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Second-order gravitational self-force theory has recently led to the breakthrough calculation of “first post-
adiabatic” compact-binary waveforms [Phys. Rev. Lett. 130, 241402 (2023)]. The computations underlying
those waveforms depend on a method of solving the perturbative second-order Einstein equation on a
Schwarzschild background in the Fourier domain. In this paper we present that method, which involves
dividing the domain into several regions. Different regions utilize different time slicings and allow for the use
of “punctures” to tame sources and enforce physical boundary conditions. We demonstrate the method for
Lorenz-gauge and Teukolsky equations in the relatively simple case of calculating parametric derivatives
(“slow time derivatives”) of first-order fields, which are an essential input at second order.
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I. INTRODUCTION

A. Waveform generation and second-order
self-force theory

In recent years, gravitational self-force theory [1,2] has
reached a mature stage of producing practical models of
compact-binary waveforms [3–7]. These models, targeted
at asymmetric binaries in which one body is much more
massive than the other, have traditionally been motivated
by the need to model waveforms from extreme-mass-ratio
inspirals (EMRIs) with mass ratios ε ≔ μ=M ∼ 10−5 [8],
whereM is the mass of the larger body and μ is the mass of
the companion. However, the resulting waveforms have
proved to be quite accurate even for mass ratios ∼10−1 [7].
The method underlying these models is an expansion of

the spacetime metric in powers of ε, with the assumption
that the zeroth-order spacetime is a stationary black hole.
From that starting point, a combination of perturbative
techniques is used, including broad strategies adapted from
singular perturbation theory (matched asymptotic expan-
sions, multiscale expansions, and related methods) as well
as the specific tools of black hole perturbation theory [1,2].
Most of this progress in waveform modeling has been

driven by calculations in the Fourier domain [2–7,9,10].
While there has been continued progress in time-domain
calculations [11–14], and while it is possible to construct
practical surrogate models [15] from a bank of time-domain
waveforms, most development has been on Fourier methods
that leverage the disparate timescales in small-mass-ratio
binaries: the fast orbital timescale∼M and the slow timescale

∼M=ε over which the system evolves. This separation of
scales allows one to divide waveform generation into two
steps: an expensive off-line step in which one solves Fourier-
domain field equations on a grid of slowly evolving
parameter values (e.g., eccentricity, semilatus rectum, and
themass and spin of the primary black hole); and a fast, cheap
online step of solving simple ordinary differential equations
(ODEs) to evolve through the parameter space. The flexi-
bility and efficiency of such a framework is exemplified by
the FAST EMRI WAVEFORMS package [3].
This method can be carried to any order in ε by using a

multiscale expansion of the Einstein equations [2,9], which
builds on the multiscale form of the companion’s orbital
motion around the primary [16]. Orbits around a Kerr black
hole generically have three slowly evolving frequencies
ΩA ¼ ðΩr;Ωθ;ΩϕÞ corresponding to azimuthal motion
(Ωϕ), orbital precession associated with eccentricity (Ωr),
and precession of the orbital plane around the primary’s
spin axis (Ωθ). Any given ðl; mÞ multipole of the resulting
waveform then takes the simple form [2]

hlm ¼
X
ki
½εhð1;kiÞlm ðJ IÞ þ ε2hð2;k

iÞ
lm ðJ IÞ þ � � ��e−iðmφϕþkiφiÞ;

ð1Þ

where ki ¼ ðkr; kθÞ are integers running from −∞ to þ∞,
J I are the binary’s slowly evolving parameters, and φA ¼
ðφr;φθ;φϕÞ are the orbital phases associated with the three
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frequencies ΩA. The time dependence of the waveform is
governed by simple ODEs of the form

dφA

du
¼ ΩAðJ IÞ; ð2Þ

dJ I

du
¼ ε½Fð0Þ

I ðJ KÞ þ εFð1Þ
I ðJ KÞ þ � � ��; ð3Þ

where u denotes retarded time at a future null infinity. The

slowly evolving amplitudes hðn;k
iÞ

lm , frequencies ΩA, and

driving forces FðnÞ
I are precomputed in the off-line step, and

the waveform is then rapidly generated by solving the
ODEs (2) and (3).
A model that uses only the leading forcing term Fð0Þ

I is
referred to as adiabatic (“0PA”); this requires solving the
linearized Einstein or Teukolsky equation in the off-line

step. A model that includes terms up to and including FðnÞ
I

is referred to as nth post-adiabatic (nPA); this requires
solving the Einstein equations through order εnþ1. In the
off-line step, the Einstein equations are formulated in a
discrete Fourier domain based on mode expansions in the
orbital phases φA, as displayed in Eq. (1).
The most advanced self-force calculations use this

multiscale method to solve the Einstein equations through
second order in ε [7,17,18], yielding 1PA waveforms [7].
Those calculations are currently restricted to the simplest
scenario of quasicircular inspirals into Schwarzschild black
holes, in which case the problem simplifies because (i) there
is only one orbital frequency (Ωϕ) and its associated
azimuthal phase, and (ii) the perturbative Einstein equa-
tions on the Schwarzschild background are fully separable.
In Ref. [9], we presented the multiscale Einstein equa-

tions for this special case of quasicircular, nonspinning
binaries. In this paper, we present a method of solving such
equations: a worldtube puncture scheme in the Fourier
domain. This scheme, which builds on earlier work by
Warburton and Wardell [19,20], was a key tool in the
second-order calculations in Refs. [7,17,18]. It extends
Refs. [19,20] by allowing for noncompact sources, irregu-
lar boundary conditions, and arbitrary choices of the time
variable. Its main new ingredients are subtractions of
punctures in multiple regions and differing choices of time
slicing in different regions.
Punctures have traditionally been used because self-force

calculations work by “skeletonizing” the small companion,
reducing it to a point-particle singularity. In that context,
puncture schemes subtract off the dominant, singular part
of the particle’s gravitational field in a worldtube surround-
ing the particle and then solve a field equation for the
regular residual piece. First presented in practical forms in
Refs. [21,22], these schemes are now a standard method in
self-force theory [1,2,23]; most pertinently, they have
underpinned most descriptions of second-order self-force
theory [24–28]. Our scheme leans even more heavily on

this puncture method by introducing additional punctures at
the black hole horizon and at infinity.
Use of alternative slicings in Fourier-domain self-force

calculations is a more recent development. The multiscale
field equations in Ref. [9], which were the basis for the
calculations in Refs. [7,17,18], were formulated using a
hyperboloidal time variable.1 Slices of constant hyper-
boloidal time penetrate the future horizon of the primary
black hole and extend to future null infinity rather than to
spatial infinity, as illustrated in Fig. 1. This has key
advantages in a multiscale expansion, significantly improv-
ing the behavior of the source terms in the second-order
field equations, reducing the need to derive punctures, and
simplifying waveform extraction. More recently, Ref. [29]
extended this approach by compactifying the hyperboloidal
surfaces and working with a spectral method. Those
modifications bring additional advantages and are part of
a longer-term introduction of hyperboloidal methods into
black hole perturbation theory [30–32]. Here, for historical
reasons, we do not adopt these additional tools, but we
delineate the relative merits of each method. We are also
careful to note that compactified hyperboloidal slices do
not evade the fundamental breakdown of the multiscale
expansion at large distances; this breakdown, which was
explored in Ref. [33], has necessitated the use of an
alternative, post-Minkowski expansion at large distances
in current second-order self-force calculations. Details of
that expansion will be presented elsewhere.

FIG. 1. Penrose diagrams of the Schwarzschild exterior illus-
trating a particle’s trajectory xαp along with slices (blue curves) of
constant hyperboloidal time s ¼ t − kðr�Þ. s transitions from
advanced time v ¼ tþ r� near the future horizon to retarded time
u ¼ t − r� near future null infinity. Left: a smooth choice of
slicing (which may or may not be everywhere spacelike in the
Schwarzschild exterior). Right: sharp slicing in which s ¼ v in a
region to the left of the particle, s ¼ t in a region containing the
particle, and s ¼ u in a region to the right of the particle.

1We use the term “hyperboloidal” loosely. In the standard
definition, hyperboloidal slices are required to be everywhere
spacelike in the black hole’s exterior, while we allow for slices
containing null segments.
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B. Outline and conventions

We begin in Sec. II by reviewing the multiscale expan-
sion of the Einstein field equations. This review broadly
follows Ref. [9]’s treatment of quasicircular inspirals into
Schwarschild black holes, but we take the opportunity to
present that treatment in a more geometrical form that is not
tied to the Lorenz gauge or to a tensor-harmonic decom-
position. We also discuss how it straightforwardly extends
to the case of eccentric orbits.
In Secs. III and IV we summarize two specific forms of

the multiscale equations. Section III summarizes the
Lorenz-gauge field equations, again following Ref. [9].
Here we decompose the multiscale metric perturbation into
tensor spherical harmonics, reducing the field equations to
a radial ODE for each mode. Since our worldtube scheme is
quite generic, in Sec. IV we also present the Teukolsky
equation in this multiscale framework, building on recent
work in Refs. [34,35].
Sections V–VIII then present our worldtube puncture

scheme in a generic form applicable to both the Lorenz-
gauge and Teukolsky equations. The method of solving the
equations is based on variation of parameters. We consider
various formulations of that method and its application to
the various types of field equations that arise.
In Secs. IX and X, we demonstrate the method in the

Lorenz-gauge and Teukolsky versions. The demonstrations
consist of solving a field equation for a parametric
derivative (a derivative with respect to orbital radius) of
the first-order-in-ε field (the metric perturbation in the
Lorenz-gauge case and the Weyl scalar in the Teukolsky
case). Such parametric derivatives are important in the
multiscale expansion because they enter into the source
terms in the second-order field equations. In the case of
Lorenz-gauge perturbations, we find agreement with results
for the same quantity as calculated using a different method
in Ref. [36].
Finally, in the concluding section, Sec. XI, we discuss

the relative merits of our variation-of-parameters approach
versus the more recent alternatives in Refs. [29,36].
Throughout the paper we use a mostly positive met-

ric signature, ð−;þ;þ;þÞ, and geometrical units with
G ¼ c ¼ 1. Indices are raised and lowered with the back-
ground Schwarzschild metric gαβ, and ∇ and a semicolon
both denote the covariant derivative compatible with gαβ.
ðt; r; θ;ϕÞ denote Schwarzschild coordinates, in which
gαβ ¼ diagð−f; f−1; r2; r2sin2 θÞ, where f ≔ 1 − 2M=r.

II. EINSTEIN FIELD EQUATIONS
IN MULTISCALE FORM

In this section we review the perturbative Einstein field
equations for a binary with a small mass ratio ε. We first
explain the expansion as formulated in regular perturbation
theory and then explain how we formulate it in our
multiscale form. We particularly highlight (i) the role of

spacetime foliations, (ii) the discrete Fourier expansion of
the field equations, and (iii) the appearance of parametric
derivatives as source terms. We refer to Refs. [2,9] for more
details. Our formulation here is a more geometrical form of
the expansion described in Appendix A of Ref. [9].

A. Regular perturbation theory

In regular perturbation theory, we expand the exact
metric gμν and stress-energy tensor Tμν as

gμνðy; εÞ ¼ gμνðyÞ þ εhð1Þμν ðyÞ þ ε2hð2Þμν ðyÞ þOðε3Þ ð4Þ

and

Tμνðy; εÞ ¼ εTð1Þ
μν ðyÞ þ ε2Tð2Þ

μν ðyÞ þOðε3Þ; ð5Þ

where y stands for some coordinates yμ. At least through
second order in ε, Tμν can be taken to be the Detweiler
stress-energy tensor [25,37],2

Tμν ¼ μ

Z
ũμũν

δ4ðy − ypÞffiffiffiffiffiffi
−g̃

p dτ̃; ð6Þ

where μ is the mass of the particle, yμp is its worldline,

ũμ ≔ g̃μα
dyαp
dτ̃ , g̃μν is a certain effective metric of the form

g̃μνðy; εÞ ¼ gμνðyÞ þ εhRð1Þμν ðyÞ þ ε2hRð2Þμν ðyÞ þOðε3Þ; ð7Þ

τ̃ is the proper time in that metric, and hRðnÞμν are certain

smooth vacuum perturbations extracted from hðnÞμν . The
worldline yμp obeys the geodesic equation in g̃μν or an
equivalent self-forced equation of motion in gμν [26,42].
Given these expansions, the Einstein equation Gμν½g� ¼

8πTμν becomes a hierarchical sequence of equations, the
first three of which are

2We note that because of the strongly divergent fields at second
order, the stress-energy tensor (6) and field equation (10) have
only been derived in a class of “highly regular” gauges and in
gauges smoothly related to Lorenz [37]. In the Lorenz-gauge
case, the derivation requires adopting a certain canonical dis-
tributional definition of Gð2Þ

μν ½hð1Þ; hð1Þ�. We will not concretely
require that definition here, but we return to this point in the
Conclusion, Sec. XI. However, we also note that no concrete
second-order calculations have directly used Eq. (10) but instead
have used a puncture scheme, which is a more primitive
formulation that does not involve these subtleties. We write
the field equations here in terms of a stress-energy tensor only to
simplify the presentation. Like the stress-energy tensor, concrete
punctures are only available in highly regular and smoothly
deformed Lorenz gauges [38,39], but this does not restrict the
choice of gauge when solving the field equations: independent of
the puncture’s gauge, the numerical variable (the residual field)
can be in any convenient gauge; see, for example, Refs. [40,41].
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Gμν½g� ¼ 0; ð8Þ

Gð1Þ
μν ½hð1Þ� ¼ 8πTð1Þ

μν ; ð9Þ

Gð1Þ
μν ½hð2Þ� ¼ 8πTð2Þ

μν −Gð2Þ
μν ½hð1Þ; hð1Þ�: ð10Þ

Here Gð1Þ
μν ½h� is the linearized Einstein tensor constructed

from a perturbation hμν, and G
ð2Þ
μν ½h; h� is the quadratic term

in the expansion of the Einstein tensor. We write Gð1Þ
μν ½h� as

Gð1Þ
μν ½h� ¼ −

1

2
Eμν½h̄� þ∇ðμZνÞ½h̄� −

1

2
gμν∇αZα½h̄�; ð11Þ

in terms of the trace-reversed field

h̄μν ≔ hμν −
1

2
gμνgαβhαβ ð12Þ

and the linear operators

Eαβ½h̄� ≔ □h̄αβ þ 2Rα
μ
β
νh̄μν; ð13Þ

Zα½h̄� ≔ gβγ∇γh̄αβ; ð14Þ
with □≔ gμν∇μ∇ν. The quadratic Einstein tensor

Gð2Þ
μν ½h; h� is written explicitly in Eq. (4) of Ref. [2], but

we will not need its explicit form here.
Given the background metric gμν, regular perturbation

theory reduces to solving the sequence of linear field
equations (9), (10), and so on to higher order.

B. Multiscale expansion

The multiscale expansion of the field equations differs in
important ways from a regular expansion. It is designed to
maintain uniform accuracy while capturing the binary’s
“fast” evolution on the timescale ∼M, due to the orbiting
particle, and the “slow” evolution on the timescale ∼M=ε,
due to dissipation.
The method begins with a choice of time function, which

we write as

s ¼ sðt; rÞ ≔ t − kðr�Þ ð15Þ

Here r� is the standard tortoise coordinate, r� ¼
rþ 2M ln ½r=ð2MÞ − 1�, and kðr�Þ is a height function.
We choose kðr�Þ such that

kðr�Þ → þr� for r� → ∞; ð16Þ

kðr�Þ → −r� for r� → −∞: ð17Þ

This ensures that slices of constant s are hyperboloidal, by
which we mean they reduce to surfaces of constant
advanced time v ¼ tþ r� at the future horizon (H þ)

and to surfaces of constant retarded time u ¼ t − r� at
future null infinity (Iþ), as illustrated in Fig. 1. With our
loose definition of the term “hyperboloidal,” we do not
require these slices to be everywhere spacelike in the
Schwarzschild exterior, nor do we require them to be
smooth.
For most of this paper, we leave s unspecified. However,

we mention here our preferred, “sharp” foliation used in our
numerical calculations. This slicing, illustrated in the right
panel of Fig. 1, uses a piecewise height function,

kðr�Þ ¼
8<
:

−r� for r < r1;

0 for r1 < r < r2;

þr� for r > r2;

ð18Þ

where r1 (r2) is a radius smaller (larger) than the particle’s
orbital radius. With this choice, s ¼ v in a region extending
toH þ; s ¼ t in a region containing the particle; and s ¼ u in
a region extending to Iþ. We will refer to this as v-t-u
slicing. It provides a simple way of avoiding steep gradients
within a numerical domain. The sharp change in slicing will
cause finite differentiability or jumps in various fields when
crossing r1 and r2, but these effects are easily controlled. The
switching points are placed at boundaries between domains,
and the sharp change in slicing is accounted for using easily
derived junction conditions at these domain boundaries
(a familiar procedure from dealing with point-particle
sources in radial differential equations).
Given a choice of time function s, we assume that the

metric’s dependence on s is fully encoded in a dependence
on the binary’s mechanical variables.3 For the quasicircular
inspirals we focus on here, the time-dependent mechanical
variables are (i) the particle’s orbital phase ϕp, (ii) its orbital
frequency Ω ≔ dϕp=ds, and (iii) corrections to the central
black hole’s mass and spin, εδMA ¼ ðεδM; εδJÞ (with the
overall factor of ε pulled out to make δMA order unity). The
spacetime’s slow evolution is encoded in the metric’s
dependence on the parameters J I ¼ ðΩ; δMAÞ, which
evolve due to the dissipative self-force (in the case of Ω)
or due to fluxes through the horizon (in the case of δMA).
The evolution on the fast orbital timescale∼1=Ω is encoded

3This means that we exclude a variety of effects, including
gauges that do not conform to our assumed multiscale time
dependence. For example, we exclude gauges that blow up with
time and incoming gauge modes that could be sent into the system
with arbitrary frequencies. In the case of eccentric orbits, our
assumptions also fail at r − ϕ resonant kicks [43], though that
effect is higher order than we consider here. Hereditary effects
associated with gravitational-wave memory (which enter into the
multiscale solution at 2PA order through physical boundary
conditions at large r [33,44]) also introduce a type of integrated
dependence on the past history of the mechanical variables, as in
post-Newtonian theory [45]. However, these hereditary effects are
determined by the “current” state of the system’s slowly evolving
variables, meaning they do not spoil our assumptions [44].
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in a periodic dependence on the orbital phase ϕp. We
comment below on how this extends to the case of eccentric
orbits.
More concretely, for quasicircular orbits the system’s

evolution is governed by the rates of change of ϕp and J I .
We expand those rates of change in powers of ε at fixed
phase-space coordinate values ðϕp;J IÞ:

ϕ̇p ¼ Ω; ð19Þ

Ω̇ ¼ ε½Fð0Þ
Ω ðΩÞ þ εFð1Þ

Ω ðΩ; δMAÞ þOðε2Þ�; ð20Þ

˙δMA ¼ ε½Fð0Þ
A ðΩÞ þ εFð1Þ

A ðΩ; δMBÞ þOðε2Þ�; ð21Þ

where a dot denotes d=ds [cf. Eqs. (2) and (3)]. In these
expansions, the numerical labels denote the post-adiabatic

order at which the quantity enters.4 The driving forces FðnÞ
Ω ,

whose explicit forms are not needed here, are given in terms
of the gravitational self-force in Eqs. (A9) and (A10) of

Ref. [9], and Fð0Þ
A ðΩÞ are the standard leading-order fluxes

of energy and angular momentum into the black hole due to
an orbiting particle [2,9]. The particle’s orbital trajectory xip
in Schwarzschild spatial coordinates xi ¼ ðr; θ;ϕÞ takes
the simple form

xipðϕp;Ω; εÞ ¼ ½rpðΩ; εÞ; π=2;ϕp�; ð22Þ

where

rpðΩ; εÞ ¼ r0ðΩÞ þ εr1ðΩÞ þOðε2Þ: ð23Þ

The leading coefficient r0 ¼ MðMΩÞ−2=3 is the standard
geodesic relationship; the subleading coefficient, which
will not be explicitly needed here, is given in Eq. (A8)
of Ref. [9].
In line with our assumption that the spacetime only

depends on s through a dependence on ðϕp;J IÞ, we now
treat the metric as a function on an extended manifold that
includes the binary’s mechanical phase space. Instead of
using the regular expansions (4) and (5), in which wewould
expand in powers of ε at fixed values of spacetime
coordinates ðs; xiÞ, we now expand the metric and the
stress-energy tensor in powers of ε at fixed ðxi;ϕp;J IÞ:

gμνðxi;ϕp;J I; εÞ ¼ gμνðxiÞ þ εhð1Þμν ðxi;ϕp;J IÞ
þ ε2hð2Þμν ðxi;ϕp;J IÞ þOðε3Þ ð24Þ

and

Tμνðxi;ϕp;J I; εÞ ¼ εTð1Þ
μν ðxi;ϕp;ΩÞ þ ε2Tð2Þ

μν ðxi;ϕp;J IÞ
þOðε3Þ: ð25Þ

The expansion of Tμν is obtained by substituting the
multiscale expansions of xip and g̃μν into Eq. (6)5; in turn,
g̃μν (along with the punctures and residual fields we
introduce later) inherits the multiscale structure of gμν as
described in Ref. [9]. Each term in these expansions is
assumed to be a 2π-periodic function of ϕp. The physical
metric on spacetime is obtained once the s dependence of
ϕp and J I is determined via Eqs. (19)–(21). Prior to that
determination, we treat ðxi;ϕp;J IÞ as independent
variables.
Substituting the expansions (24) and (25) into the

Einstein equations, we obtain a modified version of
Eqs. (9) and (10),

Gð1;0Þ
μν ½hð1Þ� ¼ 8πTð1Þ

μν ; ð26Þ

Gð1;0Þ
μν ½hð2Þ� ¼ 8πTð2Þ

μν − Gð2;0Þ
μν ½hð1Þ; hð1Þ�

−Gð1;1Þ
μν ½hð1Þ�: ð27Þ

The operators Gðn;jÞ
μν act on functions of ðxi;ϕp;J IÞ. They

are derived from GðnÞ
μν using the chain rule

∂

∂yα
¼ eiα

∂

∂xi
þ sα

�
dϕp

ds
∂

∂ϕp
þ dJ I

ds
∂

∂J I

�
; ð28Þ

where

eiα ≔
∂xi

∂yα
and sα ≔

∂s
∂yα

ð29Þ

are a basis of one-forms. sα is normal to surfaces of
constant s. If xi ¼ ðr; θ;ϕÞ, then erαsα ¼ −dk=dr� and
eiαsα ¼ 0 for i ¼ θ or ϕ. Note that in the simple case
yα ¼ ðs; xiÞ, eiα and sα reduce to δiα and δsα, but here we
leave yα generic.
Given Eqs. (19)–(21), the chain rule (28) implies the

expansion

∇α ¼ ∇ð0Þ
α þ εsα∂⃗V þOðε2Þ; ð30Þ

4This statement assumes that we calculate FðnÞ
Ω from energy

fluxes to infinity and into the horizon, using a balance law,
meaning the leading-order horizon flux Fð0Þ

A ðΩÞ enters at 0PA
order, and the first subleading horizon flux enters at 1PA order. If
FðnÞ
Ω is instead calculated using the local self-force, then Fð0Þ

A ðΩÞ
does not enter until 1PA order. δMA itself only enters at 1PA order
in either approach.

5We note that Eq. (6) is derived within a self-consistent
expansion [46] that is more general than either regular perturba-
tion theory or our multiscale expansion.
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where the zeroth-order covariant derivative is

∇ð0Þ
α ¼ eiα

∂

∂xi
þ sαΩ

∂

∂ϕp
þ Christoffel terms; ð31Þ

VI ¼ ðFð0Þ
Ω ; Fð0Þ

A Þ is the leading-order velocity through
parameter space, and

∂
!

V ≔ VI
∂

∂J I
¼ Fð0Þ

Ω
∂

∂Ω
þ Fð0Þ

A
∂

∂δMA
ð32Þ

is a directional derivative in the parameter space.
Using the above expansion of the covariant derivative,

we see thatGðn;0Þ
μν is given byGðnÞ

μν with∇α → ∇ð0Þ
α . Gðn;1Þ

μν is

given by the terms in GðnÞ
μν that are linear in the velocity VI.

Explicitly, the operator that appears at 1PA order is

Gð1;1Þ
μν ½h� ¼ −

1

2
Eð1Þ
μν ½h̄� þ∇ð0Þ

ðμ Z
ð1Þ
νÞ ½h̄� þ∇ð1Þ

ðμ Z
ð0Þ
νÞ ½h̄�

−
1

2
gμνð∇ð0Þ

α Zα
ð1Þ½h̄� þ∇ð1Þ

α Zα
ð0Þ½h̄�Þ: ð33Þ

The individual terms in this expression are

Eð1Þ
μν ½h̄� ¼ sαsαF

ð0Þ
Ω ∂ϕp

h̄μν þ 2sα∇ð0Þ
α ð ∂!V h̄μνÞ

þ ð∇ð0Þ
α sαÞ ∂!V h̄μν; ð34Þ

Zð1Þ
μ ½h̄� ¼ sα ∂

!
V h̄μα; ð35Þ

∇ð1Þ
μ Zð0Þ

ν ½h̄� ¼ sμ ∂
!

VZ
ð0Þ
ν ½h̄�: ð36Þ

The contractions involving sα evaluate to

sαsα ¼ −f−1ð1 −H2Þ; ð37Þ

∇ð0Þ
α sα ¼ −

dH
dr

−
2H
r

; ð38Þ

sα∇ð0Þ
α ¼ −f−1ð1 −H2ÞΩ∂ϕp

−H∂r

þ Christoffel terms; ð39Þ

where

H ≔
dk
dr�

: ð40Þ

These equations simplify significantly if s ¼ v (meaning
H ¼ −1), s ¼ t (meaning H ¼ 0), or s ¼ u (meaning
H ¼ 1). We repeatedly return to those special cases in
later sections.
For any choice of s, the field equations (26) and (27)

reduce to partial differential equations in ðxi;ϕpÞ. These
can be solved at fixed values of J I because derivatives with

respect to J I only appear as sources, in the term

Gð1;1Þ
μν ½hð1Þ�.

C. Fourier expansion

Since all functions of ϕp are periodic, we can expand
them in Fourier series:

hðnÞαβ ðxi;ϕp;J IÞ ¼
X∞

m¼−∞
hðn;mÞ
αβ ðxi;J IÞe−imϕp ; ð41Þ

TðnÞ
αβ ðxi;ϕp;J IÞ ¼

X∞
m¼−∞

Tðn;mÞ
αβ ðxi;J IÞe−imϕp : ð42Þ

We then have ∂

∂ϕp
→ −imwhen acting on individual modes,

implying

∇ð0Þ
α → eiα

∂

∂xi
− isαωm þ Christoffel terms; ð43Þ

where ωm ≔ mΩ.
By substituting this Fourier expansion into the field

equations (26) and (27), we obtain decoupled differential

equations in xi for each mode hðn;mÞ
αβ ðxi;J IÞ. Again, these

can be solved at fixed values of J I. As summarized around
Eqs. (1)–(3), the waveform-generation scheme used in
Ref. [7] then consists of (i) computing and storing the

waveform amplitudes limr→∞ rhðn;mÞ
αβ and the driving forces

FðnÞ
I on a grid of Ω values, (ii) solving Eqs. (19)–(21) to

generate a trajectory through phase space, and (iii) substitut-

ing the trajectory into limr→∞
P

m rhðn;mÞ
αβ ½J IðsÞ�e−imϕpðsÞ to

obtain the waveform.
Before proceeding, we stress that the discrete Fourier

series (41) is not a Fourier transform in time. It would
only be a Fourier transform if J I were independent of s and
if ϕpðsÞ were equal to Ωs (with constant Ω). Neither of
these conditions holds true for the inspiraling system.
Therefore, we are careful to refer to the resulting field
equations as being in the Fourier domain but not being in
the frequency domain. However, readers familiar with
frequency-domain equations can apply virtually all their
knowledge directly to our Fourier-domain equations: the
left-hand side of the field equation for a mode coefficient

hðn;mÞ
αβ ðxi;J IÞ is identical to the left-hand side of the field

equation for the mode coefficient in a frequency-domain

expansion hðn;ωÞαβ ðxiÞe−iωs (with ω ¼ ωm).
We also note that the above description extends,

with only minor changes, to the case of eccentric orbits
in Schwarzschild. In that case there are two orbital
phases, φA ¼ ðφr;φϕÞ, and associated frequencies
ΩA ¼ ðΩr;ΩϕÞ. The Fourier expansion (41) becomesP

m;k h
ðn;m;kÞ
αβ ðxi;J IÞe−imφϕ−ikφr [cf. the expansion (1) in
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Kerr spacetime]. The adiabatically evolving parameters
become J I ¼ ðpi; δMAÞ, for example, where pi ¼ ðp; eÞ
are the semilatus rectum and eccentricity. The chain rule
(28) becomes

∂

∂yα
¼ eiα

∂

∂xi
þ sα

�
dφA

ds
∂

∂φA
þ dJ I

ds
∂

∂J I

�
; ð44Þ

meaning we make the following replacements: VI →

ðFð0Þ
i ; Fð0Þ

A Þ and the corresponding adjustment

∂
!

V → Fð0Þ
i

∂

∂pi þ Fð0Þ
A

∂

∂δMA
; ð45Þ

Ω∂ϕp
→ ΩA∂φA

in Eqs. (31) and (39);Fð0Þ
Ω ∂ϕp

→ Fð0Þ
i

∂ΩA
∂pi

∂φA

in Eq. (34); andωm → ωm;k ¼ mΩϕ þ kΩr in Eq. (43) [with

k the integer labeling hðn;m;kÞ
αβ , not to be confused with the

height function kðr�Þ]. We refer to Ref. [2] for more details.

III. LORENZ-GAUGE FIELD EQUATIONS

In the calculations in Refs. [7,17,18], and in much of this
paper, we work in the Lorenz gauge. Here we review the
Lorenz-gauge field equations as formulated in Ref. [9].

A. Four-dimensional form

We impose the Lorenz gauge condition

Zμ½h̄� ¼ 0; ð46Þ

where hμν ≔ gμν − gμν is the total perturbation and h̄μν is its
trace reverse with respect to gμν. This reduces the linearized
Einstein tensor to

Gð1Þ
μν ½h� ¼ −

1

2
Eμν½h̄�: ð47Þ

Following Ref. [47], in order to partially decouple the field
equations, we use a modified operator

Ĕμν ≔ Eμν −
4M
r2

tðμZ̆νÞ; ð48Þ

where tα≔∂αt and Z̆α¼ðZr;2Zr;Zθ;ZϕÞ in Schwarzschild
coordinates ðt; r; θ;ϕÞ; note Z̆α½h̄� vanishes if the gauge
condition is satisfied. The complete Einstein equation is
then

Ĕμν½h̄� ¼ −16πTμν þ 2Ğð2Þ
μν ½h; h� þOðjhj3Þ: ð49Þ

Here Ğð2Þ
μν is given by Gð2Þ

μν with Zα set to zero.
Performing a multiscale expansion leads to a slightly

modified version of the hierarchy (26) and (27),

Ĕð0Þ
μν ½h̄ð1Þ� ¼ −16πTð1Þ

μν ; ð50Þ

Ĕð0Þ
μν ½h̄ð2Þ� ¼ −16πTð2Þ

μν þ 2Ğð2;0Þ
μν ½hð1Þ; hð1Þ�

− Ĕð1Þ
μν ½h̄ð1Þ�: ð51Þ

The labels here have the same meaning as in the previous
section: “(0)” on an operator indicates the operator with

the replacement ∇α → ∇ð0Þ
α , and “(1)” indicates the term

linear in VI. Explicitly, in terms of the operators in Eqs. (34)
and (35),

Ĕð1Þ
μν ½h̄� ¼ Eð1Þ

μν ½h̄� − 4M
r2

tðμZ̆
ð1Þ
νÞ ½h̄� ð52Þ

with Z̆ð1Þ
α ¼ ðZð1Þ

r ; 2Zð1Þ
r ; Zð1Þ

θ ; Zð1Þ
ϕ Þ in Schwarzschild

coordinates.
Similarly, after the multiscale expansion, the gauge

condition (46) becomes

Zð0Þ
μ ½h̄ð1Þ� ¼ 0; ð53Þ

Zð0Þ
μ ½h̄ð2Þ� ¼ −Zð1Þ

μ ½h̄ð1Þ�: ð54Þ

B. Tensor-harmonic decomposition

We next decompose the fields into tensor spherical
harmonic modes, using the Barack-Lousto-Sago (BLS)
basis of harmonics [47,48]:

h̄ðnÞαβ ¼
X
ilm

ail
r
h̄ðnÞilmðr;J IÞYilm

αβ ðr; θ;ϕÞe−imϕp ; ð55Þ

where i ¼ 1;…; 10, l ≥ 0, m ¼ −l;…;l. The harmonics
Yilm
αβ provide an orthogonal basis for symmetric rank-2

tensors. They are given explicitly in Appendix B of
Ref. [9]. ail is a convenient numerical factor given by

ail ¼

8>>><
>>>:

1ffiffi
2

p for i ¼ 1; 2; 3; 6;

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ1Þ

p for i ¼ 4; 5; 8; 9;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl−1Þlðlþ1Þðlþ2Þ

p for i ¼ 7; 10:

ð56Þ

Following BLS, we have also pulled out a factor of 1=r in
Eq. (55) to simplify the field equations.
We similarly decompose the source terms in Eqs. (50)

and (51). Denoting the nth-order source term as SðnÞμν , we
write

SðnÞμν ¼
X
ilm

SðnÞilmðr;J IÞYilm
μν e−imϕp : ð57Þ

The mode number m appearing in the Fourier decom-
position (41) is the same as the azimuthal mode number in
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the spherical harmonics, such that each mode in Eqs. (55)
and (57) has a simple dependence on ðϕ − ϕpÞ:

Yilm
αβ ðr; θ;ϕÞe−imϕp ¼ Yilm

αβ ðr; θ; 0Þeimðϕ−ϕpÞ: ð58Þ

This implies that when a mode of h̄ðnÞαβ is evaluated on the
worldline (where r ¼ rp, ϕ ¼ ϕp, and θ ¼ π=2), it reduces
to a function of J I , with no dependence on ϕp. The same is

true of derivatives of h̄ðnÞαβ , such as those that enter the
self-force.
With these harmonic expansions, Eqs. (50) and (51) each

separate into a set of ten ODEs for the coefficients h̄ðnÞilm,
which read [48]

Eð0Þ
ijlmh̄

ðnÞ
jlm ¼ −

rf
4ail

SðnÞilm: ð59Þ

Here the mode label j is summed over. The decomposed
wave operator is given by

Eð0Þ
ijlmh̄jlm ≔ □

ð0Þ
lmh̄ilm þMð0Þ

ij h̄jlm; ð60Þ

where

□
ð0Þ
lm ≔ −

1

4
½∂2r� þ iωmð2H∂r� þH0Þ

þ ð1 −H2Þω2
m − 4VlðrÞ�: ð61Þ

Here H0 ≔ dH
dr�, and

VlðrÞ ¼
f
4

�
2M
r3

þ lðlþ 1Þ
r2

�
: ð62Þ

Mð0Þ
ij with i; j ¼ 1;…; 10 are a set of matrices composed of

first-order differential operators that couple between the
various h̄jlm’s. Note that the coupling is only between
different j’s; there is no coupling between modes of
different l and m. Also note that the only effect of our
added Z̆ν term in Eq. (48) is to alter these coupling matrices
(reducing the coupling). The explicit form of the coupling
matrices can be found in Appendix A.
The source terms in the decomposed field equations (59)

are

Sð1Þilm ¼ −16πTð1Þ
ilm; ð63Þ

Sð2Þilm ¼ −16πTð2Þ
ilm þ 2Gð2;0Þ

ilm ½hð1Þ; hð1Þ�
− Eð1Þ

ijlmh̄
ð1Þ
jlm: ð64Þ

The quadratic term, Gð2;0Þ
ilm ½hð1Þ; hð1Þ�, is discussed in detail

in Ref. [34]. Here we highlight the term involving Eð1Þ
ijlm,

which is the decomposition of Ĕð1Þ
μν in Eq. (51). This term

represents the system’s slow evolution acting as a source
for the second-order metric perturbation. Explicitly,

Eð1Þ
ijlmh̄jlm ≔ □

ð1Þ
lmh̄ilm þMð1Þ

ij h̄jlm; ð65Þ

where

□
ð1Þ
lm ¼ 1

4
½ð2H∂r� þH0Þ ∂!V

− ð1 −H2Þð2iωm ∂
!

V þ imFð0Þ
Ω Þ�: ð66Þ

The coupling matrices Mð1Þ
ij are given in Eq. (A17).

Similarly, at the level of modes, the gauge conditions
(53) and (54) become

Zð0Þ
kjlh̄

ð1Þ
jlm ¼ 0 ð67Þ

and

Zð0Þ
kjlh̄

ð2Þ
jlm ¼ −Zð1Þ

kjlh̄
ð1Þ
jlm; ð68Þ

where k ¼ 1;…; 4. We give the operators ZðnÞ
kjl in

Eqs. (A18) and (A19).
For H ¼ 0 (i.e., t slicing), Eð0Þ

ijlm and Zð0Þ
kjl are the same

operators that appear in the standard frequency-domain
Lorenz-gauge linearized field equations for a metric per-
turbation h̄μν ¼ ail

r h̄ilmðrÞYilm
μν e−iωt, as in Refs. [20,49].

The equations in this section apply equally well for
eccentric orbits, with the replacements ωm → ωm;k ¼
mΩϕ þ kΩr and imFð0Þ

Ω → −Fð0Þ
i

∂ωm;k

∂pi
.

C. Matrix form

For each lm mode, the field equations (59) represent ten
coupled ODEs. However, these ODEs partially decouple
into a hierarchical structure; see Table I of Ref. [9]. Even-
parity modes (i ¼ 1;…; 7) decouple from odd-parity
modes (i ¼ 8; 9; 10). Moreover, the i ¼ 1; 3; 5; 6; 7 modes
decouple from the i ¼ 2; 4 modes, and the i ¼ 9; 10 modes
decouple from the i ¼ 8 mode; this allows one to calculate
the i ¼ 2; 4 modes from the i ¼ 1; 3; 5; 6; 7 modes and the
i ¼ 8 mode from the i ¼ 9; 10 modes. One can also often
use the gauge condition to algebraically obtain some modes
from others. The number of relevant modes is further
reduced by the facts that (i) even-parity (odd-parity) modes
vanish for lþm odd (lþm even), and (ii) m < 0 modes
can be computed from m > 0 modes using h̄ilm ¼
ð−1Þmðh̄il;−mÞ�.
It will be convenient to write these sets of equations in a

canonical matrix form,
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Dψ ≔
d2ψ
dr2

þ B
dψ
dr

þ Aψ ¼ J; ð69Þ

where ψðrÞ and JðrÞ are column vectors with d elements,
and A and B are r-dependent d × d matrices. We further
write this in first-order form as

D̂ ψ̂ ≔
dψ̂
dr

þ Â ψ̂ ¼ Ĵ; ð70Þ

where ψ̂ ¼
� ψ
∂rψ

�
and ĴðrÞ ¼

� 0d
JðrÞ

�
are 2d-vectors and

Â ¼
�
0d×d −1d×d
A B

�
: ð71Þ

For our Lorenz-gauge field equations, the column vector
ψlm is

ψ ¼

8>>>>>>>>><
>>>>>>>>>:

ðh̄9h̄10ÞT l ≥ 2;lþm odd;

ðh̄1h̄3h̄5h̄6h̄7ÞT l ≥ 2;lþm even; m > 0;

ðh̄1h̄3h̄5ÞT l ≥ 2 even; m ¼ 0;

ðh̄1h̄3h̄5h̄6ÞT l ¼ 1; m ¼ 1;

h̄9 l ¼ 1; m ¼ 0;

ðh̄1h̄3ÞT l ¼ 0;

ð72Þ

where T denotes the transpose and lm labels are sup-
pressed. We then define the 2d-vector ψ̂lm ¼
ðψlm; ∂rψlmÞT . The matrices appearing in Eq. (71) are

A ¼ 1

f2
½ω2

mð1 −H2Þ þ iωmH0 − 4Vl�1d×d þMh; ð73aÞ

B ¼ 1

f

�
2M
r2

þ 2iωmH

�
1d×d þM∂h; ð73bÞ

where Mh and M∂h are d × d matrices given in
Appendix A.
We translate the sources in the same way. If h̄ilm satisfies

an equation Eð0Þ
ijlmh̄jlm ¼ − rf

4ail
Silm, as in Eq. (59), then the

sources J in Eqs. (69) and (70) are

J ¼ r
ailf

8>>>>>>>>><
>>>>>>>>>:

ðS9S10ÞT l ≥ 2;lþm odd; m > 0;

ðS1S3S5S6S7ÞT l ≥ 2;lþm even; m > 0;

ðS1S3S5ÞT l ≥ 2 even; m ¼ 0;

ðS1S3S5S6ÞT l ¼ 1; m ¼ 1;

S9 l ¼ 1; m ¼ 0;

ðS1S3ÞT l ¼ 0;

ð74Þ

again with lm labels suppressed.

For each lm, the modes that are missing from Eq. (72)
can be obtained from the listed modes using the gauge
condition (67) or (68). These “gauge modes” are h̄8 (for
lþm odd), h̄2 and h̄4 (for l > 0 and lþm even), and h̄2
and h̄6 (for l ¼ 0).
In the case of the second-order field, it will be useful to

further divide the field into two pieces,

ψ̂ ð2Þ ¼ ψ̂ ð2;0Þ þ ψ̂ ð1;1Þ; ð75Þ

each satisfying its own field equation,

D̂ψ̂ ð2;0Þ ¼ Ĵð2;0Þ; ð76Þ

D̂ψ̂ ð1;1Þ ¼ Ĵð1;1Þ: ð77Þ

Here Ĵð2;0Þ is constructed from the subset of source terms in

Eq. (64) that do not involve the forcing functions Fð0Þ
I ,

Sð2;0Þilm ¼ −16πTð2;0Þ
ilm þ 2Gð2;0Þ

ilm ½hð1Þ; hð1Þ�; ð78Þ

and Ĵð1;1Þ is constructed from the subset of source terms that
are linear in the forcing functions,

Sð1;1Þilm ¼ −16πTð1;1Þ
ilm − Eð1Þ

ijlmh̄
ð1Þ
jlm: ð79Þ

In these expressions we have analogously split the stress-

energy tensor into a piece (Tð2;0Þ
ilm ) that is independent of Fð0Þ

I

and a piece (Tð1;1Þ
ilm ) that is linear in it. In the present paper

we will not require the explicit expressions for these two
pieces; we only introduce the split to help organize
discussions in later sections.
Despite the convenient split into ψ̂ ð2;0Þ and ψ̂ ð1;1Þ, we

stress that these fields are not actually independent: they are
coupled through the gauge condition (68), which is only
satisfied by the sum of the two fields.

D. Boundary conditions, punctures, and slicing
transformations

Self-force calculations can encounter problematic diver-
gent behavior in three regions: at the particle, near H þ,
and near Iþ.6 The nature of the problem depends on the
particular formulation of the small-ε expansion, on the
choice of gauge, and on the choice of time foliation.
Punctures provide a practical way of enforcing physical
boundary conditions in the presence of these divergences.

6Additionally, regular perturbation theory diverges on long
timescales [33]. This failure is overcome using a multiscale
expansion, as we use here, or using a self-consistent expansion
[46] (if the latter is extended to account for the black hole’s slow
evolution, as described in Ref. [9]).
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To motivate the use of punctures, we first recall their use
in controlling the divergence at the particle, which is the
most familiar problem. Fundamentally, an expansion in the
limit ε → 0 (at fixed external length scales) breaks down at
distances ∼ε from the small companion; there, the gravity
of the small body dominates over the external gravity.
Through a local analysis in that region, using the method of
matched asymptotic expansions, one finds the correct local
behavior of the physical solution [1]. The form of that
solution, outside the body, is

hðnÞμν ¼ hSðnÞμν þ hRðnÞμν : ð80Þ

The self-field hSðnÞμν captures local information about the
body’s multipole structure and diverges if analytically
extended down to the body’s representative worldline.

The regular field hRðnÞμν is a vacuum solution that depends
on global boundary conditions and is smooth when
analytically extended to the worldline.
We then adopt an asymptotic matching condition, which

is a type of boundary condition: near the representative
worldline, the metric perturbations must recover the local
form obtained from matched asymptotic expansions. The
point-mass representation (6) and a puncture scheme are
two differing ways to enforce this condition. Both methods
use the analytical extension of Eq. (80) down to the
worldline. The point-mass representation enforces the
matching condition by defining source terms for hðnÞμν such
that all solutions to the inhomogeneous field equation
recover the correct local form (80); we refer to Ref. [37] for
further discussion. A puncture scheme instead imposes the
matching condition by directly using the local form (80).

We construct a local approximation to hSðnÞμν , called a

puncture field hPðnÞμν , and then solve field equations for

the residual field hRðnÞ
μν ≔ hðnÞμν − hPðnÞμν . In our generic

matrix form, we write these field equations as

D̂ψ̂R ¼ Ĵ − D̂ψ̂P ≕ Ĵeff : ð81Þ

The puncture field is made to vanish outside some region
around the particle, such that ψ̂R becomes the physical field
outside that region. By solving Eq. (81) with physical
boundary conditions at H þ and Iþ and adding the
puncture, we then obtain a total field ψ̂R þ ψ̂P that
necessarily satisfies the matching condition. We note that

the punctures hPðnÞμν and residual fields hRðnÞ
μν possess the

same multiscale form as hðnÞμν because hPðnÞμν is an explicit
function of the orbital trajectory.
This illustrates how a puncture scheme is simply a

method of imposing a boundary condition. Suppose, more
generally, we are given the boundary condition that the total
physical solution to Eq. (69) must take the form ψ̂R þ ψ̂S

near some boundary, where ψ̂S is a specific particular

solution (possibly singular at the boundary) and ψ̂R is a
homogeneous solution that is regular at the boundary. If we
construct a puncture ψP that approximates ψ̂S sufficiently
well, and if we impose regular boundary conditions on the
residual ψ̂R, then solving Eq. (81) and adding ψ̂P yields a
solution to Eq. (69) that satisfies the given boundary
conditions. We apply this method at both outer boundaries,
H þ and Iþ.
Sections V.F–H in Ref. [9] discuss the behavior of the

second-order physical solution nearH þ andIþ. Here we
briefly review and add some details to that discussion. We
follow Ref. [9] in using a label “[s]” to indicate the slicing
in which a mode is defined.
To frame the discussion, we first note how homogeneous

solutions depend on slicing. For a homogeneous solution,
the mode coefficients in generic s slicing are related to
those in t slicing by

ψ ½s� ¼ ψ ½t�e−iωkðr
�Þ; ð82Þ

implying

∂rψ ½s� ¼ ð∂rψ ½t� − iωf−1Hψ ½t�Þe−iωkðr�Þ: ð83Þ

(We omit the subscriptm onω for succinctness and because
the discussion in this section applies equally well for
eccentric orbits.) In matrix form,

ψ̂ ½s� ¼
�

1d×d 0d×d
−iωf−1H1d×d 1d×d

�
ψ̂ ½t�e−iωkðr

�Þ; ð84Þ

where d is the dimension of the vector ψ.
Homogeneous solutions regular at H þ behave as

ψ̂ ½v� ∼ f0 ð85Þ

for r → 2M in v slicing. Equation (84) therefore implies
that such solutions behave as

ψ̂ ½t� ∼
�

f0

iωf−1

�
e−iωr� ð86Þ

in t slicing, where it is understood that the two entries in the
vector indicate the scaling of the top and bottom d rows in
ψ̂ ½t�, respectively. Homogeneous solutions regular at Iþ

behave as

ψ̂ ½u� ∼ r0 ð87Þ

at large r [corresponding to hμν ∼ 1=r because of the
rescaling by r in Eq. (55)]. Equation (84) therefore implies

ψ̂ ½t� ∼ eþiωr� ð88Þ

in t slicing.
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At first order, outside the source region, the physical,
retarded solutions are homogeneous. They therefore must
satisfy the regularity conditions at H þ and Iþ as
described in the preceding paragraph.
At second order, the boundary conditions are more

complicated because of the behavior of the source terms.
Away from the particle, the quadratic source term Gð2;0Þ

μν is
made up of products of homogeneous solutions. At large r,
in generic s slicing,

Gð2;0Þ
μν ∼

eiω½r�−kðr�Þ�

r2
; ð89Þ

implying a source Ĵð2;0Þ ∼ eiω½r�−kðr�Þ�
r in Eq. (76). In u slicing

(for which k ¼ r�), the oscillations are eliminated, but the
falloff is unaffected. All solutions are then singular at Iþ,
behaving as

ψ ð2;0Þ
½u� ∼ ln r ð90Þ

for ω ≠ 0 modes or as

ψ ð2;0Þ
½u� ∼ r ln r ð91Þ

for certain ω ¼ 0 modes. This behavior was discussed in
detail in Ref. [33] and will be returned to in a later paper.
At the opposite boundary, near the horizon,

Gð2;0Þ
μν ∼ e−iω½r�þkðr�Þ�; ð92Þ

meaning Ĵð2;0Þ ∼ f−1 at the horizon in v slicing (for which
k ¼ −r�). The physical solution in the Lorenz gauge then
turns out to be singular at the horizon despite the smooth-

ness of the physical source Gð2;0Þ
μν . Again, this will be

discussed in a future paper.
Next, we consider the source Gð1;1Þ

μν ½hð1Þ� given in
Eq. (33) and corresponding source Ĵð1;1Þ in Eq. (77). If
we choose t slicing, then H ¼ 0, implying

Ĵð1;1Þ½t� ∼ ωFð0Þ
Ω r�eiωr� ð93Þ

at large r, and so the field sourced by Ĵð1;1Þ½t� behaves as

ψ̂ ð1;1Þ
½t� ∼ r2eiωr

�
. On the other hand, if we choose u slicing,

then H ¼ 1, implying

Ĵð1;1Þ½u� ∼ 1=r2 ð94Þ

at large r, and so ψ̂ ½u� ∼ r0. Similarly, the source Ĵð1;1Þ½t� is ill

behaved at the horizon, scaling as

Ĵð1;1Þ½t� ∼ r�f−1e−iωr� ; ð95Þ

while the source Ĵð1;1Þ½v� is smooth at the horizon, behaving as

Ĵð1;1Þ½v� ∼ f0: ð96Þ

Fields sourced by Ĵð1;1Þ½t� and fields sourced by Ĵð1;1Þ½v� there-

fore have very different behavior near the horizon. We
discuss that behavior in Sec. VIII.
In cases where the physical solution is singular at a

boundary, we introduce a puncture at that boundary as
described above. Even in cases where a puncture is not
strictly required, we can introduce one to increase the
falloff rate of the effective source Ĵeff toward the bounda-
ries; this is beneficial because it improves the efficiency of
integration over the source. In later sections we discuss the
requirements on the puncture.

IV. TEUKOLSKY EQUATIONS

In the Teukolsky formalism, instead of directly dealing
with metric perturbations, one considers perturbations of a
Weyl curvature scalar. We shall focus on the curvature
scalar ψ4, defined as

ψ4 ¼ Cαβγδnαm̄βnγm̄δ: ð97Þ

Here, the overbar denotes complex conjugation, Cαβγδ is the
Weyl curvature tensor, and the vectors are elements of a
Newman-Penrose null tetrad flα; nα; mα; m̄αg [50,51].
We will specifically focus on linear perturbations of the

Weyl scalar, meaning that for a given metric perturbation
hαβ, we consider ψ4 to be (with an abuse of notation) the
piece of the Weyl curvature that is linear in hαβ:

ψ4½h� ¼ Cð1;0Þ
αβγδ ½h�nαm̄βnγm̄δ: ð98Þ

Here the tetrad legs are defined in the background space-

time, and the linearized Weyl tensor Cð1;0Þ
αβγδ is defined in

analogy with the linearized Einstein tensor Gð1;0Þ
αβ ½h� of

previous sections. Our ψ4 corresponds to the quantity δψ4

in Ref. [34], but with the covariant derivative ∇ replaced
with its zeroth-order version ∇ð0Þ from Eq. (31).
Analogously, we define the linearized curvature sca-

lar ψ0½h� ¼ Cð1;0Þ
αβγδ ½h�lαmβlγmδ.

We note that our formulation in this section remains
specialized to Schwarzschild spacetime (though the exten-
sion to Kerr, starting from Ref. [35], is immediate).

A. “Reduced” Teukolsky equations

Given an equation Gð1;0Þ
μν ½h� ¼ Sμν for a metric perturba-

tion hμν, we can obtain an associated spin-weight s ¼ �2

Teukolsky master equation [52],

sOsψ ¼ sS; ð99Þ
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where sO is the spin-weight s Teukolsky (wave) operator,
sψ is constructed from hμν, and sS is constructed from Sμν.
The specific relationships between variables depends on

the choice of tetrad. We work with the Kinnersley tetrad
[53], in which −2ψ ¼ ρ−4ψ4 and −2O ¼ 2r2ρ−4Oρ4, where
O is the second-order differential operator

O ≔ ½Þ0 − ð2sþ 1Þρ0�ðÞ − ρÞ − ð0ð

−
1

2
½ð6sþ 2Þ þ 4s2�ψ2; ð100Þ

with ρ ¼ −1=r, ρ0 ¼ f=ð2rÞ, and ψ2 ¼ −M=r3. Similarly,
the source for −2ψ is given by −2T ¼ 2r2ρ−4S½Sαβ�, where7

S½Sαβ�¼
1

2
ð0½ðÞ0−2ρ̄0ÞSðnm̄Þ−ð0Snn�

þ1

2
ðÞ0−4ρ0− ρ̄0Þ½ð0Sðnm̄Þ−ðÞ0− ρ̄0ÞSm̄m̄�: ð101Þ

In these definitions, we adopt Geroch-Held-Penrose (GHP)
notation, following the conventions of [2] (simplified with
τ ¼ τ0 ¼ 0 in a Schwarzschild background). The GHP
derivatives Þ, Þ0, ð, and ð0, along with a brief review of
the GHP formalism, can be found in Appendix C 2.
The mode decomposition likewise depends on the choice

of null tetrad. Again working with the Kinnersley tetrad, we
write our separation ansatz as

sψ ¼ r−ð2sþ1Þf−s

×
X∞
l¼2

Xl
m¼−l

sRlmðr;J IÞsYlmðθ;ϕÞe−imϕp ; ð102Þ

where sYlmðθ;ϕÞ are spin-weighted spherical harmonics
[54]; these are straightforwardly related to the tensor
harmonics Yilm

μν that we use for the Lorenz-gauge metric
perturbations [34]. The radial Teukolsky function, sRlmðrÞ,
satisfies the ordinary differential equation

�
r2f

d2

dr2
þ 2½M − sðr −MÞ þ iωr2H� d

dr

þ r2

f
½ω2ð1 −H2Þ þ iωH0 − sVlmðrÞ�

�
sRlmðrÞ

¼ sSlmðrÞ: ð103Þ

Here, ω ¼ mΩ, the Teukolsky potential reads

sVlmðrÞ≔
2isω
r2

½frð1−HÞ−Mð1þHÞ�

þ f
r2

�
lðlþ1Þ−sðsþ1Þþ2Mðsþ1Þ

r

�
; ð104Þ

and the source mode coefficients are defined from

sS ¼ −
X∞
l¼2

Xl
m¼−l

sSlmðr;J IÞsYlmðθ;ϕÞe−imϕp : ð105Þ

The explicit form of the source for the case we shall explore
in this work can be found in Appendix C.
The factor r−ð2sþ1Þf−s in the mode ansatz (102) is

introduced for the purposes of numerical integration of
the radial Teukolsky equation. This was first introduced in
the context of hyperboloidal slicing for the Teukolsky
equation in [31], and has been further utilized in subsequent
works [55–57]. Without this rescaling, the potential would
only fall off as 1=r toward infinity and would not vanish at
the horizon. Therefore, the potential would be long-ranged,
akin to the Coulomb potential. For any nonzero spin-
weight, one could not accurately compute solutions of the
homogeneous Teukolsky equation due to numerical round-
off error either near the horizon or toward infinity. Hence,
in rescaling the master function in accordance with its
asymptotic behavior, we obtain a short-ranged potential in
Eq. (104) that now falls off as f near the horizon and r−2

near null infinity. Furthermore, our use of hyperboloidal
slicing eliminates the oscillatory behavior of the radial
function toward infinity and the horizon, which increases
the efficiency of the numerical solver.
As we did for the Lorenz-gauge field equations, we

express our radial Teukolsky equation in the form of
Eq. (69). The column vector ψ in Eq. (69) reduces to
one element with ψðrÞ ¼ sRlmðrÞ, with A and B given by

A ¼ ω2ð1 −H2Þ − sVlmðrÞ
f2

;

B ¼ 1

f

�
2M
r2

þ 2iωH þ 2sðr −MÞ
r2

�
: ð106Þ

Similarly, the source reduces to JðrÞ ¼ r2s−1fs−1×
sSlmðr;J IÞ.
All of the above formulas apply for each field

−2ψ ðnÞ ¼ ρ−4ψ4½hðnÞ�: ð107Þ

In analogy with Eq. (75), we split the second-order field
into two pieces,

−2ψ ð2;0Þ ¼ ρ−4ψ4½hð2;0Þ�; ð108Þ

−2ψ ð1;1Þ ¼ ρ−4ψ4½hð1;1Þ�: ð109Þ

Again, all the formulas in this section apply to each of these
pieces. In analogy with Eqs. (76) and (77), the radial
coefficients in the mode decompositions of −2ψ ð2;0Þ and7In [2], this is denoted S4.
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−2ψ ð1;1Þ satisfy radial Teukolsky equations with sources
constructed from

Sð2;0Þμν ¼ 8πTð2;0Þ
μν −Gð2;0Þ

μν ½hð1Þ; hð1Þ�; ð110Þ

Sð1;1Þμν ¼ 8πTð1;1Þ
μν −Gð1;1Þ

μν ½hð1Þ�: ð111Þ

Note that our field −2ψ ð2Þ does not represent the second-
order term in an expansion of the spacetime’s full Weyl
scalar. Such an expansion would include quadratic terms

constructed from hð1Þμν and from perturbations of the tetrad
legs, while our field involves only the piece that is linear in

hð1Þμν . We refer to Ref. [35] for a thorough discussion; there,
we refer to the field equation for our linear −2ψ ð2Þ as the
reduced second-order Teukolsky equation. Similar com-
ments apply to −2ψ ð1;1Þ.

B. Boundary conditions

The core aspects of Sec. III D carry over to the Teukolsky
case, including the use of punctures. However, solutions of
the radial Teukolsky equation do behave in significantly
different ways near the boundaries than Lorenz-gauge
metric perturbations. Here we do not attempt a compre-
hensive summary of the behavior of sourced solutions,
comparable to Sec. III D. Instead, we only highlight the
behavior of a basis of homogeneous solutions, analogous to
Eqs. (85)–(88). This basis is made up of a pair of solutions
that are, respectively, purely ingoing at H þ and purely
outgoing atIþ. In the usual Teukolsky nomenclature these
are referred to as “in” and “up” solutions [2].
The in solution is regular at the horizon and has the near-

boundary behavior

ψ̂−
½t� ∼

	
e−iωr

�
; r → 2M;

eiωr
� þ r2se−iωr

�
; r → ∞:

ð112Þ

Conversely, the up solution is regular atIþ and behaves as

ψ̂þ
½t� ∼

	
e−iωr

� þ fseiωr
�
; r → 2M;

eiωr
�
; r → ∞:

ð113Þ

These limiting behaviors can be verified by applying the
rescaling in Eq. (102) to the form of the master functions in
Table 1 of Ref. [58].
At the boundaries where these homogeneous solutions

represent physical waves created by a compact source, they
have the same behavior as the Lorenz-gauge metric
perturbations. However, they differ in important ways at
the opposite boundaries. For the spin-weight we focus on
(s ¼ −2), Eq. (112) shows that in the in solution, the
incoming portion of the solution at large r decays rapidly,
as r−4; and Eq. (113) shows that in the up solution, the
outgoing portion of the solution at the horizon blows up

there. Homogeneous Lorenz-gauge perturbations, on the
other hand, behave as s ¼ 0 solutions in Eqs. (112) and
(113): a solution that is a pure ingoing wave at the horizon
is a mix of ingoing ðr0e−iωr�Þ and outgoing ðr0eþiωr� Þ
waves at infinity; and a solution that is a pure outgoing
wave at infinity is a mix of ingoing and (bounded) outgoing
waves at the horizon. The more intricate behavior of the
homogeneous Teukolsky solutions has important knock-on
effects for inhomogeneous solutions with noncompact
sources, explained in Sec. VII D.

V. PUNCTURE SCHEMEWITH SMOOTH SLICING
AND WINDOWED PUNCTURES

Before considering our worldtube scheme with multiple
distinct regions, we first consider a simpler but less
computationally convenient method. We assume the time
function s is smooth, and if there are punctures, we use
window functions to make them transition to zero at some
distance from the particle or from the boundary where they
are used. This is an extension of the window-function
method that one of us applied to first-order Lorenz-gauge
calculations in Ref. [20], now allowing for alternative time
functions and noncompact sources.
We keep our discussion generic in this section, making it

equally valid for eccentric orbits as for quasicircular orbits.

A. Generic source

We consider a generic set of coupled first-order radial
ODEs written in the matrix form (70), reproduced here for
convenience:

D̂ ψ̂ ≔
dψ̂
dr

þ Â ψ̂ ¼ Ĵ; ð114Þ

where ψ̂ ¼ ðψ ; ∂rψÞT and Ĵ ¼ ð0d; JÞT are column vectors
of length 2d. These can be the Lorenz-gauge field equa-
tions, Teukolsky equations, or another set of equations. We
let the domain of the solutions to (114) be r∈ ð2M;∞Þ, and
we assume that Ĵ is integrable (or well-defined as a
distribution) in that domain and falls off sufficiently rapidly
toward the boundaries (a condition that will be enforced
below through the use of boundary punctures).
Now we seek a solution to Eq. (114) subject to physical

boundary conditions at r ¼ 2M and r ¼ ∞. We can
construct the solution using the method of variation of
parameters [59]. Take the homogeneous version of
Eq. (114) (Ĵ ¼ 0), which has 2d independent solutions.
We denote by ψ̂k−, with k ¼ 1;…; d, the d independent
homogeneous solutions that obey desired boundary con-
ditions at r ¼ 2M, and by ψ̂kþ the d independent solutions
that obey desired boundary conditions at infinity. For
concreteness, for ω ≠ 0 modes, ψ̂k− will represent ingoing
waves regular at the future horizon, and ψ̂kþ will represent
outgoing waves at future null infinity. For ω ¼ 0 modes,
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ψ̂k− will be homogeneous solutions regular at the horizon,
and ψ̂kþ will be asymptotically flat homogeneous solu-
tions. Using these solutions we define a 2d × 2d matrix of
homogeneous solutions,

Φ ≔ ðψ̂1−;…; ψ̂d−; ψ̂1þ;…; ψ̂dþÞ; ð115Þ

satisfying

d
dr

Φþ ÂΦ ¼ 0: ð116Þ

Appendix B reviews the construction of the basis of
homogeneous solutions.
In terms of Φ the general solution to Eq. (114) can be

written as

ψ̂ ¼ Φ
�Z

r

2M
dr0Φ−1ðr0ÞĴðr0Þ þ a

�
; ð117Þ

with a an arbitrary, constant 2d-vector. Writing Φ in the
form

Φ ¼ ðΦ−;Φþ Þ ð118Þ

with Φ� ¼ ðψ̂1�;…; ψ̂d�Þ a 2d × d matrix, we can also
write Eq. (117) as

ψ̂ ¼ Φ−

�Z
r

2M
dr0Φ−1

topĴ þ atop

�

þΦþ

�Z
r

2M
dr0Φ−1

botĴ þ abot

�
: ð119Þ

Here and below, “top” and “bot” refer to the top or bottom d
rows of a matrix with 2d rows, and Φ−1

top=bot specifically
denotes the top or bottom d rows of the 2d × 2d
matrix Φ−1.

B. Compact source

First, consider the case in which the source has compact
support. This is the typical situation at first order, in which
the point-particle, frequency-domain source is confined to a
single radius (for a circular orbit) or to the libration region
(for an eccentric orbit [60]), and the effective, punctured
source is confined to a region around the particle.
If the source is supported between some rmin and rmax,

then outside of that region, the physical, retarded field must
reduce to a linear combination of the appropriate homo-
geneous solutions:

ψ̂ ret ¼
	Φþcþ for r > rmax;

Φ−c− for r < rmin;
ð120Þ

for some constant d-vectors c�.

Explicitly evaluating the general solution (119) outside
the source region, we find

ψ̂ðr < rminÞ ¼ Φ−atop þΦþabot; ð121Þ

ψ̂ðr > rmaxÞ ¼ Φ−

�Z
∞

2M
dr0Φ−1

topĴ þ atop

�

þΦþ

�Z
∞

2M
dr0Φ−1

botĴ þ abot

�
: ð122Þ

The boundary conditions (120) hence imply

a ¼
�
−
Z

∞

2M
dr0Φ−1

topðr0ÞĴðr0Þ; 0d
�

T
: ð123Þ

Therefore, the retarded solution is

ψ̂ ret ¼ Φv; ð124Þ

where v is the 2d-vector

v ¼
�
−
Z

∞

r
dr0Φ−1

topĴ;
Z

r

2M
dr0Φ−1

botĴ

�
T
: ð125Þ

Note that v ¼ ðc−; 0ÞT for r < rmin and v ¼ ð0; cþÞT for
r > rmax; or, restated as an equation for c�,

cþ ¼
Z

rmax

2M
dr0Φ−1

botĴ; ð126Þ

c− ¼ −
Z

∞

rmin

dr0Φ−1
topĴ: ð127Þ

For a given source Ĵ, we will refer to (124) as the retarded
integral of Ĵ. If Ĵ has compact support, then this also
represents the physical retarded solution; if Ĵ has non-
compact support, then the retarded integral of it may or may
not represent the physical retarded solution.

C. Noncompact, punctured source

Now we consider the case where the source is non-
compact, extending to the boundaries. This is the situation
at second order.
As described in Sec. III D, the boundary conditions on

the physical field are

ψ̂ ret ¼
	
ψ̂Sþ þΦþcþ for r → ∞;

ψ̂S
− þΦ−c− for r → 2M;

ð128Þ

for some constant d-vectors c�. ψ̂S
� is a given particular

solution to

D̂ψ̂S
� ¼ Ĵ; ð129Þ
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and it is typically singular at the boundary where it is
used.
We can enforce the boundary conditions (128) using

punctures. Let the punctures ψ̂P
� approximate ψ̂S

� near the
boundaries and then transition smoothly to zero. Define
ψ̂P ¼ ψ̂Pþ þ ψ̂P

− (plus a puncture at the particle if appro-
priate). The residual field ψ̂R ¼ ψ̂ ret − ψ̂P then satisfies

D̂ψ̂R ¼ Ĵ − D̂ψ̂P ≕ Ĵeff : ð130Þ

To enforce (128), we adopt the retarded solution to this
equation, taking the retarded integral (124) of Ĵeff :

ψ̂R ¼ −Φ−

Z
∞

r
dr0Φ−1

topĴ
eff þΦþ

Z
r

2M
dr0Φ−1

botĴ
eff : ð131Þ

If Ĵeff falls off sufficiently quickly toward the boundaries,
then this solution for ψ̂R approximates the homogeneous
solutions Φ�c� near the boundaries, fixing the values of
the coefficients c� and ensuring that the total field
ψ̂P þ ψ̂R takes the form in (128).
To see that we are correct in using the retarded

integral (131), start by assuming we know the particular
solutions ψ̂S

� exactly. In that case we can adopt punctures
ψ̂Pexact
� ¼ ψ̂S

�W�, where W� is a window function that is
identically equal to 1 in a neighborhood of the worldline
and transitions to zero at some finite distance from the
worldline. The effective source then has compact support,
identically vanishing in a neighborhood of the boundaries.
In this circumstance, we rename the ψ̂R in Eq. (131) as
ψ̂Rexact. Near r ¼ 2M, where Ĵeff ¼ 0, ψ̂Rexact becomes the
homogeneous solution

ψ̂Rexact ¼ −Φ−

Z
∞

2M
dr0Φ−1

topĴ
eff ; ð132Þ

implying the unknown constant c− in Eq. (128) is
c− ¼ −

R∞
2M dr0Φ−1

topĴ
eff . Analogously, near r → ∞ we have

ψ̂Rexact ¼ Φþ

Z
∞

2M
dr0Φ−1

botĴ
eff ; ð133Þ

implying cþ in Eq. (128) is cþ ¼ R
∞
2M dr0Φ−1

botĴ
eff .

Now consider the case we encounter in practice, in which
we only know ψ̂S

� approximately, up to some finite order
in a series expansion around r → ∞ or around r ¼ 2M.
Suppose we use such approximations as punctures ψ̂P

�,
such that

ψ̂P
� ¼ ψ̂Pexact

� þ Δψ̂P
� ð134Þ

for some Δψ̂P
�. For the puncture scheme to be useful, the

total field must be robust under this change in the
punctures, at least so long as Δψ̂P

� is sufficiently small
in the limit to the boundary; the change in the punctures
must be exactly counterbalanced by a commensurate
change in the residual field, leaving the total field
unaltered.
Let us assess the restrictions this imposes on Δψ̂P

�, and
whether we can safely use the retarded integral (131) for
ψ̂R. The new residual field, ψ̂R ¼ ψ̂ ret − ψ̂P , satisfies

D̂ψ̂R ¼ Ĵ − D̂ψ̂P ¼ Ĵ − D̂ψ̂Pexact − D̂Δψ̂P: ð135Þ

Therefore, the change in the residual field, Δψ̂R ¼
ψ̂R − ψ̂Rexact, satisfies

D̂Δψ̂R ¼ −D̂Δψ̂P: ð136Þ

The retarded integral is

Δψ̂R ¼ Φ−

Z
∞

r
dr0Φ−1

topD̂Δψ̂P

−Φþ

Z
r

2M
dr0Φ−1

botD̂Δψ̂P : ð137Þ

Using D̂Δψ̂P ¼ d
drΔψ̂

P þ ÂΔψ̂P and integrating by parts,
we can rewrite the integrals as, for example,

Z
∞

r
dr0Φ−1

topD̂Δψ̂P ¼
Z

∞

r
dr0

�
−

d
dr

Φ−1
top þΦ−1

topÂ

�
Δψ̂P

þΦ−1
topΔψ̂P




∞
r
: ð138Þ

It is straightforward to establish that

d
dr

Φ−1 −Φ−1Â ¼ 0; ð139Þ

starting from d
dr ðΦ−1ΦÞ ¼ 0 and using Eq. (116). This

simplifies the above result to

Z
∞

r
dr0Φ−1

topD̂Δψ̂P ¼ Φ−1
topΔψ̂P




∞
r
: ð140Þ

Similarly evaluating the second integral in Eq. (137), we
obtain

Δψ̂R ¼ −Δψ̂P þΦ− lim
r→∞

ðΦ−1
topΔψ̂PÞ

þΦþ lim
r→2M

ðΦ−1
botΔψ̂PÞ: ð141Þ
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We see that the change in the puncture is counterbal-
anced by the change in the residual field, and the retarded
integral recovers the correct result, if8

lim
r→∞

ðΦ−1
topΔψ̂PÞ ¼ 0 ð143Þ

and

lim
r→2M

ðΦ−1
botΔψ̂PÞ ¼ 0: ð144Þ

We can also write this as

lim
r→∞

½Φ−1
topðψ̂P − ψ̂SÞ� ¼ 0 ð145Þ

and

lim
r→2M

½Φ−1
botðψ̂P − ψ̂SÞ� ¼ 0: ð146Þ

These conditions dictate the required order of a puncture.
For example, if we work with a puncture that includes
terms up to order ðr − 2MÞn near the horizon, then
Eq. (146) tells us that n must be large enough to ensure
limr→2M ½Φ−1

botðr − 2MÞnþ1� ¼ 0.
Equations (143) and (144) also tell us the conditions

under which we actually need a puncture. If we choose
Δψ̂P¼−ψ̂Pexact, then ψ̂P¼0 and the residual field becomes
simply the retarded integral of the physical source, ψ̂R ¼
−Φ−

R∞
r dr0Φ−1

topĴ þΦþ
R
r
2M dr0Φ−1

botĴ. Equations (143) and
(144) become

lim
r→∞

ðΦ−1
topψ̂

SÞ ¼ 0 and lim
r→2M

ðΦ−1
botψ̂

SÞ ¼ 0: ð147Þ

If the conditions (147) are satisfied, then

ψ̂Rexact ¼ −ψ̂Pexact −Φ−

Z
∞

r
dr0Φ−1

topĴ

þΦþ

Z
r

2M
dr0Φ−1

botĴ: ð148Þ

This implies that no puncture is required: with or without a
puncture, the total field ψ̂R þ ψ̂P is simply the retarded
integral of the original source Ĵ, meaning that this retarded
integral automatically satisfies the correct boundary con-
ditions. Conversely, if the conditions (147) are not satisfied,
meaning

lim
r→∞

ðΦ−1
topψ̂

SÞ ≠ 0 or lim
r→2M

ðΦ−1
botψ̂

SÞ ≠ 0; ð149Þ

then a puncture is required.
In summary, for a given particular solution ψ̂S in the

boundary conditions (128), the retarded integral (131)
yields a correct residual field so long as ψ̂S − ψ̂P satisfies
the conditions (145) and (146). We emphasize that those
conditions are stronger than simply ensuring convergence
of the retarded integral; two different punctures can both
lead to convergent retarded integrals even if the difference
between them violates (143) or (144), but in that case they
will lead to two different total solutions ψ̂P þ ψ̂R, satisfy-
ing different physical boundary conditions.

VI. WORLDTUBE PUNCTURE SCHEME

We now introduce our worldtube scheme. We split
the domain into five regions: a near-horizon region
ΓH ¼ ð2M; rHÞ; a nonpunctured region ΓL ¼ ðrH; rLÞ
(where “L” stands for “left”); a worldtube9 around the
particle Γp ¼ ðrL; rRÞ (where “R” stands for “right”);
another nonpunctured region ΓR ¼ ðrR; r∞Þ; and an
asymptotic region Γ∞ ¼ ðr∞;∞Þ. These are illustrated in
Fig. 2. We assume there is a puncture at the particle, ψ̂P

p , in
Γp; a puncture at the horizon, ψ̂

P
H, in ΓH; and one at infinity,

ψ̂P
∞, in Γ∞. We also allow the operator D̂ to be different in

the different regions, as it will be if we use different slicings
in the different regions. We will ultimately obtain the
solutions in all the regions by imposing junction conditions
at the region boundaries.
In many concrete calculations we omit one or both of the

regions ΓL and ΓR. However, for generality, we include all
five regions in our description here.
As in the preceding section, we keep our treatment

generic, such that it applies both to eccentric and quasi-
circular orbits.

A. General framework

In each region we define the field variable ψ̂a, with
a∈ fH;L; p; R;∞g, as

8The same calculation also shows that the retarded integral yields
the correct residual field if we change the puncture by a homo-
geneous solution near the boundaries, as in ΔψP

� ¼ Φ�b�W� for
constant d-vectors b�. Equation (141) in that case reads

Δψ̂R ¼ −Δψ̂P þΦ− lim
r→∞

ðΦ−1
topΦþÞbþ

þΦþ lim
r→2M

ðΦ−1
botΦ−Þb−: ð142Þ

It follows fromΦ−1Φ ¼ 12d×2d thatΦ−1
topΦþ ¼ 0 ¼ Φ−1

botΦ−, and so
Δψ̂R ¼ −Δψ̂P . This simply trades the homogeneous solution
between the puncture and the residual field, without altering the
total, physical field. Equivalently, this trades a homogeneous
solution between the two terms in the boundary conditions (128).

9In three-dimensional space, each of the regions is a shell
surrounding the large black hole, but we adopt traditional
nomenclature by referring to the shell containing the particle
as a worldtube.
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ψ̂H ¼ ψ̂ ret
H − ψ̂P

H; ð150aÞ

ψ̂L ¼ ψ̂ ret
L ; ð150bÞ

ψ̂p ¼ ψ̂ ret
p − ψ̂P

p ; ð150cÞ

ψ̂R ¼ ψ̂ ret
R ; ð150dÞ

ψ̂∞ ¼ ψ̂ ret
∞ − ψ̂P

∞; ð150eÞ

where the domain of ψ̂a is Γa. These fields satisfy the
equations

D̂aψ̂a ≔ ∂rψ̂a þ Âaψ̂a ¼ Ĵeffa ; ð151Þ

where Âa is in general different in each region and the
sources are ĴeffH ¼ ĴH−D̂Hψ̂

P
H, Ĵ

eff
L ¼ ĴL, Ĵ

eff
p ¼ Ĵp−D̂pψ̂

P
p ,

ĴeffR ¼ ĴR, and Ĵeff∞ ¼ Ĵ∞ − D̂∞ψ̂
P
∞, where the raw sources

Ĵa are allowed to differ between regions.
The general solution in each region is

ψ̂a ¼ Φa

�Z
r

ra

Φ−1
a Ĵeffa drþ aa

�
; ð152Þ

where ra ∈ f2M; rH; rL; rR; r∞g is the left boundary of the
domain Γa of ψ̂a. Φa is the matrix of homogeneous
solutions to each equation with an analogous form to
(115), satisfying ∂rΦa þ ÂaΦa ¼ 0. We assume that both
these homogeneous solutions and the retarded solutions are
related via transformations of the form

ΦL ¼ TLΦH; ð153aÞ

Φp ¼ TpΦL; ð153bÞ

ΦR ¼ TRΦp; ð153cÞ

Φ∞ ¼ T∞ΦR; ð153dÞ

and analogously, ψ̂ ret
L ¼ TLψ̂

ret
H , ψ̂ ret

p ¼ Tpψ̂
ret
L , etc. This

will be the case for transformations between time slicings
for the first-order field and the second-order field ψ ð2;0Þ

sourced by Gð2;0Þ
μν . We discuss other cases in Secs. VII

and VIII. Section VIII, in particular, shows how junction
conditions for second-order fields are derived from how the
fields transform between slicings.
We now fix the constants in the general solution by

imposing junction conditions and boundary conditions.
From Eqs. (150) and (153), it follows that the junction
conditions are

ψ̂LðrHÞ ¼ TLðψ̂H þ ψ̂P
HÞjrH ; ð154aÞ

ψ̂pðrLÞ ¼ ðTpψ̂L − ψ̂P
p ÞjrL ; ð154bÞ

ψ̂RðrRÞ ¼ TRðψ̂p þ ψ̂P
p ÞjrR ; ð154cÞ

ψ̂∞ðr∞Þ ¼ ðT∞ψ̂R − ψ̂P
∞Þjr∞ : ð154dÞ

We assume boundary conditions of the form (128)

ψ̂ ret ¼
	
ψ̂S
∞ þΦ∞þcþ for r → ∞;

ψ̂S
H þΦH−c− for r → 2M;

ð155Þ

for some constant d-vectors c�, where

D̂ψ̂S
a ¼ Ĵa: ð156Þ

We also assume that the punctures ψ̂H and ψ̂∞ satisfy the
analogs of (145) and (146):

lim
r→∞

½Φ−1
∞ topðψ̂P

∞ − ψ̂S
∞Þ� ¼ 0 ð157Þ

and

lim
r→2M

½Φ−1
H botðψ̂P

H − ψ̂S
HÞ� ¼ 0: ð158Þ

We can then impose retarded boundary conditions on ψ̂H at
r ¼ 2M and on ψ̂∞ at r → ∞, which fixes the constants in
the outermost regions to be

aH ¼ ðaH1 ;…; aHk ; 0dÞT; ð159Þ

a∞ ¼
�
−
Z

∞

r∞

Φ−1
∞ Ĵeff∞ dr; a∞1 ;…; a∞k

�
T
: ð160Þ

By combining Eqs. (153) and (154), we derive the jump
conditions

aL − aH ¼
Z

rH

2M
drΦ−1

H ĴeffH þ CH; ð161aÞ

ap − aL ¼
Z

rL

rH

drΦ−1
L ĴL þ CL; ð161bÞ

aR − ap ¼
Z

rR

rL

drΦ−1
p Ĵeffp þ CR; ð161cÞ

a∞ − aR ¼
Z

r∞

rR

drΦ−1
R ĴR þ C∞; ð161dÞ

FIG. 2. Division of the numerical domain into regions ΓH , ΓL,
Γp, ΓR, and Γ∞. In each region Γa, a∈ fH;L; p; R;∞g, we use a
corresponding field variable ψ̂a.
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where

CH ¼ Φ−1
H ψ̂P

HjrH ; ð162aÞ

CL ¼ −Φ−1
L T−1

p ψ̂P
p jrL ; ð162bÞ

CR ¼ Φ−1
p ψ̂P

p jrR ; ð162cÞ

C∞ ¼ −Φ−1
R T−1

∞ ψ̂P
∞jr∞ : ð162dÞ

The boundary and jump conditions provide enough
equations to determine the aa’s. We find that

aH ¼
�
−
R
2M

∞drΦ−1
topĴ

eff

0d

�

þ
�
−CH

top − CL
top − CR

top − C∞
top

0d

�
; ð163aÞ

aL ¼
�−

R
rH

∞drΦ−1
topĴ

eff

R rH
2M drΦ−1

botĴ
eff

�

þ
�−CL

top − CR
top − C∞

top

CH
bot

�
; ð163bÞ

ap ¼
�−

R
rL

∞drΦ−1
topĴ

eff

R rL
2M drΦ−1

botĴ
eff

�

þ
�−CR

top − C∞
top

CH
bot þ CL

bot

�
; ð163cÞ

aR ¼
�−

R
rR

∞drΦ−1
topĴ

eff

R rR
2M drΦ−1

botĴ
eff

�

þ
� −C∞

top

CH
bot þ CL

bot þ CR
bot

�
; ð163dÞ

a∞ ¼
�−

R
r∞

∞drΦ−1
topĴ

eff

R r∞
2M drΦ−1

botĴ
eff

�

þ
�

0d
CH
bot þ CL

bot þ CR
bot þ C∞

bot

�
; ð163eÞ

where we have defined ΦðrÞ ≔ ΦaðrÞ for r∈Γa and
ĴeffðrÞ ≔ Ĵeffa ðrÞ for r∈Γa.
With Eq. (152), Eq. (163) gives the global solution:

ψ̂ ¼ Φ
�
v −

�
CH
top þ CL

top þ CR
top þ C∞

top

0d

�

þ CHθðr − rHÞ þ CLθðr − rLÞ þ CRθðr − rRÞ

þ C∞θðr − r∞Þ
�
; ð164Þ

where v is given by Eq. (125) with the replacement
Ĵ → Ĵeff , and where, following the convention just above,
we have defined ΦðrÞ ≔ ΦaðrÞ and ψ̂ðrÞ ≔ ψ̂aðrÞ
for r∈Γa.
Equation (164) with Eqs. (125) and (162) give the

solution in each region Γa in a form close to that of
Eq. (124), but with the junction conditions across region
boundaries accounted for by the additive constants Ca. In
the next two sections, we describe two specific examples of
this general framework.

B. Example 1: t slicing

We first consider calculations on constant-t slices (i.e.,
H ¼ 0), with punctures allowed at the horizon, at the
particle, and at infinity.
In this case, the operators D̂a are the same for all regions,

equal to D̂½t� ¼ 12d×2d d
dr þ Â½t�, where Â½t�, defined in

Eq. (71), is given by (73) (Lorenz) or (106) (Teukolsky)
withH ¼ 0. The matrices Φa are also all the same, equal to
Φ½t�, the matrix of homogeneous solutions satisfying

D̂½t�ψ̂
½t�
k� ¼ 0 subject to the boundary conditions (B1) and

(B2) with kðr�Þ ¼ 0.
The solution is hence given by Eq. (164) with Φ ¼ Φ½t�

and D̂ (which appears in Ĵeff ) given by D̂½t�. The constantsCs

are given by Eq. (162) withTp ¼ TL ¼ TR ¼ T∞ ¼ 12d×2d.

C. Example 2: Sharp v-t-u slicing

Next we consider a sharp hyperboloidal slicing of the
type described in Sec. II B, with the sharp transitions
occurring at boundaries between regions.
As an example, we consider using s ¼ v in ΓH; s ¼ t in

ΓL, ΓR, and Γp; and s ¼ u in Γ∞. The operators D̂a in this
case are D̂H¼D̂½v�, D̂L¼D̂R¼D̂p¼D̂½t�, and D̂∞ ¼ D̂½u�.
Here D̂½s� ¼ 12d×2d

d
dr þ Â½s� (s ¼ t, v, or u) with Â½s� given

by Eqs. (71) and (73) withH ¼ −1 (s ¼ v),H ¼ 0 (s ¼ t),
or H ¼ þ1 (s ¼ u). Similarly, the matrices of homo-
geneous solutions in this case are ΦH ¼ Φ½v�, ΦL ¼ ΦR ¼
Φp ¼ Φ½t�, and Φ∞ ¼ Φ½u�, and are constructed from the

homogeneous solutions satisfying D̂½s�ψ̂
½s�
k� ¼ 0 subject to

the boundary conditions (B1), (B2), or (B3) with the
corresponding choice of height function kðr�Þ.
Referring to the discussion around Eq. (84), we find that

the homogeneous solutions in the different regions are
related as

Φ½v� ¼ P−Φ½t�; Φ½u� ¼ PþΦ½t�; ð165aÞ

Φ½t� ¼ PþΦ½v�; Φ½t� ¼ P−Φ½u�; ð165bÞ

where
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P� ¼ e∓iωr�
�

1d×d 0d×d
∓iωf−11d×d 1d×d

�
: ð166Þ

Note that P−1
� ¼ P∓. The transformation matrices in

Eq. (153) are therefore TL¼T∞¼Pþ and Tp¼TR¼12d×2d.
The solution in each region is given by Eq. (164) with Φ

and D̂ as described above. Equations (162) become

CH ¼ Φ−1
½v� ψ̂

P
HjrH ; ð167aÞ

CL ¼ −Φ−1
½t� ψ̂

P
p jrL ; ð167bÞ

CR ¼ Φ−1
½t� ψ̂

P
p jrR ; ð167cÞ

C∞ ¼ −Φ−1
½u� ψ̂

P
∞jr∞ ; ð167dÞ

where the inverse matrices are evaluated at the relevant
boundary between regions.

VII. DERIVATIVE OF THE FIELDWITH RESPECT
TO AN ORBITAL PARAMETER

As discussed in Sec. II B, one of the required ingredients
in the multiscale expansion is the parametric derivative

∂⃗Vh
ð1Þ
μν , where ∂⃗V is defined in Eq. (32) for quasicircular

orbits and Eq. (45) for eccentric orbits. This has two types
of essential input: derivatives with respect to orbital
parameters pi, and derivatives with respect to black hole
parameters δMA. Here we will only consider the first type.

The second type is trivial because the contribution to hð1Þμν

from δM and δJ are simple analytical functions [9], while

the dependence of hð1Þμν on orbital parameters is (in general)
only known numerically.
We keep our discussion in this section generic by writing

a derivative of ψ with respect to an orbital parameter as δψ .
However, our treatment is slightly less generic than in the
previous two sections: we assume that ψ has a compact
source bounded between some minimum and maximum
radii, as is the case at first order for bound orbits. ψ is
then given by a retarded solution (124) that reduces to the
form (120) outside the source region.
As shown in Ref. [36], the most efficient way to calculate

δψ is to formulate a field equation for it. As we explain in
this section, that field equation can be solved using the
puncture scheme developed in the previous two sections.
However, new junction conditions must be introduced at
the boundaries between regions, and punctures must often
be introduced at the outer boundaries.

A. Smooth slicing and windowed punctures

To introduce the structure of the problem, we return to
the case of smooth slicing and windowed punctures. Using
the same notation as in previous sections, we assume that Â

and Ĵ are functions of both r and pi, Â ¼ Âðr; piÞ and
Ĵ ¼ Ĵðr; piÞ. As a result, the matrix of homogeneous
solutions Φ will also depend on pi, Φ ¼ Φðr; piÞ.
ψ̂ satisfies Eq. (114). By differentiating that equation

with respect to an orbital parameter, we obtain a field
equation for δψ̂,

D̂ φ̂ ¼ K̂; ð168Þ

where we have defined the field variable

φ̂ ≔ δψ̂ ð169Þ

and the source

K̂ ¼ −δÂ ψ̂ þδĴ: ð170Þ

We note that Â only depends on pi through a dependence
on ωðpiÞ, meaning

δÂ ¼ 0 for ω ¼ 0: ð171Þ

Equation (168) for φ̂ has the same form as Eq. (114), just
with a different source. However, the source is now always
noncompact, due to the term δÂ ψ̂ . Hence, in general the
retarded integral may not yield the correct solution (or,
indeed, even converge); we will in fact find that is the case
if we use t as our time function. To allow for that
possibility, we introduce punctures at the boundaries,
δψ̂P

H and δψ̂P
∞. For now we take these punctures to include

windows, making them go to zero at some distance from
the boundaries, and we define the total puncture
δψ̂P ¼ δψ̂P

H þ δψ̂P
∞. We then have

D̂φ̂R ¼ K̂ − D̂φ̂P ≕ K̂eff : ð172Þ

We can now solve for φ̂R using the same methods we
used to solve (114). The retarded integral of Eq. (172) can
be read off Eq. (124) by substituting K̂eff for Ĵ, yielding

φ̂R ¼ Φvφ; ð173Þ

where vφ is given by Eq. (125) with the replacement
Ĵ → K̂eff :

vφ ¼
�
−
Z

∞

r
dr0Φ−1

topK̂
eff ;

Z
r

2M
dr0Φ−1

botK̂
eff

�
T
: ð174Þ

It will be useful to write this as

vφ ¼ v1 þ v2 ð175Þ

with v1 and v2 given by
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v1 ¼
� R

r
∞dr0Φ−1

topðδÂ ψ̂ þD̂φ̂PÞ
−
R
r
2M dr0Φ−1

botðδÂ ψ̂ þD̂φ̂PÞ

�
; ð176Þ

v2 ¼
�−

R
r
∞dr0Φ−1

topδĴR
r
2M dr0Φ−1

botδĴ

�
: ð177Þ

B. Worldtube method

We can reformulate the calculation of φ̂ in precisely the
same way we did the calculation of ψ̂ in Sec. VI. In place of
Eq. (172), we have equations in each region Γa:

D̂aφ̂a ¼ Ĵ eff
a : ð178Þ

The field variable φ̂a in Γa can be either the physical field
δψ̂ ret or a residual field δψ̂ ret − φ̂P .
The general solution to this equation in each region is

φ̂a ¼ Φa

�Z
r

ra

Φ−1
a K̂eff

a drþ ba

�
: ð179Þ

We can find the constants ba from junction conditions and
boundary conditions, in the same manner we found the aa’s
in Sec. VI.
We readily derive the junction conditions for φ̂ by taking

a parametric derivative of the conditions ψ̂ ret
L ðrHÞ ¼

TLψ̂
ret
H ðrHÞ, ψ̂ ret

p ðrLÞ¼Tpψ̂
ret
L ðrLÞ, ψ̂ ret

R ðrRÞ ¼ TRψ̂
ret
p ðrRÞ,

and ψ̂ ret
∞ ðr∞Þ ¼ T∞ψ̂

ret
R ðr∞Þ. The results are

φ̂LðrHÞ ¼ ½TLðφ̂H þ φ̂P
HÞ þ δTLψ̂

ret
H �rH ; ð180aÞ

φ̂pðrLÞ ¼ ½Tpφ̂L þ δTpψ̂L − φ̂P
p �rL ; ð180bÞ

φ̂RðrRÞ ¼ ½TRðφ̂p þ φ̂P
p Þ þ δTRψ̂

ret
p �rR ; ð180cÞ

φ̂∞ðr∞Þ ¼ ½T∞φ̂R þ δT∞ψ̂R − φ̂P
∞�r∞ : ð180dÞ

Using these conditions to derive the analogs of (161),
and imposing retarded boundary conditions, we obtain
enough equations to fix the ba’s. The result is that ba is
identical to aa, as given in Eq. (163), with the replacements
Ĵeff → K̂eff and Ca → Da, where

DH ¼ ½Φ−1
H φ̂P

H þΦ−1
H T−1

L δTLψ̂
ret
H �rH ; ð181aÞ

DL ¼ ½−Φ−1
L T−1

p φ̂P
p þΦ−1

L T−1
p δTpψ̂L�rL ; ð181bÞ

DR ¼ ½Φ−1
p φ̂P

p þΦ−1
p T−1

R δTRψ̂
ret
p �rR ; ð181cÞ

D∞ ¼ ½−Φ−1
R T−1

∞ φ̂P
∞ þΦ−1

R T−1
∞ δT∞ψ̂R�r∞ : ð181dÞ

Substituting the ba’s into Eq. (179), we obtain

φ̂ ¼ Φ
�
vφ −

�
DH

top þDL
top þDR

top þD∞
top

0d

�

þDHθðr − rHÞ þDLθðr − rLÞ þDRθðr − rRÞ

þD∞θðr − r∞Þ
�
; ð182Þ

with vφ given by Eq. (175). As in Eq. (164), we have
defined φ̂ðrÞ ¼ φ̂aðrÞ, ΦðrÞ ¼ ΦaðrÞ, K̂effðrÞ ¼ K̂eff

a ðrÞ
for r∈Γa.
Equation (182) yields φ̂ in each region for generic

slicings and punctures. We next consider the more specific
cases of t slicing and sharp v−t−u slicing.

C. Example 1: t slicing

First, we specialize to t slicing. As we shall see,
punctures are required at the boundaries in this case.
D̂a and Φa are the same for all regions, which means the

transformation matrices are all Ta ¼ 1. We leave punctures
at the horizon and infinity, but we use a point source at the
particle instead of a puncture. As a result, we can combine
the regions ΓL ¼ ðrH; rLÞ, Γp ¼ ðrL; rRÞ, and ΓR ¼
ðrR; r∞Þ into an enlarged Γp ¼ ðrH; r∞Þ. With this setup,
Eq. (182) reduces to

φ̂ ¼ Φ½t�

�
vφ −

�
DH

top þD∞
top

0d

�
þDHθðr − rHÞ

þD∞θðr − r∞Þ
�
; ð183Þ

where D∞ ¼ −Φ−1
½t� φ̂

P
∞jr∞ and DH ¼ Φ−1

½t� φ̂
P
HjrH . Again we

stress that here we define φ̂ðrÞ ¼ φ̂aðrÞ for r∈Γa, meaning
φ̂ is to be interpreted as φ̂∞ ¼ φ̂R in Γ∞, for example.
To assess the need for punctures, we first analyze the

integrands Φ−1
½t� topδÂ½t�ψ̂ ret

½t� and Φ−1
½t� botδÂψ̂

ret
½t� in Eq. (175).

Our analysis appeals to the concrete form of Â in Eqs. (71),
(73), and (106).
Recalling that δÂ½t� ¼ 0 for ω ¼ 0 modes, we exam-

ine ω ≠ 0 modes at large r. We have δÂ½t� ∼ r0 and
ψ̂ ret
½t� ∼ eþiωr� . Φ−1

½t� is made up of quantities that all behave

as ∼eikωr� for some k at large r. So in principle,
Φ−1

½t�topδÂ½t�ψ̂ ret
½t� asymptotes to a sum of terms ∼eipωr� with

different p’s. For p ¼ 0,
R
∞
r eipωr

0�
dr0 ∼ limR→∞ R; for

p ≠ 0,
R
∞
r eipωr

0�
dr0 ∼ limR→∞ eipωR. In either case, the

limit does not exist, indicating that the integral in the top
row of Eq. (175) does not converge without a puncture.
For ω ≠ 0 modes near r ¼ 2M, we have δÂ½t� ∼ f0 and

ψ̂ ret
½t� ∼ e−iωr

�
. Φ−1

½t� is made up of quantities that behave as

∼eiqωr� or ∼f−1eiqωr�, for some integer q at r → 2M. So in
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principle, Φ−1
½t� botδÂ½t�ψ̂ ret

½t� could possess a power-law diver-

gence at the horizon, indicating that the integral in the
bottom row of Eq. (175) would diverge without a puncture.
These analytical scalings suggest the need for punctures

at both the horizon and at infinity. We have confirmed this
requirement numerically. We can also confirm it by con-
sidering that φ̂ is a parametric derivative of a retarded field.
Since ψ̂ ret

½t� ∼ e−iωr
�

for r → 2M and ψ̂ ret
½t� ∼ eþiωr� for

r → ∞, this implies

φ̂ret ∼ ðδωÞ ln
�

r
2M

− 1

�
e−iωr

�
for r → 2M; ð184Þ

φ̂ret ∼ ðδωÞr�eþiωr� for r → ∞: ð185Þ

These behaviors clearly violate the analog of Eqs. (147),
verifying the need for punctures.
We can obtain the punctures in a practical way from the

large-r and near-horizon expansions (B1) or (B3). To
construct the puncture at infinity, we define

χ̂∞ ¼ Φoutv; ð186Þ

with v given by Eq. (125) and

Φout¼
�
02d×d Ψ̂1þ ���Ψ̂dþ

�
; ð187Þ

where Ψ̂kþ ¼ ðΨkþ; ∂rΨkþÞT , k ¼ 1;…; d, and Ψkþ
lm ¼

almk;0ðpiÞeiωr� is the leading term in the large-r expansion
(B1a). The parametric derivative is then

δχ∞ ¼ δΦoutvþΦoutδv: ð188Þ

For the Lorenz-gauge case, we need to remove only the
leading large-r behavior. It therefore suffices to take φ̂P

∞ to
be the leading term in Eq. (188),

φ̂P
∞ ¼ iðδωÞr�Φout ·

�
0d
cþ

�
; ð189Þ

where cþ is given by Eq. (126). For the Teukolsky case, the
general construction is the same, but three more orders
must be included in the puncture to obtain a convergent
retarded integral of the effective source.
The puncture at the horizon is derived analogously. We

define

χ̂H ¼ Φinv; ð190Þ

with

Φin¼
�
Ψ̂1− �� �Ψ̂d− 02d×d

�
; ð191Þ

where Ψ̂k−
lm ¼ ðΨk−

lm; ∂rΨk−
lmÞT , k ¼ 1;…; d, and Ψk−

lm ¼
blmk;0ðpiÞe−iωr� , the leading term in the near-horizon expan-
sion (B1b). The parametric derivative is

δχ̂H ¼ δΦinvþΦinδv: ð192Þ

Again it suffices to include just the leading term,

φ̂P
H ¼ −iðδωÞr�Φin ·

�
c−
0d

�
; ð193Þ

where c− is given by Eq. (127).
In summary, with t slicing, the parametric derivative of

the retarded field, δψ̂ ret, is given by

δψ̂ ret ¼ φ̂H þ φ̂P
H ð194Þ

for 2M < r < rH, by

δψ̂ ret ¼ φ̂∞ þ φ̂P
∞ ð195Þ

for r > r∞, and by

δψ̂ ret ¼ φ̂p ð196Þ

for rH < r < r∞, where φ̂a is given by Eq. (183), with the
punctures φ̂P

∞ and φ̂P
H given by Eqs. (189) and (193).

D. Example 2: v-t-u slicing

We next consider sharp v-t-u slicing. This is the slicing
used in our numerical calculations of φ, and our description
in this section focuses on the particular choices we make in
our numerical implementation. Unlike in previous sections,
here we also divide the discussion between Lorenz-gauge
and Teukolsky calculations as they differ in important
ways.
As in the case of t slicing, we do not use a puncture at the

particle.

1. Lorenz gauge

In our Lorenz-gauge calculations, we merge ΓL and ΓR
into Γp. The matrices of homogeneous solutions in the
three regions ΓH, Γp, and Γ∞ are ΦH ¼ Φ½v�, Φp ¼ Φ½t�,
and Φ∞ ¼ Φ½u�, as described in Sec. VI C.
We show below that a puncture is not required with this

setup. Equation (182) therefore reduces to

φ̂ ¼ Φ
�
vφ −

�
DH

top þD∞
top

0d

�
þDHθðr − rHÞ

þD∞θðr − r∞Þ
�
; ð197Þ
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where DH ¼ Φ−1
½v�P−δPþψ̂ ret

½v� and D∞ ¼ Φ−1
½t� P−δPþψ̂ ret

½t� .
Explicitly,

DH ¼ −iδωΦ−1
½v�

�
r�1d×d 0d×d
f−11d×d r�1d×d

�
ψ̂ ret
½v�






r¼rH

; ð198Þ

D∞ ¼ −iδωΦ−1
½t�

�
r�1d×d 0d×d
f−11d×d r�1d×d

�
ψ̂ ret
½t�






r¼r∞

: ð199Þ

To justify the conclusion that no punctures are
required, we first consider the integrands that appear in
Eq. (175). From the large-r behavior (B1), we have
ψ̂ ret
½u� ∼ ðr0;…; r0; 1=r2;…; 1=r2ÞT ; the absence of the phase

factor eiωr
�
in u slicing means that the r derivative of the

leading term vanishes, leading to the ∼1=r2 behavior in
∂rψ

ret
½u�. We also have

δÂ½u� ∼
�

0d×d 0d×d
r−21d×d r01d×d

�
: ð200Þ

Hence, the source in Γ∞, K̂∞ ¼ −δÂ½u�ψ̂ ret
½u�, behaves as

∼r−2. To assess the falloff of the integrand Φ−1
½u�topδÂ½u�ψ̂ ret

½u�,
we also require the falloff of Φ−1

½u�top. From the large-r

behavior (B1a), we have the block form

Φ½u� ∼
� ð1þ e−2iωr

� Þ1d×d r01d×d
e−2iωr

�
1d×d r−21d×d

�
; ð201Þ

from which we can derive Φ−1
½u�top ∼ r0 (possibly with

oscillatory terms). Therefore, the integrand in the upper
half of Eq. (175) falls off as 1=r2 (again, possibly with
oscillatory terms), and the integrals converge without a
need for a puncture.
The core of this sketch is that in hyperboloidal slic-

ing, the outgoing modes at infinity do not contain an
oscillatory factor. A similar sketch applies for the integral
in the lower half of Eq. (175), using the fact that the
ingoing modes at the horizon likewise contain no oscil-
latory factor.
We have also numerically verified that the stronger (but

necessary) conditions (147) are met. The key reason is
again the lack of oscillatory factors. The correct boundary
conditions are provided by the parametric derivative of the
retarded field ψ̂ ret

½vtu�. Because there are no oscillatory factors
in ψ̂ ret

½vtu�, we have that δψ̂
ret
½u� has the same falloff as ψ̂ ret

½u� as
r → ∞, and δψ̂ ret

½v� has the same behavior as ψ̂ ret
½v� as r → 2M;

this contrasts with the behavior in t slicing, illustrated in

Eqs. (188) and (192), where the parametric derivative
introduces irregularities at the boundaries.
In summary, with v−t−u slicing, δψ̂ ret is given by

Eq. (197) with Eq. (175) and vanishing punctures in vφ.

2. Teukolsky

We now consider the equivalent calculation in our
Teukolsky formalism of Sec. IVA. Similar to the
Lorenz-gauge calculations, we consolidate ΓL and ΓR into
a single region, Γp. But, unlike in the Lorenz gauge, it is
necessary to include a puncture, φ̂∞ in the asymptotic
regime of Γ∞. The solution in Eq. (182) reduces to

φ̂ ¼ Φ
�
vφ −

�
DH

top þD∞
top

0d

�
þDHθðr − rHÞ

þD∞θðr − r∞Þ
�
; ð202Þ

where

DH ¼ Φ−1
½v�P−δPþψ̂ ret

½v�;

D∞ ¼ ½−Φ−1
½t� P−φ̂

P
∞ þΦ−1

½t� P−δPþψ̂ ret
½t� �r∞ ; ð203Þ

with ΦH ¼ Φ½v�, Φp ¼ Φ½t�, and Φ∞ ¼ Φ½u� in the regions
ΓH, Γp, and Γ∞, respectively. In this section we wish to
demonstrate the need for an appropriate puncture within the
asymptotic region Γ∞ despite the introduction of hyper-
boloidal slicing.
Once more, let us consider the integrals over the

extended source term that appear in Eq. (175). The
boundary conditions of the homogeneous solutions to
the Teukolsky equation results imply, under rescaling,
ψ̂ ret
½u� ∼ ðr0; 1=r2ÞT , as in the Lorenz gauge.
In the Teukolsky form of our worldtube method, δÂ½u� is

given, at leading order, by

δÂ½u� ∼
�

0 0

r−2 r0

�
: ð204Þ

Therefore, the source behaves as K̂∞ ∼ r−2 in the asymp-
totic region Γ∞, again just as in the Lorenz gauge.
However, the falloff of the entire integrand is where the
similarities with the Lorenz gauge end. If we consider the
final factor in the integrand, Φ−1

½u� top, we find that Eqs. (112)
and (113) imply

Φ½u� ∼
�

r0 þ r2se−2iωr
�

r0

r−2 þ r2se−2iωr
�

r−2

�
; ð205Þ

MILLER, LEATHER, POUND, and WARBURTON PHYS. REV. D 109, 104010 (2024)

104010-22



which leads to Φ−1
½u� top ∼ r−2sðr−2; r0ÞT (neglecting oscil-

latory factors).10 The integrands in the upper half of the
solution (175) therefore diverge as Φ−1

½u�topδÂ½u�ψ̂ ret
½u� ∼

r−2ðsþ1Þ. For the spin-weight s ¼ −2 that we are consid-
ering here, Φ−1

½u�topδÂ½u�ψ̂ ret
½u� ∼ r2. Hence, the integrals

diverge, and to obtain a physical solution one requires a
suitable puncture in Γ∞.
In our Teukolsky calculation, we obtain punctures in

the same manner as in Sec. VII C, by appealing to the large-
r expansions in Appendix B 2. To construct a suitable
puncture in Γ∞, we again use the definition in Eq. (186),
with Φout ¼ ð02×1jΨ̂þÞ. Here Ψ̂þ is given by terms derived
from the asymptotic expansion in Eq. (B3),

Ψþ
lm ¼ f−2

Xjmax

j¼0

almj ðpiÞ
ðωrÞj : ð206Þ

Here jmax ≥ 2; since the divergence is ∼r2 in the integrand,
one must consider an expansion at least up to Oðr−2Þ. This
is to ensure the effective source K̂eff

∞ falls off sufficiently
quickly for the integral to converge. The puncture, φ̂P

∞, is
therefore defined by taking the first term of the parametric
derivative, δχ∞, in Eq. (188) with δΦout derived from the
asymptotic expansion in Eq. (206). This yields

δΦout ¼ δω

f2r

Xjmax

j¼0

j
almj ðpiÞ
ðωrÞj−1

�
0 r2

0 −jr − 4Mf−1

�
; ð207Þ

such that the final puncture is given by

φ̂P
∞ ¼ δΦout ·

�
0

cþ

�
; ð208Þ

with cþ given by Eq. (126).

VIII. FIELD EQUATIONS WITH
PARAMETRIC-DERIVATIVE SOURCES

As a final case, we consider a field sourced by a
parametric derivative of a lower-order field. This is the
type of source in the field equation (77), which we rewrite
here as

D̂aψ̂
ð1;1Þ
a ¼ Ĵð1;1Þeff;a : ð209Þ

We restrict our analysis to quasicircular orbits for simplic-
ity, but the extension to eccentric orbits is immediate. For
simplicity, we also assume the falloff properties of the
Lorenz-gauge Φ−1, but the discussion is straightforwardly
extended to allow for the Teukolsky falloff behavior.
We organize our analysis somewhat differently here than

in the preceding three sections. Rather than first consid-
ering a generic formulation and then examining the scheme
in t slicing and in v-t-u slicing, here we begin with the fact
that no punctures at the boundaries are required in v-t-u
slicing (for fields exhibiting the Lorenz-gauge falloff);
this follows from the scaling of the sources in u and v
slicing, given in Eqs. (94) and (96), and the arguments in
Sec. VII D. We then analyze the transformation between
slicings in order to derive punctures in t slicing and junction
conditions in v-t-u slicing. Finally, we summarize the
solution in v-t-u slicing.

A. Junction conditions and punctures

We first consider the transformation from u to t slicing.
We consider a field ψ ½u�½J IðuÞ�e−imϕpðuÞ in u slicing,
suppressing the dependence on r and ε. Expanding func-
tions of u around their values at t, we obtain

ϕpðuÞ ¼ ϕpðtÞ − r�ΩðtÞ þ ε

2
ðr�Þ2Fð0Þ

Ω ðtÞ þOðε2Þ; ð210Þ

J IðuÞ ¼ J IðtÞ − εr�Fð0Þ
I ðtÞ þOðε2Þ; ð211Þ

and therefore

ψ ½u�½J IðuÞ�e−imϕpðuÞ

¼
	
ψ ½u�½J IðtÞ� − ε

�
r� ∂
!

Vψ ½u�

þ i
2
ðr�Þ2mFð0Þ

Ω ψ ½u�

�
þOðε2Þ

�
eim½Ωr�−ϕpðtÞ�; ð212Þ

where all functions on the right are evaluated at
time t. Equating the right-hand side of Eq. (212) to
ψ ½t�½J IðtÞ�e−imϕpðtÞ, and writing the expansions

ψ ½t� ¼ εψ ð1Þ
½t� þ ε2ψ ð2Þ

½t� þOðε3Þ ð213Þ

and

ψ ½u� ¼ εψ ð1Þ
½u� þ ε2ψ ð2Þ

½u� þOðε3Þ; ð214Þ

we find ψ ð1Þ
½u� ¼ ψ ð1Þ

½t� e
−imΩr� and

ψ ð2Þ
½u� ¼ ðψ ð2Þ

½t� þ Δψ ð2Þ
½t� Þe−imΩr� ; ð215Þ

10For a generic matrix of the form (205), the large-r growth of
Φ−1

½u� top is slower than our displayed scaling. Our scaling relies on

the fact that the determinant of the leading-order large-r term in
Φ½u� vanishes. We can write that matrix as ð ar0cr−2

br0
dr−2Þ. Each column

here comes from the large-r expansion of an outgoing wave
solution ½sRþ

lm; ∂rðsRþ
lmÞ�T , multiplied by a constant a or b, with

sR
þ
lm ¼ r0 þ a1r−1 þOðr−2Þ for some constant a1. We therefore

have c ¼ −aa1 and d ¼ −ba1, which makes the determinant
vanish.
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where

Δψ ð2Þ
½t� ¼ r� ∂

!
Vψ

ð1Þ
½t� −

i
2
ðr�Þ2mFð0Þ

Ω ψ ð1Þ
½t� : ð216Þ

Here all functions are evaluated at the same values of their
arguments.
We relate

ψ̂ ð2Þ
½u� ¼ ðψ ð2Þ

½u� ; ∂rψ
ð2Þ
½u� Þ

T ð217Þ

to

ψ̂ ð2Þ
½t� ¼ ðψ ð2Þ

½t� ; ∂rψ
ð2Þ
½t� Þ

T ð218Þ

by taking a radial derivative of Eq. (215). This yields

ψ̂ ð2Þ
½u� ¼ Pþðψ̂ ð2Þ

½t� þ Δψ̂ ð2Þ
½t� Þ; ð219Þ

where

Δψ̂ ð2Þ
½t� ¼ r� ∂

!
V ψ̂

ð1Þ
½t� −

i
2
ðr�Þ2mFð0Þ

Ω ψ̂ ð1Þ
½t�

þ f−1ð0d; ∂!Vψ
ð1Þ
½t� − imFð0Þ

Ω r�ψ ð1Þ
½t� Þ

T
: ð220Þ

Noting that every term in the transformation involves a
forcing function, we can also write

ψ̂ ð1;1Þ
½u� ¼ Pþðψ̂ ð1;1Þ

½t� þ Δψ̂ ð2Þ
½t� Þ; ð221Þ

while the rest of ψ̂ ð2Þ transforms in the trivial way:

ψ̂ ð2;0Þ
½u� ¼ Pþψ̂

ð2;0Þ
½t� : ð222Þ

Equation (221) is the junction condition at a boundary
between t and u slicings. The same equation holds at a
boundary between v and t slicings, with the relabeling
t → v, u → t:

ψ̂ ð1;1Þ
½t� ¼ Pþðψ̂ ð1;1Þ

½v� þ Δψ̂ ð2Þ
½v� Þ; ð223Þ

where

Δψ̂ ð2Þ
½v� ¼ r� ∂

!
V ψ̂

ð1Þ
½v� −

i
2
ðr�Þ2mFð0Þ

Ω ψ̂ ð1Þ
½v�

þ f−1ð0d; ∂!Vψ
ð1Þ
½v� − imFð0Þ

Ω r�ψ ð1Þ
½v� Þ

T
: ð224Þ

In addition to providing a junction condition, Eq. (223)
can be used to construct a puncture at the horizon in t
slicing. The singularity at the horizon comes from the
second term, which then serves as a puncture,

ψ̂Pð1;1Þ
H½t� ¼ PþΔψ̂

ð2Þ
½v� : ð225Þ

A puncture at infinity can be constructed in the same way.
Following the same steps that led to Eq. (221), we find

ψ̂ ð1;1Þ
½t� ¼ P−ðψ̂ ð1;1Þ

½u� þ Δψ̂ ð2Þ
½u� Þ; ð226Þ

where

Δψ̂ ð2Þ
½u� ¼ −r� ∂!V ψ̂

ð1Þ
½u� −

i
2
ðr�Þ2mFð0Þ

Ω ψ̂ ð1Þ
½u�

− f−1ð0d; ∂!Vψ
ð1Þ
½u� þ imFð0Þ

Ω r�ψ ð1Þ
½u� Þ

T
: ð227Þ

A valid puncture at infinity is therefore

ψ̂Pð1;1Þ
∞½t� ¼ P−Δψ̂

ð2Þ
½u� : ð228Þ

B. Example: v-t-u slicing

As a concrete example, we now specialize to the
following setup:

(i) in ΓH, we use v slicing and a puncture ψ̂P
H;

(ii) in ΓL, we use v slicing and no puncture;
(iii) in Γp, we use t slicing and a puncture ψ̂P

p ;
(iv) we omit ΓR;
(v) in Γ∞, we use u slicing and a puncture ψ̂P

∞.
This is the arrangement used in Refs. [7,17,18].
Following the same steps as in previous sections, starting

from a solution of the form (152), we arrive at the first three
subequations in Eq. (161) with

CH
ð1;1Þ ¼ Φ−1

½v� ψ̂
Pð1;1Þ
H jrH ; ð229aÞ

CL
ð1;1Þ ¼ Φ−1

½t� ½PþΔψ̂
ð2Þ
½v� − ψ̂Pð1;1Þ

p �




rL
; ð229bÞ

C∞
ð1;1Þ ¼ Φ−1

½u� fPþ½Δψ̂ ð2Þ
½t� þ ψ̂Pð1;1Þ

p � − ψ̂Pð1;1Þ
∞ g





r∞

ð229cÞ

and with the replacements rR ¼ r∞, CR → C∞
ð1;1Þ, and

aR → a∞. The solution can then be put in the form
(164) with rR ¼ r∞ and CR set to zero.
Here, for generality, we allow for punctures at infinity

and the horizon. Though they are not needed in v-t-u
slicing, they can be used to accelerate the convergence of
integrals.

IX. DEMONSTRATION 1: LORENZ-GAUGE
CALCULATIONS FOR QUASICIRCULAR ORBITS

As a demonstration of our method, we consider the
Lorenz-gauge field equations for a point mass on a
quasicircular orbit. In that context, we calculate the first-
order metric perturbation h̄ð1Þilm and the parametric derivative
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∂r0 h̄
ð1Þ
ilm, where r0 ¼ MðMΩÞ−2=3 is the leading-order

orbital radius.

A. Calculation of h̄ð1Þilm

In t slicing, the field equations for h̄ð1Þilm are identical to
Ref. [49]’s Lorenz-gauge frequency-domain field equations
for a particle on a circular geodesic of radius r0. We write
them for generic slicing in matrix form as

D̂aψ̂
ð1Þ
a ¼ Ĵð1Þa ; ð230Þ

where D̂ is defined by Eq. (70) with Eqs. (71) and (73).
The point source takes the form

Ĵð1Þ ¼ Ĵppðr0Þδðr − r0Þ; ð231Þ

where Ĵpp ¼ ð0d; JppÞT and

Jpp ¼ β

8>>>>>><
>>>>>>:

ðt1t3t5ÞT l > 0; m ¼ 0;l even;

t8 l > 0; m ¼ 0;l odd;

ðt1t3t5t6ÞT l ¼ 1; m ¼ 1;

ðt9t10ÞT l; m > 0;lþm odd;

ðt1t3t5t6t7ÞT l; m > 0;lþm even;

ð232Þ

with β ¼ 64πM=f20 and [48,49]

t0ilm ¼ −
1

4
E0αilm

	
Y�
lmðπ=2; 0Þ i ¼ 1;…; 7;

∂θY�
lmðπ=2; 0Þ i ¼ 8; 9; 10:

ð233Þ

Here E0 ¼ f0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=r0

p
, with f0 ¼ 1 − 2M=r0, is the

specific energy of a point mass on a circular geodesic of
radius r0, and the αilm’s are given by (suppressing lm
labels)

α1 ¼ f20=r0; α2;5;9 ¼ 0; ð234aÞ

α3 ¼ f0=r0; α4 ¼ 2if0mΩ; ð234bÞ

α6 ¼ r0Ω2; α7 ¼ r0Ω2½lðlþ 1Þ − 2m2�; ð234cÞ

α8 ¼ 2f0Ω; α10 ¼ 2imr0Ω2: ð234dÞ

Note that the i ¼ 2; 5; 9 equations are sourceless.
With this source, if we use a continuous slicing, we

can immediately write the solution in the form (124).
Equation (125) reduces to

vð1Þ ¼ v−θðr0 − rÞ þ vþθðr − r0Þ; ð235Þ

where

v− ¼
�
−Φ−1

0 topĴ
pp

0d

�
; vþ ¼

�
0d

Φ−1
0 botĴ

pp

�
: ð236Þ

Here we use Φ0 ≔ Φðr0Þ for brevity. The solution (124)
thus becomes

ψ̂ ð1Þ ¼ ψ̂ ð1Þ
− θðr0 − rÞ þ ψ̂ ð1Þ

þ θðr − r0Þ; ð237Þ

where ψ̂ ð1Þ
� ¼ Φv�. This is the standard point-particle

solution in, e.g., Ref. [49].
In sharp v-t-u slicing, Eq. (237) remains valid, with a

simple change: in ψ̂ ð1Þ
� ¼ Φv�, the matrix Φ becomes

Φ½v�, Φ½t�, or Φ½u�, depending on the region where ψ̂ ð1Þ
� is

evaluated.
We evaluate this solution using the following method:
(1) Fix a zeroth-order orbital radius r0.
(2) For each lm mode, construct the matrix Φ of homo-

geneous solutions as reviewed in Appendix B 1. Φ is
output and stored on a grid determined by an adaptive
solver.

(3) Calculate the retarded field for the column vector
(72) using Eq. (237). In the calculation of vð1Þ, we
invert the Φ matrix using the lower–upper (LU)
decomposition method. Integrations and matrix in-
versions are performed on the same grid as in step 2.

(4) For the gauge modes, we calculate the retarded field
from the gauge conditions (A18). For l ¼ m ¼ 2,

these gauge modes are h̄ð1Þ2 and h̄ð1Þ4 . We found
significant numerical errors in the region close to the
inner boundary rin due to a loss of precision when
subtracting one large number from another in the
gauge conditions (A18). We used long double
variables when computing these modes to resolve
this issue.

We compared our results for several modes against the
same computation performed in Mathematica to validate
our code. We also compared our results for h̄1½t� with data

from the code in Ref. [60] and found relative differences of
≲10−12, except at points near the horizon, where we found
we achieved more accurate results through our use of
the greater-than-machine-precision routine described in
Appendix B.
In Fig. 3 we compare the l ¼ 2, m ¼ 2, even-parity

mode of h̄ð1Þilm with t slicing and with v-t-u slicing. The

jumps in Reðh̄ð1Þ½vtu�Þ occur where the slicing changes from v

to t or from t to u. Note that h̄ð1Þilm on different slices can
only differ by a complex phase, such that the modulus

jh̄ð1Þ½vtu�j is continuous across slices. Because v-t-u slicing

follows wave fronts, h̄ð1Þ½vtu� contains no oscillations, while

h̄ð1Þ½t� contains constant-amplitude oscillations at large r.
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Near the horizon, however, the oscillations would only
become visible at points much closer to the horizon.
To compare our results for h̄ð1Þ½t� and h̄ð1Þ½vtu�, we transform

the h̄ð1Þ½t� data onto v-t-u slices using the relationship

h̄ð1Þ½vtu� ¼ e−iωkðr�Þh̄ð1Þ½t� : ð238Þ

Here kðr�Þ is given by Eq. (18), which we restate here for
convenience: k ¼ −r� for v slicing, k ¼ 0 for t slicing, and
k ¼ þr� for u slicing. After performing this transforma-
tion, we find that the results in the different slicings agree to
within a relative difference of ≲10−12.

B. Calculation of ∂r0 h̄
ð1Þ
ilm

1. Overview

We next consider the field δψ̂ ð1Þ, where we now let

δ ≔ ∂r0 : ð239Þ

For our quasicircular orbits, the field equation satisfied by
φ̂ret ¼ δψ̂ ð1Þ is

D̂φ̂ret ¼ K̂ð1Þ; ð240Þ

where the source is

K̂ð1Þ ¼ −δÂψ̂ ð1Þ þ δĴð1Þ: ð241Þ

The first term in K̂ð1Þ is an extended source,

δÂψ̂ ð1Þ ¼ δÂψ̂ ð1Þ
− θðr0 − rÞ þ δÂψ̂ ð1Þ

þ θðr − r0Þ; ð242Þ

where ψ̂ ð1Þ
� ¼ Φv� with v� as given in Eq. (236). Â is given

in terms of A and B in Eq. (71), where A and B are given by
(73). Taking a parametric derivative, we obtain

δÂ ¼
�
0d×d 0d×d
δA δB

�
; ð243Þ

where

FIG. 3. Reðh̄ð1Þ½vtu�Þ (blue line) and Reðh̄ð1Þ½t� Þ (red line) for all nonvanishing imodes with l ¼ 2, m ¼ 2, r0 ¼ 8M. Note that we have not
included the i ¼ 7 BLS mode in this figure for brevity as this is qualitatively the same as the i ¼ 6 mode.
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δA ¼ f−2½2ð1 −H2Þωmδωm − 2ω2
mHδH

þiδωmH0 þ iωmδH0�1d×d þ δMh; ð244aÞ

δB ¼ 2if−1ðδωmH þ ωmδHÞ1d×d: ð244bÞ

Here δωm ¼ mδΩ ¼ − 3
2
m

ffiffiffiffiffiffiffiffiffiffiffi
M=r50

q
, and we recall the

notation H0 ¼ dH=dr�. δMh is given explicitly in
Eqs. (A15) and (A16). We have allowed the height function
to depend on r0, in the case that the slicing evolves along
with the orbit.
Given that Ĵð1Þ ¼ Ĵppδðr − r0Þ, the second source term in

Eq. (241) is restricted to r ¼ r0:

δĴð1Þ ¼ δĴppδðr − r0Þ − Ĵppδ0ðr − r0Þ: ð245Þ

Wesolve the field equation (240) for ∂r0 h̄
ð1Þ
ilm on t and v-t-u

slices. In all cases, we evaluate integrals over extended
sources using a Gauss-Kronrod quadrature routine.

2. ∂r0 h̄
ð1Þ
ilm on t slices

We obtain the solution for ∂r0 h̄
ð1Þ
½t� using Eq. (183), with

punctures at the horizon and at infinity constructed accord-
ing to Eqs. (189) and (193).
The main input to the solution is vφ ¼ v1 þ v2, where v1

and v2 are the integrals of source terms defined in
Eqs. (176) and (177).
Given Eq. (242), it follows that

v1 ¼
�
I1 þ I2
−I3

�
θðr0 − rÞ

þ
�

I4
−I5 − I6

�
θðr − r0Þ; ð246Þ

with

I1 ¼
Z

∞

r0

dr0Φ−1
topðδÂψ̂ retþ þ D̂φ̂P

∞Þ; ð247aÞ

FIG. 4. Real and imaginary parts of ∂r0 h̄
ðiÞ
½t� for all nonvanishing i modes with l ¼ 2, m ¼ 2, r0 ¼ 8M. Note that we have not included

the i ¼ 4 BLS mode in this figure for brevity as this is qualitatively the same as the i ¼ 1 mode.
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I2 ¼
Z

r0

r
dr0Φ−1

topðδÂψ̂ ret
− þ D̂φ̂P

HÞ; ð247bÞ

I3 ¼
Z

r

2M
dr0Φ−1

botðδÂψ̂ ret
− þ D̂φ̂P

HÞ; ð247cÞ

I4 ¼
Z

∞

r
dr0Φ−1

topðδÂψ̂ retþ þ D̂φ̂P
∞Þ; ð247dÞ

I5 ¼
Z

r0

2M
dr0Φ−1

botðδÂψ̂ ret
− þ D̂φ̂P

HÞ; ð247eÞ

I6 ¼
Z

r

r0

dr0Φ−1
botðδÂψ̂ retþ þ D̂φ̂P

∞Þ: ð247fÞ

In t slicing, δÂ reduces to

δÂ½t� ¼ 2ωδω

�
0d×d 0d×d
1d×d 0d×d

�
: ð248Þ

Given Eq. (245), the contribution v2 simplifies more
significantly. After some manipulations involving integra-
tion by parts, we find

v2¼v−2 θðr0−rÞþvþ2 θðr−r0Þ−Φ−1
0 Ĵppδðr−r0Þ; ð249Þ

with

v−2 ¼
�
−Φ−1

0;top½δĴpp þ Â0Ĵ
pp�

0d

�
; ð250aÞ

vþ2 ¼
� 0d;

Φ−1
0;bot½δĴpp þ Â0Ĵ

pp�
�
: ð250bÞ

FIG. 5. Real and imaginary parts of ∂r0 h̄
ð1Þ
½vtu� for all nonvanishing imodes with l ¼ 2,m ¼ 2, r0 ¼ 8M. Note that we have not included

the i ¼ 2 BLS mode in this figure for brevity as this is qualitatively the same as the i ¼ 1 mode.
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Here the factor Â0 ≔ Âðr0Þ has appeared after applying the
identity (139).

3. ∂r0 h̄
ð1Þ
ilm on v-t-u slices

We obtain ∂r0 h̄
ð1Þ
½vtu� using Eq. (197). With this slicing, no

punctures are required.
In vφ ¼ v1 þ v2, v1 is again given by Eq. (246), but now

with φ̂P
a ¼ 0. δÂ is given by

δÂ½v� ¼
�

0d×d 0d×d
δMh −2imf−1δΩ1d×d

�
for r∈ΓH; ð251Þ

δÂ½u� ¼
�

0d×d 0d×d
δMh 2imf−1δΩ1d×d

�
for r∈Γ∞; ð252Þ

and by Eq. (248) for r∈Γp. δMh is given explicitly in
Eqs. (A15) and (A16), with H ¼ −1 in δÂ½v� and H ¼ þ1

in δÂ½u�.
The contribution v2 is given by Eq. (249), unchanged

from t slicing.

4. Results and comparison between slicings

Figures 4 and 5 show our results for the l ¼ 2, m ¼ 2

mode of ∂r0 h̄
ð1Þ
½t� and ∂r0 h̄

ð1Þ
½vtu�. These fields are generically

discontinuous at r ¼ r0 due to the δ0ðr − r0Þ source.

∂r0 h̄
ð1Þ
½vtu� additionally contains discontinuities at the boun-

daries between slicings, as h̄ð1Þ½vtu� did. At large r, ∂r0 h̄
ð1Þ
½t�

oscillates with growing amplitude, while ∂r0 h̄
ð1Þ
½vtu� goes to a

constant. This is reinforced in Fig. 6, which shows the

absolute value j∂r0 h̄ð1Þ½t� j growing at large r while j∂r0 h̄ð1Þ½vtu�j
decays to a constant. Similar differences in behavior would
appear near the horizon if the plots were to zoom in on that
region.
To compare our results in the two slicings, we transform

from t to v-t-u slicing using

δh̄ð1Þ½vtu� ¼ δðe−iωmkðr�Þh̄ð1Þ½t� Þ
¼ e−iωmkðr�Þðδh̄ð1Þ½t� − iδωmkðr�Þh̃ð1Þ½t� Þ: ð253Þ

We find a relative difference ≲10−11 after performing this
transformation, confirming the consistency of our results
for different slicings.

X. DEMONSTRATION 2: TEUKOLSKY
CALCULATIONS FOR

QUASICIRCULAR ORBITS

In this section we apply our scheme to the calculation of
the first-order s ¼ −2 Teukolsky master function and
its derivative with respect to an orbital parameter. This
problem is slightly different in structure from the Lorenz-
gauge problem explored in Sec. IX, but the generic method
is still applicable. The equations we solve still have the
forms of Eqs. (230) and (240), simply with different
differential operators and source terms.

A. Calculation of −2Rlm

As in the Lorenz-gauge case, we first review the
calculation of the first-order retarded solution.
For a particle on a quasicircular orbit of (leading-order)

radius r0, the Teukolsky master function for the first-order

perturbed Weyl scalar, ψ ð1Þ
4 ¼ψ4½hð1Þ�, is given by Eq. (230)

with ψ̂ ð1Þ ¼ ð−2Rlm; ∂rð−2RlmÞÞT and with D̂ now defined
by the matrices A and B given in Eq. (106). The point-
particle source for the Teukolsky master function has
further distributional content than the Lorenz-gauge source
in Eq. (231), such that

Ĵð1Þ ¼ ĴðAÞpp ðr0Þδðr − r0Þ þ ĴðBÞpp ðr0Þδ0ðr − r0Þ
þ ĴðCÞpp ðr0Þδ00ðr − r0Þ; ð254Þ

where ĴðiÞpp ¼ ð0; JðiÞppÞT with i∈ fA;B;Cg. JðiÞpp are the
source terms given in Appendix C.
The retarded point-particle solution for the Teukolsky

master function is given by Eq. (124). But the additional

FIG. 6. Comparison between j∂r0 h̄1½u�j (blue line) and j∂r0 h̄1½t�j
(red line) for i ¼ 1 (top panel) and i ¼ 2 (bottom panel)
with l ¼ 2, m ¼ 2, r0 ¼ 8M.
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distributional content in the source leads to v having a

similar schematic form to Eq. (249) for ∂r0 h̄
ð1Þ
ilm, as opposed

to Eq. (235) for h̄ð1Þilm. We write this as v ¼ vθ þ vδ, where

vθ ¼ v−θ θðr0 − rÞ þ vþθ θðr − r0Þ; ð255Þ

vδ ¼ Φ−1
0 ½1δ0ðr − r0Þ −Rδðr − r0Þ�ĴðCÞpp : ð256Þ

Here R ¼ ð0
1
1
0
Þ is a reflection matrix such that RĴðCÞpp ¼

ðJðCÞpp ; 0ÞT . The quantities v−θ and vþθ are found through
integration by parts, which yields

v−θ ¼
�
−Φ−1

0;top½ĴðAÞpp −Â0Ĵ
ðBÞ
pp þðÂ2

0þ∂rÂ0ÞĴðCÞpp �
0

�
; ð257Þ

vþθ ¼
�

0

Φ−1
0;bot½ĴðAÞpp − Â0Ĵ

ðBÞ
pp þ ðÂ2

0 þ ∂rÂ0ÞĴðCÞpp �
�
; ð258Þ

where we have used the relation in Eq. (139) and its
derivative: d2Φ−1

dr2 ¼ Φ−1ðÂ2 þ dÂ
drÞ.

The solution is evaluated in the following manner:
(1) Fix a zeroth-order orbital radius r0.
(2) For each lm mode, we construct a matrix of homo-

geneous solutions, Φ, as explained in Appendix B 2.
(3) Calculate the retarded field for the column vector

ψ̂ ð1Þ using Eq. (124) with v ¼ vθ þ vδ given by
Eqs. (255) and (256). The inversion of the matrix Φ
for the calculation of v is facilitated by Mathema-
tica’s INVERSE routine.

(4) Although written in a different manner, this solution
is entirely equivalent to the solutions in the literature
[4,61–64] and can be readily computed using the
TEUKOLSKY package in the Black Hole Perturbation
Toolkit (BHPToolkit) [65]. This provides a robust
check of our numerical results for the retarded field,
and we find relative differences of ≲10−12 between
our calculation and the BHPToolkit.

B. Calculation of ∂r0ð−2RlmÞ
1. Overview

After reviewing the retarded point-particle solution, we
nowmove on to the calculation of its derivativewith respect
to an orbital parameter. As in the Lorenz-gauge case, the
field equation we consider is Eq. (240), but now with
φret ¼ δψ̂ ð1Þ ¼ ðδ−2Rlm; ∂rðδ−2RlmÞÞT . The source term,
Kð1Þ, has the same form as Eq. (241), but the first, extended
term has added distributional content,

δÂψ̂ ð1Þ ¼ δÂψ̂ ð1Þ
− θðr0 − rÞ þ δÂψ̂ ð1Þ

þ θðr − r0Þ
− δÂĴðCÞpp δðr − r0Þ: ð259Þ

The extended support from the source term again originates
from the retarded point-particle (Teukolsky) solution,

ψ̂ ð1Þ
� ¼ Φv�. Explicitly, δA and δB for the Teukolsky

problem have the following form:

δA ¼ 2f−2½ð1 −H2Þωmδωm

− 2ω2
mHδH − δ−2VlmðrÞ�; ð260aÞ

δB ¼ 2if−1ðδωmH þ ωmδHÞ; ð260bÞ

where

δ−2VlmðrÞ ¼ 4ir−2fδωm½rð1 −HÞf −Mð1þHÞ�
− rfδH −MδHg: ð261Þ

The secondary source term arising from the derivative of
the point-particle Teukolsky source is written concisely as

δĴð1Þ ¼ ½δĴðAÞpp δðr − r0Þ þ δĴðBÞpp δ0ðr − r0Þ
þ δĴðCÞpp δ00ðr − r0Þ − ĴðAÞpp δ0ðr − r0Þ
− ĴðBÞpp δ00ðr − r0Þ − ĴðCÞpp δ000ðr − r0Þ�: ð262Þ

The solution is given by Eq. (202). Due to the more
complicated source, the quantity vφ, defined in Eq. (175),
has a more complicated form than in the Lorenz gauge:

vφ ¼ v3 þ v4 þ v5 þ v6

þΦ−1
0 ½Rδðr − r0Þ þ 1δ0ðr − r0Þ�ðĴðBÞpp − δĴðCÞpp Þ

þΦ−1
0 ½Rδ0ðr − r0Þ þ 1δ00ðr − r0Þ�ĴðCÞpp : ð263Þ

The terms v3 and v6 originate from the source δÂψ̂ ð1Þ [i.e.,
they comprise v1 in Eq. (175)], while all other terms
originate from the source δĴð1Þ [i.e., they comprise v2 in
Eq. (175)].
v3 specifically corresponds to the integral over the

Heaviside terms in Eq. (259), meaning it has the form
given in Eq. (246) and accounts for the integration over the
extended piece of the source. v6 is then the integral over the
delta term in Eq. (259):

v6 ¼ v−6 θðr0 − rÞ þ vþ6 θðr − r0Þ: ð264Þ

Here v�6 are given concisely by

v−6 ¼
�
−Φ−1

0;topδÂ0Ĵ
ðCÞ
pp

0

�
; vþ6 ¼

�
0

Φ−1
0;botδÂ0Ĵ

ðCÞ
pp

�
: ð265Þ

The rest of the terms follow immediately from the general
formula (177) for v2 with δĴ given by Eq. (262). v4
represents the integral of the first set of delta functions in
Eq. (262), from which one finds
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v4 ¼ v−4 θðr0 − rÞ þ vþ4 θðr − r0Þ; ð266Þ

where

v−4 ¼
�
−Φ−1

0;top½δĴðAÞpp − Â0δĴ
ðBÞ
pp þ ðÂ2

0 þ ∂rÂ0ÞδĴðCÞpp �
0

�
;

ð267Þ

vþ4 ¼
�

0;

Φ−1
0;bot½δĴðAÞpp − Â0δĴ

ðBÞ
pp þ ðÂ2

0 þ ∂rÂ0ÞδĴðCÞpp �

�
:

ð268Þ

The next term, v5, arises from the second grouping of delta
functions in Eq. (262) and hence follows the same split as
Eq. (266),

v5 ¼ v−5 θðr0 − rÞ þ vþ5 θðr − r0Þ: ð269Þ

However, the higher-order derivatives of the delta functions
than seen previously require one higher derivative of
Eq. (139), leading to

d3Φ−1

dr3
¼Φ−1

�
Â
dÂ
dr

þdÂ
dr

ÂþÂ3þÂ
dÂ
dr

þd2Â
dr2

�
: ð270Þ

Using this relation one finds

v−5 ¼

0
B@

Φ−1
0;top½Â0Ĵ

ðAÞ
pp − ðÂ2

0 þ ∂rÂ0ÞĴðBÞpp þ ðÂ0∂rÂ0

þ∂rÂ0Â0 þ Â3
0 þ Â0∂rÂ0 þ ∂

2
r Â0ÞĴðCÞpp �

0

1
CA;

ð271Þ

vþ5 ¼

0
B@

0

−Φ−1
0;bot½Â0Ĵ

ðAÞ
pp − ðÂ2

0 þ ∂rÂ0ÞĴðBÞpp þ ðÂ0∂rÂ0

þ∂rÂ0Â0 þ Â3
0 þ Â0∂rÂ0 þ ∂

2
r Â0ÞĴðCÞpp �

1
CA:

ð272Þ
2. ∂r0R½vtu� on v-t-u slices

Our calculation of ∂r0R½vtu� is done through Eq. (202),
with vφ given by Eq. (263), but within the integrals of the
source terms in v3, we include no puncture in the regions
where r∈Γp as we are only considering the retarded
solution. Furthermore, we choose not to include a puncture
toward the horizon, where r∈ΓH, as we find Eq. (147) is
satisfied for a fiducial horizon puncture. Hence, in the
integrals Ii that enter v3, with i∈ f1;…; 6g, we set
φ̂P
H ¼ φ̂P

p ¼ 0.
In the Teukolsky framework (with s ¼ −2), δÂ is now

given in the various slicings by

δÂ½v� ¼ 2mf−1δΩ
�

0 0

4r−1 1

�
; r∈ΓH; ð273Þ

δÂ½t� ¼ 2mf−2δωm

�
0 0

2r−2ðrf −MÞ þ iωm 0

�
; r∈Γp;

ð274Þ

δÂ½u� ¼ −2mf−1δΩ
�

0 0

4r−2 1

�
; r∈Γ∞: ð275Þ

δÂ, shown in Fig. 7, forms a central component of the
overall source term. We see that this piece diverges as ∼f−1
toward the horizon but converges toward infinity. However,
to determine whether the retarded integrals converge, we
must analyze the entire integrands.
Figure 8 plots the integrands in Eq. (247), both with and

without punctures. As shown by the reference curves in the
two plots, the integrands Φ−1

topδÂψ̂ ret
− and Φ−1

botδÂψ̂
ret
− con-

verge toward the horizon as ∼f2 and ∼f0, respectively. The
analogous integrands, however, diverge as ∼r2 toward null
infinity, verifying the need for a puncture in the region Γ∞.
Construction of appropriate punctures in this context

were discussed in Sec. VII D 2. We show the application of
these punctures in improving the falloff of the integrands in
the region Γ∞ in Fig. 8. Here we used the asymptotic
expansion in Eq. (206) with jmax ¼ 4. The plot shows how
the inclusion of the puncture now forces the integrands to
fall off as ∼r−3 and therefore leave us with a finite integral.
Punctures could be constructed in a similar manner in the
other asymptotic region, ΓH. This would speed up the

FIG. 7. Real and imaginary parts of the extended source terms
appearing in the integrands within Eq. (246) for v3. In the
asymptotic regions, the source decays as ∼r−2 toward spatial
infinity but grows as ∼f−1 toward the horizon. Here l ¼ 2,
m ¼ 2, and the secondary is at r0 ¼ 10M. The vertical arrow in
the inset of the plot signifies the presence of additional distri-
butional pieces that must be taken into account when calculating
the full solution.
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convergence of the integration over this region, but it is not
required.
In Fig. 9, we present results for the l ¼ 2, m ¼ 2 mode

of ∂r0ð−2R½vtu�Þ. As is evident from the form of the solution
in Eq. (263), the solution is discontinuous at the particle’s
location, owing to the Dirac delta primes that appear in the
source. Furthermore, there are also jumps at the boundaries
of the regions rL and rR due to the change in slicing there.

3. ∂r0R½t� on t slices

For comparison purposes we also present in Fig. 10 the
same results after transforming to t slicing throughout the
numerical domain. As we observed in Fig. 3, we see that
∂r0ð−2R½t�Þ contains constant-amplitude oscillations at large

r that are not present in the solution for ∂r0ð−2R½vtu�Þ. Also,
in t slicing, there will be oscillations toward the horizon, but
the aspect ratio and choice of radial coordinate preclude
them from being seen in Fig. 3.

XI. CONCLUSION AND OUTLOOK

In this paper we have formulated a worldtube puncture
scheme for self-force calculations in the Fourier domain.
We have specifically focused on the types of field equations
that arise in a multiscale expansion of the Einstein equation,
but the method applies equally well in an ordinary
frequency-domain calculation.
We have also demonstrated our scheme’s utility and

flexibility by numerically implementing it both for the
Lorenz-gauge field equations and the Teukolsky equation.
Moreover, we note that although it is described here for the
first time, our method has already been successfully
employed more broadly; it underlays all second-order
calculations to date [7,17,18].
However, in the time since our method was first

formulated and implemented, at least two alternatives have
been presented that offer some clear advantages [29,36]. It
is therefore worth making a careful assessment of the

FIG. 8. Comparison of the nonpunctured and punctured inte-
grands for the extended source terms within the integrals
appearing in Eq. (246) for v3. Top panel: The integrands of
the weighting coefficient for the homogeneous solutions Φ−
throughout the entire numerical domain. In the absence of a
puncture, the integrand falls off as ∼f2 toward the horizon but
grows as ∼r2 toward null infinity. Therefore in the region Γ∞ we
apply a suitable puncture to make the integral converge. The
puncture used in the figure ensures the integrand now falls off as
∼r−3 toward null infinity. Bottom panel: The integrands of the
weighting coefficient for the homogeneous solutions Φþ
throughout the entire numerical domain. Without a puncture
(blue curve), the integrand tends to a constant toward the horizon
but again grows as ∼r2 toward null infinity. With the puncture
(red curve) applied in Γ∞, the integrand again falls off as ∼r−3.

FIG. 9. Real and imaginary parts of ∂r0ð−2R½vtu�Þ with l ¼ 2,
m ¼ 2, r0 ¼ 10M.

FIG. 10. Real and imaginary parts of ∂r0ð−2R½t�Þ with l ¼ 2,
m ¼ 2, r0 ¼ 10M.
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relative merits of these various approaches. It is also
important to point out some aspects of our method that
can be usefully carried over to those other schemes (and
vice versa).
We first observe that our scheme is substantially more

general than earlier worldtube puncture schemes. It is
intrinsically a multidomain method, and it exploits that
flexibility by (i) accommodating punctures in multiple
domains and (ii) allowing different choices of time slicing
(and therefore different field equations) in different
domains. This type of generality could be beneficial in
any approach.
In terms of practical implementation, the key difference

between our scheme and the alternatives is that we apply
the method of variation of parameters for sources with
spatially unbounded support. This approach obtains inho-
mogeneous solutions by convolving homogeneous solu-
tions against the source, a procedure with substantial
drawbacks when the source has unbounded support. One
drawback is that the homogeneous solutions need to be
known at all radii. This is problematic because the “up”
solutions (i.e., the homogeneous solutions that are regular
atIþ) need to be calculated near the horizon, and similarly
the “in” solutions (i.e., the homogeneous solutions that are
regular atH þ) need to be calculated at a large radius. It can
be difficult to accurately compute these homogeneous
solutions far away from where their numerical boundary
conditions are specified. A second drawback is that the
method sacrifices some of the advantages of hyperboloidal
slicing. On these slices, the retarded inhomogeneous
solution varies slowly across the domain, with no oscil-
lations at large r or near the horizon; this means, in
principle, no oscillations need to be numerically resolved.
The up solutions share this property at large r, and the in
solutions share it near the horizon. However, each of these
homogeneous solutions oscillates in the opposite domain:
up, near the horizon; and in, at large r. This means that to
evaluate the variation-of-parameters integrals, we must
resolve the oscillations even though we are guaranteed
that they do not appear in the ultimate, retarded solution.
These two drawbacks can be tempered by the use of

higher-order punctures in the horizon and infinity
regions to force the source to fall off more rapidly and
thus reduce the contributions from the undesirable homo-
geneous solutions in each region. We do take that approach
in Refs. [7,17,18]. But the alternative approaches in
Refs. [29,36] have more elegantly circumvented the issues
that arise in variation of parameters.
The first alternative approach uses the method of partial

annihilators [66]. This method can be applied when there
exists an operator which when applied to the source takes it
from unbounded support to pointlike (i.e., measure-zero)
support. Acting with this operator on the whole field
equation results in a higher-order differential equation with
a distributional source. This new equation can then be

solved with variation of parameters, and each homo-
geneous solution is only required in the region where it
is well behaved. Such a partial annihilator operator exists
for the calculation of parametric derivatives, and this
approach has been employed for the r0 derivatives of
the Regge-Wheeler-Zerilli master variables and Lorenz-
gauge perturbations [36]. A limitation in this approach is
that it is unlikely that a partial annihilator operator exists for
the full second-order calculation.
The second alternative approach leaves the source intact

but directly solves the field equation in each domain using a
spectral method rather than through convolution with
homogeneous solutions. Like our scheme, this approach
is naturally suited to multidomain techniques. Because it
does not involve a basis of homogeneous solutions, it is
better adapted to hyperboloidal slicing: rather than having
to resolve oscillatory homogeneous solutions nearH þ and
Iþ, one only deals with slowly varying functions,
allowing one to compactify the numerical domain; and
rather than having to construct high-order asymptotic
expansions to impose boundary conditions on the homo-
geneous solutions, the field equation itself imposes boun-
dary conditions on the retarded solution at H þ and Iþ.
We expand on the latter point below. This multidomain,
spectral, compactified hyperboloidal approach was imple-
mented for a scalar-field toy model in Ref. [29]. In that
work the method was shown to be very efficient for
distributional sources, extended sources, and sources with
unbounded support, where for the latter the calculation of a
parametric r0 derivative was used as an example.
Despite variation of parameters’ disadvantages, it does

have some clear advantages. One benefit is that it is a
straightforward way of solving problems with complicated
distributional sources. For example, in Ref. [37], the source
for the second-order retarded metric perturbation was
shown to have the form of a highly nontrivial limit of a
sequence of distributions. Dealing with such sources is
simplest if one can write the solution immediately as an
integral against a Green’s function, as in variation of
parameters, and then manipulate the integral (e.g., through
integration by parts) before any numerical evaluation.
Hence, a valuable approach might be to combine methods,
using variation of parameters within a domain containing
the particle and alternative methods outside that domain.
We also wish to stress that most obstacles encountered in

our complete second-order calculations are independent of
our use of variation of parameters. As mentioned above,
one advantage of compactified hyperboloidal slicing is that
it can avoid the need to calculate boundary conditions.
More precisely, if the numerical variable is regular at the
compactified boundaries, then the field equations them-
selves reduce to regularity conditions at the boundaries, and
there is no need to construct boundary conditions of the
form described in Appendix B. However, this does not
mean boundary conditions never need to be calculated, nor
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does it mean that punctures are unnecessary. At second
order, we do not generically have regular fields at the
boundaries: as analyzed in Ref. [33] and alluded to in
Sec. III D, the second-order solution in the multiscale
expansion is irregular at the boundaries. The correct
physical boundary conditions for the multiscale field
equations can be derived from a post-Minkowski expansion
near Iþ and an analogous expansion near the horizon.
These physical boundary conditions contain hereditary
terms, integrals over the system’s entire past history, which
are impossible to determine from the field equations in the
numerical domain, regardless of one’s choice of slicing or
compactification.
The framework in this paper readily incorporates such

boundary conditions into punctures at the boundaries. Our
analysis in Sec. V C also provides a diagnostic for when a
puncture is required and for the conditions it must satisfy.
That type of analysis should continue to serve a key
purpose even when the method of variation of parameters
is not used.
We also note that other aspects of our scheme are

independent of the use of variation of parameters. One
obvious example is theoverarchingmultiscalemethod,which
wehave presented in amore geometricalway than in previous
literature. Derivatives of the numerical fields with respect to
orbital parameters are an essential ingredient in that method
[2] and in closely associated ones [67–69]. Our analysis has
highlighted how calculations of such parametric derivatives
depend crucially on the choice of slicing. If standard,
constant-t slicing is used, infrared divergences arise. Such
divergences can be treated by introducing punctures at the
horizon and infinity to enforce physical boundary conditions.
However, hyperboloidal slicing entirely evades these diver-
gences (at least for broad classes of fields).
Follow-up papers will explain how the second-order self-

force results in Refs. [7,17,18] were obtained by combining
(i) the puncture scheme in this paper, (ii) the punctures in
Ref. [38], (iii) the coupling formulas presented in Ref. [34],
(iv) the multiscale expansion of the Lorenz-gauge field
equations in Ref. [9] (reviewed in this paper), and (v) the
strategies developed in Refs. [33,70] to overcome infrared
divergences and poor convergence of mode sums.

In the longer term, our scheme can be applied to
eccentric orbits [71]. As we emphasized throughout the
body of this paper, the bulk of our analysis applies equally
well for eccentric as for quasicircular orbits.
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APPENDIX A: COUPLING MATRICES
AND OPERATORS IN THE LORENZ-GAUGE

FIELD EQUATIONS

In this appendix we give explicit expressions for the
quantities MðnÞ

ij , Mh, M∂h, δMh, and ZðnÞ
kj appearing in

the Lorenz-gauge equations (59) [via (60) and (65)]; (69)
[via (73)]; (168) [via (244)]; and the gauge conditions (67)
and (68). For brevity, we omit lm labels on the fields h̄ilm
and frequency ωm, and we follow Ref. [9] by adopting the
shorthand

λ ≔ ðlþ 2Þðl − 1Þ and λ1 ≔ lðlþ 1Þ: ðA1Þ

1. Coupling matrices

The quantities Mð0Þ
ij h̄j in Eq. (60) are given by

Mð0Þ
1j h̄j ¼

f2f0

2

�
∂rh̄3 þ

iωH
f

h̄3

�
þ fð1 − 4M

r Þ
2r2

ðh̄1 − h̄5 − fh̄3Þ −
f2

2r2

�
1 −

6M
r

�
h̄6; ðA2Þ

Mð0Þ
2j h̄j ¼

f2f0

2

�
∂rh̄3 þ

iωH
f

h̄3

�
þ ff0

2
∂rðh̄2 − h̄1Þ −

iω
2
ð1 −HÞf0ðh̄2 − h̄1Þ

þ f2

2r2
ðh̄2 − h̄4Þ −

ff0

2r
ðh̄1 − h̄5 − fh̄3 − 2fh̄6Þ; ðA3Þ

Mð0Þ
3j h̄j ¼ −

f
2r2

�
h̄1 − h̄5 −

�
1 −

4M
r

�
ðh̄3 þ h̄6Þ

�
; ðA4Þ
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Mð0Þ
4j h̄j ¼

ff0

4
∂rðh̄4 − h̄5Þ −

iωð1 −HÞf0
4

ðh̄4 − h̄5Þ −
λ1
2

f
r2
h̄2 −

ff0

4r
ð3h̄4 þ 2h̄5 − h̄7 þ λ1h̄6Þ; ðA5Þ

Mð0Þ
5j h̄j ¼

f
r2

��
1 −

9M
2r

�
h̄5 −

λ1
2
ðh̄1 − fh̄3Þ þ

1

2

�
1 −

3M
r

�
ðλ1h̄6 − h̄7Þ

�
; ðA6Þ

Mð0Þ
6j h̄j ¼ −

f
2r2

�
h̄1 − h̄5 −

�
1 −

4M
r

�
ðh̄3 þ h̄6Þ

�
; ðA7Þ

Mð0Þ
7j h̄j ¼ −

f
2r2

ðh̄7 þ λh̄5Þ; ðA8Þ

Mð0Þ
8j h̄j ¼

ff0

4
∂rðh̄8 − h̄9Þ −

iωð1 −HÞf0
4

ðh̄8 − h̄9Þ −
ff0

4r
ð3h̄8 þ 2h̄9 − h̄10Þ; ðA9Þ

Mð0Þ
9j h̄j ¼

f
r2

�
1 −

9M
2r

�
h̄9 −

f
2r2

�
1 −

3M
r

�
h̄10; ðA10Þ

Mð0Þ
10jh̄j ¼ −

f
2r2

ðh̄10 þ λh̄9Þ: ðA11Þ

In the matrix representation (69) of the field equations,

these coupling terms appear in the form − 4
f2 M

ð0Þ
ij h̄j, which

we write explicitly in terms of (algebraic) matricesMh and
M∂h acting on the vector ψ defined in Eq. (72) and its
radial derivative ∂rψ . The matrix Mh has the explicit form

Mh ¼
2

r2f
×

�
−2ð1 − 9M

2r Þ 1 − 3M
r

λ 1

�
ðA12Þ

for l > 0, m > 0, and lþm odd;

Mh ¼
2

r2f
×

0
BBBBBB@

−ð1 − 4M=rÞ fð1 − 4M=rÞ − 2iMωH ð1 − 4M=rÞ fð1 − 6M=rÞ 0

1 −ð1 − 4M=rÞ −1 −ð1 − 4M=rÞ 0

λ1 −λ1f −2ð1 − 9M=ð2rÞÞ −λ1ð1 − 3M=rÞ ð1 − 3M=rÞ
1 −ð1 − 4M=rÞ −1 −ð1 − 4M=rÞ 0

0 0 λ 0 1

1
CCCCCCA

ðA13Þ

for l > 0, m > 0, and lþm even; and the same matrix
(A13) for l ¼ 1, m ¼ 1 but with the bottom row and
rightmost column omitted.
The matrix M∂h in Eq. (73) has the form M∂h ¼ 02×2

for l > 0, m > 0, and lþm odd;

M∂h ¼ −
4M
r2

×

0
BBBBBB@

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA

ðA14Þ

for l > 0, m > 0, and lþm even; and the same matrix
(A14) for l ¼ 1, m ¼ 1 but with the bottom row and
rightmost column omitted.

Here we have only provided the explicit matrices for
ωm ≠ 0 cases. For ωm ¼ 0, the gauge conditions (67) and
(68) are used to eliminate h̄6 and h̄7, reducing the
dimensions of the matrices.
The matrix δMh in Eqs. (244) is given explicitly as

δMh ¼ 02×2 for l > 0, m > 0, and lþm odd;

δMh ¼−
4M
r2f

iðωδHþ δωHÞ×

0
BBBBBB@

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA

ðA15Þ

for l > 0, m > 0, and lþm even; and
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δMh ¼ −
4M
r2f

iðωδH þ δωHÞ ×

0
BBB@

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA ðA16Þ

for l ¼ 1, m ¼ 1.
Finally, the quantities Mð1Þ

ij appearing in the second-
order source via Eq. (65) are given by

Mð1Þ
1j h̄j ¼ −

1

2
ff0H ∂

!
V h̄3; ðA17aÞ

Mð1Þ
2j h̄j¼−

f0

2
½fH ∂

!
V h̄3−ð1−HÞ ∂!Vðh̄2− h̄1Þ�; ðA17bÞ

Mð1Þ
4j h̄j ¼

f0

4
ð1 −HÞ ∂!Vðh̄4 − h̄5Þ; ðA17cÞ

Mð1Þ
8j h̄j ¼

f0

4
ð1 −HÞ ∂!Vðh̄8 − h̄9Þ; ðA17dÞ

Mð1Þ
ij h̄j ¼ 0 for i ¼ 3; 5; 6; 9; 10: ðA17eÞ

2. Gauge conditions

The operators in the gauge conditions (67) and (68) are
given by

Zð0Þ
1j h̄j ¼ iωmðh̄1 þ fh̄3 þHh̄2Þ

þ f
r
ðr∂rh̄2 þ h̄2 − h̄4Þ; ðA18aÞ

Zð0Þ
2j h̄j ¼ iωmðh̄2 þHh̄1 −Hfh̄3Þ þ f

�
∂rh̄1 − f∂rh̄3

þ 1

r
½h̄1 − h̄5 − fh̄3 − 2fh̄6�

�
; ðA18bÞ

Zð0Þ
3j h̄j ¼ iωmðh̄4 þHh̄5Þ

þ f
r
½r∂rh̄5 þ 2h̄5 þ lðlþ 1Þh̄6 − h̄7�; ðA18cÞ

Zð0Þ
4j h̄j ¼ iωmðh̄8 þHh̄9Þ

þ f
r
ðr∂rh̄9 þ 2h̄9 − h̄10Þ; ðA18dÞ

and

Zð1Þ
1j h̄j ¼ − ∂

!
Vðh̄1 þ fh̄3 þHh̄2Þ; ðA19aÞ

Zð1Þ
2j h̄j ¼ − ∂

!
Vðh̄2 þHh̄1 − fHh̄3Þ; ðA19bÞ

Zð1Þ
3j h̄j ¼ − ∂

!
Vðh̄4 þHh̄5Þ; ðA19cÞ

Zð1Þ
4j h̄j ¼ − ∂

!
Vðh̄8 þHh̄9Þ: ðA19dÞ

APPENDIX B: BASIS OF HOMOGENEOUS
SOLUTIONS

1. Lorenz gauge

Our method of variation of parameters requires the
construction of a basis of homogeneous solutions, as
described around Eq. (115). We obtain these basis solutions
following Ref. [49], for example. Half the members of the
basis are regular at Iþ, and half are regular at H þ. We
denote the former as ψkþ

lm and the latter as ψk−
lm

(k ¼ 1;…; d). For ωm ≠ 0 modes, each ψkþ
lm represents a

purely outgoing wave behaving like ∼e−iωu for r → ∞, and
each ψk−

lm represents a purely ingoing wave behaving like
∼e−iωv at r ¼ 2M. There are a total of 2d basis solutions,
where d is the dimension of the system, equal to the number
of elements in the vector ψlm; see, e.g., the vectors
in Eq. (72).
We construct this basis by first choosing some inner and

outer boundaries rin and rout, setting them as close to
r ¼ 2M and r ¼ ∞ as is practicable. Concretely, rin and
rout are chosen such that any change making rout larger, or
bringing rin closer to 2M, does not affect the first 16
significant digits of the numerical solution. For each lm
mode a set of d boundary conditions, ψk−

lmðrinÞ and
ψkþ
lmðroutÞ, is constructed at the inner/outer boundary. For

the nonstationary modes (ωm ≠ 0), we use the expansions

ψkþ
lmðroutÞ ¼ eiωm½r�out−kðr�Þ�

Xnþmax

n¼0

ak;nr−nout; ðB1aÞ

ψk−
lmðrinÞ ¼ e−iωm½r�in−kðr�Þ�

Xn−max

n¼0

bk;nðrin − 2MÞn: ðB1bÞ

For the stationary modes (ωm ¼ 0), we use

ψkþ
l0 ðroutÞ ¼

Xnþmax

n¼l

ðak;n þ āk;n log routÞr−nout; ðB2aÞ

ψk−
l0ðrinÞ ¼

Xn−max

n¼0

bk;nðrin − 2MÞn: ðB2bÞ

Both of these apply for a generic time function s ¼ t − kðr�Þ.
The coefficients here are d-dimensional column vectors.

They are different for each lm and are determined from
recurrence relations derived by substituting the ansatzes
(B1) and (B2) into the field equations. Recurrence relations
for the Lorenz-gauge boundary conditions can be found
in Appendix A of [49]. n�max is fixed by an accuracy
requirement.
Once the boundary conditions ψkþ

lmðroutÞ and ψk−
lmðrinÞ

are determined, we find the basis solutions ψk�
lm everywhere

in the spacetime by integrating the homogeneous field
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equations inward from rout or outward from rin, as
appropriate. We note that we need the inner and outer
homogeneous solutions over the entire domain, not just at
the particle, for the retarded integrals in the calculation of
the r0 derivative.
For our Lorenz-gauge calculations, we integrated the

homogeneous equations using an eighth-order Runge-
Kutta Prince-Dormand (RKPD) routine from the GNU
Scientific Library (GSL) repositories [72]. This is an adaptive
routine. In it we set the absolute accuracy goal (ϵabs) to 10−16

and the relative accuracy goal (ϵrel) to 10−14. ϵabs and ϵrel were
determined such that reducing them made no difference to
our numerical results up to the 16th significant figure. We set
the outer boundary to be rout ¼ 104M, taking into account
that moving the boundary further out did not change our
results for the homogeneous solutions up to the 16th
significant figure. From similar considerations the inner
boundary needs to be rin ¼ ð2þ 10−8ÞM or closer to the
horizon. The GSL routine cannot take us closer than rin ¼
ð2þ 10−5ÞM without severe computational burdens setting
in, due to factors of 1=f in the differential equation. To obtain
accurate data closer to the horizon we used a greater-than-
machine-precision (GMP) routine for solving coupled differ-
ential equations, based on the C++ library of GMP variables
and functions [73].

2. Teukolsky

To construct an appropriate basis of homogeneous
solutions for the Teukolsky equation, one can follow the
same procedure as Appendix B 1 by pescribing boundary
conditions at some finite radii rin and rout for the radiative
modes. The boundary conditions can take the form of
Eq. (B1) as an asymptotic series solution:

ψþ
lmðroutÞ ¼ eiωm½r�out−kðr�Þ�

Xnþmax

n¼0

an
fðroutÞs
ðωroutÞn

; ðB3aÞ

ψ−
lmðrinÞ ¼ e−iωm½r�in−kðr�Þ�

Xn−max

n¼0

bnrinðrin − 2MÞn: ðB3bÞ

Substituting the ansatzes in Eqs. (B3a) and (B3b) into the
field equation yields the following recursion relations for
the coefficients an and bn:

an ¼
i

2ðk − 2s − 1Þ ½ðlþ n − s − 1Þðl − nþ sþ 2Þan−1
þ 2Mðn − 2Þωmðn − s − 2Þan−2�; ðB4aÞ

bn ¼
1

2Mnðn − s − 4iMωmÞ
½ðlðlþ 1Þ − sðsþ 1Þ

þ 4iMωmð2n − 2s − 1Þ þ 2ns − nðn − 1ÞÞbn−1
þ 2iωmðn − 2s − 1Þbn−2�; ðB4bÞ

where a2sþ1 ¼ b0 ¼ 0 and all of the remaining terms in the
series expansion are determined by imposing an<2sþ1 ¼ 0
and bn<0 ¼ 0, respectively. Other similar asymptotic
expansions for the hyperboloidal Teukolsky equation we
have presented here have been derived in [55,56].
We have validated these boundary conditions by com-

paring our solutions to the homogeneous solutions pro-
duced by the TEUKOLSKY package of the BHPToolkit.
Furthermore, we have compared numerical values of
the expansions with boundary conditions used within the
NUMERICAL INTEGRATION module, which utilizes the
Mano, Suzuki, and Tagkasugi method [74,75] of solving
the Teukolsky equation.
The boundary conditions for the homogeneous solutions

ψ�
lm are then used to construct homogeneous solutions over

the entire domain from rin to rout. Similar to the Lorenz
gauge homogeneous solutions, ψþ

lm is obtained by inte-
grating inwards from rout with the boundary condition
Eq. (B3a) while ψ−

lm is found by integrating outwards from
rin using Eq. (B3b). In contrast to the Lorenz gauge
homogeneous equations, we integrate the homogeneous
Teukolsky equation with Mathematica’s NDSOLVE routine.
The use of Mathematica allows us to solve the homo-
geneous equation to beyond-machine precision, when such
accuracy is necessary. We find setting rout ¼ 104M and
rin ¼ ð2þ 10−5ÞM to be sufficient boundaries to obtain a
similar absolute accuracy goal as the Lorenz gauge case we
discussed previously.

APPENDIX C: TEUKOLSKY SOURCE TERM

In this appendix we explicitly give expressions for the
Teukolsky source utilized in our calculations in Sec. X as
well as a brief summary of their derivation.

1. Kinnersley tetrad

Our calculations in the Teukolsky formalism use the
Kinnersley tetrad [53]. In Schwarzschild coordinates, the
components of the Kinnersley tetrad are given by

lα ¼ 1

f
½1; f; 0; 0�; ðC1Þ

nα ¼ 1

2
½1;−f; 0; 0�; ðC2Þ

mα ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;

i
sin θ

�
; ðC3Þ

m̄α ¼ 1ffiffiffi
2

p
r

�
0; 0; 1;−

i
sin θ

�
: ðC4Þ

The null vectors are constrained by the normalization
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lαnα ¼ −mαm̄α ¼ −1; ðC5Þ

with all other contractions between tetrad legs vanishing.

2. GHP operators

Our presentation uses the GHP formalism [76], which
we briefly summarize here; we refer the reader to Sec. 4.1
of Ref. [2] for a detailed review. The central idea of the
GHP formalism, in its modification of the Newman-
Penrose formalism, is the introduction of the concepts of
spin- and boost-weights. Under spin and boost transforma-
tions, the null vectors transform as

lα ⟶ ζζ̄lα; nα ⟶ ζ−1ζ̄−1nα;

mα ⟶ ζζ̄−1mα; m̄α ⟶ ζ−1ζ̄m̄α; ðC6Þ

where ζ is an arbitrary complex number. AGHP quantity, χ,
is then labeled as type fp; qg if under the transformation
(C6) the quantity transforms as χ ⟶ ζpζ̄qχ. The GHP
weight of a quantity is denoted χ ≗ fp; qg. One can relate
the GHP weights p and q to the spin-weight s and boost-
weight b via s ¼ ðp − qÞ=2 and b ¼ ðpþ qÞ=2. For the
tetrad legs, one can read off the following GHP weights:

lα ≗ f1; 1g; nα ≗ f−1;−1g;
mα ≗ f1;−1g; m̄α ≗ f−1; 1g: ðC7Þ

From the definition (97), one can read off ψ4 ≗ f−4; 0g.
The GHP derivative operators Þ, Þ0, ð, and ð0 that appear

in Eqs. (100) and (101) act on spin- and boost-weighted
objects. In the Kinnersley tetrad, they are given by

Þ ¼ 1

f

�
∂

∂t
þ f

∂

∂r

�
; ðC8Þ

Þ0 ¼ 1

2

�
∂

∂t
− f

∂

∂r
−
2bM
r2

�
; ðC9Þ

and

ð ¼ 1ffiffiffi
2

p
r

�
∂

∂θ
þ i csc θ

∂

∂ϕ
− s cot θ

�
; ðC10Þ

ð0 ¼ 1ffiffiffi
2

p
r

�
∂

∂θ
− i csc θ

∂

∂ϕ
þ s cot θ

�
: ðC11Þ

When acting on a generic object of spin-weight s and
boost-weight b, Þ raises b by 1, and Þ0 lowers it by 1; ð
raises s by 1, and Þ0 lowers it by 1. When acting on spin-
weighted spherical harmonics in particular, ð and ð0 act as
spin-raising and lowering operators such that

ffiffiffi
2

p
rððsYlmÞ ¼ −½lðlþ 1Þ − sðsþ 1Þ�1=2sþ1Ylm; ðC12Þ

ffiffiffi
2

p
rð0ðsYlmÞ ¼ ½lðlþ 1Þ − sðs − 1Þ�1=2s−1Ylm: ðC13Þ

3. Point-particle source

At leading order in our multiscale expansion, the stress-
energy tensor (6) for a particle on a quasicircular orbit
reduces to

εTμν
ð1;0Þ ¼

μ

r2
uμð0Þu

ν
ð0Þ

utð0Þ
δðr− r0Þδðθ−π=2Þδðϕ−ϕpÞ: ðC14Þ

We focus on the quasicircular case, but the computation
of the Teukolsky source proceeds in a similar manner for
more generic orbital configurations. We write the four-
velocity of the particle in terms of the leading-order orbital
energy and angular momentum, E0 and L0, such that
uμ ¼ ð−E0; 0; 0;L0Þ, with

E0 ¼
f0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3M=r0
p ; L0 ¼

r0
ffiffiffiffiffi
M

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 3M

p ; ðC15Þ

where f0 ≔ 1 − 2M=r0.
To construct the source for the Teukolsky equation given

in Eq. (105), we act on the stress-energy tensor with the
operator in Eq. (101) before decomposing the resulting
expression into the basis of spin-weighted spherical har-
monic and Fourier modes such that

sSlm ¼ −
1

2π

Z
2π

0

dϕpeimϕp

Z
dΩsȲlmsS; ðC16Þ

where dΩ ¼ sin θ dθ dϕ. Here we have given the
expression for generic spin-weight s. We see from the
expression in Eq. (101) that, for s ¼ −2, angular deriva-
tives appear in the form of ð0 derivatives. These can be
moved onto the spin-weighted harmonic in Eq. (C16) usingR
dΩsȲlmð0sþ1Ψ ¼ −

R
dΩð0sȲlmsþ1Ψ for any s and any

spin-weighted object sþ1Ψ. We can then exploit the spin-
raising and lowering properties of ð using ð0sȲlm ¼ ðsYlm
followed by Eq. (C12), reducing the angular integral to an
integral against sþ1Ȳlm.
In Eq. (101), the point-particle stress-energy tensor

enters through its tetrad components. In the Kinnersley
tetrad, the relevant projections of Eq. (C14) are

Tð1;0Þ
nn ¼ Mf20δðr − r0Þ

4r20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=r0

p δðθ − π=2Þδðϕ − ϕpÞ; ðC17Þ

Tð1;0Þ
nm̄ ¼ iM3=2f0δðr − r0Þ

2
ffiffiffi
2

p
r20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 3M

p δðθ − π=2Þδðϕ − ϕpÞ; ðC18Þ

Tð1;0Þ
m̄ m̄ ¼ −

M2δðr − r0Þ
2r30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=r0

p δðθ − π=2Þδðϕ − ϕpÞ: ðC19Þ
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Here we have used the distributional identity

XðrÞδðr − r0Þ ¼ Xðr0Þδðr − r0Þ ðC20Þ
for smooth XðrÞ. The full first-order Teukolsky source term
then has the form

sS
ð1;0Þ
lm ¼ sS

ðAÞ
lm þ sS

ðBÞ
lm þ sS

ðCÞ
lm ; ðC21Þ

where for s ¼ −2,

−2S
ðAÞ
lm ¼ πr4

M
ffiffiffiffiffiffiffi
λλ1

p
f200Ȳlmðπ=2; 0Þ

r3=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 3M

p δðr − r0Þ; ðC22Þ

−2S
ðBÞ
lm 0Ȳ ¼ −iπr3

ffiffiffiffiffiffiffiffiffi
M3λ

p
f01Ȳlmðπ=2; 0Þ

r20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 3M

p

× ½ð2M þ r − 2ir2ωm − 7r2fÞδðr − r0Þ
− 2r2fδ0ðr − r0Þ�; ðC23Þ

−2S
ðCÞ
lm ¼ πr4

M2
0Ȳlmðπ=2; 0Þ

r5=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 3M

p ½ðωmð2iM þ r2ωmÞ

− r2fð5f − 6iωmÞÞδðr − r0Þ
− r2fðð2iωm þ 6fÞδ0ðr − r0Þ
þ fδ00ðr − r0ÞÞ�: ðC24Þ

Here we have used the angular delta functions in
Eqs. (C17)–(C19) to evaluate the angular integral in
Eq. (C16) (after integrating by parts as explained below
that equation). We have also used sȲlmðπ=2;ϕpÞ ¼
sȲlmðπ=2; 0Þe−imϕp (for all s) to evaluate the inte-
gral over ϕp.
Finally, to express the source terms in the form we use in

our numerical worldtube calculations, we need to express

−2S
ð1;0Þ
lm in the canonical form (254), in which every term

takes the form Xðr0ÞδðnÞðr − r0Þ, with all coefficients of
radial delta functions evaluated at r0 rather than r. To
achieve this, we use the relation Eq. (C20) along with
similar identities for higher derivatives of Dirac delta
functions:

XðrÞδ0ðr − r0Þ ¼ Xðr0Þδ0ðr − r0Þ − X0ðr0Þδðr − r0Þ;
XðrÞδ00ðr − r0Þ ¼ Xðr0Þδ00ðr − r0Þ − 2X0ðr0Þδ0ðr − r0Þ

þ X00ðr0Þδðr − r0Þ: ðC25Þ

After applying those identities, we find the coefficients in
Eq. (254) are given by

JðAÞpp ¼ −
4πr20

f30
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 3M

p ½f0ð
ffiffiffiffiffiffiffi
λλ1

p
r3=20 f00Ȳlmðπ=2; 0Þ− i

ffiffiffiffiffiffiffi
Mλ

p
r20−1Ȳlmðπ=2; 0Þðr0f0ðr0ð7þ 2iωmÞ − 13Þ− 2Mð7r0 − 15ÞÞÞ

−M
ffiffiffiffiffi
r0

p
−2Ȳlmðπ=2; 0ÞðMð4M2ðr0ð5r0 − 48Þ þ 56Þ− 2Mr0ðir0ωmð6r0 − 17Þ − 10r0ðr0 − 9Þ þ 96Þ

− r30ðr0ωmðωm − 6iÞ − 5r0 þ 14iωm þ 42Þ − 42r20ÞÞ�; ðC26Þ

JðBÞpp ¼ 8iπM3=2r20
f20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 3M

p ½
ffiffiffi
λ

p
r20f0−1Ȳlmðπ=2; 0Þ − i

ffiffiffiffiffiffiffiffiffi
Mr0

p
−2Ȳlmðπ=2; 0Þð2M þ r0f0ð3r0 − 7Þ þ ir0ωmÞ�; ðC27Þ

JðCÞpp ¼ 4M2πr9=20 −2Ȳlmðπ=2; 0Þ
f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 3M

p : ðC28Þ

The parametric derivatives with respect to r0 are then given by

δJðAÞpp ¼ 2πffiffiffiffiffi
M

p
r3=20 ðr0 − 3MÞ3=2f40

½r20f0ð
ffiffiffiffiffiffiffi
λλ1

p
r3=20 f00Ȳlmðπ=2; 0Þð4Mðr0 − 3MÞ þ 3r0f0ð7M − 2r0ÞÞ

−iM
ffiffiffi
λ

p
−1Ȳlmðπ=2; 0Þðð24Mr20f

2
0ð9 − 7r0Þ þ r30f0ð49r0 − 60Þ þ 12M2ð7r0 − 18Þ

þ 4Mr0ð21 − 12ir0ωm − 7r0Þ þ r20ð14ir0ωm − 5ÞÞ þ 8Mð3M − r0Þð6M þ r0ð2ir0ωm − 1ÞÞÞ
þM

ffiffiffiffiffiffiffiffiffi
Mr0

p
−2Ȳlmðπ=2; 0Þð12Mð3M − r0Þð8M2 þ 6iMr20 − r40Þ þ r40f0ð24M2ðMð12r0 − 25Þ − 4r0ðr0 − 2ÞÞ

þ 2iMr20ωmð3Mð24r0 − 71Þ þ 4r0ð17 − 6r0ÞÞ þ r40ω
2
mð27M − 8r0Þ þ r20f

2
0ð4r0ðr0ð10r0 − 63Þ þ 42Þ

− 9Mðr0ð15r0 − 98Þ þ 70ÞÞ þ 6ir20ωmðMð49 − 27r0Þ þ 2r0ð4r0 − 7ÞÞ þ 4Mð3Mðr0ð5r0 − 57Þ þ 60Þ
þ r20ð54 − 5r0Þ − 54r0ÞÞÞÞ�; ðC29Þ
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δJðBÞpp ¼ −
4iM3=2π

r30ðr0 − 3MÞ3=2f30
½

ffiffiffi
λ

p
r50−1Ȳlmðπ=2; 0Þð60M2 − 42Mr0 þ 7r20Þ

− i
ffiffiffiffiffi
M

p
r7=20 −2Ȳlmðπ=2; 0ÞðM3ð864 − 396r0Þ þ 2r30ð4r0ð3þ iωmÞÞ þ 2M2r0ð3r0ð80þ 13iωmÞÞ

þ 3Mr20ð117 − r0ð63þ 17iωmÞÞÞ�; ðC30Þ

δJðCÞpp ¼ 2M2πr5=20 −2Ȳlmðπ=2; 0Þ
ðr0 − 3MÞ3=2f20

ð66M2 − 47Mr0 þ 8r20Þ: ðC31Þ
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