow, which contrasts with the behavior
observed in the case of a homogeneous plasma distri-
bution, as depicted in Fig. 3(a). As the plasma parameter
increases, the shadow gradually becomes undetectable
since the previously mentioned conditions [Eqs. (5) and
(25)] are no longer satisfied. These observations shed light
on the intricate relationship between plasma density and the
resulting shadow characteristics.

C. Latitudinal plasma distribution

Now, let us explore another example where the plasma
distribution is dependent on the polar (θ) coordinate. In
this scenario, we consider a distribution that exhibits a
reduction in plasma density over increasing distances [75].
This choice is essential to distinguish it from a scenario
involving homogeneous plasma. To illustrate this, let us
denote the plasma distribution in this case as follows:

ω2
P

ω2
o
¼ kθ

sin2 θ
r2

; ð51Þ

where kθ represents the latitudinal plasma parameter, just
to differentiate it from the radial plasma parameter, kr and
it is chosen such that it satisfies the constraint conditions,
Eq. (5). With the help of Eqs. (13) and (51), we can write
the following expressions:

Ωr ¼ 0; Ωθ ¼ kθω2
osin2θ; ð52Þ

and the celestial coordinates for this plasma profile using
Eqs. (38) and (39) are given by

α ¼ −η csc θ; β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ − η2 csc2 θ − kθ sin2 θ

q
: ð53Þ

Figure 3(c) provides a comparative visualization of the
shadow cast by the wormhole for this particular plasma
profile. Remarkably, it becomes evident that the depend-
ence of plasma density on the θ coordinate exerts a
significant influence on the size of the shadow, surpassing
the impact of the radial profile. This finding is particularly
noteworthy, as previous studies primarily concentrated on
radial profiles [45] and omitted the analysis of such
latitudinal profiles. It underscores the importance of con-
sidering a generalized plasma density distribution to gain a
more profound understanding of the shadow boundary in
plasma spacetime. Therefore, by incorporating the influ-
ence of plasma density variation with respect to θ, we can
delve deeper into the intricacies of shadow formation and

unravel more comprehensive insights into the behavior of
wormholes in the presence of varying plasma distributions.
Motivated by this, in the next subsection, we will be
studying the more general case for plasma distribution.

D. Generalized plasma distribution

Now, let us consider the more comprehensive scenario
where the plasma distribution depends on both the radial
coordinate (r) and the angular coordinate (θ). This broader
analysis allows us to gain further insights into the effects of
plasma densities on wormhole shadows. For this case, we
denote the plasma distribution as follows:

ω2
P

ω2
o
¼ kr

ffiffiffi
r

p þ kθ sin2 θ
r2

: ð54Þ

This particular profile is essentially a combination of the
two previously discussed profiles. It incorporates the
additive contributions from each of them. We adopt a
similar plasma distribution profile to the one proposed by
Perlick and Tsupko [64], which provides valuable insights
into the behavior of the plasma distribution in relation to
the formation of wormhole shadows. Now, using Eqs. (13)
and (54),

Ωr ¼ krrω2
o; Ωθ ¼ kθω2

osin2θ; ð55Þ

and the celestial coordinates for this generalized plasma
profile using Eqs. (38) and (39) are given by

α ¼ −η csc θ; β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ − η2 csc2 θ − kθ sin2 θ

q
: ð56Þ

Figure 3(d) showcases the shadow cast by the wormhole for
different values of kr and kθ. Interestingly, the generalized
plasma profile demonstrates superior performance com-
pared to the other two profiles previously discussed. This
emphasizes the significance of studying the more compre-
hensive generalized plasma profile rather than solely
focusing on the radial profile. A similar kind of behavior
has been observed for the low spin values. Hence, we have
chosen to compare the different plasma density profiles
with the higher spin case. Furthermore, it is noteworthy that
the individual shadows resulting from the specific plasma
parameters are larger when compared to their combined
effect. As we delve deeper into the analysis, we observe
that the shadow progressively diminishes in size with
increasing plasma parameters. At a certain critical value,
the shadow may eventually vanish or become undetectable
altogether. This phenomenon has been shown in Fig. 4 for
different values of spin parameters as well as at different
inclination angles. It can be observed that as the plasma
parameter increases, the wormhole shadow started shrink-
ing and eventually disappears which has been shown by
dashed green curves. Please note that the plasma parameter
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values corresponding to these green curves do not serve for
the maximum value after which the shadow disappears
completely.
By considering these generalized plasma distributions

and closely examining the changes in the resulting shad-
ows, we can potentially gain valuable insights into the
plasma distribution along the observational path. This
motivates us to further look into the photon trajectories
in plasma spacetime. Therefore, in the next section, we will

be exploring the weak gravitational lensing within the
effect of the plasma distribution around the rotating worm-
hole spacetime.

VI. WEAK GRAVITATIONAL LENSING

In this section, we explore the influence of plasma
distributions on the deflection angle within the framework
of the weak field approximation. As we know, when light

FIG. 4. Wormhole shadows for generalized plasma distribution showing the disappearance of the last photon ring (green curves) for
various inclination angles and spin parameters with different radial plasma parameters, kr and longitudinal plasma parameter, kθ. The
black curve represents the photon ring without plasma; blue curves represent shadow with low plasma parameters and are shown here for

the illustration purpose of shrinking shadow size. Considering the plasma profile as ω2
P ¼ kr

ffiffi
r

p þkθ sin2 θ
r2 ω2

o.
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rays traverse the vicinity of massive objects, they experi-
ence deviations from their original paths. Here, we present
the analytical expression for the deflection angle, focusing
specifically on the case when the observer is situated in the
equatorial plane (θ ¼ 90°) of the source. By examining the
effects of plasma distributions on the deflection angle,
we can gain a deeper understanding of how the presence of
plasma affects the trajectory of light rays near massive
objects. This analysis allows us to investigate the intricate
interplay between plasma and gravity, shedding light on the
nature of weak gravitational lensing in the presence of
plasma. The derived analytic expression provides a valu-
able tool for predicting and analyzing the deflection of
light in various astrophysical scenarios, contributing to
our overall comprehension of the behavior of light in the
presence of massive objects and plasma distributions. In
order to analyze the deflection angle, we first calculate the
geodesic equations with the help of Hamilton’s equation (6)
and the Hamiltonian for rotating plasma spacetime given by
Eq. (1) as

ϕ̇ ¼ ∂H
∂pϕ

¼ gtϕpt þ gϕϕpϕ; ṙ ¼ ∂H
∂pr

¼ grrpr; ð57Þ

which can be further simplified as follows:�
ṙ

ϕ̇

�
2

¼
�

grrpr

gϕϕpϕ þ gϕtpt

�
2

: ð58Þ

Now, for the massless particles, the Hamiltonian should be
zero (H ¼ 0). Therefore, Eq. (1) can be written by using the
definitions such that pt ¼ −ωo, and pθ ¼ L as

grrp2
r ¼ −

�
gttω2

o − 2gϕtωoLþ gϕϕL2 þ ω2
P

�
: ð59Þ

Hence Eqs. (58) and (59) can be simplified to�
ṙ

ϕ̇

�
2

¼ −
grr�

gϕϕL − gϕtωo

�
2

×
�
gttω2

o − 2gϕtωoLþ gϕϕL2 þ ω2
P

�
; ð60Þ

and to simplify the above equation we have considered the
following definitions:

ωo

L
¼ λ;

ω2
P

ω2
o
¼ X; ð61Þ

thus, Eq. (60) can be modified as�
ṙ

ϕ̇

�
2

¼ −grr�
gϕϕ − gϕtλ

�
2

�
gttλ2 − 2gϕtλþ gϕϕ þXλ2

�
: ð62Þ

The deflection angle is calculated when the light deviates
from its original path and consequently when it is at the

closest approach (r ¼ R) to the central object. Therefore, at
the closet distance, we can define�

ṙ

ϕ̇

�




r¼R

¼ 0: ð63Þ

Now, the evaluation needs to be done at r ¼ R as
mentioned in Eq. (63), and we have considered the
following expressions for the metric and plasma functions
being evaluated at r ¼ R:

gttjR ¼ Gtt; gϕtjR ¼ Gϕt; gϕϕjR ¼ Gϕϕ;

grrjR ¼ Grr; XjR ¼ Y: ð64Þ

Thus, the impact parameter, λ is calculated by using the
expressions given in Eq. (64) with the help of Eqs. (62)
and (63), and given as

λ ¼ 2Gϕt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2GϕtÞ2 − 4GϕϕðGtt þ YÞ

p
2ðGtt þ YÞ ; ð65Þ

and finally, the integral form for the deflection angle of the
light from its original trajectory can be given by solving
further using Eqs. (62) and (65) asZ

ᾱ

0

dϕ ¼
Z

∞

−∞

�
−grr

ðgϕϕ − gϕtλÞ2
�ðgtt þ XÞλ2

− 2gϕtλþ gϕϕ
��−1=2

dr: ð66Þ

It is important to note that the deflection angle for the
light following its original trajectory will be π given that
the center of coordinates corresponds to the compact
object. Therefore, the actual deflection angle is determined
by α ¼ ᾱ − π.
In the subsequent analysis, we proceed to calculate the

deflection angles for both homogeneous and nonhomo-
geneous plasma distributions. The homogeneous plasma
distribution is characterized by uniform plasma density,
while the radial plasma distribution exhibits a density
variation in the nonhomogeneous direction. By studying
these specific cases, we can discern the effects of plasma
distributions on the deflection of light and deepen our
understanding of gravitational lensing phenomena in the
presence of plasma. We have considered the following
plasma distributions [60]:

ω2
P

ω2
o
¼ k0;

ω2
P

ω2
o
¼ kr

r2
: ð67Þ

In the case of a homogeneous plasma distribution, the
values of k0 fall within the range of (0,1) as discussed in
Sec. V(A). Additionally, the choice of kr is determined to
satisfy Eq. (5) which takes into account the gravitational
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redshift. It is worth noting that in previous studies [61,62],
the redshift condition has often been neglected. However,
it is crucial to consider this condition as it significantly
influences the trajectory of light and, consequently, the
deflection angle.
We have considered the weak field limit and lower

plasma densities for simplicity to calculate the weak deflec-
tion angle for the slow-rotating wormhole. The detailed
derivation has been performed in the Appendix. The
resulting values for the deflection angle are presented in
Table I, providing a comprehensive overview of the
deflection angles for both the homogeneous and nonho-
mogeneous plasma profiles. By examining the values of the
deflection angle, we can gain insights into the effects of
plasma distributions on the path of light in the vicinity of
massive objects. Therefore, we examine both the homo-
geneous and nonhomogeneous plasma distributions around
the rotating wormhole geometry and study their effect on
the deflection angle of the light rays.
The deflection angle exhibits a decrease with the closest

distance to the wormhole [see Figs. 5(a) and 5(b)],
indicating a reduced gravitational influence. It is note-
worthy that at higher plasma densities, the deflection angle
increases, as illustrated in Fig. 6(a) for all values of the spin

parameter. This observation gives validation of the earlier
observed phenomenon such that the shadow radius
increases with the plasma density in uniform plasma
distribution [see Fig. 3(a)].
In the case of a nonhomogeneous plasma distribution, an

intriguing observation is that the deflection angle decreases
with increasing plasma densities, as shown in Figs. 5(b)
and 6(b) for all values of the spin parameter. This stands in
contrast to the homogeneous case and provides an explan-
ation for the negative impact of plasma on the shadow
which already has been observed in the case of the shadow
[(see Fig. 3(b)]. Notably, the influence of nonhomogeneous
plasma distributions on the deflection angle has not been
extensively explored in previous studies. Most investiga-
tions of the effects of plasma on the deflection angle by
compact objects have focused on a single isothermal sphere
model, commonly employed for galaxy modeling which
yielded a positive impact of plasma on the deflection
angle [62].
It is important to note that the choice of the plasma

parameter value should ensure low plasma density and
compliance with the condition given by Eq. (5). In previous
studies, researchers have typically considered plasma para-
meter values ranging from 0 to 1 [62]. However, within the
given impact parameter constraints along with the con-
dition given by Eq. (5), a range of plasma parameter values
can be chosen to study the deflection angle. Therefore, by
analyzing the effects of plasma on the deflection angle,
we can gain valuable insights into the distribution of plasma
in the vicinity of compact objects. This investigation serves
as a powerful tool for studying and understanding the
properties of plasma surrounding these intriguing cosmic
structures.

TABLE I. Deflection angle in homogeneous and nonhomo-
geneous plasma distributions for Teo wormhole spacetime.

Plasma distribution Deflection angle

ω2
P

ω2
o
¼ k0 ��

3r0
R þ 4a

R2 þ
�
2r0k0
R þ 2ak0

R2

��
ω2
P

ω2
o
¼ kr

r2
��

3r0
R þ 4a

R2 þ r0að9π−14Þ
R3 þ kr

2R2

�r0ð2π−3Þ
R − π

��

FIG. 5. Weak deflection angle as a function of closest distance (R) with spin parameter, a ¼ 0.5 in Teo wormhole spacetime for plasma
profiles: (a) ω2

P ¼ k0ω2
o, and (b) ω2

P ¼ kr
r2 ω

2
o.
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VII. CONSTRAINING THEWORMHOLE SHADOW
AND PLASMA PARAMETERS

To determine the plasma parameters and size of the
wormhole, we employ observational data released by the
EHT Collaboration [19] for the supermassive black
hole located at the center of the elliptical galaxy Messier
87 (M87), also known as M87*. By examining the average
angular size of the shadow and its deviation from circular-
ity, we can constrain shadow and plasma parameters. Since
the obtained critical curve is the last unstable orbit for
massless particles, we believe that it should be related to the
apparent size of the shadow image, as discussed in [26].
The photon can stay in this orbit and a small perturbation
can kick it out of the orbit to infinity or make it fall into
the wormhole. As the shadow possesses reflection sym-
metry around the α-axis in the celestial plane, we calculate
its geometric center ðα0; β0Þ using the integrals α0 ¼
1=A

R
αdA and β0 ¼ 0. Here, dA represents an area

element. Next, we introduced an angle ϕ defined as the
angle between the α-axis and the vector connecting the geo-
metric center ðαc; βcÞwith a point ðα; βÞ on the boundary of
the shadow. This angle ϕ provides valuable information
for our analysis as can be seen as follows. Therefore, the
average radius (R) of the shadow is given by [22]

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π

Z
2π

0

l2ðϕÞdϕ
s

; ð68Þ

where lðϕÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαðϕÞ−α0Þ2þβðϕÞ2

p
and ϕ¼ tan−1 ðβðϕÞ=

ðαðϕÞ−α0ÞÞ. Following [19], we define the deviation ΔC
from circularity as [22]

ΔC ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π

Z
2π

0

ðlðϕÞ − RÞ2dϕ
s

: ð69Þ

We should note that ΔC represents the fractional root-mean-
square distance from the average radius of the observed
shadow. Based on the findings of the EHT Collaboration
[19], the angular size of the observed shadow is determined
to be Δθsh ¼ 42� 3 μas, with a deviation ΔC of less than
10%. Additionally, following the same study [19], we adopt
the distance to M87* as D ¼ ð16.8� 0.8Þ Mpc and the
mass of the object asM ¼ ð6.5� 0.7Þ × 109M⊙. With these
values, we can estimate the average size of the shadow [22],

dsh ¼
DΔθsh
M

¼ 11.0� 1.5: ð70Þ

This uncertainty in the shadow size can be determined by
carefully propagating the uncertainties associated with both
the distance and angular size measurements. By accounting
for these uncertainties, we can obtain more reliable esti-
mates of the shadow’s size, enabling us to extract valuable
information about the physical characteristics of M87* and
delve into the intricacies of the shadow phenomenon.
Therefore, these insights pave the way for further inves-
tigations and contribute to our ongoing exploration of the
enigmatic nature of M87* and its surrounding environment.
The determination of the average size and the deviation

from the circularity of the observed shadow involves
considering the errors in a combined manner, with the
uncertainties added in quadrature. It is important to ensure
that this calculated quantity matches the expected value of
the size (2R). Figure 7 presents the results depicting the
average size (left) and circularity deviation (right) of the

FIG. 6. Weak deflection angle in Teo wormhole spacetime for closest distance approach, R ¼ 10 as a function of plasma parameters
(k0; kr) for various spin parameters in the case of plasma profiles: (a) ω2

P ¼ k0ω2
o, and (b) ω2

P ¼ kr
r2 ω

2
o.
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shadow, considering various values for the spin para-
meter and the size of the wormhole throat concerning
the radial plasma parameter (kr). In our analysis, we have
taken an inclination angle of θ ¼ 17°, which represents
the angle between the jet axis and the line of sight to
M87*. Additionally, based on the findings of the EHT
Collaboration, the spin parameter falls within the range
of 0.5 ≤ a ≤ 0.94 which has been shown in Fig. 7 with
vertical red lines.
Now, to determine the maximum plasma parameters that

apply to M87*, we analyzed the plasma density corre-
sponding to the smallest observed shadow size. Initially, by
looking only at the radial plasma profile, we observed that
the maximum value for the radial plasma parameter is
krc ¼ 4.75 when the shadow size matches the observed

M87* size (Fig. 7). Similarly, the contour line correspond-
ing to the least shadow size (Fig. 8) indicates that the
maximum longitudinal plasma parameter is kθc ¼ 85.5.
Furthermore, to cover the complete range of shadow sizes
between 9.5 and 12.5 with the uncertainty in the M87*
shadow size, we considered kr ¼ 3.5 and kθ ¼ 20.4 in
Fig. 9. These choices allow us to place constraints on the
maximum possible value of the throat size (r0c ¼ 2.51)
which corresponds to the maximum shadow size as shown
in Fig. 9(a). It is worth noting that the deviation from
circularity (ΔC) in the wormhole shadows provides inter-
esting features about the plasma parameters. From
Figs. 7(b) and 8(b), we observed that ΔC ≤ 10% required
the spin range for M87* to be less than 0.5 when
considering either the radial or latitudinal plasma profiles.

FIG. 7. Dependence of (a) the angular size and (b) the deviation of the shadow on radial plasma parameter (kr) and spin with θ ¼ 17°
and r0 ¼ 2. The two red dashed lines indicate the spin range 0.5 ≤ a ≤ 0.94. Considering the plasma profile as ω2

P ¼ kr
r3=2

ω2
o.

FIG. 8. Dependence of (a) the angular size and (b) the deviation of the shadow on latitudinal plasma parameter (kθ) and spin with

θ ¼ 17° and r0 ¼ 2. The two red dashed lines indicate the spin range 0.5 ≤ a ≤ 0.94. Considering the plasma profile as ω2
P ¼ kθ sin2 θ

r2 ω2
o.

KUMAR, UNIYAL, and CHAKRABARTI PHYS. REV. D 109, 104012 (2024)

104012-14



However, in the case of the generalized plasma distribution
the observed circularity deviation from the shadow of
M87* (ΔC ≤ 10%) can still be achieved for the known
spin range while obtaining shadow sizes within the
observed range for M87*. It is important to note that this
analysis restricts the throat size such that it should not
exceed the value of r0c to maintain ΔC < 10% and
maximum shadow size of 12.5 within the allowed range
of spin, the value of r0c should be less than 2.51 for the
chosen value of kr and kθ in case of generalized plasma
distributions [see Figs. 9(a) and 9(b)]. Thus, the constraint
on the maximum value of throat size may vary depending
on the choice of plasma parameters. These findings further
contribute to our understanding of the possible spin range
and plasma distributions associated with the observed
shadow of M87*. Please note that we have only considered
those plasma profiles which have been discussed in Sec. V.
Therefore, this study ascertains the range of plasma para-
meters and throat size that are consistent with the observed
shadows and provides further insights into the properties of
the M87* system.

VIII. CONCLUSION

In this study, our focus was on investigating the behavior
of null geodesics in nonmagnetized pressureless plasma
within the context of a rotating wormhole spacetime.
We specifically examined the gravitational influence of
the wormhole while neglecting the gravitational influence
of the plasma on spacetime, which can be safely assumed
since the plasma density considered here is due to electrons
and not due to the presence of heavy ions (like hydrogen
ions). Instead, we considered only the dispersive properties
of the plasma affecting the trajectory of light rays.
One key finding of our work, as discussed in Sec. III, is

the requirement of a specific plasma distribution profile to

establish a generalized Carter’s constant. We also empha-
sized the importance of including potential contributions
from both inside and outside the wormhole throat, as
elaborated in Sec. IV. Furthermore, we derived analytical
formulas for the boundary of the shadow for various plasma
profiles in Sec. V. Notably, our results revealed that the
shadow size decreases with increasing plasma density.
Eventually, for certain upper limits of the plasma param-
eters, the shadow completely disappears.
Our primary objective throughout this study was to

obtain an analytical expression for the shadows observed
in plasma spacetime. By investigating the behavior of light
rays in the presence of plasma, we aimed to enhance our
understanding of the intricate interplay between gravita-
tional and plasma effects in astrophysical phenomena. As it
can be concluded from Figs 3 and 4 the shrinking shadow
is not the result of a spinning wormhole but from the
surrounding plasma. In Sec. VI, we conducted calculations
to determine the deflection angle on a rotating wormhole in
plasma spacetime. Gravitational lensing phenomena have
significant implications for astrophysical observations,
and our study shed light on the impact of plasma on the
deflection angle. Interestingly, we observed that as the
plasma parameter increases, the deflection angle decreases
in a nonhomogeneous plasma spacetime, contrary to the
behavior observed in a homogeneous plasma profile. This
intriguing result underscores the importance of further
investigating the observational aspects and exploring the
plasma distribution near compact objects.
In a recent study [62] of deflection angle by compact

objects, it was shown that the plasma environment affects
the deflection angle. In that study, the existence of non-
uniform plasma distribution was shown to increase the
deflection angle compared to that with no plasma envi-
ronment. In our work, we saw an opposite impact of the

FIG. 9. Dependence of (a) the angular size and (b) the deviation of the shadow on throat size and spin with θ ¼ 17°, kr ¼ 3.5, and

kθ ¼ 20.4. The two red dashed lines indicate the spin range 0.5 ≤ a ≤ 0.94. Considering the plasma profile as ω2
P ¼ kr

ffiffi
r

p þkθ sin2 θ
r2 ω2

o.
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plasma densities on the shadow radius. We therefore
determined the weak deflection angle, which supports the
shrinking shadow in cases of nonuniform plasma distribu-
tion. The idea behind the present work was to see if the
effect of plasma on the deflection angle provides the
justification for shrinking shadow. We were able to show
this by considering two different aspects, viz. the shadow
and lensing separately.
Finally, we proceeded to constrain the size of the throat

and plasma parameters mentioned in Sec. V by utilizing the
observational data coming from EHT for M87*. Our
analysis revealed that the maximum allowed throat radius
is determined to be r0c ¼ 2.51, which corresponds to the
allowed range of shadow size, spin, and circularity
deviation for M87* as reported by the EHT. On the other
hand, by considering a minimum shadow size of 9.5, we
were able to place constraints on the radial and latitudinal
plasma parameters, with maximum values kr ¼ 4.75 and
kθ ¼ 85.5, respectively. These constraints provide valuable
insights into the physical properties of the wormhole and
the plasma surrounding it. By examining the maximum and
minimum shadow sizes, we can better understand the range
of possible sizes for the throat and the corresponding
plasma parameters that are consistent with the observed
shadows in the case of M87*.
In our future research, we intend to investigate the impact

of plasma on the shadow of a Kerr black hole. Additionally,
we plan to compare the findings from the study of worm-
hole shadows to those of black hole shadows. This
comparative analysis will provide further insights and
potentially help discern whether M87* is more likely to
be a black hole or a wormhole. By delving into these
investigations, we hope to contribute to the ongoing
understanding of M87* and its intriguing nature, paving
the way for deeper insights into the astrophysical phenom-
ena occurring in the vicinity of these enigmatic cosmic
objects.
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APPENDIX: CALCULATIONS FOR THE
DEFLECTION ANGLE

Let us expand Eq. (66) for the homogeneous plasma
with low plasma density in the context of a slow-rotating
wormhole, assuming r0=R < 1,

ᾱ ¼
Z

∞

−∞
Φ0drþ

Z
∞

−∞
Φ1drþ

Z
∞

−∞
Φ2dr; ðA1Þ

where the integrand is given as

Φ0 ¼
R

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −R2

p ;

Φ1 ¼
r0ð2r2 þ rRþR2Þ
2r2ðrþRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −R2

p þ a
2r2 þ 2rRþ 11rr0 þ 9Rr0

rRðrþRÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −R2

p ;

Φ2 ¼
�

rr0
ðrþRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −R2

p

þ a
2rR2 þ 2Rr2 þ 3rRr0 þ 4r2r0 þ 17R2r0

2rR2ðrþRÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −R2

p
�
k0;

ðA2Þ

and, upon solving while neglecting higher-order terms, we
get the deflection angle by the Teo wormhole in uniform
plasma spacetime as

ᾱ ¼ π þ
�
3r0
R

þ 4a
R2

þ
�
2r0k0
R

þ 2ak0
R2

��
: ðA3Þ

Similarly, in the case of nonhomogeneous plasma distri-
bution let us again expand Eq. (66) in the context of a slow-
rotating wormhole by assuming low plasma density and
r0=R < 1,

ᾱ ¼
Z

∞

−∞
ψ0drþ

Z
∞

−∞
ψ1drþ

Z
∞

−∞
ψ2dr; ðA4Þ

where the integrand is given as

ψ0 ¼
R

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −R2

p ;

ψ1 ¼
r0ð2r2 þ rRþR2Þ
2r2ðrþRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −R2

p þ a
2r2 þ 2rRþ 11rr0 þ 9Rr0

rRðrþRÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −R2

p ;

ψ2 ¼
�
2r2r0 − 2r2R− 2rR2 −R2r0 þ 3rRr0

4r2ðrþRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −R2

p

− a
2rR2 þ 2Rr2 þ 3rRr0 þ 4r2r0 þ 5R2r0

r3ðrþRÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −R2

p
�
k0
R2

;

ðA5Þ

and, upon solving while neglecting higher-order terms, we
get the deflection angle by the Teo wormhole in radial
plasma spacetime as

ᾱ ¼ π þ
�
3r0
R

þ 4a
R2

þ r0að9π − 14Þ
R3

þ kr
2R2

�
r0ð2π − 3Þ

R
− π

��
: ðA6Þ
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