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Machine learning and artificial neural networks (ANNs) have increasingly become integral to data analysis
research in astrophysics due to the growing demand for fast calculations resulting from the abundance of
observational data. Simultaneously, neutron stars and black holes have been extensively examined within
modified theories of gravity since they enable the exploration of the strong field regime of gravity. In this study,
we employ ANNS to develop a surrogate model for a numerical iterative method to solve the structure
equations of neutron stars (NSs) within a specific 4D Einstein-Gauss-Bonnet gravity framework. We have
trained highly accurate surrogate models, each corresponding to one of twenty realistic EoSs. The resulting
ANN models predict the mass and radius of individual NS models between 10 and 100 times faster than the
numerical solver. In the case of batch processing, we demonstrated that the speed up is several orders of
magnitude higher. We have trained additional models where the radius is predicted for specific masses. Here, the
speed up is considerably higher since the original numerical code that constructs the equilibrium models would
have to do additional iterations to find a model with a specific mass. Our ANN models can be used to speed up
Bayesian inference, where the mass and radius of equilibrium models in this theory of gravity are required.
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I. INTRODUCTION

Recent years have witnessed an abundance of observa-
tional data on neutron stars (NSs) coming both from gravi-
tational wave detectors, namely Advanced LIGO [1] and
Advanced Virgo [2], and electromagnetic radiation, like the
NICER mission [3]. These astrophysical observations have
facilitated a significant number of attempts to constrain the
EoS of NSs, including the NICER mass and radius measure-
ments [4-6], the tidal deformability measurement through
GWs [7-12], as well as joint constraints, e.g., [13-22].
Especially the binary NS merger detection GW170817
[23,24] has sparked further studies in this field [25-32].

Several studies have employed artificial neural networks
(ANNSs) to reconstruct the EoS of NSs based on their
observable properties [33—37]. For instance, [38] inves-
tigated the use of ANNSs supported by the autoencoder
architecture, while [39,40] employed ANNSs to represent
the EoS in a model-independent way, exploiting the un-
supervised automatic differentiation framework. Additional
machine-learning techniques have been applied to inves-
tigate the NS EoS. For example, in [41], a clustering
method was utilized to identify patterns in mass-radius
curves, and [42] explored correlations among different
EoSs of dense matter using unsupervised machine learning
(ML) techniques. Furthermore, attempts have been made to
derive nuclear matter characteristics from NS EoS and
observations using deep neural networks, see, e.g., [43,44].

NSs have also been the subject of theoretical inves-
tigations within alternative theories of gravity—see [45,46]
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for comprehensive reviews and possible tests and [47] for
the particular theory considered in this work. In particular,
the high mass of the secondary component in the GW 190814
event [48] has attracted significant interest, as it can only be
explained in general relativity (GR) under extreme condi-
tions. Specifically, the only possibilities of this object being a
NS s either having an extremely stiff EoS or being the fastest
rotating NS ever observed [49-54]. Alternative approaches
based on modified gravity theories have been proposed to
address this issue as well [55,56]. Namely, [57] explored the
issue of the maximum mass of NSs, taking into account the
thin-shell effect (chameleon screening) on the NS mass-radius
relation while considering a soft EoS, thereby demonstrating
the possibility of attaining large masses and explaining the
secondary component of GW190814 using modified gravity.
Additionally, studies involving modified gravity and the
GW170817 event have been conducted [58,59].

Common methods implemented when attempting to
infer the NS EoS from observations of their macroscopic
properties are based on Bayesian statistics [6,13-20,60].
The majority of these algorithms demand a TOV solver to
run numerous times before obtaining the final posterior
distribution of various parameters. If we wish to incorporate
modified theories of gravity in these studies, we will need a
modified TOV solver, like the one presented in [47]. How-
ever, this specific algorithm is based on an iterative method
for solving the system of differential equations, making
Bayesian inference computationally expensive. In any case,
solving differential equations numerically thousands or
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millions of times is significantly time-consuming and can
even prove impractical. Therefore, it would be extremely
useful to find an alternative way to quickly yet accurately
predict the macroscopic properties of NSs, given some
defining characteristics or other macroscopic properties of
each equilibrium model. Moreover, the construction of
surrogate models for quick evaluation of NS’s parameters
in modified gravity has already been addressed by recent
works [61].

Driven by the aforementioned motivation, this work
focuses on implementing ANN regression for two types of
functions: f(EoS;a, p.) = (M,R) and f,(EoS;a,M) —
R. Here, the EoS represents a distinct variable, since each
type includes one ANN model for each EoS. a is the
coupling constant of the theory, and p. is the central
pressure of the NS. The first type serves as a surrogate
model for the numerical iterative method described in [47],
which provides the mass and radius of NSs for a specific
EoS and a given pair of @ and p,.. The primary objective is
to accelerate the process while maintaining strict accuracy
boundaries. The second type cannot be obtained directly
using the iterative method since p,. ought to be an input.
Consequently, implementing a root-finding algorithm
would be the only solution, resulting in further time delays.
Conversely, training ANNs to predict R based on
(EoS;a, M) offers a more straightforward approach to
handle type f,. To the best of our knowledge, this is the
first work that employs ANNs to predict the bulk properties
of NSs within a modified theory of gravity.

This concept of ANN surrogate models can be imple-
mented in any theory as long as there is a corresponding
numerical solver to create a dataset for regression.
However, the modified theory of gravity studied in this
work is a particular 4D Horndeski scalar-tensor model
originating from higher dimensional Einstein-Gauss-
Bonnet gravity. The action under consideration is [47]

1
S =_—

=5 d*x\/=g(R+ aLl) + S, (1)

where Kk = SZ—AG, S,, 1s the matter Lagrangian and

L= [pG+4G, V'gVip—4(Vg)*Op +2(Ve)'],  (2)
where G is the Gauss-Bonnet scalar

G =R*—4R,,R" + R,,,,R"". 3)

Hvpo
The scalar is considered dimensionless, leaving the cou-
pling constant a with dimensions of length squared.

In our work, we are interested in nonrotating relativistic
stars, and thus, we briefly present the differential equa-
tions considered in [47] in the Komatsu-Eriguchi-Hachisu
(KEH)/Cook-Shapiro-Teukolsky (CST) numerical scheme.
The line element describing the spacetime geometry of a

spherically symmetric star in equilibrium using isotropic
coordinates is

ds* = —e?df* + e*[d#»? + #*(d6? + sin® 0dg?)], (4)

where v(7) and pu(#7) are metric functions. For the theory
under consideration, one can obtain the field equations,
which are elliptic equations for the metric functions

Vi =S,(7), (5a)

V2 = 5,(7). (5b)

where V2 =0, + %(L is the flat-space Laplacian and S,
S, are the source terms of the elliptic equations. The
Green’s function of the three-dimensional Laplacian oper-
ator in spherical coordinates is then used to obtain integral
equations. For the scalar field, the equation can be cast in
the form of a current conservation equation, see Eq. (A.4)
in [47].

Finally, one has to add the hydrostatic equilibrium
equation

Vo (H —Inu') =0, (6)

where u’ = ¢ and H is the specific enthalpy

ey = " )

0 €(P/)+P/'

By fixing, e.g., the central pressure of the star and starting
with a trial value for the central value of the scalar field, an
iterative numerical method relaxes to the equilibrium
solution, using appropriate boundary conditions at infinity.

II. DATA

The datasets were generated using the numerical
code described in [47]. This code requires the coupling
constant a[km?] of the theory and the central pressure
pc[10% dyn/cm?] of the NS as inputs to compute the
corresponding mass M[Mg] and radius R[km|. We are
using gravitational mass, which also has contributions from
the scalar field in the alternative theory we adopt in this
paper, hence higher mass values can be attained. In [47] the
gravitational mass is extracted from the asymptotic behav-
ior of stationary solutions. For each type of function, we
created 20 datasets, one for each of the 20 realistic EoSs
listed in Table I and used in [62]. Finally, to enhance the
training, (M, R, p,) data were logarithmized, and the entire
dataset was standardized.

'Standardization refers to scaling the data to have zero mean
and unit variance to improve the training process of the neural
network. For the standardization we used https://scikit-learn.org/
stable/modules/generated/sklearn.preprocessing.StandardScaler
.html.
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TABLE I. Numbering of the EoSs used.
Name Number #
APR 1
BHBLP 2
DD2 3
eosAU 4
eosUU 5
BSk20 6
LS220 7
LS375 8
GS1 9
GS2 10
APR3 (PP) 11
ENG (PP) 12
GNH3 (PP) 13
H4 (PP) 14
MPA1 (PP) 15
SLy4 (PP) 16
WFF2 (PP) 17
SFHo 18
T™1 19
TMA 20

Type f(EoS;a,p.) — (M,R). Each dataset for this
type consists of 51 values of a€[—10,70] x 200 values
of p. €10.1, 1.2p.y). The a values were evenly spaced on
a linear scale, while the p,. values were logarithmically
spaced. Here, p... represents the central pressure
required for a NS to reach its maximum mass for a
specific value of the coupling constant. The upper bound
of p. was chosen to ensure it remains significantly away
from the boundary of the stable M — R, branch to avoid
training difficulties in areas of interest. As a representa-
tive example, Fig. 1 illustrates for EoS BSk20 that each
(a, p.) pair corresponds to a unique (M, R) pair, render-
ing the training of the ANN relatively straightforward,
even when considering a portion of the unstable M — R
branch. The same holds for any other EoS in our chosen
set.

Type f>(EoS;a,M) — R. The datasets for this type
have the same size as those for f;, but the range
of p. values was selected differently. The data now
consist of 51 values of ae[-10,70] x 200 values of
Pe€10.1, prax]- This choice is motivated by examining
Fig. 1. For a specific EoS, the inputs are a, which
constrains the regression surface to a single curve, and
M, the remaining variable to determine the output R. In
case the M — R curve for a specific value of a is non-
monotonic, then f, is not even a function by definition
since it would map a single value of its domain (e.g., My,
where |My— M.«| < 1) to two different values of its
codomain (e.g., R;, R,). Therefore, the data must be
monotonically increasing or decreasing to ensure the
function is well defined.

III. TRAINING AND TESTING

In this work, the TensorFlow module KERAS® was used.
For each case, a random selection was made to create a
train-test ratio of 70:30. The mean square error (MSE)
was chosen as the loss function, while the absolute relative
error (ARE) served as the criterion for testing the trained
models. A systematic investigation of the network
architecture revealed that models with an odd number
of dense hidden layers, with a symmetric number of
neurons (i.e., 25-35-25) and with alternating two activa-
tion functions among the layers (namely “tanh” and
“relu”) performed better, with lower final loss and mean
ARE (MARE). Based on these findings, the final archi-
tecture for each type is shown in Table II. Initial training
attempts involved implementing every optimizer from the
list of provided KERAS optimizers.” However, none of the
results were optimal, indicating that the architecture
error, as defined in [63], was not the dominant source
of error. The optimization error was further investigated,
leading to the implementation of the second-order
Broyden—Fletcher—Goldfarb—Shanno optimizer algorithm
(BFGS), as suggested in [63]. Incorporating BFGS into
the training process was not straightforward, as it is
not included in the list of provided KERAS optimizers.
Following a similar approach as described in [64]
for BFGS (instead of L-BFGS), the final loss decreased
by up to four orders of magnitude and reached a
stable value. The number of total iterations and the final
training loss for each EoS are provided in the Appendix,
section A.

IV. RESULTS

A. Training and testing results

Figures 2 and 3 provide indicative training results for f
and f5,, respectively. More specifically, Figs. 2(a) and 3(a)
compare the real to the predicted output. Figures 2(b)
and 3(b) show the training loss per iteration in terms of the
mean square error (MSE) and Figs. 2(c) and 3(c) present
the absolute relative error (ARE) on the test set. The MSE
was chosen as the loss function from KERAS’ regression
loss functions,” using the automatic reduction type. The
ARE is defined as
Yi-v!

i,true
J
Y itrue

m

1
ARE; = %Z

Jj=1

; (8)

where m is the number of output neurons, Y- l’ is the network
output with index j for test point with index 7, and Y/ is

thtps /['www.tensorflow.org/api_docs/python/tf/keras.

3https /Iwww.tensorflow.org/api_docs/python/tf/keras/optimi-
Zers.

4https://keras.io/api/losses/regression_losses/ .
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FIG. 1.

the corresponding real output. The mean ARE (MARE) is
defined as:
) ©

1 n 1 m 1 n
MARE=-)» ARE,=— -
2D ARE =515
where n = 3060 is the number of points in the test dataset.

j=1 i=1
For f, models m = 2, since there are two output variables
(M, R), while for f, models m = 1 since there is only one
output variable (R).

Figure 4 depicts the MARE and the maximum ARE on
the test set for each EoS, denoted by their corresponding
numbers in Table I. Both types (f; and f») exhibit similar
mean behavior on the respective test sets for every EoS,
with the MARE ranging between 10~ and 10~*. The
maximum ARE is 6 x 107 for f, and 9 x 1073 for f,,
demonstrating that in the whole domain of the training and
test sets, the absolute relative error never exceeds 1%. In
Appendix B, we present a more detailed investigation of the
distribution of errors in the domain of the training and test
sets. Finally, in Appendix C, we examine the gradients’
(dR/dM) ARE distribution for both f| and f5.

J J
Yi - Yi Jtrue
J
Yi Ltrue

B. f1 speed up

To assess the speed-up achieved when using the trained
ANN models of f; instead of the numerical code, the
dataset corresponding to type f, was selected. This dataset
consists of 51 values of ae[-10,70] x 200 values of
Pe €10.1, prax]- The choice of this dataset for f; is based

TABLE II. Final network architecture.

Layer Type 11 Type f>
Input layer (a, pe) (a,M)
Hidden layer 1 25-tanh 25-tanh
Hidden layer 2 35-relu 35-relu
Hidden layer 3 25-tanh 25-tanh
Output layer (M,R) R

pc [1033dyn/cm?]

10! 107! 10° 10!
pe [103°dyn/cm?]

Data set for BSk20, regarding type f;.

on the significance of speed-up in areas of interest,
specifically the stable branch of M — R curves (i.e., for
central pressures up to the maximum-mass configuration,
Pmax)- The speed-up s is defined as:

AtANN
=A% 10
g Atnum ( )

where At,yy is the run time when using an ANN model and
At,um the run time of the numerical code with the iterative
numerical scheme. It is important to note that in our tests, the
ANN models ran on an 8-core AMD Ryzen 7 3800X CPU
with 16 GB RAM, while the numerical code can only use one
such core, no matter how many cores a processor has, and
8 GB RAM. In principle, running the ANN code on a modern
GPU could result in an even higher speed up. The reason we
compare the performance on a CPU only is to get an estimate
of the speed up in existing applications, such as Bayesian
inference, where our ANN model can be integrated without
necessarily relying on a GPU.

Next, we present three different ways to calculate the
output of the models. The speed-up depends on each one of
them. It is essential to highlight that by saying the models,
we refer to the 20 already trained models (one for each
EoS), which correspond to f;. The three different ways5 are

(i) model.predict (X), with X being one input

value,

(i) model (X), with X being one input value,

(iii)) model .predict (X), with X being an array of
input values.

Since Bayesian inference algorithms mainly require one
(M, R) pair per iteration, ways (i) and (iii) are presented
separately, although they use the same function (predict)
to calculate the outputs. In the next paragraphs, we will

>The difference lies in the way these functions are designed.
model.predict (X) calls can scale to very large arrays, while
model (X) happens in-memory and does not scale. For further
details the reader is referred to https://keras.io/getting_started/faq/.
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present the different speed-ups each of these ways achieves,
as well as some other differences they demonstrate.

1. model.predict (X)

The left panel of Fig. 5 illustrates the speed up for
the first case. In panel 5(a), the color represents the
speed up, and the dashed lines with increasing trans-
parency correspond to six different M — R curves, for
a={-10,6,22,38,54,70} km?, respectively. Panel 5(b)
illustrates the speed-up values for a specific arrangement of
the data points. These are arranged in increasing order of a,
and for each a, they are also arranged in increasing order with
respect to p... The color still represents the speed-up values,
and each black vertical dashed line corresponds to the same
transparency level as in panel 5(a), aiding visualization and
establishing the connection between the two plots. Each
point on the solid black line represents the mean value of the
speed up s for the 200 points comprising the corresponding
M — R curve of a specific value of a. The general trend
reveals a minimum on the second vertical dashed line,
followed by an increase in performance. It is also evident
that the majority of speed-up values range between 10 and
100 (less than 1% is outside of this range). As a general trend,

(c) model(X)
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Speed up per M — R data point showing how many times faster the trained ANN model is than the numerical code in each case.

higher speed-ups are observed for larger input values.
The mean speed up, considering all data points, is ~25.

2. model (X)

The right panel of Fig. 5 illustrates the speed up for the
model (X) case, and its configuration is similar to the left
panel. It is evident that there is an increase of two orders of
magnitude in speed up. The majority of speed-up values
range between 200 and 18000 (less than 0.2% is outside of
this range). The mean speed up, considering all data points,
is >900.

3. model.predict (X)

In this case, the N = 51 x 200 = 10200 data points were
inserted as an array of input values X. Thus, there is no
direct way of comparing its speed to the previous cases.
Yet, to give some intuition on the acceleration that this way
(of calling the model) provides, we can calculate the
effective run time At.y, which we define as

Aty

Aty = ——, 11
eff N ( )
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TABLE III. Speed up comparison.

Numerical code run time

(Mean) 1003.5 ms

(Min) 147.96 ms (Max) 18122.4 ms

Output method Speed up (Mean)

Speed up (Min) Speed up (Max)

model.predict (X) 25.12
model (X) 921.9
model.predict (X) 31295.5

0.97 464.56
95.6 18102.1
4614.5 565157.2

where Aty is the fotal run time for the whole array as input.
For N = 10200 the resulting speed-ups are presented in
Table III, together with all the previous speed-ups. The first
line of the table provides information about the run time
of the numerical code that uses the iterative numerical
scheme. The other lines show the corresponding speed-ups.
Going from the first to the second and then to the third
method, the speed-up increases by 1.5 to 2 orders of
magnitude each time.

Comparing model.predict (X) to model.pre-
dict (X)itis obvious that the latter does not have a linear
behavior regarding the size of X. This is attributed to the
way this function manipulates vectorized data, which is
designed for batch processing of large numbers of inputs.
Therefore, when it is possible to vectorize the data into
large batches the model .predict () function should be
preferred. On the contrary, when one needs to iterate over
the data and small numbers of inputs are manipulated,
model () should be preferred.

V. SUMMARY AND DISCUSSION

The aim of this work was to explore the application of
ANNSs in predicting the mass-radius relation of NSs for
chosen EoSs in a specific alternative theory of gravity. The
datasets used in this study were generated using an iterative
numerical code. For each EoS, each equilibrium model is
defined by the value of the coupling constant a of the
specific theory of gravity and the central pressure p, of the
NS. Two types of functions, f| and f,, were considered,
each with its own input and output parameters.

For f1, the datasets included 51 values of a ranging from
-10 to 70 and 200 values of p,. ranging from 10?4 dyn/cm?
to 1.2 times the maximum central pressure (p,,.x) for each
specific EoS. The objective was to predict the NS’s mass
and radius based on the given values of a and p.. On the
other hand, f, focused on predicting the NS’s radius given
the a and a fixed value of M for each EoS.

The training and test phase used a train-to-test ratio of
70:30, with the mean square error selected as the loss
function and the absolute relative error chosen as the testing
criterion. An investigation of different ANN architectures
revealed that models with an odd number of hidden layers,
a symmetric distribution of neurons, and alternating acti-
vation functions “tanh” and “relu” exhibited lower final

loss and mean absolute relative error. The final architecture
chosen for training was “dense 25 tanh—dense 35 relu—
dense 25 tanh”.

The results demonstrate that the trained ANN models
provide accurate predictions for both f; and f,. The
test phase showed that the MARE ranged between 107>
and 107*, indicating the models’ ability to capture the
mass-radius relation of NSs across different EoSs. The
maximum ARE was 6 x 107 for £, and 9 x 1073 for f,,
never exceeding 1% in the whole domain of the training
and test sets.

Furthermore, the f| speed-up was analyzed to assess the
performance improvement achieved using the trained ANN
model instead of the iterative numerical code. The results
revealed significant acceleration, with most speed-up val-
ues (when computing individual models) ranging from 10
to 100, depending on the input parameters. When the
ANN processed a whole array of values, the speed up was
several orders of magnitude higher. For f, the speed up is
even higher since the iterative numerical code needs to
perform additional iteration to find a model with spe-
cific mass.

All the constructed models can make accurate pre-
dictions in a very short time compared to the iterative
numerical solver of differential equations. Therefore, the
ANN models can replace the iterative numerical code in
Bayesian inference algorithms, paving the way for fast
and viable investigations, e.g., of the degeneracy
between the uncertainties of the EoS and the theory
of gravity.

It is important to note that further investigations can be
pursued to enhance the accuracy and efficiency of the
trained ANN models. Future research could explore
alternative architectures, optimization algorithms, and addi-
tional input parameters to refine the predictions. However,
for most practical applications, the accuracy achieved here
will be more than sufficient.

Another potential extension is to include additional
macroscopic NS parameters, which will not significantly
increase execution time, although it may increase the
complexity of training. Namely, the tidal deformability
could be added as an extra parameter to be mapped by the
network models whose run time, after being trained,
depends only on the models’ architecture. Computing
the tidal deformability adds just one more equation to the
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TOV system of equations, so it only somewhat increases
the total computational time. Provided that training data
are available for this specific theory, our ANN models can
be extended to also predict this parameter.

In conclusion, this study successfully employed ANNs
to predict the mass-radius relation of NSs for different
EoS in a specific alternative theory of gravity. The trained
models exhibited high accuracy. Furthermore, this
research offers a valuable tool for Bayesian inference
methods. The speed-up achieved through the trained ANN
models allows for a more efficient exploration of the
parameter space. We plan to construct similar ANN
models also for other theories of gravity and for para-
meterized EoS formulations.

The resulting ANN models of this work are available at
the repository [65].
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APPENDIX A: TRAINING ITERATIONS
AND FINAL LOSS

Figure 6 demonstrates the final loss and the number of
iterations for each training. The number of iterations ranges
between 10* and 10° while the MSE of the final loss ranges
between 8 x 107!9 and 107°. The inconsistency of itera-
tions among training for different EoSs is attributed to the
algorithm used for optimization since the number of BFGS
iterations is not the same as the number of iterations
presented in Fig. 6. The common variable of every training
is the “maximum iterations”, which is the BFGS iterations,

and it was set to 230000, not the total iterations. The latter
is the quantity of loss-function assessments and will be
higher than the maximum iterations since each BFGS
iteration must calculate the loss function and the gradients
numerous times. There was the case that the algorithm
stopped earlier, which indicates that additional stopping
conditions were in effect (i.e., the losses did not signifi-
cantly vary between two iterations).

One can notice that for every EoS, f| models reached a
lower final loss than f, models, although based on the
dimensionality, the training should be easier for f5.
The discrepancy is attributed to the training data difficulty
in specific regions for f, (i.e., for high M values and
every « the curves are almost horizontal), which leads to
Appendix B.

APPENDIX B: LARGE ARES IN f),

As mentioned in Sec. IV A when discussing Fig. 4, the
maximum AREs on the testing set for f, are systematically
higher compared to f;, although the MAREs do not
demonstrate the same behavior. This is attributed to the
nature of f, data, since for one a and as M increases, the
M — R curve reaches an almost horizontal region, making
the gradient of f, very large. This is implied in Fig. 3,
which, compared to Fig. 2, demonstrates larger upper
spikes in the testing results. To support this statement,
Fig. 7 is presented, where M, merely corresponds to the
number of M points for every a = const. curve, in
increasing order. M, is used instead of M just to compare
the data from every EoS. The top plot of Fig. 7 shows the
ARE:s for every input pair and a specific EoS. Here, the
AREs are calculated on the whole dataset. One can notice
that the larger AREs are located at the right edge,
corresponding to large M, values, while the remaining
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FIG. 7. (a) f, AREs for BSk20 and (b) mean AREs for every
EoS. M, is the numbered M points with ascending order, ranging
from 1-200.

area seems uniform, except for some local structures of
very small AREs. The bottom plot of Fig. 7 shows the mean
AREs for all EoSs and for every input pair—which would
not be possible if it was not for M. Note that these values
are not MARESs since MARE refers to mean with respect to
data points of the same EoS. Indeed, the mean values
demonstrate a uniform behavior around 107, while the
right edge is over two orders of magnitude higher. It is,
therefore, evident that the largest AREs are located in the
near-horizontal region of M — R curves (i.e., for M,
near 200).

APPENDIX C: GRADIENTS’ ARES

It is often necessary to know the accuracy of the
gradients dR/dM, for instance when performing gra-
dient-based Bayesian inference methods. An estimate of
this error can be calculated by taking the AREs between
these numerical derivatives on the simulated data and the
models’ predictions. Note that the AREs manipulated in
this context are given by

Yi,pred - Yi,true

ARE, :' : (C1)

Y i,true

where

true __ ptrue

Y R —R]
itrue 7 3 rtrue true ?

Mi+l - M;

(C2)

and

pred __ ppred
Ri+l Ri
pred _j spred »
Y _ Mi+l Mi
ipred —

’ pred _ ppred
Ri+] Ri
erue — MLrue ’

i+1 i

for f
(C3)

for f5.

We use forward numerical differentiation and compare the
predicted derivatives to their true values. Notice that f,
does not predict the mass and therefore M must be used
for these values.

Some limitations of this approach should also be noted
before proceeding with the findings. First, the simulated
data points are 200 for each EoS and coupling constant
value. Hence, the resolution is not sufficiently high
for the forward differences to approach the infinitesimal
limit. Furthermore, even if we assume numerical
differences to sufficiently approximate the true derivatives,
they will not always be finite and non-zero by construction.
That is, in the high-mass regime, dR/dM increases
significantly, becoming infinite on the maximum mass
for each M — R curve. Therefore, it is difficult to calculate
a reliable error in this region. This is also the case where
dR/dM is zero. Therefore, we a priori expect high AREs
where the M — R curves are locally horizontal or vertical.

Figure 8 shows the calculated AREs. Panels (a) and
(b) refer to the f, and f, data, respectively, and to the
BSk20 EoS. The color represents the logarithm of the ARE
at each point, whose scale is given in the color bar placed as
the y-axis of panel (c). The latter panel shows the
distributions of the AREs for f; (green) and f, (red), with
the x-axis representing the counts of ARE values inside a
bin. We can distinguish a peak around zero (ARE = 10°),
which is attributed to one specific EoS, APR. Excluding the
AREs of APR EoS from the histogram, we end up with f
selected, which indeed does not contain the peak. In this
panel, a Gaussian distribution is also plotted with a dotted
line. Its mean and standard deviation is given by the mean
and sample standard deviation of the ARE values of f,
(u = =2.373, 6 = 0.901). It is evident that both the f,
selected and f, AREs are drawn from practically the same
normal distribution.

Regarding the spatial features of AREs, it is important to
remember that the f; data are slightly extended to the
unstable M — R branches, as described in Sec. II. In panel
(a) one can see that there are two regions with high errors:
dR/dM — oo and dR/dM — 0. The first region is found in
the high-mass regime, where M — R curves are locally
horizontal, while the second is found in the low-mass
regime, where M — R curves are locally vertical. The
regions where dR/dM is infinite or zero are colored dark
red, since the AREs are very high, as expected. This is
also the case for f,, with the only difference being in the
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(a) f; gradients’ AREs and (b) f, gradients AREs, for BSk20. The gray dots mark the points where the monotonicity is not

preserved. (c) AREs distributions for all EoSs, for f;, f5, and f; selected, which merely excludes one specific EoS (APR).

high-mass regime, due to the selection of data (as described
in Sec. II). Notice that, at points where dR/dM is infinite or
zero monotonicity is not preserved [gray dots in panels (a)
and (b)], which means that the true and predicted gradients
do not have the same sign.

For intermediate masses, the gradients take finite and
nonzero values, so the AREs are generally lower than 1072,
This is the region which is the most reliable to examine the
AREs. It is thus safe to trust the models’ monotonicity
where the true gradients are not zero or infinity.
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