PHYSICAL REVIEW D 109, 104010 (2024)

Worldtube puncture scheme for first- and second-order self-force
calculations in the Fourier domain

Jeremy Miller,l Benjamin Leather ,2 Adam Pound ,3 and Niels Warburton

4

'Shamoon College of Engineering, Jabotinsky 84, Ashdod 77245, Israel
*Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Am Miihlenberg 1, Potsdam 14476, Germany
*School of Mathematical Sciences and STAG Research Centre, University of Southampton,
Southampton SO17 1BJ, United Kingdom
*School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland DO4 VIW8

® (Received 2 January 2024; accepted 25 March 2024; published 6 May 2024)

Second-order gravitational self-force theory has recently led to the breakthrough calculation of “first post-
adiabatic” compact-binary waveforms [Phys. Rev. Lett. 130, 241402 (2023)]. The computations underlying
those waveforms depend on a method of solving the perturbative second-order Einstein equation on a
Schwarzschild background in the Fourier domain. In this paper we present that method, which involves
dividing the domain into several regions. Different regions utilize different time slicings and allow for the use
of “punctures” to tame sources and enforce physical boundary conditions. We demonstrate the method for
Lorenz-gauge and Teukolsky equations in the relatively simple case of calculating parametric derivatives
(“slow time derivatives”) of first-order fields, which are an essential input at second order.
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I. INTRODUCTION

A. Waveform generation and second-order
self-force theory

In recent years, gravitational self-force theory [1,2] has
reached a mature stage of producing practical models of
compact-binary waveforms [3—7]. These models, targeted
at asymmetric binaries in which one body is much more
massive than the other, have traditionally been motivated
by the need to model waveforms from extreme-mass-ratio
inspirals (EMRIs) with mass ratios & := u/M ~ 107 [8],
where M is the mass of the larger body and y is the mass of
the companion. However, the resulting waveforms have
proved to be quite accurate even for mass ratios ~10~! [7].

The method underlying these models is an expansion of
the spacetime metric in powers of &, with the assumption
that the zeroth-order spacetime is a stationary black hole.
From that starting point, a combination of perturbative
techniques is used, including broad strategies adapted from
singular perturbation theory (matched asymptotic expan-
sions, multiscale expansions, and related methods) as well
as the specific tools of black hole perturbation theory [1,2].

Most of this progress in waveform modeling has been
driven by calculations in the Fourier domain [2-7,9,10].
While there has been continued progress in time-domain
calculations [11-14], and while it is possible to construct
practical surrogate models [15] from a bank of time-domain
waveforms, most development has been on Fourier methods
that leverage the disparate timescales in small-mass-ratio
binaries: the fast orbital timescale ~M and the slow timescale
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~M /e over which the system evolves. This separation of
scales allows one to divide waveform generation into two
steps: an expensive off-line step in which one solves Fourier-
domain field equations on a grid of slowly evolving
parameter values (e.g., eccentricity, semilatus rectum, and
the mass and spin of the primary black hole); and a fast, cheap
online step of solving simple ordinary differential equations
(ODEs) to evolve through the parameter space. The flexi-
bility and efficiency of such a framework is exemplified by
the FAST EMRI WAVEFORMS package [3].

This method can be carried to any order in & by using a
multiscale expansion of the Einstein equations [2,9], which
builds on the multiscale form of the companion’s orbital
motion around the primary [16]. Orbits around a Kerr black
hole generically have three slowly evolving frequencies
Q4 = (2,.9.Q,) corresponding to azimuthal motion
(€2,), orbital precession associated with eccentricity (€,),
and precession of the orbital plane around the primary’s
spin axis (€24). Any given (#, m) multipole of the resulting
waveform then takes the simple form [2]

hew = Y lehin (T1) + G (T ) + - Jemimonton,
ki

(1)

where k' = (k, k?) are integers running from —co to +oo,
J; are the binary’s slowly evolving parameters, and ¢, =
(@,. @0, @,) are the orbital phases associated with the three
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frequencies 4. The time dependence of the waveform is
governed by simple ODEs of the form

d

T —0,(7)), (2)
d
Y1 (T + e T+ )

where u denotes retarded time at a future null infinity. The

slowly evolving amplitudes h;',',;ki)

driving forces F §"> are precomputed in the off-line step, and

the waveform is then rapidly generated by solving the
ODEs (2) and (3).

A model that uses only the leading forcing term F' EO) is
referred to as adiabatic (“OPA”); this requires solving the
linearized Einstein or Teukolsky equation in the off-line

step. A model that includes terms up to and including F §">

is referred to as nth post-adiabatic (nPA); this requires
solving the Einstein equations through order £"*!. In the
off-line step, the Einstein equations are formulated in a
discrete Fourier domain based on mode expansions in the
orbital phases ¢,, as displayed in Eq. (1).

The most advanced self-force calculations use this
multiscale method to solve the Einstein equations through
second order in ¢ [7,17,18], yielding 1PA waveforms [7].
Those calculations are currently restricted to the simplest
scenario of quasicircular inspirals into Schwarzschild black
holes, in which case the problem simplifies because (i) there
is only one orbital frequency (£2;) and its associated
azimuthal phase, and (ii) the perturbative Einstein equa-
tions on the Schwarzschild background are fully separable.

In Ref. [9], we presented the multiscale Einstein equa-
tions for this special case of quasicircular, nonspinning
binaries. In this paper, we present a method of solving such
equations: a worldtube puncture scheme in the Fourier
domain. This scheme, which builds on earlier work by
Warburton and Wardell [19,20], was a key tool in the
second-order calculations in Refs. [7,17,18]. It extends
Refs. [19,20] by allowing for noncompact sources, irregu-
lar boundary conditions, and arbitrary choices of the time
variable. Its main new ingredients are subtractions of
punctures in multiple regions and differing choices of time
slicing in different regions.

Punctures have traditionally been used because self-force
calculations work by “skeletonizing” the small companion,
reducing it to a point-particle singularity. In that context,
puncture schemes subtract off the dominant, singular part
of the particle’s gravitational field in a worldtube surround-
ing the particle and then solve a field equation for the
regular residual piece. First presented in practical forms in
Refs. [21,22], these schemes are now a standard method in
self-force theory [1,2,23]; most pertinently, they have
underpinned most descriptions of second-order self-force
theory [24-28]. Our scheme leans even more heavily on

, frequencies Q,4, and

FIG. 1. Penrose diagrams of the Schwarzschild exterior illus-
trating a particle’s trajectory x9 along with slices (blue curves) of
constant hyperboloidal time s = ¢—k(r*). s transitions from
advanced time v = ¢ 4 r* near the future horizon to retarded time
u = t—r" near future null infinity. Left: a smooth choice of
slicing (which may or may not be everywhere spacelike in the
Schwarzschild exterior). Right: sharp slicing in which s = v in a
region to the left of the particle, s = ¢ in a region containing the
particle, and s = u in a region to the right of the particle.

this puncture method by introducing additional punctures at
the black hole horizon and at infinity.

Use of alternative slicings in Fourier-domain self-force
calculations is a more recent development. The multiscale
field equations in Ref. [9], which were the basis for the
calculations in Refs. [7,17,18], were formulated using a
hyperboloidal time variable.! Slices of constant hyper-
boloidal time penetrate the future horizon of the primary
black hole and extend to future null infinity rather than to
spatial infinity, as illustrated in Fig. 1. This has key
advantages in a multiscale expansion, significantly improv-
ing the behavior of the source terms in the second-order
field equations, reducing the need to derive punctures, and
simplifying waveform extraction. More recently, Ref. [29]
extended this approach by compactifying the hyperboloidal
surfaces and working with a spectral method. Those
modifications bring additional advantages and are part of
a longer-term introduction of hyperboloidal methods into
black hole perturbation theory [30-32]. Here, for historical
reasons, we do not adopt these additional tools, but we
delineate the relative merits of each method. We are also
careful to note that compactified hyperboloidal slices do
not evade the fundamental breakdown of the multiscale
expansion at large distances; this breakdown, which was
explored in Ref. [33], has necessitated the use of an
alternative, post-Minkowski expansion at large distances
in current second-order self-force calculations. Details of
that expansion will be presented elsewhere.

'We use the term “hyperboloidal” loosely. In the standard
definition, hyperboloidal slices are required to be everywhere
spacelike in the black hole’s exterior, while we allow for slices
containing null segments.
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B. Outline and conventions

We begin in Sec. II by reviewing the multiscale expan-
sion of the Einstein field equations. This review broadly
follows Ref. [9]’s treatment of quasicircular inspirals into
Schwarschild black holes, but we take the opportunity to
present that treatment in a more geometrical form that is not
tied to the Lorenz gauge or to a tensor-harmonic decom-
position. We also discuss how it straightforwardly extends
to the case of eccentric orbits.

In Secs. Il and IV we summarize two specific forms of
the multiscale equations. Section III summarizes the
Lorenz-gauge field equations, again following Ref. [9].
Here we decompose the multiscale metric perturbation into
tensor spherical harmonics, reducing the field equations to
aradial ODE for each mode. Since our worldtube scheme is
quite generic, in Sec. IV we also present the Teukolsky
equation in this multiscale framework, building on recent
work in Refs. [34,35].

Sections V-VIII then present our worldtube puncture
scheme in a generic form applicable to both the Lorenz-
gauge and Teukolsky equations. The method of solving the
equations is based on variation of parameters. We consider
various formulations of that method and its application to
the various types of field equations that arise.

In Secs. IX and X, we demonstrate the method in the
Lorenz-gauge and Teukolsky versions. The demonstrations
consist of solving a field equation for a parametric
derivative (a derivative with respect to orbital radius) of
the first-order-in-¢ field (the metric perturbation in the
Lorenz-gauge case and the Weyl scalar in the Teukolsky
case). Such parametric derivatives are important in the
multiscale expansion because they enter into the source
terms in the second-order field equations. In the case of
Lorenz-gauge perturbations, we find agreement with results
for the same quantity as calculated using a different method
in Ref. [36].

Finally, in the concluding section, Sec. XI, we discuss
the relative merits of our variation-of-parameters approach
versus the more recent alternatives in Refs. [29,36].

Throughout the paper we use a mostly positive met-
ric signature, (—,+,+,+), and geometrical units with
G = ¢ = 1. Indices are raised and lowered with the back-
ground Schwarzschild metric g,43, and V and a semicolon
both denote the covariant derivative compatible with g,.
(t,r,0,¢) denote Schwarzschild coordinates, in which
Gop = diag(—f, f~', 7%, r’sin® §), where f:=1—-2M/r.

II. EINSTEIN FIELD EQUATIONS
IN MULTISCALE FORM

In this section we review the perturbative Einstein field
equations for a binary with a small mass ratio e. We first
explain the expansion as formulated in regular perturbation
theory and then explain how we formulate it in our
multiscale form. We particularly highlight (i) the role of

spacetime foliations, (ii) the discrete Fourier expansion of
the field equations, and (iii) the appearance of parametric
derivatives as source terms. We refer to Refs. [2,9] for more
details. Our formulation here is a more geometrical form of
the expansion described in Appendix A of Ref. [9].

A. Regular perturbation theory

In regular perturbation theory, we expand the exact
metric g,, and stress-energy tensor T, as

9 (7, €) = g () + el () + 02 () + O(3)  (4)

and

T,(y.€) = €T () + €T (v) + 0(¢*).  (5)

where y stands for some coordinates y*. At least through
second order in &, T, can be taken to be the Detweiler
stress-energy tensor [25,37],2

_ 8-y
Tﬂy—u/uﬂu,,i_gp dz, (6)

where u is the mass of the particle, y, is its worldline,

~ ~ oy L. . . .
Uy = Jua &> Ju 18 a certain effective metric of the form

G0 (3. €) = 9 () + el () + 217 (v) + 0(e3),  (7)

(n)

7 is the proper time in that metric, and h,l},, are certain

smooth vacuum perturbations extracted from h,(fﬁ). The

worldline y}, obeys the geodesic equation in §,, or an
equivalent self-forced equation of motion in g,, [26,42].

Given these expansions, the Einstein equation G, [g] =
8xT,, becomes a hierarchical sequence of equations, the
first three of which are

We note that because of the strongly divergent fields at second
order, the stress-energy tensor (6) and field equation (10) have
only been derived in a class of “highly regular” gauges and in
gauges smoothly related to Lorenz [37]. In the Lorenz-gauge
case, the derivation requir% adoptin§ a certain canonical dis-
tributional definition of G,;'[h()), h(1)]. We will not concretely
require that definition here, but we return to this point in the
Conclusion, Sec. XI. However, we also note that no concrete
second-order calculations have directly used Eq. (10) but instead
have used a puncture scheme, which is a more primitive
formulation that does not involve these subtleties. We write
the field equations here in terms of a stress-energy tensor only to
simplify the presentation. Like the stress-energy tensor, concrete
punctures are only available in highly regular and smoothly
deformed Lorenz gauges [38,39], but this does not restrict the
choice of gauge when solving the field equations: independent of
the puncture’s gauge, the numerical variable (the residual field)
can be in any convenient gauge; see, for example, Refs. [40,41].
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Gulg =0, (8)
Gy [hV)] = 82T}, (9)
G 1) = 8272 - G2, h). (10)

Here G,(,ly) [h] is the linearized Einstein tensor constructed

from a perturbation #,,, and G,(i) [h, h] is the quadratic term

Hv
in the expansion of the Einstein tensor. We write G,(,L) [h] as

1 _ - 1 -
G [h = - 5 Ewlhl + V42 ) = 59, V.2°R). (1)

in terms of the trace-reversed field

5= I = 390y (12)

and the linear operators
Eplh] :== Ohgs + 2R 5*h,,, (13)
Zy[h] = ¢V hyp, (14)

with [:=¢*V,V,. The quadratic Einstein tensor

G2 [h. h] is written explicitly in Eq. (4) of Ref. [2], but
we will not need its explicit form here.

Given the background metric g,,, regular perturbation
theory reduces to solving the sequence of linear field
equations (9), (10), and so on to higher order.

B. Multiscale expansion

The multiscale expansion of the field equations differs in
important ways from a regular expansion. It is designed to
maintain uniform accuracy while capturing the binary’s
“fast” evolution on the timescale ~M, due to the orbiting
particle, and the “slow” evolution on the timescale ~M /¢,
due to dissipation.

The method begins with a choice of time function, which
we write as

s=s(t,r)=1—k(r) (15)
Here r* is the standard tortoise coordinate, r* =
r+2MIn[r/(2M) — 1], and k(r*) is a height function.
We choose k(r*) such that

k(r*) —» +r*  for r* - oo, (16)

k(r*) -» —r* for r* - —oo. (17)
This ensures that slices of constant s are hyperboloidal, by
which we mean they reduce to surfaces of constant
advanced time v = ¢+ r* at the future horizon (JZT)

and to surfaces of constant retarded time u =t —r* at
future null infinity (.#), as illustrated in Fig. 1. With our
loose definition of the term “hyperboloidal,” we do not
require these slices to be everywhere spacelike in the
Schwarzschild exterior, nor do we require them to be
smooth.

For most of this paper, we leave s unspecified. However,
we mention here our preferred, “sharp” foliation used in our
numerical calculations. This slicing, illustrated in the right
panel of Fig. 1, uses a piecewise height function,

*

—r* forr<ry,
k(r')=1<0

+r* for r > r,,

forry <r<r, (18)

where ry (r,) is a radius smaller (larger) than the particle’s
orbital radius. With this choice, s = v in a region extending
to s "; s = tinaregion containing the particle; and s = uin
a region extending to .. We will refer to this as v-f-u
slicing. It provides a simple way of avoiding steep gradients
within a numerical domain. The sharp change in slicing will
cause finite differentiability or jumps in various fields when
crossing r; and r,, but these effects are easily controlled. The
switching points are placed at boundaries between domains,
and the sharp change in slicing is accounted for using easily
derived junction conditions at these domain boundaries
(a familiar procedure from dealing with point-particle
sources in radial differential equations).

Given a choice of time function s, we assume that the
metric’s dependence on s is fully encoded in a dependence
on the binary’s mechanical variables.” For the quasicircular
inspirals we focus on here, the time-dependent mechanical
variables are (i) the particle’s orbital phase ¢, (ii) its orbital
frequency € := d¢,/ds, and (iii) corrections to the central
black hole’s mass and spin, e6M, = (e6M, £6J) (with the
overall factor of ¢ pulled out to make oM 4 order unity). The
spacetime’s slow evolution is encoded in the metric’s
dependence on the parameters J; = (Q,6My), which
evolve due to the dissipative self-force (in the case of Q)
or due to fluxes through the horizon (in the case of 6M ).
The evolution on the fast orbital timescale ~1/€Q is encoded

3This means that we exclude a variety of effects, including
gauges that do not conform to our assumed multiscale time
dependence. For example, we exclude gauges that blow up with
time and incoming gauge modes that could be sent into the system
with arbitrary frequencies. In the case of eccentric orbits, our
assumptions also fail at r — ¢ resonant kicks [43], though that
effect is higher order than we consider here. Hereditary effects
associated with gravitational-wave memory (which enter into the
multiscale solution at 2PA order through physical boundary
conditions at large r [33,44]) also introduce a type of integrated
dependence on the past history of the mechanical variables, as in
post-Newtonian theory [45]. However, these hereditary effects are
determined by the “current” state of the system’s slowly evolving
variables, meaning they do not spoil our assumptions [44].
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in a periodic dependence on the orbital phase ¢,. We
comment below on how this extends to the case of eccentric
orbits.

More concretely, for quasicircular orbits the system’s
evolution is governed by the rates of change of ¢, and 7.
We expand those rates of change in powers of ¢ at fixed
phase-space coordinate values (¢,,J):

¢p =Q, (19)
Q= e[FV(Q) + eFY) (Q.6M,) + O(e2)],  (20)

oM, = e[FV(Q) + eF\)(Q.6Mp) + O(e2)],  (21)

where a dot denotes d/ds [cf. Egs. (2) and (3)]. In these
expansions, the numerical labels denote the post-adiabatic
order at which the quantity enters.* The driving forces F g >,
whose explicit forms are not needed here, are given in terms

of the gravitational self-force in Eqgs. (A9) and (A10) of

Ref. [9], and F 20) () are the standard leading-order fluxes
of energy and angular momentum into the black hole due to
an orbiting particle [2,9]. The particle’s orbital trajectory x},
in Schwarzschild spatial coordinates x' = (r, 0, ¢) takes
the simple form

X;, (¢pv Q, 8) = [rp (Q’ 8)’ n/2, ¢p]’ (22)

where
rp(Q.€) = ro(Q) + er (Q) + O(e2). (23)

The leading coefficient r, = M(MQ)~%/3 is the standard
geodesic relationship; the subleading coefficient, which
will not be explicitly needed here, is given in Eq. (A8)
of Ref. [9].

In line with our assumption that the spacetime only
depends on s through a dependence on (¢, J;), we now
treat the metric as a function on an extended manifold that
includes the binary’s mechanical phase space. Instead of
using the regular expansions (4) and (5), in which we would
expand in powers of & at fixed values of spacetime
coordinates (s,xi), we now expand the metric and the
stress-energy tensor in powers of ¢ at fixed (x/, ¢ o J 1)

“This statement assumes that we calculate F, g’ ) from energy

fluxes to infinity and into the horizon, using a balance law,
meaning the leading-order horizon flux FS)) (Q) enters at OPA
order, and the first subleading horizon flux enters at 1PA order. If
F g ) is instead calculated using the local self-force, then F/ 1(40) (Q)

does not enter until 1PA order. 6M 4 itself only enters at 1PA order
in either approach.

g;w(xiv ¢p9 jlv 8) = g;w(xi) + gh/(;’)(xiv ¢p9 jl)
+2hG) (¢, T+ 0()  (24)

and

T;w(xi’gbpv Jr.€) = ng(4L)<xi7¢pa Q)+ 82T/(5,)(x", bp Jr)
+ 0(€3>. (25)

The expansion of T,, is obtained by substituting the
multiscale expansions of xi, and g,, into Eq. (6)’; in turn,
9y (along with the punctures and residual fields we
introduce later) inherits the multiscale structure of g, as
described in Ref. [9]. Each term in these expansions is
assumed to be a 2z-periodic function of ¢,. The physical
metric on spacetime is obtained once the s dependence of
¢, and J; is determined via Egs. (19)—(21). Prior to that
determination, we treat (xi,qb,,, J1) as independent
variables.

Substituting the expansions (24) and (25) into the
Einstein equations, we obtain a modified version of
Egs. (9) and (10),

GL O] = 82T, (26)

GLOVh?] = 82T2) — GEO M, A1)
1,1
-G hV) (27)

The operators Gf,'ﬁ’j ) act on functions of (xf, ¢ T 1)- They

are derived from G,(ln,,) using the chain rule

0 0 dp, o  dJ; 0
= el — —r — 21 ) (28
aya €a ox’ + Sa( ds a¢p + ds aj] ( )
where
ox’ )
el = 0;6“ and s, = gsa (29)

are a basis of one-forms. s* is normal to surfaces of
constant s. If x' = (r,0,¢), then els* = —dk/dr* and
els* =0 for i =@ or ¢. Note that in the simple case
y* = (s5,x'), €, and s, reduce to &, and &, but here we
leave y* generic.

Given Egs. (19)—(21), the chain rule (28) implies the
expansion

v, = vo L 8Sa5]; + O(&), (30)

SWe note that Eq. (6) is derived within a self-consistent
expansion [46] that is more general than either regular perturba-
tion theory or our multiscale expansion.
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where the zeroth-order covariant derivative is

0 9
VY = el — +5,Q——

o T Satg 4 + Christoffel terms, (31)

V, = (F O),Fgo)) is the leading-order velocity through

parameter space, and
- 0

© 9  po_ 09
dy:=V,—=F
vV oT; Lo A asM,

(32)

is a directional derivative in the parameter space.

Using the above expansion of the covariant derivative

we see that G is given by G\ with V,, - V. GV is

given by the terms in G,(,,,) that are linear in the ve1001ty V.

Explicitly, the operator that appears at 1PA order is

1 _
G [h) = =3 () + V5 2, ) + V) 2 (7]

SV Z W+ Iz ). (33)

The individual terms in this expression are

B (1] = 55"FQ) 0y, By, + 25"V (3 yh,)
+ (V5% a (34)
— —_—
ZV ] = 579 kg, (35)
VI ZOR = s, 02" [R). (36)
The contractions involving s, evaluate to
Se8% = —f71(1 = H?), (37)
dH 2H
Vst = -2 -8 38
g dr r (38)
sV = —f~1(1 - H*)Qd, — Ho,
+ Christoffel terms, (39)
where
dk
= . 40
= (40)

These equations simplify significantly if s = v (meaning
H=-1), s =1t (meaning H =0), or s =u (meaning
H = 1). We repeatedly return to those special cases in
later sections.

For any choice of s, the field equations (26) and (27)
reduce to partial differential equations in (x',¢,). These
can be solved at fixed values of 7; because derivatives with

respect to J; only appear as sources, in the term

GV ).

C. Fourier expansion

Since all functions of ¢, are periodic, we can expand
them in Fourier series:

W (L, T1) = Z B (61, T e, (41)
aﬁ( b, Tr) = Z Taﬂ emby. (42)
We then have -2 w, —im when acting on individual modes,
implying
0
V((,O) — el,— — is,w,, + Christoffel terms,  (43)

“ ox!

where ,, = mQ.
By substituting this Fourier expansion into the field
equations (26) and (27), we obtain decoupled differential

equations in x’ for each mode ha'/ljm (x', J ). Again, these

can be solved at fixed values of 7;. As summarized around
Egs. (1)-(3), the waveform-generation scheme used in

Ref. [7] then consists of (i) computing and storing the

waveform amplitudes lim, _, o, rh((;;m)

F §"> on a grid of Q values, (ii) solving Egs. (19)—-(21) to
generate a trajectory through phase space and (iii) substitut-

[j[( )] —ime,(s) to

and the driving forces

ing the trajectory into lim,_,o, > _,, rh
obtain the waveform.

Before proceeding, we stress that the discrete Fourier
series (41) is not a Fourier transform in time. It would
only be a Fourier transform if [7; were independent of s and
if ¢,(s) were equal to Qs (with constant Q). Neither of
these conditions holds true for the inspiraling system.
Therefore, we are careful to refer to the resulting field
equations as being in the Fourier domain but not being in
the frequency domain. However, readers familiar with
frequency-domain equations can apply virtually all their
knowledge directly to our Fourier-domain equations: the
left-hand side of the field equation for a mode coefficient

hs™ (x,7,) is identical to the left-hand side of the field

equation for the mode coefficient in a frequency-domain

expansion h((l'}):w) (x') e~ (with @ = w,,).

We also note that the above description extends,
with only minor changes, to the case of eccentric orbits
in Schwarzschild. In that case there are two orbital
phases, ¢4 = (¢,.9,), and associated frequencies
Q, = (Q,.Q4). The Fourier expansion (41) becomes

kahfl'/;m R (xi, T, )e~mes=iker [cf. the expansion (1) in

104010-6
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Kerr spacetime]. The adiabatically evolving parameters
become J; = (p;,6My), for example, where p; = (p, e)
are the semilatus rectum and eccentricity. The chain rule
(28) becomes

dp, 0 dJ, 0

i 0 s A S
oy eadx’+sa<ds FP T ay,) (44)

meaning we make the following replacements: V; —
(F (©) F/(f)) and the corresponding adjustment

i

0
FO

5o 09 :

dy = F — , 45

VU gpt T A oM, (45)

-  FO) (0) 09,
Qd,, — Q40,, inEqs.(31)and (39); Fy'9, — F\ %20,

inEq. (34); and w,, = w,, , = mQ + kQ, in Eq. (43) [with
k the integer labeling h((l';;m’k), not to be confused with the

height function k(r*)]. We refer to Ref. [2] for more details.

ITII. LORENZ-GAUGE FIELD EQUATIONS

In the calculations in Refs. [7,17,18], and in much of this
paper, we work in the Lorenz gauge. Here we review the
Lorenz-gauge field equations as formulated in Ref. [9].

A. Four-dimensional form

We impose the Lorenz gauge condition
Z,[h] =0, (46)

where h,, =g, — g, is the total perturbation and h L 18 its
trace reverse with respect to g,,. This reduces the linearized
Einstein tensor to

! _
G/ ] = ~5 E,u[F. (47)
Following Ref. [47], in order to partially decouple the field
equations, we use a modified operator

E. =Eu~—1,2,). (48)

where t,:=0,t and Z, = (Z2,.2Z,,Z4.Z,) in Schwarzschild
coordinates (1, 7,8, ¢); note Z,[n] vanishes if the gauge
condition is satisfied. The complete Einstein equation is
then

9]

E, A = —16aT,, +2G2) [h,h] + O(IhP).  (49)

uv

Here G,(,zy) is given by G,(f,) with Z, set to zero.
Performing a multiscale expansion leads to a slightly

modified version of the hierarchy (26) and (27),

ED D] = —16aT) (50)

ESRO) = —162T2) + 262" [0, h1)]

— EQ) W, (51)

The labels here have the same meaning as in the previous
section: “(0)” on an operator indicates the operator with

the replacement V, — VE,O), and “(1)” indicates the term
linear in V;. Explicitly, in terms of the operators in Egs. (34)
and (35),

o _ M o _
EW R = EW) ) — 1,2 [R) (52)

with  Z) = (z" 22V ZV 2y in

& Schwarzschild

coordinates.
Similarly, after the multiscale expansion, the gauge
condition (46) becomes

7 0] =0, (53)
7)) = -z,V ). (54)

B. Tensor-harmonic decomposition

We next decompose the fields into tensor spherical
harmonic modes, using the Barack-Lousto-Sago (BLS)
basis of harmonics [47,48]:

T(n (1,' 7(n i i
Yy =S LR (r T )Y (r.0.4)e e (55)
i‘m r
wherei =1,...,10,2 >0, m = —¢, ..., £. The harmonics
Yé‘/;m provide an orthogonal basis for symmetric rank-2

tensors. They are given explicitly in Appendix B of
Ref. [9]. a,, is a convenient numerical factor given by

\/LE fori=1,2,3,6,
1 .
iy = 26(6+1) for i =4,5,8,9, (56)
1 for i = 7, 10.

V2(6-1)¢E(6+1)(6+2)

Following BLS, we have also pulled out a factor of 1/r in
Eq. (55) to simplify the field equations.

We similarly decompose the source terms in Eqgs. (50)
and (51). Denoting the nth-order source term as S,(,'L), we
write

i) = Su (r. T )Yime i, (57)
i‘m

The mode number m appearing in the Fourier decom-
position (41) is the same as the azimuthal mode number in
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the spherical harmonics, such that each mode in Egs. (55)
and (57) has a simple dependence on (¢ — ¢, ):

Ylfm(r 9 ¢) —im¢, _ Yzfm(r 9 0) im(¢p— ¢,,) (58)

(n)

This implies that when a mode of }_za/, is evaluated on the

worldline (where r = r,,, ¢ = ¢, and 6 = 7/2), it reduces

to a function of 7, with no dependence on ¢,,. The same is

true of derivatives of f_z{(l';,), such as those that enter the

self-force.

With these harmonic expansions, Egs. (50) and (51) each
separate into a set of ten ODEs for the coefficients 7,
which read [48]

i‘m>

g0 qm _ 1

ijfm'" j‘m 4af lfm (59)

Here the mode label j is summed over. The decomposed
wave operator is given by

B = O + M (60
where
1
0 w10 + i, 10, 1)

+ (1 — H*)wp, — 4V ,(r)]. (61)

Here H' := 44 and
2M (€ + 1
V() = < Y %) (62)

/\/ll(?) with i, j =1, ..., 10 are a set of matrices composed of
first-order differential operators that couple between the
various fzjfm’s. Note that the coupling is only between
different j’s; there is no coupling between modes of
different # and m. Also note that the only effect of our
added Z, term in Eq. (48) is to alter these coupling matrices
(reducing the coupling). The explicit form of the coupling
matrices can be found in Appendix A.

The source terms in the decomposed field equations (59)
are

St(f) 16ﬂthm’ (63)
SE;Zn - _16ﬂthm + 2Gt(fm) [h( >’ h(l)}
1
ES];mhsfzn (64)

(2.0)
i‘m

in Ref. [34]. Here we highlight the term involving E

[AD), hM], is discussed in detail
(1)

ijtm>

The quadratic term, G

which is the decomposition of Ef}) in Eq. (51). This term
represents the system’s slow evolution acting as a source
for the second-order metric perturbation. Explicitly,

El(']l',;mljljfm = D,(,ﬂlyzlljlifm + ij)ﬁ/fmv (65)

where

1
o) = ;1(2H0, +H) Iy

— (1= HY)Q2iw, dy + imF).  (66)
The coupling matrices ./\/lfjl) are given in Eq. (A17).

Similarly, at the level of modes, the gauge conditions
(53) and (54) become

0) 7(1
Zhy, =0 (67)
and
0) 7(2
ZhG, = -2 0, (68)

where k=1,...,4. We give the operators Z;:;; in

Egs. (A18) and (A19)

For H = 0 (i.e,, ¢ slicing), E; /}m and Z,(:j).)f are the same
operators that appear in the standard frequency-domain
Lorenz-gauge linearized field equations for a metric per-
turbation f,, = ““ h;z,, (r)Yi"e™™, as in Refs. [20,49].

The equations in this section apply equally well for
eccentric orbits, with the replacements ®,, = w,,; =

m€, + k€, and imFg)) - —FEO) &S)—l'jljk.

C. Matrix form

For each #m mode, the field equations (59) represent ten
coupled ODEs. However, these ODEs partially decouple
into a hierarchical structure; see Table I of Ref. [9]. Even-
parity modes (i =1,...,7) decouple from odd-parity
modes (i = 8,9, 10). Moreover, the i = 1, 3,5,6,7 modes
decouple from the i = 2,4 modes, and the i = 9, 10 modes
decouple from the i = 8 mode; this allows one to calculate
the i = 2,4 modes from the i = 1, 3,5, 6, 7 modes and the
i = 8 mode from the i = 9, 10 modes. One can also often
use the gauge condition to algebraically obtain some modes
from others. The number of relevant modes is further
reduced by the facts that (i) even-parity (odd-parity) modes
vanish for £ 4+ m odd (£ 4+ m even), and (ii) m < 0 modes
can be computed from m >0 modes using iy, =
(_l)m( i, —m)

It will be convenient to write these sets of equations in a
canonical matrix form,
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Dy = +B—+ Ay =1, (69)

dy  dy
dr? dr

where y(r) and J(r) are column vectors with d elements,
and A and B are r-dependent d x d matrices. We further
write this in first-order form as

A dy A
D@::d—"r'+Al,7:J, (70)
where i = ( (;pl//) and J(r) :( J(zi)) are 2d-vectors and

R 0400 —14x
A:<dd dd>. (71)
A B

For our Lorenz-gauge field equations, the column vector
Yem is

(hohyo)” £>2,¢6+modd,
(hyhshshghy)T € > 2,6 4+ m even,m > 0,
(hyhshs)T £>2even,m =0,

V=Y Gk = tm =1, (72)
ho £=1,m=0,
(}_11]_13>T =0,

where T denotes the transpose and Zm labels are sup-
pressed. We then define the 2d-vector ., =
(W sm> 0 em)T. The matrices appearing in Eq. (71) are

1 .
A= [@2,(1 = H?) + i, H' = 4V |14eq + M, (73a)
1 (2M
B= I <_2 + 2ime> Lixa + Mo, (73b)
r

where M, and My, are dxd matrices given in
Appendix A. .
We translate the sources in the same way. If &;,,, satisfies

an equation £ © i itm = L s izm»> as in Eq. (59), then the

I
ijtm da;,

sources J in Egs. (69) and (70) are

(SoS10)" £>2,¢+modd,m> 0,
(5183858687)T ¢ >2,£+ meven,m > 0,
ST (S,8385)7 ¢ >2even,m =0, (74)
aief | (8,8538:8¢)7  f=1,m=1,
So £=1,m=0,
(5183)" =0,

again with Zm labels suppressed.

For each #m, the modes that are missing from Eq. (72)
can be obtained from the listed modes using the gauge
condition (67) or (68). These “gauge modes” are hg (for
¢ + m odd), h, and hy (for £ > 0 and £ + m even), and h,
and hg (for £ = 0).

In the case of the second-order field, it will be useful to
further divide the field into two pieces,

@ =20 4yl (75)

each satisfying its own field equation,
D20 = j20), (76)
Dyt = jib, (77)

Here /29 is constructed from the subset of source terms in

Eq. (64) that do not involve the forcing functions F 50),

Siew = 16277, +2G) (WD K0, (78)

and S is constructed from the subset of source terms that
are linear in the forcing functions,

S0 = tar) B A (9

In these expressions we have analogously split the stress-

(2,0 (0)

energy tensor into a piece (7';,,,’) that is independent of F;

and a piece (TE;’WIl)) that is linear in it. In the present paper

we will not require the explicit expressions for these two
pieces; we only introduce the split to help organize
discussions in later sections.

Despite the convenient split into (>% and "), we
stress that these fields are not actually independent: they are
coupled through the gauge condition (68), which is only
satisfied by the sum of the two fields.

(2,0)

D. Boundary conditions, punctures, and slicing
transformations

Self-force calculations can encounter problematic diver-
gent behavior in three regions: at the particle, near 77,
and near .#*.° The nature of the problem depends on the
particular formulation of the small-e expansion, on the
choice of gauge, and on the choice of time foliation.
Punctures provide a practical way of enforcing physical
boundary conditions in the presence of these divergences.

6Additionally, regular perturbation theory diverges on long
timescales [33]. This failure is overcome using a multiscale
expansion, as we use here, or using a self-consistent expansion
[46] (if the latter is extended to account for the black hole’s slow
evolution, as described in Ref. [9]).
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To motivate the use of punctures, we first recall their use
in controlling the divergence at the particle, which is the
most familiar problem. Fundamentally, an expansion in the
limit ¢ — O (at fixed external length scales) breaks down at
distances ~¢ from the small companion; there, the gravity
of the small body dominates over the external gravity.
Through a local analysis in that region, using the method of
matched asymptotic expansions, one finds the correct local
behavior of the physical solution [1]. The form of that
solution, outside the body, is

By = S + W (80)

The self-field h,%") captures local information about the
body’s multipole structure and diverges if analytically
extended down to the body’s representative worldline.
The regular field h%") is a vacuum solution that depends
on global boundary conditions and is smooth when
analytically extended to the worldline.

We then adopt an asymptotic matching condition, which
is a type of boundary condition: near the representative
worldline, the metric perturbations must recover the local
form obtained from matched asymptotic expansions. The
point-mass representation (6) and a puncture scheme are
two differing ways to enforce this condition. Both methods
use the analytical extension of Eq. (80) down to the
worldline. The point-mass representation enforces the
matching condition by defining source terms for h,(,'f,) such
that all solutions to the inhomogeneous field equation
recover the correct local form (80); we refer to Ref. [37] for
further discussion. A puncture scheme instead imposes the
matching condition by directly using the local form (80).
We construct a local approximation to h%n), called a

puncture field hfy(”) , and then solve field equations for

the residual field Ao =AY —h”. In our generic
matrix form, we write these field equations as

DyR = J — Dy = Jt, (81)

The puncture field is made to vanish outside some region
around the particle, such that jy® becomes the physical field
outside that region. By solving Eq. (81) with physical
boundary conditions at 7" and .#* and adding the
puncture, we then obtain a total field ™ + y” that

necessarily satisfies the matching condition. We note that

the punctures /" and residual fields /"

same multiscale form as h,(,’,f) because hf,fw

function of the orbital trajectory.

This illustrates how a puncture scheme is simply a
method of imposing a boundary condition. Suppose, more
generally, we are given the boundary condition that the total
physical solution to Eq. (69) must take the form R + S

near some boundary, where > is a specific particular

possess the

is an explicit

solution (possibly singular at the boundary) and yR is a
homogeneous solution that is regular at the boundary. If we
construct a puncture " that approximates > sufficiently
well, and if we impose regular boundary conditions on the
residual /%, then solving Eq. (81) and adding " yields a
solution to Eq. (69) that satisfies the given boundary
conditions. We apply this method at both outer boundaries,
AT and I,

Sections V.F-H in Ref. [9] discuss the behavior of the
second-order physical solution near 5#°+ and .. Here we
briefly review and add some details to that discussion. We
follow Ref. [9] in using a label “[s]” to indicate the slicing
in which a mode is defined.

To frame the discussion, we first note how homogeneous
solutions depend on slicing. For a homogeneous solution,
the mode coefficients in generic s slicing are related to
those in ¢ slicing by

Wiy = wpge K, (82)
implying
0,y = (0w — iwf ™ Hyy)e @ ) (83)

(We omit the subscript m on w for succinctness and because
the discussion in this section applies equally well for
eccentric orbits.) In matrix form,

ldxd

0dxdj> iwk(rt
N 5] = 7 g_lw (r )’ 84
ll/[ ] < —ia)f_lHldxd ll/[t] ( )

ldxd

where d is the dimension of the vector .
Homogeneous solutions regular at 57" behave as

W ~ f° (85)

for r - 2M in v slicing. Equation (84) therefore implies
that such solutions behave as

0
l/A/[t] ~ (la)f]“‘_1> e—iwr* (86)

in ¢ slicing, where it is understood that the two entries in the
vector indicate the scaling of the top and bottom d rows in
(> respectively. Homogeneous solutions regular at %/ +
behave as

Wiy ~ 10 (87)

at large r [corresponding to h,, ~ 1/r because of the
rescaling by r in Eq. (55)]. Equation (84) therefore implies

I/A/[I] ~ eJria)r* (88)

in ¢ slicing.
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At first order, outside the source region, the physical,
retarded solutions are homogeneous. They therefore must
satisfy the regularity conditions at s+t and % as
described in the preceding paragraph.

At second order, the boundary conditions are more
complicated because of the behavior of the source terms.
Away from the particle, the quadratic source term G,(fjo is
made up of products of homogeneous solutions. At large r,
in generic s slicing,

io[r*—k(r*)]
20) €
Gi” ~ (89

,
implying a source J' (20) ~ L;W” in Eq. (76). In u slicing
(for which k = r*), the oscillations are eliminated, but the
falloff is unaffected. All solutions are then singular at .# ™,
behaving as

wﬁ]’m ~Inr (90)

for w # 0 modes or as

1//E3]'O> ~rinr (91)

for certain @ = 0 modes. This behavior was discussed in
detail in Ref. [33] and will be returned to in a later paper.
At the opposite boundary, near the horizon,

Gl(ivo) ~ e~ io[r* +k(r)] i (92)

meaning J? ~ £~ at the horizon in v slicing (for which
k = —r*). The physical solution in the Lorenz gauge then

turns out to be singular at the horizon despite the smooth-

ness of the physical source G,(f,’o)

discussed in a future paper.

Next, we consider the source G,(,ly’l)[h“)} given in
Eq. (33) and corresponding source SV in Eq. (77). If
we choose ¢ slicing, then H = 0, implying

. Again, this will be

F(L.1 0) x iwr*
th] )Na)F(Q)r e (93)

at large r, and so the field sourced by J Etl]’l)

1,?/%’1) ~ r*e!®” . On the other hand, if we choose u slicing,

behaves as

then H = 1, implying

A(1.1
I~y (94)
at large r, and so yr[,) ~ r0. Similarly, the source J Etl]'” is ill
behaved at the horizon, scaling as
f%” ~ el emior (95)

(1.1)

while the source J [i] is smooth at the horizon, behaving as

T~ g, (96)
Fields sourced by J %'1) and fields sourced by J E;]’l) there-
fore have very different behavior near the horizon. We
discuss that behavior in Sec. VIII.

In cases where the physical solution is singular at a
boundary, we introduce a puncture at that boundary as
described above. Even in cases where a puncture is not
strictly required, we can introduce one to increase the
falloff rate of the effective source J* toward the bounda-
ries; this is beneficial because it improves the efficiency of
integration over the source. In later sections we discuss the
requirements on the puncture.

IV. TEUKOLSKY EQUATIONS

In the Teukolsky formalism, instead of directly dealing
with metric perturbations, one considers perturbations of a
Weyl curvature scalar. We shall focus on the curvature
scalar y,, defined as

W4 = Caﬂ},{gn“rh/}nyrhﬁ. (97)

Here, the overbar denotes complex conjugation, Cyp,5 is the
Weyl curvature tensor, and the vectors are elements of a
Newman-Penrose null tetrad {/%, n®, m*, m*} [50,51].

We will specifically focus on linear perturbations of the
Weyl scalar, meaning that for a given metric perturbation
hap, we consider w4 to be (with an abuse of notation) the
piece of the Weyl curvature that is linear in /,:

yalh] = Cypd[WnemPnrind. (98)

Here the tetrad legs are defined in the background space-

time, and the linearized Weyl tensor Cgl/j’fg is defined in

analogy with the linearized Einstein tensor Gé}i’o) [h] of
previous sections. Our y 4 corresponds to the quantity dyy
in Ref. [34], but with the covariant derivative V replaced
with its zeroth-order version V@ from Eq. (31).
Analogously, we define the linearized curvature sca-

lar yo[h] = Coyn[A]1“mP V.
We note that our formulation in this section remains
specialized to Schwarzschild spacetime (though the exten-

sion to Kerr, starting from Ref. [35], is immediate).

A. “Reduced” Teukolsky equations
(

Given an equation G,,L’O) [h] = S, for a metric perturba-
tion 4, we can obtain an associated spin-weight § = +2
Teukolsky master equation [52],

sOsyr =5, (99)
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where (O is the spin-weight s Teukolsky (wave) operator,
s is constructed from £, and ¢S is constructed from S,,,.

The specific relationships between variables depends on
the choice of tetrad. We work with the Kinnersley tetrad
[53], in which _y = p~™yy, and _,O = 2r’p~*Op*, where
O is the second-order differential operator

O:=[P-02s+1)p](P—p)—-00

- % [(6S + 2) + 48%],, (100)

with p = —1/r, p' = f/(2r), and y, = —M /7. Similarly,
the source for _,y is given by _,T = 2r?p~*S[S,,4], where’

18] =50 [P/~

1
3 (B =4p =) 'S o

2/_)/)S(nﬁ1) - G/Snn]

—(P'=p")Sml.  (101)
In these definitions, we adopt Geroch-Held-Penrose (GHP)
notation, following the conventions of [2] (simplified with
=17 =0 in a Schwarzschild background). The GHP
derivatives P, P/, 3, and &', along with a brief review of
the GHP formalism, can be found in Appendix C 2.

The mode decomposition likewise depends on the choice
of null tetrad. Again working with the Kinnersley tetrad, we
write our separation ansatz as

W= r—(zs+1)f—s

xiz

=2m

(P TDsY em (0. )e=™Pr, (102)

where sY,,,(0,¢) are spin-weighted spherical harmonics
[54]; these are straightforwardly related to the tensor
harmonics Y4™ that we use for the Lorenz-gauge metric
perturbations [34]. The radial Teukolsky function, sR,,,(r),
satisfies the ordinary differential equation

( f— 2 = S(r = M) + iR H] S

r2
T 21— ) i svfm<r>])sRm<r>

f
= sSsm(r). (103)
Here, ® = mQ, the Teukolsky potential reads
2iSw
$Vem(r)=—s—[fr(1-H)-M(1+H)|
2M(s+1
+£ f(f—l—l)—s(s—l—l)—i—% , (104)

"In [2], this is denoted Sj.

and the source mode coefficients are defined from

Sfm(r’ jI)SYfm(g’ ¢)€—imq’)],. (105)

The explicit form of the source for the case we shall explore
in this work can be found in Appendix C.

The factor r~($*1)f=S in the mode ansatz (102) is
introduced for the purposes of numerical integration of
the radial Teukolsky equation. This was first introduced in
the context of hyperboloidal slicing for the Teukolsky
equation in [31], and has been further utilized in subsequent
works [55-57]. Without this rescaling, the potential would
only fall off as 1/r toward infinity and would not vanish at
the horizon. Therefore, the potential would be long-ranged,
akin to the Coulomb potential. For any nonzero spin-
weight, one could not accurately compute solutions of the
homogeneous Teukolsky equation due to numerical round-
off error either near the horizon or toward infinity. Hence,
in rescaling the master function in accordance with its
asymptotic behavior, we obtain a short-ranged potential in
Eq. (104) that now falls off as f near the horizon and r~2
near null infinity. Furthermore, our use of hyperboloidal
slicing eliminates the oscillatory behavior of the radial
function toward infinity and the horizon, which increases
the efficiency of the numerical solver.

As we did for the Lorenz-gauge field equations, we
express our radial Teukolsky equation in the form of
Eq. (69). The column vector y in Eq. (69) reduces to
one element with y(r) = gRy,,(r), with A and B given by

A= wZ(l - Hz;z_ Sme(r> i
B= ! <2M—|— 21@H+M). (106)
f r? r?

Similarly, the source reduces to J(r)= r*~1fs"1x

sSem (1, T ).
All of the above formulas apply for each field

oyt = phy [ ™). (107)
In analogy with Eq. (75), we split the second-order field

into two pieces,

=ty [n0)], (108)

—21l/(2'0)

— oy, (109)

—2ll/(1’1)

Again, all the formulas in this section apply to each of these
pieces. In analogy with Eqgs. (76) and (77), the radial
coefficients in the mode decompositions of _,y>% and
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) satisfy radial Teukolsky equations with sources
constructed from

S50 = 8a70 ~ GRVBL A0 (1)

st = 8Tl — gLV ). (111)

Note that our field _21//(2> does not represent the second-
order term in an expansion of the spacetime’s full Weyl
scalar. Such an expansion would include quadratic terms
constructed from h,(,i,) and from perturbations of the tetrad
legs, while our field involves only the piece that is linear in

hﬁ,l,) . We refer to Ref. [35] for a thorough discussion; there,
we refer to the field equation for our linear _,y(?) as the
reduced second-order Teukolsky equation. Similar com-
ments apply to (1),

B. Boundary conditions

The core aspects of Sec. III D carry over to the Teukolsky
case, including the use of punctures. However, solutions of
the radial Teukolsky equation do behave in significantly
different ways near the boundaries than Lorenz-gauge
metric perturbations. Here we do not attempt a compre-
hensive summary of the behavior of sourced solutions,
comparable to Sec. III D. Instead, we only highlight the
behavior of a basis of homogeneous solutions, analogous to
Eqgs. (85)—(88). This basis is made up of a pair of solutions
that are, respectively, purely ingoing at 7" and purely
outgoing at .#*. In the usual Teukolsky nomenclature these
are referred to as “in” and “up” solutions [2].

The in solution is regular at the horizon and has the near-
boundary behavior

r— 2M,

r — 0.

e—iwr*’
WM ~ { elor’ + 728 p—ior (112)

Conversely, the up solution is regular at .# " and behaves as

r—2M,

V™Y ior (113)

- e—ior +fsem)r ,
e bl

r — 0.

These limiting behaviors can be verified by applying the
rescaling in Eq. (102) to the form of the master functions in
Table 1 of Ref. [58].

At the boundaries where these homogeneous solutions
represent physical waves created by a compact source, they
have the same behavior as the Lorenz-gauge metric
perturbations. However, they differ in important ways at
the opposite boundaries. For the spin-weight we focus on
(s =-2), Eq. (112) shows that in the in solution, the
incoming portion of the solution at large r decays rapidly,
as r~*; and Eq. (113) shows that in the up solution, the
outgoing portion of the solution at the horizon blows up

there. Homogeneous Lorenz-gauge perturbations, on the
other hand, behave as S = 0 solutions in Egs. (112) and
(113): a solution that is a pure ingoing wave at the horizon
is a mix of ingoing (r¢~*"") and outgoing (re*")
waves at infinity; and a solution that is a pure outgoing
wave at infinity is a mix of ingoing and (bounded) outgoing
waves at the horizon. The more intricate behavior of the
homogeneous Teukolsky solutions has important knock-on
effects for inhomogeneous solutions with noncompact
sources, explained in Sec. VIID.

V.PUNCTURE SCHEME WITH SMOOTH SLICING
AND WINDOWED PUNCTURES

Before considering our worldtube scheme with multiple
distinct regions, we first consider a simpler but less
computationally convenient method. We assume the time
function s is smooth, and if there are punctures, we use
window functions to make them transition to zero at some
distance from the particle or from the boundary where they
are used. This is an extension of the window-function
method that one of us applied to first-order Lorenz-gauge
calculations in Ref. [20], now allowing for alternative time
functions and noncompact sources.

We keep our discussion generic in this section, making it
equally valid for eccentric orbits as for quasicircular orbits.

A. Generic source
We consider a generic set of coupled first-order radial
ODE:s written in the matrix form (70), reproduced here for
convenience:

A ody o~ .
D= dr+AW7J’ (114)
where = (y,d,)" and J = (0,,J)" are column vectors
of length 2d. These can be the Lorenz-gauge field equa-
tions, Teukolsky equations, or another set of equations. We
let the domain of the solutions to (114) be r € (2M, o0), and
we assume that J is integrable (or well-defined as a
distribution) in that domain and falls off sufficiently rapidly
toward the boundaries (a condition that will be enforced
below through the use of boundary punctures).

Now we seek a solution to Eq. (114) subject to physical
boundary conditions at r =2M and r = oc0. We can
construct the solution using the method of variation of
parameters [59]. Take the homogeneous version of
Eq. (114) (J = 0), which has 2d independent solutions.
We denote by ,_, with k =1, ...,d, the d independent
homogeneous solutions that obey desired boundary con-
ditions at r = 2M, and by Jr;, the d independent solutions
that obey desired boundary conditions at infinity. For
concreteness, for @ # 0 modes, {;_ will represent ingoing
waves regular at the future horizon, and ;. will represent
outgoing waves at future null infinity. For @ = 0 modes,
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W will be homogeneous solutions regular at the horizon,
and ;. will be asymptotically flat homogeneous solu-
tions. Using these solutions we define a 2d x 2d matrix of
homogeneous solutions,

D= (s oo P Wi o ), (115)

satisfying

d n
—® 4+ AD = 0.

e (116)

Appendix B reviews the construction of the basis of
homogeneous solutions.

In terms of @ the general solution to Eq. (114) can be
written as

¥ = @([ dre-1 (") (r) + a), (117)

M
with a an arbitrary, constant 2d-vector. Writing @ in the
form

= (D_,0,) (118)

with @, = (¥4, ..., W) a 2d X d matrix, we can also
write Eq. (117) as

r A
W =a_ ( / dr' ®,J + amp>
oM
+ (I)+ </ dl"/q)goltj + abot) .
oM

Here and below, “top” and “bot” refer to the top or bottom d

rows of a matrix with 2d rows, and (Dt‘OllD Jbot specifically

denotes the top or bottom d rows of the 2d x 2d
matrix &',

(119)

B. Compact source

First, consider the case in which the source has compact
support. This is the typical situation at first order, in which
the point-particle, frequency-domain source is confined to a
single radius (for a circular orbit) or to the libration region
(for an eccentric orbit [60]), and the effective, punctured
source is confined to a region around the particle.

If the source is supported between some 7p;, and 7y,
then outside of that region, the physical, retarded field must
reduce to a linear combination of the appropriate homo-
geneous solutions:

Pt = Dicy
D_c_

for r > rpax
(120)
for r < pin,

for some constant d-vectors c..

Explicitly evaluating the general solution (119) outside
the source region, we find

li/(r < rmin) = q)—atop + @, apor (121)

l/A/<r > rmax) = </ dr/q)t_oéf—i_ atoP)
2M
® b=l 7
+o, <lM dr(I)gotJ—i—abm). (122)

The boundary conditions (120) hence imply

) N T
“— <_ / dr s ()J(7), 0d> L (13)
oM
Therefore, the retarded solution is
et = dv, (124)

where Vv is the 2d-vector

0 N r N\T
v = (_ / draoglJ, / dr’tbgoltJ> . (125)
r 2M

Note that v = (c_,0)7 for r < ryi, and v = (0,c,)" for
F > Fmax OF, restated as an equation for ¢,

c, = /rmax dr'aglJ, (126)
2M
S / " arag . (127)

min

For a given source J, we will refer to (124) as the retarded
integral of J. If J has compact support, then this also
represents the physical retarded solution; if J has non-
compact support, then the retarded integral of it may or may
not represent the physical retarded solution.

C. Noncompact, punctured source

Now we consider the case where the source is non-
compact, extending to the boundaries. This is the situation
at second order.

As described in Sec. III D, the boundary conditions on
the physical field are

for r - o0,

et = { g+ ey
for r - 2M,

128
S+ ®_c_ (128)

for some constant d-vectors cy. 5 is a given particular
solution to

DyS =J, (129)
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and it is typically singular at the boundary where it is
used.

We can enforce the boundary conditions (128) using
punctures. Let the punctures 1/77; approximate zi/:St near the
boundaries and then transition smoothly to zero. Define
" =" +yF (plus a puncture at the particle if appro-
priate). The residual field ™ = ™ — " then satisfies

DyR = J = Dy = J. (130)
To enforce (128), we adopt the retarded solution to this
equation, taking the retarded integral (124) of J°:

[es) A o r A e
PR = —d_ / drogh ™ + @, / droplJemt. (131)
r 2M

If J° falls off sufficiently quickly toward the boundaries,
then this solution for y® approximates the homogeneous
solutions @ ¢, near the boundaries, fixing the values of
the coefficients ¢, and ensuring that the total field
%" + R takes the form in (128).

To see that we are correct in using the retarded
integral (131), start by assuming we know the particular
solutions I/A/i exactly. In that case we can adopt punctures
gt = S W, where W, is a window function that is
identically equal to 1 in a neighborhood of the worldline
and transitions to zero at some finite distance from the
worldline. The effective source then has compact support,
identically vanishing in a neighborhood of the boundaries.
In this circumstance, we rename the ¥ in Eq. (131) as
pRexact Near r = 2M, where JT = 0, jRexact pecomes the
homogeneous solution

pRexact — _@_ /oo dr’(I);)i,jEff, (132)
2M

implying the unknown constant c_ in Eq. (128) is
c_=-— f2°,f4 dr <I>t‘01'[,feff. Analogously, near r — oo we have

li/Rexact — <I)+ /oo dV/(I)g(}tjeff, (133)
2

M

implying ¢ in Eq. (128) is ¢, = [53, dr'®; J°T.

Now consider the case we encounter in practice, in which
we only know Ii/i approximately, up to some finite order
in a series expansion around r — co or around r = 2M.
Suppose we use such approximations as punctures 1/77;,
such that

lp?i — li/'];exact + Avf\/z (134)

for some Ay’,. For the puncture scheme to be useful, the
total field must be robust under this change in the
punctures, at least so long as Ali/z is sufficiently small
in the limit to the boundary; the change in the punctures
must be exactly counterbalanced by a commensurate
change in the residual field, leaving the total field
unaltered.

Let us assess the restrictions this imposes on Azf/z, and
whether we can safely use the retarded integral (131) for
R, The new residual field, y* = ™ — 7, satisfies

DyR =] —DyP =J —DpPeect —DAGP.  (135)

Therefore, the change in the residual field, Ay™ =

PR —gRexact gatisfies
DAGR = —DAG”. (136)
The retarded integral is
AGR = @_ / " drag Dap?
r
— o, L M dr o7 DAG?. (137)

Using DAy” = % AYP + AAYP and integrating by parts,
we can rewrite the integrals as, for example,

0 ~ o d ~
/ dr' @ DAY = / dr <—$c1>;0{) + <1>;O;,A) AyP

+q>g)},Ay77"°°. (138)
It is straightforward to establish that
Ry (139)
dr ’

starting from 4 (®~'®) =0 and using Eq. (116). This
simplifies the above result to

/ dr o DAY = ol Ap”| . (140)
r r

Similarly evaluating the second integral in Eq. (137), we
obtain

APR = —Ap” + @_lim (DhAYT)

@, lim (@1A77). (141)
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We see that the change in the puncture is counterbal-
anced by the change in the residual field, and the retarded
integral recovers the correct result, if®

lim (D} A7) =0 (143
and
Tim (@7 A7) = 0. (144)
We can also write this as
tim [0 (57 = )] = 0 (145)
and
lim [@51,(97 — )] = 0. (146)

r—2M

These conditions dictate the required order of a puncture.
For example, if we work with a puncture that includes
terms up to order (r—2M)" near the horizon, then
Eq. (146) tells us that n must be large enough to ensure
lim, _oy [ @5 (r — 2M)" ] = 0.

Equations (143) and (144) also tell us the conditions
under which we actually need a puncture. If we choose
AP = -7 then yy” =0 and the residual field becomes
simply the retarded integral of the physical source, X =
—®_ [® dP LT+ @, 5, drdpLJ. Equations (143) and
(144) become

lim (©h5%) =0 and  lim (@GL5%) =0.  (147)
If the conditions (147) are satisfied, then
li/Rexact — _llA/Pexact —d_ /oo dr/q)t_o:)j
+ @, / drogll. (148)
oM

$The same calculation also shows that the retarded integral yields
the correct residual field if we change the puncture by a homo-
geneous solution near the boundaries, as in Al//z =, b W, for
constant d-vectors b... Equation (141) in that case reads

ApR = —Ap” + d>_rli_>nolo(<1>g,%,(l>+)b+

+ @, lim (@50 )b_. (142)

Itfollows from @' ® = 1y, that O i d, = 0 = Gy ld_, and so
Ay® = —AyP. This simply trades the homogeneous solution
between the puncture and the residual field, without altering the

total, physical field. Equivalently, this trades a homogeneous
solution between the two terms in the boundary conditions (128).

This implies that no puncture is required: with or without a
puncture, the total field ™ + " is simply the retarded
integral of the original source J, meaning that this retarded
integral automatically satisfies the correct boundary con-
ditions. Conversely, if the conditions (147) are not satisfied,
meaning

lim (@) #0  or (149)

then a puncture is required.

In summary, for a given particular solution ¥ in the
boundary conditions (128), the retarded integral (131)
yields a correct residual field so long as > — /" satisfies
the conditions (145) and (146). We emphasize that those
conditions are stronger than simply ensuring convergence
of the retarded integral; two different punctures can both
lead to convergent retarded integrals even if the difference
between them violates (143) or (144), but in that case they
will lead to two different total solutions " + =, satisfy-
ing different physical boundary conditions.

VI. WORLDTUBE PUNCTURE SCHEME

We now introduce our worldtube scheme. We split
the domain into five regions: a near-horizon region
I'y = (2M,ry); a nonpunctured region T'; = (ry,7p)
(where “L” stands for “left”); a worldtube’ around the
particle I', = (r,,rg) (where “R” stands for “right”);
another nonpunctured region I'p = (rg,rs); and an
asymptotic region I'y, = (7, ). These are illustrated in
Fig. 2. We assume there is a puncture at the particle, zifz,’ in
r »> @ puncture at the horizon, ijZ in ['y; and one at infinity,

Wk, in T'y,. We also allow the operator D to be different in
the different regions, as it will be if we use different slicings
in the different regions. We will ultimately obtain the
solutions in all the regions by imposing junction conditions
at the region boundaries.

In many concrete calculations we omit one or both of the
regions ', and I's. However, for generality, we include all
five regions in our description here.

As in the preceding section, we keep our treatment
generic, such that it applies both to eccentric and quasi-
circular orbits.

A. General framework

In each region we define the field variable {,, with
a€e{H,L,p,R,x}, as

’In three-dimensional space, each of the regions is a shell
surrounding the large black hole, but we adopt traditional
nomenclature by referring to the shell containing the particle
as a worldtube.
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Y v, Py YR

T H 1_\L Fp r R
2M TH T'L T'R Too Sy
FIG. 2. Division of the numerical domain into regions I'y, [';,

I, T, andT',. IneachregionT',, a€{H,L, p,R, oo}, we use a
corresponding field variable ,,.

W =05 —Vh (150a)

WL =L, (150b)
~ ret ~P

P, =95 =, (150¢)

g =g, (150d)

Ve = Vs — V5, (150e)

where the domain of vy, is I',. These fields satisfy the
equations

Doy =0, + Ay, = T, (151)
where Aa is in general different in each region and the
sources are jeffA: Jy —A@Hlf/{{, J =7, It =7j,-D, 7,
S = Jp, and JT = J — Dk, where the raw sources

J, are allowed to differ between regions.
The general solution in each region is

W, =0, (/ O ar + aa>,
rﬂ

where r, € {2M, ry, rp, rg, s} is the left boundary of the
domain I', of y,. ®, is the matrix of homogeneous
solutions to each equation with an analogous form to
(115), satistfying 9,®, + Aana = 0. We assume that both
these homogeneous solutions and the retarded solutions are
related via transformations of the form

(152)

@, = T, Dy, (153a)
®, =T,d,, (153b)
Op = TrD,, (153c)
D, = T Dy, (153d)

and analogously, Wi = Ty, vyt = Ty, etc. This
will be the case for transformat10ns between time slicings

for the first-order field and the second-order field /(20

(2,0)

sourced by G,; . We discuss other cases in Secs. VII

and VIII. Section VIII, in particular, shows how junction
conditions for second-order fields are derived from how the
fields transform between slicings.

We now fix the constants in the general solution by
imposing junction conditions and boundary conditions.
From Egs. (150) and (153), it follows that the junction
conditions are

Wp(ru) =T (g + VA/EN”,’ (154a)
llA/p(rL) = (Tpll7L - llA/;?)hL, (154b)
Wr(rg) = Tr(Wr, + 1/7173)|,R» (154c)
Fealre) = Tadg =90, (154d)

We assume boundary conditions of the form (128)

~S
+®, .,c, forr— oo,
l/,\/ret _ {l//oo oo+~ + (155)
Wy +Py_c forr—2M,
for some constant d-vectors ¢, where
Dys =1J,. (156)

We also assume that the punctures 5 and vy, satisfy the
analogs of (145) and (146):

hm [q)ooltop( 7 lpgo)] =0 (157)

and

Tim [@3, (9 —95)] = 0. (158)
We can then impose retarded boundary conditions on iy at
r =2M and on ., at r — oo, which fixes the constants in
the outermost regions to be

(159)

ay = (all,...,al’,0,)",

o0 A T
Ao = (—/ @gol]f,f,fdr,a?,...,af> . (160)

By combining Egs. (153) and (154), we derive the jump
conditions

ap, —agy —/rH drdy! 4t + (161a)
—aL—/ drd;'J, + Ct, (161b)
/ dr@;' Jo + CR, (161c)
/ dr@g' Jp+C®. (161d)
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where
o T (162a)
Ct = ~07' 1597, (162b)
C* = &;'7),,. (162¢)
€ = 0TV, (1624)

The boundary and jump conditions provide enough
equations to determine the a,’s. We find that

B <— fZM""drCI){o})jeff)
aH =

0,
+_<—Cgp—c@p—c§p—cg5>’ (163a)
0,
— [, 2 drdg,Je
()
oty dr@g J°
-Cg, — CR, — Cis
+-< P C#;P ‘P>, (163b)
bot
— [, @ drdg,Jer
4p = ( rL —1 feff )
o Ar®pgJ
+ <_C§)p - Ctogp > . (1630)
Clly + Choy
— [, 2 drdg, et
dr = ( TR —1 geff )
f o dr®pJ
—Cﬁ?p
+ < ) (163d)
C{fot + Cﬁot + C{)eot
<— /. “drcbt;}pieff>
aoo - < A
it dr®
+( b ). e
s e
Cioe + Cior + Chiye + Chy

where we have defined ®(r):=®,(r) for rel’, and
JM(r) == J(r) for rer,.
With Eq. (152), Eq. (163) gives the global solution:

- (I)[v— <C{3p + Chp + CF, +C§gp)
0,
+ CHO(r —ry) + CLO(r — rp) + CRO(r — rg)

+C°°6’(r—r°o)}, (164)

where v is given by Eq. (125) with the replacement
J = J'and where, following the convention just above,
we have defined ®(r):=®,(r) and y(r):=y,(r)
for rerl’,.

Equation (164) with Eqgs. (125) and (162) give the
solution in each region I', in a form close to that of
Eq. (124), but with the junction conditions across region
boundaries accounted for by the additive constants C?. In
the next two sections, we describe two specific examples of
this general framework.

B. Example 1: ¢ slicing

We first consider calculations on constant-7 slices (i.e.,
H = 0), with punctures allowed at the horizon, at the
particle, and at infinity.

In this case, the operators f)u are the same for all regions,
equal to b[t] = 12dx2d% —I—AM, where A[t]’ defined in
Eq. (71), is given by (73) (Lorenz) or (106) (Teukolsky)
with H = 0. The matrices @, are also all the same, equal to
®(;, the matrix of homogeneous solutions satisfying

f)[t] lﬂ,[f]i = 0 subject to the boundary conditions (B1) and
(B2) with k(r*) = 0.

The solution is hence given by Eq. (164) with ® = @y,
and D (which appears in J°™) given by f)[t]' The constants C*
are givenby Eq. (162) with T, = T; = T = T, = 1y4x24-

C. Example 2: Sharp v-t-u slicing

Next we consider a sharp hyperboloidal slicing of the
type described in Sec. IIB, with the sharp transitions
occurring at boundaries between regions.

As an example, we consider using s = v in['y; s =t in
I'y, Tk, and I',; and s = u in I'y,. The operators @a in this
case are ZA)H:f)M, f)L :f)R:f)p:f)[,], and f)oo = ZA)M.
Here f)[s] = 12dx2d% + A[S] (s =t, v, or u) with AM given
by Egs. (71)and (73) with H = -1 (s = v), H=0(s = 1),
or H=+1 (s =u). Similarly, the matrices of homo-
geneous solutions in this case are @y = @), & = Pp =
®, = Py, and O, = P|,), and are constructed from the

homogeneous solutions satisfying @[S]UA/E:]E = 0 subject to

the boundary conditions (B1), (B2), or (B3) with the
corresponding choice of height function k(r*).

Referring to the discussion around Eq. (84), we find that
the homogeneous solutions in the different regions are
related as

Dy =P @y, Py =P, Dy, (1653)

Oy =P, Dy, Py =P Dy,  (165b)

where

104010-18



WORLDTUBE PUNCTURE SCHEME FOR FIRST- AND SECOND- ...

PHYS. REV. D 109, 104010 (2024)

(166)

Pi _ e:FiaW* ( ldxd ded)'

:Fiwf_lldxd 1d><d

Note that P7'= P.. The transformation matrices in
Eq. (153) are therefore T) =T =P, and T, =T =154,

The solution in each region is given by Eq. (164) with @
and D as described above. Equations (162) become

CH = oy tigl,,. (167a)
Ch=-o.y7),,, (167b)
Cr =3y, (167¢)
C® = - ik, (1674d)

where the inverse matrices are evaluated at the relevant
boundary between regions.

VIL. DERIVATIVE OF THE FIELD WITH RESPECT
TO AN ORBITAL PARAMETER

As discussed in Sec. II B, one of the required ingredients
in the multiscale expansion is the parametric derivative

5Vh,<}y), where 512 is defined in Eq. (32) for quasicircular

orbits and Eq. (45) for eccentric orbits. This has two types
of essential input: derivatives with respect to orbital
parameters p’, and derivatives with respect to black hole

parameters 6M 4. Here we will only consider the first type.

The second type is trivial because the contribution to h,(})

from 6M and §J are simple analytical functions [9], while

the dependence of h,(,ly) on orbital parameters is (in general)

only known numerically.

We keep our discussion in this section generic by writing
a derivative of y with respect to an orbital parameter as Sy .
However, our treatment is slightly less generic than in the
previous two sections: we assume that y has a compact
source bounded between some minimum and maximum
radii, as is the case at first order for bound orbits. y is
then given by a retarded solution (124) that reduces to the
form (120) outside the source region.

As shown in Ref. [36], the most efficient way to calculate
oy is to formulate a field equation for it. As we explain in
this section, that field equation can be solved using the
puncture scheme developed in the previous two sections.
However, new junction conditions must be introduced at
the boundaries between regions, and punctures must often
be introduced at the outer boundaries.

A. Smooth slicing and windowed punctures

To introduce the structure of the problem, we return to
the case of smooth slicing and windowed punctures. Using
the same notation as in previous sections, we assume that A

and J are functions of both r and p’, A = A(r, p') and
J=1J(r,p"). As a result, the matrix of homogeneous
solutions ® will also depend on pi, ® = ®(r, p').

W satisfies Eq. (114). By differentiating that equation
with respect to an orbital parameter, we obtain a field
equation for oy,

Do =Kk, (168)
where we have defined the field variable
b= ol (169)
and the source
K = —6Ay +6J. (170)

We note that A only depends on p' through a dependence
on w(p'), meaning
SA=0 forw=0. (171)
Equation (168) for ¢ has the same form as Eq. (114), just
with a different source. However, the source is now always
noncompact, due to the term SA . Hence, in general the
retarded integral may not yield the correct solution (or,
indeed, even converge); we will in fact find that is the case
if we use ¢ as our time function. To allow for that
possibility, we introduce punctures at the boundaries,
61/75 and &% . For now we take these punctures to include
windows, making them go to zero at some distance from
the boundaries, and we define the total puncture
SyP = &y + Sk We then have
Dyt = Kk — DpP = k°T. (172)
We can now solve for ™ using the same methods we
used to solve (114). The retarded integral of Eq. (172) can
be read off Eq. (124) by substituting K for J, yielding

PR = dv (173)

(p’
where v, is given by Eq. (125) with the replacement
J — K
© R r N T
v, = (_ / dr' @K, L . dﬂq>gg[1(eff> . (174)

It will be useful to write this as
V, =V +V, (175)

with v; and Vv, given by
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. ( [ ®drdgh (A +DyP) > (176)
1 ~ )
sz dr/q)bolt SA W +D¢P)

— [ 2drdglsT >

vV, = ( (177)
szdrd)blél

B. Worldtube method

We can reformulate the calculation of ¢ in precisely the
same way we did the calculation of i in Sec. VI. In place of
Eq. (172), we have equations in each region I',:

Do = T (178)

The field variable ¢, in I', can be either the physical field
Sy or a residual field o™ — pF.

The general solution to this equation in each region is

r A
Ga =D, (/ O K dr + ba>.

We can find the constants b, from junction conditions and
boundary conditions, in the same manner we found the a,’s
in Sec. VL

We readily derive the junction conditions for ¢ by taking
a parametric derivative of the conditions W (ry) =

(179)

T (ru), Wy ()= Tpl//ret(rL) Wi'(rg) = TR‘//m(rR)’
and P (ry) = T (re ). The results are

oL(ry) = [TL(Pu + @p) + 6T, (180a)

Pp(r) = [Ty + 6T =@}, (180b)

Pr(rg) = [Tr(®), + f/’p) +6T l//ret]r (180c)

Poo(reo) = [Toolr + 6Tk — L), (180d)

Using these conditions to derive the analogs of (161),
and imposing retarded boundary conditions, we obtain
enough equations to fix the b,’s. The result is that b, is
identical to a,, as given in Eq. (163), with the replacements
Jff = R and C¢ — D4, where

D" = [®F' 9 + @3 T 6Ty, . (181a)
D' = [-@7'T;' o + @' T, 6T i, (181b)

= [®,'9) + @,' T 15TR1//rm] (181c)
D> = [-OR' T 9L + O T 6T ig],_ (181d)

Substituting the b,’s into Eq. (179), we obtain

¢_®|:V — <D5P+Dt0p+DtOp+Dtop>

+ DHO(r — ry) + DEO(r — rp) + DRO(r — rg)

+ D*0(r — roo)], (182)

with v,, given by Eq. (175). As in Eq. (164), we have
defined @(r) = du(r), ®(r) = Dy(r), K (r) = K"(r)
for rerl’,.

Equation (182) yields ¢ in each region for generic
slicings and punctures. We next consider the more specific
cases of ¢ slicing and sharp v—¢—u slicing.

C. Example 1: ¢ slicing

First, we specialize to ¢ slicing. As we shall see,
punctures are required at the boundaries in this case.

@a and ®,, are the same for all regions, which means the
transformation matrices are all 7, = 1. We leave punctures
at the horizon and infinity, but we use a point source at the
particle instead of a puncture. As a result, we can combine
the regions I'y = (ry,ry), T, = (rp,rg), and I'p =
(rr.Ts) into an enlarged I', = (ry, ry,). With this setup,
Eq. (182) reduces to

top + Dy top

p =DV, —
¢ M[q) < 0,

+ D*®0(r — rm)] ,

> +DO(r —ry)
(183)

and D" = @/ @f,\rﬁ

stress that here we define ¢(r) = @,(r) for r €T',, meaning
¢ is to be interpreted as @, = @~ in I',, for example.
To assess the need for punctures, we first analyze the
integrands @ t0p5A[,]y/[t]t and O botéAy/ff]‘ in Eq. (175).
Our analysis appeals to the concrete form of A in Egs. (71),
(73), and (106).
Recalling that 5flm =0 for w =0 modes, we exam-

ine @ #0 modes at large r. We have 5121[,] ~ 0

where D® = —<I>[‘I]' gbfo|rm . Again we

and
Wi ~ etior <I>[‘t]1 is made up of quantities that all behave
as ~e*” for some k at large r. So in principle,
[t]topéA[,]y/Le]‘ asymptotes to a sum of terms ~e’?®" with
different p’s. For p =0, [* e dr ~limg_ . R; for
p#0, [©eP" dr ~limg_ ., PR, In either case, the
limit does not exist, indicating that the integral in the top
row of Eq. (175) does not converge without a puncture
For w # 0 modes near r = 2M, we have 5A ~ f% and

t/fff]‘ e~ior (I)ml is made up of quantities that behave as

~el19” or ~f1e!""  for some integer ¢ at r — 2M. So in
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principle, <I>[‘t] 512\[[]1/7?]‘ could possess a power-law diver-

1bot
gence at the horizon, indicating that the integral in the
bottom row of Eq. (175) would diverge without a puncture.

These analytical scalings suggest the need for punctures
at both the horizon and at infinity. We have confirmed this
requirement numerically. We can also confirm it by con-
sidering that ¢ is a parametric derivative of a retarded field.
Since iy ~ e~ for r—2M and P ~ etier for

r — oo, this implies
@ret ~ (5&)) In <ﬁ _ 1>e—iwr* for r - 2M, (184)

Gt ~ (Sw)ret @ for r — oo. (185)
These behaviors clearly violate the analog of Egs. (147),
verifying the need for punctures.

We can obtain the punctures in a practical way from the
large-r and near-horizon expansions (B1) or (B3). To

construct the puncture at infinity, we define

Foo = DMV, (186)
with v given by Eq. (125) and
pout — (02d><d ‘ l"Pl—&- .. .q";d-ﬁ- ) , (187)

where W*© = (W%, 0,9*)7, k=1,....,d, and ¥ =
als(p')e™” is the leading term in the large-r expansion
(Bla). The parametric derivative is then

Y oo = 6DV + Oy, (188)
For the Lorenz-gauge case, we need to remove only the
leading large-r behavior. It therefore suffices to take @2, to
be the leading term in Eq. (188),

0
PP = i(Sw)r dout - ( d), (189)
Cy

where c is given by Eq. (126). For the Teukolsky case, the
general construction is the same, but three more orders
must be included in the puncture to obtain a convergent
retarded integral of the effective source.

The puncture at the horizon is derived analogously. We
define

= o"v, (190)

with

Din — (@1—...@1— | ozdxd), (191)

where W5, = (¥5,.0,%5,)", k=1.....d, and ¥, =
b4 (p')e~""", the leading term in the near-horizon expan-
sion (B1b). The parametric derivative is

Sy = 6DV + OISV, (192)
Again it suffices to include just the leading term,
4 c_
o =—iaoyren- (). (99)
d

where c_ is given by Eq. (127).
In summary, with ¢ slicing, the parametric derivative of
the retarded field, 6y™, is given by

89" = oy + 9, (194)
for 2M < r < ry, by
S = P + GF (195)
for r > rg, and by
50 = i, (196)

for ry < r < ry, where @, is given by Eq. (183), with the
punctures %, and @}, given by Egs. (189) and (193).

D. Example 2: v-f-u slicing

We next consider sharp v-t-u slicing. This is the slicing
used in our numerical calculations of ¢, and our description
in this section focuses on the particular choices we make in
our numerical implementation. Unlike in previous sections,
here we also divide the discussion between Lorenz-gauge
and Teukolsky calculations as they differ in important
ways.

As in the case of ¢ slicing, we do not use a puncture at the
particle.

1. Lorenz gauge
In our Lorenz-gauge calculations, we merge ['; and I’y
into I',. The matrices of homogeneous solutions in the
three regions I'y, I, and I'y, are ®y = @), ©, = Py,
and @, = @y}, as described in Sec. VIC.

We show below that a puncture is not required with this
setup. Equation (182) therefore reduces to

Dl + D
¢_®[V¢—< mpo tOp)—l—DHH(r—rH)
d

+ D*®0(r — rm)], (197)
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where DY = CD[‘U]IP_EPWA/E and D*® = CDEfP_&Pgi/Ef]‘.

Explicitly,

1, 0,

DH — —1560(1)[_@]1< B dxd *d d )lifm , (198)
f 1d><d r 1d><(/i r=ry
r*1 4y 0,

D> — —i5wd>[‘t]1( e T )ri/ff]‘ . (199)
S  axa T gng r=r.

To justify the conclusion that no punctures are
required, we first consider the integrands that appear in
Eq. (175). From the large-r behavior (B1), we have
y?ffj ~ (P, .., 0,1/, ..., 1/r})T; the absence of the phase
factor ¢ in u slicing means that the r derivative of the

leading term vanishes, leading to the ~1/r? behavior in
0,1//?25. We also have

n 0,45 0,
SAp ~ ( SO ) (200)
" Laxa "lixa
Hence, the source in 'y, K, = —51@[“]1/7{35, behaves as
~r~2. To assess the falloff of the integrand QJ[;LOP(SA W)

-1
[u]top*
behavior (Bla), we have the block form

we also require the falloff of @ From the large-r

(1 + e—2imr*)1d 4 I’Old d
d)[u] N < X X

—2iwr*
e 1yxa

), (201)

-2
r 1y

from which we can derive <I>[‘u} 0 (possibly with

top
oscillatory terms). Therefore, the integrand in the upper
half of Eq. (175) falls off as 1/r? (again, possibly with
oscillatory terms), and the integrals converge without a
need for a puncture.

The core of this sketch is that in hyperboloidal slic-
ing, the outgoing modes at infinity do not contain an
oscillatory factor. A similar sketch applies for the integral
in the lower half of Eq. (175), using the fact that the
ingoing modes at the horizon likewise contain no oscil-
latory factor.

We have also numerically verified that the stronger (but
necessary) conditions (147) are met. The key reason is
again the lack of oscillatory factors. The correct boundary
conditions are provided by the parametric derivative of the

retarded field y?fi‘m]. Because there are no oscillatory factors

in l/?ﬁ‘m], we have that élilm has the same falloff as I/A/m as

r — oo, and &/A/ﬁ has the same behavior as lilﬁ asr — 2M,
this contrasts with the behavior in 7 slicing, illustrated in

Egs. (188) and (192), where the parametric derivative
introduces irregularities at the boundaries.

In summary, with v—f—u slicing, o™ is given by
Eq. (197) with Eq. (175) and vanishing punctures in V,,.

ret

2. Teukolsky

We now consider the equivalent calculation in our
Teukolsky formalism of Sec. IVA. Similar to the
Lorenz-gauge calculations, we consolidate I'; and I'y into
a single region, I',. But, unlike in the Lorenz gauge, it is
necessary to include a puncture, ¢, in the asymptotic
regime of I'y,. The solution in Eq. (182) reduces to

DH 4 D
@:d)[v(/,—( tOpo t0p>—|—DH€(r—rH)
d

+ D0l 1) (202)
where
D" = @ 1P_5P i,
D = [~®'P_pl + O P_6P ] . (203)

with @y = @, ®, = @, and O, = Py, in the regions
'y, '), and I, respectively. In this section we wish to
demonstrate the need for an appropriate puncture within the
asymptotic region I'y, despite the introduction of hyper-
boloidal slicing.

Once more, let us consider the integrals over the
extended source term that appear in Eq. (175). The
boundary conditions of the homogeneous solutions to
the Teukolsky equation results imply, under rescaling,
Wit ~ (r°,1/r?)", as in the Lorenz gauge.

In the Teukolsky form of our worldtube method, &ZXM is
given, at leading order, by

(204)

Therefore, the source behaves as K, ~ r~2 in the asymp-
totic region 'y, again just as in the Lorenz gauge.
However, the falloff of the entire integrand is where the
similarities with the Lorenz gauge end. If we consider the
final factor in the integrand, ®;! . we find that Egs. (112)

[1] top”
and (113) imply

® I"O 4 ’,,ZSe—Zimr* 7"0
u ~ . * ’
[u] I"_2 + rZSe—Zzwr r—2

(205)
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which leads to ®;!

latory factors).'
solution (175) therefore diverge as
—2(s+1)

iop ~ 725072, 1%)" (neglecting oscil-

The integrands in the upper half of the
B A ret

[ ]lop ¥ ~

r For the spin-weight s = —2 that we are consid-

ering here, (b[ ]mpéA[u]yA/ffj ~r?. Hence, the integrals
diverge, and to obtain a physical solution one requires a
suitable puncture in I',.

In our Teukolsky calculation, we obtain punctures in
the same manner as in Sec. VII C, by appealing to the large-
r expansions in Appendix B2. To construct a suitable
puncture in I',, we again use the definition in Eq. (186),
with @ = (0,,,|¥"). Here W is given by terms derived
from the asymptotic expansion in Eq. (B3),

Jmax afm (p )

Wi, =y - oy

Jj=0

(206)

Here j,.« > 2; since the divergence is ~7? in the integrand,
one must consider an expansion at least up to O(r~2). This
is to ensure the effective source K< falls off sufficiently
quickly for the integral to converge. The puncture, $~, is
therefore defined by taking the first term of the parametric
derivative, 8y, in Eq. (188) with 5®°" derived from the
asymptotic expansion in Eq. (206). This yields

]mwx

Sw .af’"(P")<0 r?
f2r ZJ( N0 —jr—4amf!

such that the final puncture is given by

0
PL = 50 - ( )
Ct

with ¢, given by Eq. (126).

SO = ) . (207)

(208)

VIII. FIELD EQUATIONS WITH
PARAMETRIC-DERIVATIVE SOURCES

As a final case, we consider a field sourced by a
parametric derivative of a lower-order field. This is the
type of source in the field equation (77), which we rewrite
here as

"%For a generic matrix of the form (205), the large-r growth of
CI)[‘M} top is slower than our displayed scaling. Our scaling relies on
the fact that the determinant of the leading-order large-r term in
@) vanishes. We can write that matrix as (“’,07 a’,” ). Each column
here comes from the large-r expansion of an outgoing wave
solution [stm, 0,(sR} )7, multiplied by a constant a or b, with

RS =1+ a;r™! + O(r~2) for some constant a,. We therefore
have ¢ = —aa; and d = —ba;, which makes the determinant

vanish.

D = I (209)
We restrict our analysis to quasicircular orbits for simplic-
ity, but the extension to eccentric orbits is immediate. For
simplicity, we also assume the falloff properties of the
Lorenz-gauge ®~', but the discussion is straightforwardly
extended to allow for the Teukolsky falloff behavior.

We organize our analysis somewhat differently here than
in the preceding three sections. Rather than first consid-
ering a generic formulation and then examining the scheme
in ¢ slicing and in v-t-u slicing, here we begin with the fact
that no punctures at the boundaries are required in v-t-u
slicing (for fields exhibiting the Lorenz-gauge falloff);
this follows from the scaling of the sources in u and v
slicing, given in Eqgs. (94) and (96), and the arguments in
Sec. VIID. We then analyze the transformation between
slicings in order to derive punctures in ¢ slicing and junction
conditions in v-f-u slicing. Finally, we summarize the
solution in v-f-u slicing.

A. Junction conditions and punctures

We first consider the transformation from u to ¢ slicing.
We consider a field w,[7;(u)]e=™%® in u slicing,
suppressing the dependence on r and ¢. Expanding func-
tions of u around their values at 7, we obtain

by() = ¢p(1) = QD) + 5 (FPFG (1) + O(&2), (210)
Ti(u) = T, (1) —erFO (1) + 0(e2),  (211)

and therefore
W[ T 1 (u)]e=m )
N
= {W[u] (T1(1)] — € {r* 0 VW[

+%ﬂ%$wﬂ+0wﬁw@wwl<ﬂm

where all functions on the right are evaluated at
time . Equating the right-hand side of Eq. (212) to

w1 ()]e=™?»("), and writing the expansions
yi = el +ewl) + 0(e) (213)
and
Wi = 81//3]) + «‘?ZV/E;]) +0(€), (214)
we find 1//%;]) = wle])e‘imgr* and
Vi = Wi+ dy)emer . (21)
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where

2 e L 0 (1

5 (216)

Here all functions are evaluated at the same values of their

arguments.
We relate
. (2 2 N
WEM]) = <WEu])’ arWEuf) (217)
to
. (2 2 2N\T
WEI]) = (WEI])’ arl//Et]>) (218)

by taking a radial derivative of Eq. (215). This yields

. (2 (2 (2
‘//Eu]) = P+(WE,]) + AWE;f)v (219)
where
. (2 oA b 0) A (1
_ - . y T
+ 710y, Oy — imFQ ry) . (220)

Noting that every term in the transformation involves a
forcing function, we can also write

+Ap ), (221)

(222)

Equation (221) is the junction condition at a boundary
between t and u slicings. The same equation holds at a
boundary between v and ¢ slicings, with the relabeling
t—> v, u—t

- (1, (11 .2
V/Etl] V= Py (WEJ] ) + A‘/’Ev]))’ (223)
where
(2 oA b 0) A (1
M) = 1 9 vpy] = 5 (rPmEg
_ = o (0) o (INT
+ 704 Oy —imFQ ) (224)

In addition to providing a junction condition, Eq. (223)
can be used to construct a puncture at the horizon in ¢
slicing. The singularity at the horizon comes from the
second term, which then serves as a puncture,

L P(1.1)

A (2
w = Poap (225)

[o] -

A puncture at infinity can be constructed in the same way.
Following the same steps that led to Eq. (221), we find

A (1,1 A (1.1 (2
ol = P_al) + apll). (226)
where
NG N (P 0) A (1
A = = Oyl =5 (7 VPmEQ )
- = (), . (0) s (DT
= 710y, O vy + imFG ) (227)
A valid puncture at infinity is therefore
LP(L1) . (2)
Ve = P-AY - (228)

B. Example: v-t-u slicing

As a concrete example, we now specialize to the
following setup:

(i) in T'y, we use v slicing and a puncture ;

(i1) in I';, we use v slicing and no puncture;

(iii) in I',, we use ¢ slicing and a puncture 17/}’,’;

(iv) we omit I'k;

(v) in Iy, we use u slicing and a puncture .
This is the arrangement used in Refs. [7,17,18].

Following the same steps as in previous sections, starting
from a solution of the form (152), we arrive at the first three
subequations in Eq. (161) with

—_1.~P(1,1
Cﬁ,l) = q)[v]ll//H< )|r,,9 (229a)
— A~ (2 ~P(1,1
Ch .y = o PLAgl) — g (229b)
. _ ~ (2 ~P(1,1 ~P(1,1
Chyy = P Aw ) —wat Ty (229¢)

©

and with the replacements rp = ro, CR — C?fJ), and

ap — as. The solution can then be put in the form
(164) with rp = r,, and CR set to zero.

Here, for generality, we allow for punctures at infinity
and the horizon. Though they are not needed in v-r-u
slicing, they can be used to accelerate the convergence of
integrals.

IX. DEMONSTRATION 1: LORENZ-GAUGE
CALCULATIONS FOR QUASICIRCULAR ORBITS

As a demonstration of our method, we consider the
Lorenz-gauge field equations for a point mass on a
quasicircular orbit. In that context, we calculate the first-
order metric perturbation 7152,! and the parametric derivative
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6,0715.2”, where ry = M(MQ)™%3 is the leading-order

orbital radius.

A. Calculation of i_t(l)

i‘m
In ¢ slicing, the field equations for ES;}n are identical to
Ref. [49]’s Lorenz-gauge frequency-domain field equations
for a particle on a circular geodesic of radius ry. We write

them for generic slicing in matrix form as
(230)

where D is defined by Eq. (70) with Egs. (71) and (73).
The point source takes the form

J = fpp(ro)é(r —ro), (231)
where JP = (0,,J77)" and
(t11515)7 £>0,m=0,7¢ even,
fg Z>0,m=0,7 odd,

JPﬂ:ﬂ <t1t3l‘516>T = l,m: 1, (232)
(lgtlo)T f,m > 0,f—|—m Odd,
(t1f3t5t6t7)T f, m > 0, 4 + m even,

with # = 64zM /3 and [48,49]

1 Yy (7/2,0 i=1,...,7,
l?fm = __50aifm{ fm.( / ) . (233)
4 09Y7,,(7/2,0) i=28,9,10.

Here &) = fo/\/1 —=3M/ry, with fo =1 —=2M/ry, is the
specific energy of a point mass on a circular geodesic of
radius ry, and the a;,,,’s are given by (suppressing £m
labels)

ar = £/ 7o, 59 =0, (234a)
ay = fo/ 70 ay = 2ifomQ, (234b)
ag = roQ?, a; = rgQ*E(¢ + 1) —2m?],  (234c)
ag = 21, ayy = 2imryQ?. (234d)

Note that the i =2, 5,9 equations are sourceless.

With this source, if we use a continuous slicing, we
can immediately write the solution in the form (124).
Equation (125) reduces to

v =v=0(ry —r) +VvTO(r —ry), (235)

where

—-L e 0
VT = < Otop ) v = < ]dA ) (236)
0, D o™

Here we use @, := ®(rq) for brevity. The solution (124)
thus becomes

g =5 6(rg — 1) +90(r— 1), (237)

where 1/7? = ®v*. This is the standard point-particle
solution in, e.g., Ref. [49].
In sharp v-f-u slicing, Eq. (237) remains valid, with a

. (1)

simple change: in ¥}’ = ®v*, the matrix ® becomes

@), @y, or Py, depending on the region where zf/;l) is

evaluated.

We evaluate this solution using the following method:

(1) Fix a zeroth-order orbital radius r.

(2) For each #/m mode, construct the matrix ® of homo-
geneous solutions as reviewed in Appendix B 1. @ is
output and stored on a grid determined by an adaptive
solver.

(3) Calculate the retarded field for the column vector
(72) using Eq. (237). In the calculation of v, we
invert the @ matrix using the lower—upper (LU)
decomposition method. Integrations and matrix in-
versions are performed on the same grid as in step 2.

(4) For the gauge modes, we calculate the retarded field
from the gauge conditions (A18). For £ =m = 2,

these gauge modes are P_zgl) and f_zgl). We found
significant numerical errors in the region close to the
inner boundary r;, due to a loss of precision when
subtracting one large number from another in the
gauge conditions (A18). We used long double
variables when computing these modes to resolve

this issue.
We compared our results for several modes against the
same computation performed in Mathematica to validate
our code. We also compared our results for l_z[lt] with data

from the code in Ref. [60] and found relative differences of
<1072, except at points near the horizon, where we found
we achieved more accurate results through our use of
the greater-than-machine-precision routine described in
Appendix B.

In Fig. 3 we compare the £ =2, m = 2, even-parity

mode of i_nglpzn with ¢ slicing and with v-r-u slicing. The

(1)

jumps in Re(h[v m]) occur where the slicing changes from v

to ¢ or from ¢ to u. Note that i_zl(.}zn on different slices can

only differ by a complex phase, such that the modulus
|}_z$,t)u]| is continuous across slices. Because v-t-u slicing
(1)

[vtu]

l_z%) contains constant-amplitude oscillations at large r.

follows wave fronts, & contains no oscillations, while
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1 10
r/M—2

FIG.3. Re(h'

included the i = 7 BLS mode in this

Near the horizon, however, the oscillations would only
become visible at points much closer to the horizon.
To compare our results for hf]) and hf 3 W We transform

the AV

] data onto v-f-u slices using the relationship

() _ —ia)k(r*)_(l)
hpm}—‘e hm~

(238)
Here k(r*) is given by Eq. (18), which we restate here for
convenience: k = —r* for v slicing, k = 0 for 7 slicing, and
k = +r* for u slicing. After performing this transforma-
tion, we find that the results in the different slicings agree to
within a relative difference of <1012

B. Calculation of o h

To zt’m

1. Overview

We next consider the field siy'!), where we now let

5:=0,. (239)

(1)

R

(1)
[s]

h

1 10 100
r/M—2

) (blue line) and Re 1_1 1] (red line) for all nonvanishing i modes with £ = 2, m = 2, ry = 8 M. Note that we have not
igure for brevity as this is qualitatively the same as the i = 6 mode.

For our quasicircular orbits, the field equation satisfied by
ret — &ll( )
Dyt = KW, (240)

where the source is

KW = —sAp") 4 570, (241)

The first term in KV is an extended source,
SAPD = sApW0(ry — r) + A V0(r - ry).  (242)
where li/$) — ®v* with v* as given in Eq. (236). A is given

in terms of A and B in Eq. (71), where A and B are given by
(73). Taking a parametric derivative, we obtain
n 0,
54 = < - )

OB

ded

o) (243)

where
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SA = f22(1 - H?)w,,6w,, — 2w2, HSH

+i5&)mH/ + ia)mEH/]ldxd —+ 5Mh’ (2443)

8B = 2if 1 (Sw,H + w,,6H)1y. (244b)

Here éw,, = moQ = —%m M/ rg, and we recall the
notation H' = dH/dr*. M, is given explicitly in
Egs. (A15) and (A16). We have allowed the height function
to depend on rg, in the case that the slicing evolves along
with the orbit.

Given that /(') = JPP5(r — r,), the second source term in
Eq. (241) is restricted to r = ry:

I = 5J5(r — 1) — JPS (r —ry).  (245)

We solve the field equation (240) for a,oﬁﬁ}zn ontand v-t-u
slices. In all cases, we evaluate integrals over extended
sources using a Gauss-Kronrod quadrature routine.

10

—— Real
— Imaginary

ae)
Orohy

—-10 |
Real
—— Imaginary

_20 -

~(1)
Irohyy

— Real
—— Imaginary
Il Il

1 10 100
r/M—2

2. a,oﬁgin on t slices

We obtain the solution for d,, (' using Eq. (183), with
punctures at the horizon and at infinity constructed accord-
ing to Egs. (189) and (193).

The main input to the solution is v, = V| + V,, where v,
and Vv, are the integrals of source terms defined in
Egs. (176) and (177).

Given Eq. (242), it follows that

I +1
v, :< ! / 2>¢9(r0—r)

-3

+ ( —1514— L ) 0(r — ro). (246)

with

I = / dr o (5Ap + D). (247a)

—— Real
— Imaginary

(1)
Orohyy

—20

—— Real
—— Imaginary

20 |

10

7 (1)
ul

Ol
[}

_10 -

Real
—— Imaginary

—20

1 10 100
r/M =2

FIG. 4. Real and imaginary parts of a,(ﬁfjf for all nonvanishing i modes with £ = 2, m = 2, ry = 8M. Note that we have not included
the i = 4 BLS mode in this figure for brevity as this is qualitatively the same as the i = 1 mode.
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I, = / L dr ol (5Apt + D), (247b)
r
r A A
I = / dr -l (sAg + DGR, (247¢)
2M
I, = / dr o (SApT + DGR),  (247d)
T A~ A
Is = / Cdr gl (sAp™ + Dol (247e)
2M
I = / dr' oL (A + DPL). (247f)
To
In 7 slicing, 5A reduces to
\ — Real
05F —— Imaginary ]
T 0.0 1 | =
=2 TN
< —05F ]
—1.0 7
i=1
—15¢L .
0.0 1 b
‘—/
=3 e
T:di =02 L To TR ]
S
—04r —— Real
i=4 —— Imaginary
2F ]
0 —— Real
—— Imaginary
0.1 L / .
%E:i 0.0 F 'L To TR 1
S \_/
i =6
—0.2¢t ' ! L =
1 10 100

r/M—2

(1)

1
[vtu

FIG.5. Real and imaginary parts of 6,{)?1

ded

SAy = 2w5w< (248)

ded )
0dxd
Given Eq. (245), the contribution Vv, simplifies more

significantly. After some manipulations involving integra-
tion by parts, we find

dxd

Vo =V50(rg—1) +V30(r—ry) — @5 JP5(r—ry),  (249)
with
@l (57 4 AT
VE — ( 0,[0p[ 0 0 })’ (2503)
d
0 )
v2+:< L ) (250b)
D 1o (077 + Ag PP
— Real
—— Imaginary
. L To TR .
S
L5 —— Real ]
—— Imaginary
1.0 / b
,T:'/QE 0.5 L .
<
— Real
TE Imaginary |
<
0 :\ ]
\Eﬁé —-lr L Ty TI ]
<
-2+ .
—3F .
=T
1 10 100

r/M —2

] for all nonvanishing i modes with £ = 2, m = 2, r, = 8 M. Note that we have not included

the i = 2 BLS mode in this figure for brevity as this is qualitatively the same as the i = 1 mode.
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Here the factor ,210 = A(ro) has appeared after applying the
identity (139).

3.0 h on v-t-u slices

To lt’m

We obtain arohEM)u] using Eq. (197). With this slicing, no
punctures are required.

Inv, = v, +V,, v, is again given by Eq. (246), but now

with @ AP = 0. 5A is given by

. 0, 0,
SA :( ol ) for rely, (251)
5Mh —2lmf 591d><d
~ 0()( 0 X
5AM:< bed T > for reTy,  (252)
6Mh 21mf_1591dxd

and by Eq. (248) for rel’,. 6M,, is given explicitly in
Egs. (A15) and (A16), with H = —1 in 8A,) and H = +1
in 51&[,4

The contribution Vv, is given by Eq. (249), unchanged
from ¢ slicing.

4. Results and comparison between slicings
Figures 4 and 5 show our results for the £ =2, m =2

mode of 6,01_1< ) and a, h

1 (o] These fields are generically

1=1

10t

=100
=
g‘f

107! -

_— (()mhful]) ----- r reference
R const. reference
1072 v 8mh[i] 7
=2

100 1000
r/M —2

FIG. 6. Comparison between |6,0l_1[1u}\ (blue line) and \6,071[1t]\
(red line) for i =1 (top panel) and i =2 (bottom panel)
with & =2, m =2, ry = 8M.

discontinuous at r =ry due to the &(r—ry) source.
0, h()

(o] additionally contains discontinuities at the boun-

daries between slicings, as EE )] did. At large r, 9, E])

oscillates with growing amplitude, while 6,OhE“>u] goes to a

constant. This is reinforced in Fig. 6, which shows the
jAQ)

7o [vtu] |
decays to a constant Slmllar differences in behavior would
appear near the horizon if the plots were to zoom in on that
region.

To compare our results in the two slicings, we transform
from ¢ to v-t-u slicing using

absolute value |9, h | growing at large r while |0, h

(253)

We find a relative difference <107!! after performing this
transformation, confirming the consistency of our results
for different slicings.

X. DEMONSTRATION 2: TEUKOLSKY
CALCULATIONS FOR
QUASICIRCULAR ORBITS

In this section we apply our scheme to the calculation of
the first-order s = —2 Teukolsky master function and
its derivative with respect to an orbital parameter. This
problem is slightly different in structure from the Lorenz-
gauge problem explored in Sec. IX, but the generic method
is still applicable. The equations we solve still have the
forms of Egs. (230) and (240), simply with different
differential operators and source terms.

A. Calculation of _,R,

As in the Lorenz-gauge case, we first review the
calculation of the first-order retarded solution.

For a particle on a quasicircular orbit of (leading-order)
radius r(, the Teukolsky master function for the first-order
perturbed Weyl scalar, y/g]) =y, [hV], is given by Eq. (230)
with () = (_,R,, ,0,(_,R,,))" and with D now defined
by the matrices A and B given in Eq. (106). The point-
particle source for the Teukolsky master function has

further distributional content than the Lorenz-gauge source
in Eq. (231), such that

JO = 35 (r0)(r = ro) + I8 (r0)8 (r = ro)

e (r0)8(r = ro). (254)
where Ji) = (0,787 with i€{A,B.C}. JY) are the
source terms given in Appendix C.

The retarded point-particle solution for the Teukolsky
master function is given by Eq. (124). But the additional
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distributional content in the source leads to vV having a

similar schematic form to Eq. (249) for 0 A

ro'ticm’

to Eq. (235) for f_zl(.;zn. We write this as V = Vg + V3, where

as opposed

Vg =V, 0(rg—r) + Vv, 0(r —rop). (255)

Vs = @515 (r — ro) = R3(r — ro)JJNS). (256)

7(C)

Here R = (%)) is a reflection matrix such that RJy,’ =

(Jf)g),O)T. The quantities v, and v, are found through
integration by parts, which yields

5@ ) A2 i 17©)
v, = ( (I)O top[ pp AOJP}E) (A0+arA0)‘]PP ]>’ (257)

0

258
— A S + (258)

(o o)
0 q)o botl/ ép (A(Z) +0,A0)J 1()p>]

where we have used the relation in Eq. (139) and its
derivative: d;q:{ L= (A? 44,

The solution is evaluated in the following manner:

(1) Fix a zeroth-order orbital radius r.

(2) For each £m mode, we construct a matrix of homo-
geneous solutions, @, as explained in Appendix B 2.

(3) Calculate the retarded field for the column vector
(D) using Eq. (124) with v =v, 4 vs given by
Egs. (255) and (256). The inversion of the matrix ®
for the calculation of Vv is facilitated by Mathema-
tica’s INVERSE routine.

(4) Although written in a different manner, this solution
is entirely equivalent to the solutions in the literature
[4,61-64] and can be readily computed using the
TEUKOLSKY package in the Black Hole Perturbation
Toolkit (BHPToolkit) [65]. This provides a robust
check of our numerical results for the retarded field,
and we find relative differences of <10~'2 between
our calculation and the BHPToolkit.

B. Calculation of 0, (_,R,,,)

1. Overview

After reviewing the retarded point-particle solution, we
now move on to the calculation of its derivative with respect
to an orbital parameter. As in the Lorenz-gauge case, the
field equation we consider is Eq. (240), but now with

o = sy = (5 ,R,,,0,( ,R,,))". The source term,

( , has the same form as Eq. (241), but the first, extended

term has added distributional content,

SAPY = sAp0(ry — r) + SAF0(r = ry)
—8A

T95(r = rg). (259)

The extended support from the source term again originates
from the retarded point-particle (Teukolsky) solution,

q?g!) = ®v*. Explicitly, 6A and 6B for the Teukolsky
problem have the following form:

SA = 2f72(1 — H?)w,,6w,,

—2w2,HSH — 5_,V ,, (1)), (260a)
6B = 2if (6w, H + ,,6H), (260b)
where
5.,V (r) = 4ir2{w,[r(1 - H)f - M(1 + H)|
— rf6H — MSH'}. (261)

The secondary source term arising from the derivative of
the point-particle Teukolsky source is written concisely as

510 = (875 8(r = ro) + 8T8 (r = o)
+ 801508 (r = ro) = I8 (r = o)

— I8 (r—ro) =I5 8"(r— o). (262)

The solution is given by Eq. (202). Due to the more
complicated source, the quantity Vv, defined in Eq. (175),
has a more complicated form than in the Lorenz gauge:

V(/) :V3 +V4+V5 +V6
+ G RS(r — ro) + 18 (r = 1) | (S
+ @G RS (r—ry) + 18" (r — ro)]Jég).

—~874)
(263)

The terms V5 and Vg originate from the source 5Ap(! [i.e.,
they comprise v, in Eq. (175)] while all other terms

originate from the source sJW [ie.,
Eq. (175)].

V3 specifically corresponds to the integral over the
Heaviside terms in Eq. (259), meaning it has the form
given in Eq. (246) and accounts for the integration over the
extended piece of the source. Vg is then the integral over the
delta term in Eq. (259):

they comprise V, in

Vg = VgO(rg—r) +Vi0(r—rgp). (264)

Here V6jE are given concisely by

-1 si 30
Vg — ( q)O.topéAOJPP >’ V; — ( 4 ~ A(C)>- (265)
0 D o940/ pp
The rest of the terms follow immediately from the general
formula (177) for v, with 5 given by Eq. (262). v,
represents the integral of the first set of delta functions in
Eq. (262), from which one finds
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vy =V;0(rg—r) + Vi 0(r—ro), (266)

where

vV, =

9

(—fba,{OP (675 — AgdTy) + (A3 + 0,A0)5755) )
0
(267)

03
v+_( N .. R . )
P\ @pho 6T — AobTly) + (A3 +9,A0)87%)]
(268)

The next term, Vs, arises from the second grouping of delta
functions in Eq. (262) and hence follows the same split as
Eq. (2606),

V5 = V;@(ro - r) + V;Q(V - ro). (269)
However, the higher-order derivatives of the delta functions

than seen previously require one higher derivative of
Eq. (139), leading to

do! ~dA dA. ~. ~dA dPA
1 _CI>‘1<AE+EA+A3+AE+W>. (270)

Using this relation one finds

1 oa oq4 a A\ (B Aoy
(I)O,%op {AO‘II()I)) - (A(% + arAO)‘]l()P> + (AOarAO

Vi = | +0,Aoho+ A3+ A0 Ay + BRI |-
0
(271)
0
N Oy A0) 7 + (Aya,A
vi = | ~@5halAodty — (4% +0,40)7fy) + (And,Ag

+0,A0y + A3 + Ao, Ay + R AT
(272)
2. 0, Ry on v-t-u slices

Our calculation of d, Ry, is done through Eq. (202),
with v, given by Eq. (263), but within the integrals of the
source terms in V3, we include no puncture in the regions
where r€l’, as we are only considering the retarded
solution. Furthermore, we choose not to include a puncture
toward the horizon, where r €Iy, as we find Eq. (147) is
satisfied for a fiducial horizon puncture. Hence, in the

integrals /; that enter v;, with ie{l,...,6}, we set

W = = 0.

In the Teukolsky framework (with s = —2), S5A is now
given in the various slicings by

. 0 0
5A[U]:2mf‘15§2<4r_1 1), rely,  (273)

0 0>
R rer,

A —2
o4 =2mf 5wm<2r‘2(rf—M)+ia)m 0

(274)

0

SA = —2mf15Q
= —2mf <4r‘2 I

), rely. (275)

5A, shown in Fig. 7, forms a central component of the
overall source term. We see that this piece diverges as ~f~!
toward the horizon but converges toward infinity. However,
to determine whether the retarded integrals converge, we
must analyze the entire integrands.

Figure 8 plots the integrands in Eq. (247), both with and
without punctures. As shown by the reference curves in the
two plots, the integrands ®}SAR™ and @) SAG™ con-
verge toward the horizon as ~f? and ~ £, respectively. The
analogous integrands, however, diverge as ~r* toward null
infinity, verifying the need for a puncture in the region I',.

Construction of appropriate punctures in this context
were discussed in Sec. VII D 2. We show the application of
these punctures in improving the falloff of the integrands in
the region I'y, in Fig. 8. Here we used the asymptotic
expansion in Eq. (206) with j.. = 4. The plot shows how
the inclusion of the puncture now forces the integrands to
fall off as ~r~ and therefore leave us with a finite integral.
Punctures could be constructed in a similar manner in the
other asymptotic region, I'y. This would speed up the

10" AL — -
1071 71 4
1073 . i
g 6 8 10
T 1
<
<
1077 | i
—— Real
9| 1
10 —— Imaginary
1011 T Ff(r)~! reference

r~2 reference
Il Il

1072 107! 10° 10! 10? 10? 10*
r/M —2

FIG. 7. Real and imaginary parts of the extended source terms
appearing in the integrands within Eq. (246) for v;. In the
asymptotic regions, the source decays as ~r~> toward spatial
infinity but grows as ~f~! toward the horizon. Here # =2,
m = 2, and the secondary is at r, = 10M. The vertical arrow in
the inset of the plot signifies the presence of additional distri-
butional pieces that must be taken into account when calculating
the full solution.
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i S |
— o Jeft
10-4F— f(r)? reference 7
r2 reference
¢ . r~3 reference
75 10
s |
w0-0f
10-13
10—16
10°
1073
:\ % 1076
3
=l — o;tJ
-9 L -1 Fe
1077 F — o et
----- const. reference
102 | 72 reference
- 773 reference
I L L . ;
102 107t 10° 100 102 10° 10!
r/M—2
FIG. 8. Comparison of the nonpunctured and punctured inte-

grands for the extended source terms within the integrals
appearing in Eq. (246) for v;. Top panel: The integrands of
the weighting coefficient for the homogeneous solutions ®_
throughout the entire numerical domain. In the absence of a
puncture, the integrand falls off as ~f> toward the horizon but
grows as ~r2 toward null infinity. Therefore in the region I'y, we
apply a suitable puncture to make the integral converge. The
puncture used in the figure ensures the integrand now falls off as
~r~3 toward null infinity. Bottom panel: The integrands of the
weighting coefficient for the homogeneous solutions @
throughout the entire numerical domain. Without a puncture
(blue curve), the integrand tends to a constant toward the horizon
but again grows as ~2> toward null infinity. With the puncture

(red curve) applied in T, the integrand again falls off as ~r=>.

convergence of the integration over this region, but it is not
required.

In Fig. 9, we present results for the £ = 2, m = 2 mode
of 9, (_,R,,)- As is evident from the form of the solution
in Eq. (263), the solution is discontinuous at the particle’s
location, owing to the Dirac delta primes that appear in the
source. Furthermore, there are also jumps at the boundaries
of the regions r; and ry due to the change in slicing there.

viu

3. 0,,Ryy on t slices

For comparison purposes we also present in Fig. 10 the
same results after transforming to 7 slicing throughout the
numerical domain. As we observed in Fig. 3, we see that
0,,(_oR};) contains constant-amplitude oscillations at large

x10~%
4 - -
i
Py 2+ rL Ty TR d
= N
o ﬁ i
S
92t i
—— Real
_al —_— ‘Imaginary ]

1 10 100
r/M -2

FIG. 9. Real and imaginary parts of 0, (_,Ry,,,) with £ =2,
m=2,ry=10M.

x10~3
4F i
/
2 / 1
&
To0r
vc i
)
—2
— Real
N Imaginary
1 10 100
/M =2

FIG. 10. Real and imaginary parts of 0, (_,R};) with £ =2,
m=2,ry=10M.

r that are not present in the solution for 0, (_,R,,,)- Also,

in ¢ slicing, there will be oscillations toward the horizon, but
the aspect ratio and choice of radial coordinate preclude
them from being seen in Fig. 3.

XI. CONCLUSION AND OUTLOOK

In this paper we have formulated a worldtube puncture
scheme for self-force calculations in the Fourier domain.
We have specifically focused on the types of field equations
that arise in a multiscale expansion of the Einstein equation,
but the method applies equally well in an ordinary
frequency-domain calculation.

We have also demonstrated our scheme’s utility and
flexibility by numerically implementing it both for the
Lorenz-gauge field equations and the Teukolsky equation.
Moreover, we note that although it is described here for the
first time, our method has already been successfully
employed more broadly; it underlays all second-order
calculations to date [7,17,18].

However, in the time since our method was first
formulated and implemented, at least two alternatives have
been presented that offer some clear advantages [29,36]. It
is therefore worth making a careful assessment of the
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relative merits of these various approaches. It is also
important to point out some aspects of our method that
can be usefully carried over to those other schemes (and
vice versa).

We first observe that our scheme is substantially more
general than earlier worldtube puncture schemes. It is
intrinsically a multidomain method, and it exploits that
flexibility by (i) accommodating punctures in multiple
domains and (ii) allowing different choices of time slicing
(and therefore different field equations) in different
domains. This type of generality could be beneficial in
any approach.

In terms of practical implementation, the key difference
between our scheme and the alternatives is that we apply
the method of variation of parameters for sources with
spatially unbounded support. This approach obtains inho-
mogeneous solutions by convolving homogeneous solu-
tions against the source, a procedure with substantial
drawbacks when the source has unbounded support. One
drawback is that the homogeneous solutions need to be
known at all radii. This is problematic because the “up”
solutions (i.e., the homogeneous solutions that are regular
at .# ) need to be calculated near the horizon, and similarly
the “in” solutions (i.e., the homogeneous solutions that are
regular at .77 ") need to be calculated at a large radius. It can
be difficult to accurately compute these homogeneous
solutions far away from where their numerical boundary
conditions are specified. A second drawback is that the
method sacrifices some of the advantages of hyperboloidal
slicing. On these slices, the retarded inhomogeneous
solution varies slowly across the domain, with no oscil-
lations at large r or near the horizon; this means, in
principle, no oscillations need to be numerically resolved.
The up solutions share this property at large r, and the in
solutions share it near the horizon. However, each of these
homogeneous solutions oscillates in the opposite domain:
up, near the horizon; and in, at large r. This means that to
evaluate the variation-of-parameters integrals, we must
resolve the oscillations even though we are guaranteed
that they do not appear in the ultimate, retarded solution.

These two drawbacks can be tempered by the use of
higher-order punctures in the horizon and infinity
regions to force the source to fall off more rapidly and
thus reduce the contributions from the undesirable homo-
geneous solutions in each region. We do take that approach
in Refs. [7,17,18]. But the alternative approaches in
Refs. [29,36] have more elegantly circumvented the issues
that arise in variation of parameters.

The first alternative approach uses the method of partial
annihilators [66]. This method can be applied when there
exists an operator which when applied to the source takes it
from unbounded support to pointlike (i.e., measure-zero)
support. Acting with this operator on the whole field
equation results in a higher-order differential equation with
a distributional source. This new equation can then be

solved with variation of parameters, and each homo-
geneous solution is only required in the region where it
is well behaved. Such a partial annihilator operator exists
for the calculation of parametric derivatives, and this
approach has been employed for the r, derivatives of
the Regge-Wheeler-Zerilli master variables and Lorenz-
gauge perturbations [36]. A limitation in this approach is
that it is unlikely that a partial annihilator operator exists for
the full second-order calculation.

The second alternative approach leaves the source intact
but directly solves the field equation in each domain using a
spectral method rather than through convolution with
homogeneous solutions. Like our scheme, this approach
is naturally suited to multidomain techniques. Because it
does not involve a basis of homogeneous solutions, it is
better adapted to hyperboloidal slicing: rather than having
to resolve oscillatory homogeneous solutions near .77+ and
1, one only deals with slowly varying functions,
allowing one to compactify the numerical domain; and
rather than having to construct high-order asymptotic
expansions to impose boundary conditions on the homo-
geneous solutions, the field equation itself imposes boun-
dary conditions on the retarded solution at 7" and .#*.
We expand on the latter point below. This multidomain,
spectral, compactified hyperboloidal approach was imple-
mented for a scalar-field toy model in Ref. [29]. In that
work the method was shown to be very efficient for
distributional sources, extended sources, and sources with
unbounded support, where for the latter the calculation of a
parametric r( derivative was used as an example.

Despite variation of parameters’ disadvantages, it does
have some clear advantages. One benefit is that it is a
straightforward way of solving problems with complicated
distributional sources. For example, in Ref. [37], the source
for the second-order retarded metric perturbation was
shown to have the form of a highly nontrivial limit of a
sequence of distributions. Dealing with such sources is
simplest if one can write the solution immediately as an
integral against a Green’s function, as in variation of
parameters, and then manipulate the integral (e.g., through
integration by parts) before any numerical evaluation.
Hence, a valuable approach might be to combine methods,
using variation of parameters within a domain containing
the particle and alternative methods outside that domain.

We also wish to stress that most obstacles encountered in
our complete second-order calculations are independent of
our use of variation of parameters. As mentioned above,
one advantage of compactified hyperboloidal slicing is that
it can avoid the need to calculate boundary conditions.
More precisely, if the numerical variable is regular at the
compactified boundaries, then the field equations them-
selves reduce to regularity conditions at the boundaries, and
there is no need to construct boundary conditions of the
form described in Appendix B. However, this does not
mean boundary conditions never need to be calculated, nor
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does it mean that punctures are unnecessary. At second
order, we do not generically have regular fields at the
boundaries: as analyzed in Ref. [33] and alluded to in
Sec. III D, the second-order solution in the multiscale
expansion is irregular at the boundaries. The correct
physical boundary conditions for the multiscale field
equations can be derived from a post-Minkowski expansion
near .#" and an analogous expansion near the horizon.
These physical boundary conditions contain hereditary
terms, integrals over the system’s entire past history, which
are impossible to determine from the field equations in the
numerical domain, regardless of one’s choice of slicing or
compactification.

The framework in this paper readily incorporates such
boundary conditions into punctures at the boundaries. Our
analysis in Sec. V C also provides a diagnostic for when a
puncture is required and for the conditions it must satisfy.
That type of analysis should continue to serve a key
purpose even when the method of variation of parameters
is not used.

We also note that other aspects of our scheme are
independent of the use of variation of parameters. One
obvious example is the overarching multiscale method, which
we have presented in a more geometrical way than in previous
literature. Derivatives of the numerical fields with respect to
orbital parameters are an essential ingredient in that method
[2] and in closely associated ones [67—69]. Our analysis has
highlighted how calculations of such parametric derivatives
depend crucially on the choice of slicing. If standard,
constant-¢ slicing is used, infrared divergences arise. Such
divergences can be treated by introducing punctures at the
horizon and infinity to enforce physical boundary conditions.
However, hyperboloidal slicing entirely evades these diver-
gences (at least for broad classes of fields).

Follow-up papers will explain how the second-order self-
force results in Refs. [7,17,18] were obtained by combining
(i) the puncture scheme in this paper, (ii) the punctures in

In the longer term, our scheme can be applied to
eccentric orbits [71]. As we emphasized throughout the
body of this paper, the bulk of our analysis applies equally
well for eccentric as for quasicircular orbits.
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APPENDIX A: COUPLING MATRICES
AND OPERATORS IN THE LORENZ-GAUGE
FIELD EQUATIONS

In this appendlx we give explicit express10ns for the
quantities M” , My, Mgy, 6 M, and Z appeanng in
the Lorenz-gauge equations (59) [via (60) and (65)]; (69)
[via (73)]; (168) [via (244)]; and the gauge conditions (67)
and (68). For brevity, we omit #m labels on the fields /4,
and frequency w,,, and we follow Ref. [9] by adopting the
shorthand

Ref. [38], (iii) the coupling formulas presented in Ref. [34], =(+2)(£-1) and A :=7(C+1). (A1)
(iv) the multiscale expansion of the Lorenz-gauge field
equations in Ref. [9] (reviewed in this paper), and (v) the . .
strategies developed in Refs. [33,70] to overcome infrared L Eo_upllng matrices
divergences and poor convergence of mode sums. The quantities Mf j>h ; in Eq. (60) are given by
|
Py ioH .\ | (1= P () _om
_f? f ! ioH - f f’ - io -
Mé,)h 0,h3 +7h3 0,(hy — Iy) —7(1 —H)f'(hy — y)
f ’ - ff
+ﬁ(h h4)—2—( 1 —hs — fhy = 2fh) (A3)
07 f
M/ h; —37 hy—hs—(1——(h3 + hg) (A4)
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fr

Mfg)_, *Tar(hzt—hs)— 7 (h4—715)—5r2}_12——r(3f_l4+2715—717 + Aih), (AS)
oz _f M M - 1 3 - -
Ms,'h]—pKl—g) 5= (= fha) +5 {1 === (dihs = h7)] (A6)
MO ==L hy =g = (1= (s 4 Be) (A7)
6j " 2,2 |71 5 . 3 6)|»
Op __ L 7o
M3}y = =55 (hy + dhs). (A8)
C S de(L=H)f o ff
ng j =" 0rlhg = ho) = % (hg = ho) ==, (3hg +2hg = hyo), (A9)
oz [ IM\ - f 3IM -
0y __f 2
In the matrix representation (69) of the field equations, 2 -2(1 - 92—M) 1 -3M
. . 4 4,07 . M) ==X " r (A12)
these coupling terms appear in the form — 7 M, ; hj, which rf A 1
we write explicitly in terms of (algebraic) matrices M, and
M, acting on the vector y defined in Eq. (72) and its
radial derivative 0,y. The matrix M, has the explicit form  for £ > 0, m > 0, and £ 4+ m odd;
|
—(1—-4M/r) f(1—-4M/r)-2iMoH (1—4M/r) fa—6M/r) 0
5 1 —(1—-4M/r) -1 —(1—4M/r) 0
M,, z—fx A - f =2(1=9M/(2r)) =4 (1=3M/r) (1-=3M/r) (A13)
T
1 —(1—4M/r) -1 —(1—4M/r) 0
0 0 A 0 1

for £ >0, m >0, and £ + m even; and the same matrix
(A13) for # =1, m =1 but with the bottom row and
rightmost column omitted.

The matrix My, in Eq. (73) has the form M, = 0,,,
for £ >0, m >0, and £ + m odd;

AM

=——X
2

Moy, (A14)

o O O o O
S O O O =
o O O o O
S O O o O
o O O o O

for £ >0, m >0, and £ + m even; and the same matrix
(A14) for £ =1, m =1 but with the bottom row and
rightmost column omitted.

Here we have only provided the explicit matrices for
w,, # 0 cases. For w,, = 0, the gauge conditions (67) and
(68) are used to eliminate hg and h;, reducing the
dimensions of the matrices.

The matrix M, in Egs. (244) is given explicitly as
oM, = 0,,, for £ >0, m > 0, and Z + m odd,

am
M), = —Tfi(w6H+6a)H) x (A15)
I

oS O O O O
o O O O =
oS O O O O
o O O O O
oS O O O O

for # >0, m > 0, and Z + m even; and
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SM;, = -42—1‘;1'(0)5}1 + SwH) x (A16)

oS O O O
S O O =
oS O O O
o O O O

forc=1,m=1.
Finally, the quantities ./\/l appearing in the second-
order source via Eq. (65) are glven by

MUy =~ fFHI ks, (Al7a)
wy __ [ = 7
M, hj——E[fHdv%—(l—H)av(hz—h1)]7 (A17b)
mz: S = 3
M4j h} Z(I—H)av(h4—h5), (A17C)
/
— — _
MR 7 (1= H) 0 (ks = o) (A17d)
MR =0 fori=3,56,9,10 (Al7e)

2. Gauge conditions

The operators in the gauge conditions (67) and (68) are
given by

+f(ra,ilz + hy = hy), (A18a)
p

Z3)h; = iw,,(hy + Hhy — Hfhs) +f<0,i_zl — £0,hs

iy = s = s =27 ). (Al8b)
Z3)h; = iw,,(hy + Hhs)
+ j; [r0,hs + 2hs + £(€ + 1)hg — hy],  (A18c)
Zh; = lwm(hg + Hhy)
+ (ra,fag +2hg — hyg), (A18d)
and
2k = =0 y(h + fhs + Hhy),  (Al9a)
230k, = =0\ (hy + Hhy - fHI).  (A19b)
Zh; = =0 (hy + Hhs). (A19¢)
ZMh; = =0y (h + Hho) (A19d)

APPENDIX B: BASIS OF HOMOGENEOUS
SOLUTIONS

1. Lorenz gauge

Our method of variation of parameters requires the
construction of a basis of homogeneous solutions, as
described around Eq. (115). We obtain these basis solutions
following Ref. [49], for example. Half the members of the
basis are regular at .# ™, and half are regular at 7. We
denote the former as y/fm and the latter as 1//’;;1
(k=1,...,d). For w,, # 0 modes, each 1,//’2,'1 represents a
purely outgoing wave behaving like ~e~*" for r — o0, and
each 1// represents a purely ingoing wave behaving like
~e~ i at r = 2M. There are a total of 2d basis solutions,
where d is the dimension of the system, equal to the number
of elements in the vector y,,; see, e.g., the vectors
in Eq. (72).

We construct this basis by first choosing some inner and
outer boundaries r;, and r,,, setting them as close to
r=2M and r = oo as is practicable. Concretely, r;, and
oue are chosen such that any change making r,, larger, or
bringing ry, closer to 2M, does not affect the first 16
significant digits of the numerical solution. For each Zm
mode a set of d boundary conditions, w% (ry,) and
y/’,;;(rom), is constructed at the inner/outer boundary. For
the nonstationary modes (w,, # 0), we use the expansions

4
Mmax

Wi (Fow) = e nlroa 0N " rt, (Bla)
n=0
nm\x
l//]}:n(ri ) - —zwm[r - ]zbkn m_ n‘ (Blb)
For the stationary modes (w,, = 0), we use
”;ax
W (row) = D (ag + dglog ro)ratk (B2a)
n=¢
nmnx
NG Z bin(rin — (B2b)

Both of these apply for a generic time function s = 7 — k(7).

The coefficients here are d-dimensional column vectors.
They are different for each #/m and are determined from
recurrence relations derived by substituting the ansatzes
(B1) and (B2) into the field equations. Recurrence relations
for the Lorenz-gauge boundary conditions can be found
in Appendix A of [49]. nZ, is fixed by an accuracy
requirement.

Once the boundary conditions &' (o) and %> (ri)
are determined, we find the basis solutions W%; everywhere
in the spacetime by integrating the homogeneous field
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equations inward from rg,, or outward from ry,, as
appropriate. We note that we need the inner and outer
homogeneous solutions over the entire domain, not just at
the particle, for the retarded integrals in the calculation of
the r( derivative.

For our Lorenz-gauge calculations, we integrated the
homogeneous equations using an eighth-order Runge-
Kutta Prince-Dormand (RKPD) routine from the GNU
Scientific Library (GSL) repositories [ 72]. This is an adaptive
routine. In it we set the absolute accuracy goal (€,,5) to 10716
and the relative accuracy goal (€,) to 10714, ¢, and €, were
determined such that reducing them made no difference to
our numerical results up to the 16th significant figure. We set
the outer boundary to be r,, = 10*M, taking into account
that moving the boundary further out did not change our
results for the homogeneous solutions up to the 16th
significant figure. From similar considerations the inner
boundary needs to be r;, = (2 + 107%)M or closer to the
horizon. The GSL routine cannot take us closer than r;, =
(2 + 1073)M without severe computational burdens setting
in, due to factors of 1/ f in the differential equation. To obtain
accurate data closer to the horizon we used a greater-than-
machine-precision (GMP) routine for solving coupled differ-
ential equations, based on the c++ library of GMP variables
and functions [73].

2. Teukolsky

To construct an appropriate basis of homogeneous
solutions for the Teukolsky equation, one can follow the
same procedure as Appendix B 1 by pescribing boundary
conditions at some finite radii r;, and r,, for the radiative
modes. The boundary conditions can take the form of
Eq. (B1) as an asymptotic series solution:

n+
A f(rout)s

+ — i, [rt,—k(r)]
W (Four) = €"mon a, -, (B3a)
. o ; (a)rout)

Mmax

Wn(rin) = el ONY by (g = 2M)". (B3b)
n=0

Substituting the ansatzes in Eqgs. (B3a) and (B3b) into the
field equation yields the following recursion relations for
the coefficients a,, and b,

i

a, :m[(f—l—n—s— (¢ —n+s+2)a,
+2M(n -2)w,,(n —s —2)a,_], (B4a)
b, ! (£ +1)—s(s+1)

B 2Mn(n —s —4iMw,),)
+4iMw,,2n—2s — 1)+ 2ns —n(n — 1))b,_;
+2iw,,(n —2s - 1)b,_,], (B4b)

where ayq | = by = 0 and all of the remaining terms in the
series expansion are determined by imposing a,,.,s,1 = 0
and b,y =0, respectively. Other similar asymptotic
expansions for the hyperboloidal Teukolsky equation we
have presented here have been derived in [55,56].

We have validated these boundary conditions by com-
paring our solutions to the homogeneous solutions pro-
duced by the TEUKOLSKY package of the BHPToolkit.
Furthermore, we have compared numerical values of
the expansions with boundary conditions used within the
NUMERICAL INTEGRATION module, which utilizes the
Mano, Suzuki, and Tagkasugi method [74,75] of solving
the Teukolsky equation.

The boundary conditions for the homogeneous solutions
w#, are then used to construct homogeneous solutions over
the entire domain from r;, to r,,. Similar to the Lorenz
gauge homogeneous solutions, y}, is obtained by inte-
grating inwards from r,, with the boundary condition
Eq. (B3a) while y7,, is found by integrating outwards from
ri, using Eq. (B3b). In contrast to the Lorenz gauge
homogeneous equations, we integrate the homogeneous
Teukolsky equation with Mathematica’s NDSOLVE routine.
The use of Mathematica allows us to solve the homo-
geneous equation to beyond-machine precision, when such
accuracy is necessary. We find setting 7., = 10°M and
Fin = (24 1072)M to be sufficient boundaries to obtain a
similar absolute accuracy goal as the Lorenz gauge case we
discussed previously.

APPENDIX C: TEUKOLSKY SOURCE TERM

In this appendix we explicitly give expressions for the
Teukolsky source utilized in our calculations in Sec. X as
well as a brief summary of their derivation.

1. Kinnersley tetrad

Our calculations in the Teukolsky formalism use the
Kinnersley tetrad [53]. In Schwarzschild coordinates, the
components of the Kinnersley tetrad are given by

1

@ = ?[l,f, 0,0], (C1)
n“:%[l,—f,o,o], (€2)
P 0,0,1 i C3
G T
qe — L 0,0,1 i C4
G LT

The null vectors are constrained by the normalization
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(C5)

a — QA —
“n, = —m%m, = —1,

with all other contractions between tetrad legs vanishing.

2. GHP operators

Our presentation uses the GHP formalism [76], which
we briefly summarize here; we refer the reader to Sec. 4.1
of Ref. [2] for a detailed review. The central idea of the
GHP formalism, in its modification of the Newman-
Penrose formalism, is the introduction of the concepts of
spin- and boost-weights. Under spin and boost transforma-
tions, the null vectors transform as

1" — {27,

ma - Cz_lmav

n® —s» C—lz—lna’
m* —s {1 eme, (C6)
where { is an arbitrary complex number. A GHP quantity, y,
is then labeled as type {p, g} if under the transformation
(C6) the quantity transforms as y — {P{%y. The GHP
weight of a quantity is denoted y = {p, ¢}. One can relate
the GHP weights p and ¢ to the spin-weight S and boost-
weight b via s = (p —¢)/2 and b = (p + q)/2. For the
tetrad legs, one can read off the following GHP weights:

= (1,1}, ne = {—1,-1},
m*={1,-1},  m*={-1,1}.

(€7)

From the definition (97), one can read off w, = {—4,0}.
The GHP derivative operators P, P/, 8, and &' that appear

in Egs. (100) and (101) act on spin- and boost-weighted

objects. In the Kinnersley tetrad, they are given by

1[0 3}
=i (o4ra). (cs)
. 1(0 0 2bM
La(a‘fa‘T)’ ()

and

1 0 0
6:E<%+icscﬁﬂ—scot9>, (CIO)

1 d d
5'=ﬁ<@—iCSC9£+SCOt9). (Cll)

When acting on a generic object of spin-weight S and
boost-weight b, P raises b by 1, and P’ lowers it by 1; 0
raises s by 1, and P’ lowers it by 1. When acting on spin-
weighted spherical harmonics in particular, § and & act as
spin-raising and lowering operators such that

V2rd(Ysm) = —[£(£ + 1) —s(s+ 1)]'2 | Y,,. (Cl12)

V2rd (oY) = [£(£ + 1) =s(s = 1), Y. (C13)

3. Point-particle source

At leading order in our multiscale expansion, the stress-
energy tensor (6) for a particle on a quasicircular orbit
reduces to

Hov
v H UoyHo
€Ty —p—(u}m( 3(r=10)8(0-7/2)5(¢~ ).

(C14)

We focus on the quasicircular case, but the computation
of the Teukolsky source proceeds in a similar manner for
more generic orbital configurations. We write the four-
velocity of the particle in terms of the leading-order orbital
energy and angular momentum, &, and L, such that
M” = (—50, O, 0, ﬁo), with

g Jo Lo = _roVM
O 1-3M/ry 0" Vro—3M
where f:=1—2M/r,.

To construct the source for the Teukolsky equation given
in Eq. (105), we act on the stress-energy tensor with the
operator in Eq. (101) before decomposing the resulting
expression into the basis of spin-weighted spherical har-
monic and Fourier modes such that

, (C15)

1 2n . -
SSfm = _27 d¢pelm¢p/dQSYfmSS7 (C16)
T Jo

where dQ =sinfdfd¢. Here we have given the
expression for generic spin-weight s. We see from the
expression in Eq. (101) that, for s = —2, angular deriva-
tives appear in the form of & derivatives. These can be
moved onto the spin-weighted harmonic in Eq. (C16) using
[dQsY 0, ¥ = — [dQY s, ¥ for any s and any
spin-weighted object ¢, |'¥. We can then exploit the spin-
raising and lowering properties of & using 8Y,,, = 0sY /,
followed by Eq. (C12), reducing the angular integral to an
integral against ¢, Y, .

In Eq. (101), the point-particle stress-energy tensor
enters through its tetrad components. In the Kinnersley

tetrad, the relevant projections of Eq. (C14) are

(o) _ _Mf5d(r=ro) ., B
Tl = o a0 8= 4,). (C17)
(o) iMP2fo8(r = ro) B _
Ton =5 i e 00~ /2P =) (CI8)
710 _ M25(r — ) 50— /25— 4,). (CI9)

213\ /1-3M/r,
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Here we have used the distributional identity
X(r)s(r—ry) = X(rg)d(r —rg) (C20)

for smooth X (r). The full first-order Teukolsky source term
then has the form

0
SS(flm) = SSE::n) + sSfff,f + SS)(/”CVZ’ (C21)
where for s = -2,
(4) 2 M/ A4 %O?Km(ﬂ/z’ 0)
oS = o(r—ry), (C22
287 7‘3/2 7o = Wi ( 0) ( )
_ VM3 fo Y 2,0
_252}20Y = —imr3 2fOl fm(ﬂ/ )

r5\/ 1o — 3M
x [2M + r = 2ir*w,, — T2 f)6(r — ro)

Here we have used the angular delta functions in
Egs. (C17)—(C19) to evaluate the angular integral in
Eq. (C16) (after integrating by parts as explained below
that equation). We have also used Y, (7/2,¢,) =
sV ym(/2,0)e™™P» (for all s) to evaluate the inte-
gral over ¢,,.

Finally, to express the source terms in the form we use in
our numerical worldtube calculations, we need to express

72S;1,;10) in the canonical form (254), in which every term

takes the form X(ry)6" (r — ry), with all coefficients of
radial delta functions evaluated at ry rather than r. To
achieve this, we use the relation Eq. (C20) along with
similar identities for higher derivatives of Dirac delta
functions:

=2r2f8'(r = ro)]. (C23)  X(r)8'(r—ro) = X(ro)8'(r = ro) = X'(ro)d(r — ro),
M2.Y 2,0 X" (r—=ry) = X(rg)d" (r —ry) =2X'(ry)8' (r —r,
—2552 - 572 om0/ )[(a)m(2iM+ Pa,) (r)o"( 0) (r0)8"( 0) (ro)d'( 0)
ry “\ro —3M + X"(rg)6(r — rp). (C25)
— 2 f(5f — 6iw,,))8(r — ry)
— 2 f((2iw,, + 6f)5 (r —ry)
After applying those identities, we find the coefficients in
o’ C24
+ f8"(r = ro))]- (C24) Eq. (254) are given by
|
47y’ - . - .
Iip' = = g oA ST s (7/2.0) = VMRS, ¥ (/2. 0) 1o o(ro (7 + 2iy) = 13) = 2M(Try = 15)))
—M\/ro_,Y,, (7/2,0)(M(4M?(ro(5rg — 48) + 56) — 2Mro(irgw,,(6rog — 17) — 10ry(rg — 9) + 96)
- rg(roa)m(a)m —6i) —5ry + l4iw,, +42) — 427%))], (C26)
g _ S Varkfo ¥, (1/2.0) — i/Mro_,Y,, (2/2,0)2M + rofo(3ro = 7) + irgm,,)].  (C27)
E pet—— r n/2,0)—1 ro_ T/ <, T ro — Lrowy,, )|,
pp f%m 0J0—-14¢m 024 7m 0J 0 0 0
aM*arl? Y 2
Jéi) — ”rO —25fm (ﬂ/ ’ 0) . (CZS)

fo\/ ro — 3IM

The parametric derivatives with respect to r( are then given by

2w

(A)
5]IJP =
VM (ro = 3M)2f4

(73 fo(\/A2073 2 Foo ¥ 4 (/2.0) (AM (ro — 3M) + 3rofo(TM = 2ry))

—iMNA_, Y, (1)2,0)((24M1Ef2(9 — Tro) 4 r3fo(49rg — 60) + 12M?(7ry — 18)

+4Mry(21 = 12irgw,, — Try) + ri(14irgw,, — 5)) + 8M(3M — ry)(6M + ry(2irgw,, — 1)))
+M~\/Mry ,Y,, (7/2,0)(12M (3M — ry)(8M? + 6iMr} — rd) + rofo(24M>(M(12r) — 25) — 4ro(ry — 2))
+ 2iMriw,,(3M(24ry — T1) + 4ro(17 = 61ry)) + raw?, (27TM — 8ry) + rif3(4ro(ro(10ry — 63) + 42)

—9OM (ro(15ry — 98) + 70)) + 6irdw, (M (49 — 27r) + 2ro(4ro — 7)) + 4M(3M(ro(5ro — 57) + 60)

+15(54 = 5r9) = 54r0))))].

(C29)
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4iM3 g
ro(ro = 3M)*2f3

I = —

(Vary_\¥ ,,,(x/2,0)(60M? — 42Mry + 7r3)

—iVMrl? Y, (x/2.0)(M?(864 — 396r) + 2r3(4ro(3 + iw,,)) + 2M%ro(3r(80 + 13im,,))

+3Mr3(117 = ro(63 + 17iw,,)))],

© 2M27tr8/2_2 Y, (7/2,0)

oJpp =

(C30)

(66M? — 4TMro + 812).

(ro —3M)32f}

(C31)
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