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We construct models of two exotic objects: (i) a wormhole whose throat is hidden by a stellar object like
a neutron star; and (ii) a wormhole inside a black hole. We work within Einstein’s gravity coupled to two
scalar fields with a specific choice of the scalar field Lagrangian. In general, the model contains ghosts, but
they are eliminated using the constraints given by the Lagrange multiplier fields. The constraints are a
generalization of the mimetic constraint, where nondynamical dark matter effectively appears. As a result,
in our model, instead of the nondynamical dark matter, nondynamical exotic matter like a phantom
effectively arises. For the mixed wormhole-plus-star system, we find the corresponding mass-radius
relation and show that it is possible to get characteristics comparable to those of ordinary neutron stars. For
the wormhole inside the black hole, we find an extremal limit where the radius of the throat coincides with
the radius of the event horizon and demonstrate that the Hawking temperature vanishes in this limit.
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I. INTRODUCTION

Wormholes are exotic compact objects possessing non-
trivial spacetime topology and connecting either different
regions of the Universe or separate universes [1,2] (see also
Refs. [3–9] and Ref. [10] for a general overview of
Lorentzian wormholes). In the framework of Einstein’s
general relativity, the existence of a static traversable
wormhole requires exotic matter which violates the null
energy condition (at least in the neighborhood of the
wormhole throat [11]) and therefore all the energy con-
ditions [12–14]. There are several attempts to construct the
traversable wormhole by modifying Einstein’s gravity, as in
the Brans-Dicke theory [15–17] and other theories [18].
In this paper, we consider more exotic objects, that is, a

wormhole whose throat is hidden by a stellar object like a
neutron star and a wormhole inside a black hole. The
wormhole inside a stellar object has been studied in

Refs. [19–26] numerically within Einstein’s gravity.
More general geometry of the wormhole inside a black
hole has been well-investigated in Ref. [27]. Such mixed
neutron-star-plus-wormhole configurations containing a
ghost scalar field (which ensures the presence of a non-
trivial spacetime topology) and ordinary neutron star matter
possess properties both of wormholes and of usual stars:
their masses and sizes are comparable to those of typical
ordinary neutron stars. However, the presence of a ghost
field results in distressing consequences: both the mixed
configurations and pure wormholes are dynamically
unstable objects [21,28–31]. Such instability is caused
essentially by the presence in the system of ghost
fields. This motivates one to study the possibilities of
providing a nontrivial spacetime topology without using
ghost fields.
The aforementioned mixed neutron-star-plus-wormhole

configurations have been constructed by solving self-
consistently the Einstein equations and equations for a
scalar field and neutron matter. In doing so, as in the case
of ordinary neutron stars, some characteristic mass-radius
relations are obtained, whose form strongly depends on a
specific choice of an equation of state of neutron matter and
the type of the scalar field. In the present paper, we will use
another approach when the gravitational field of a system is
specified by giving some ad hoc distribution of an energy
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density of neutron matter threading the wormhole, as it is
also done, for example, in Refs. [32–34]. In this case,
the mass-radius relations will already differ substantially
from the dependencies typical of ordinary neutron stars
or the mixed neutron-star-plus-wormhole configurations
mentioned above. In particular, for the neutron-matter
energy-density profile used in the present paper, the mass
of pure stars (i.e., configurations without a wormhole) turns
out to be proportional to the third power of the radius,
whereas the ADM mass of the wormhole whose throat is
hidden by a stellar object under consideration is propor-
tional to the radius of the stellar object, as in the case of the
Schwarzschild black hole. In turn, the properties of the
wormhole inside the black hole are very similar to those of
the Reissner-Nordström black hole, although there is only
one event horizon. For example, there appears an extremal
limit where the radius of the throat coincides with the radius
of the event horizon. In this limit, we find that the Hawking
temperature vanishes.
The key idea for the construction of the exotic objects in

the present paper is that we employ the formulation by
using two scalar fields suggested in Ref. [35], where it has
been shown that an arbitrarily given spherically symmetric
and static/time-dependent geometry can be realized in the
framework of Einstein’s gravity coupled with two scalar
fields. However, in the model of Ref. [35], there appear
ghosts, and this means that the model is inconsistent.
In classical theories, the kinetic energy of the ghost is
unbounded below. In the framework of quantum theories,
on the other hand, the ghosts generate negative norm states,
which break the Copenhagen interpretation of the quantum
theories [36]. The ghosts can be, however, eliminated by
using constraints given by the Lagrange multiplier fields, as
shown in Refs. [37–40]. These constraints can be regarded
as a generalization of the mimetic constraint of Ref. [41],
where nondynamical dark matter effectively appears. In our
model, nondynamical exotic matter like a phantom effec-
tively appears as well.
The paper is organized as follows. In Sec. II, we review

the formulation of Einstein’s gravity coupled with two
scalar fields and give the explicit forms of the Einstein
equations and the field equations for the two scalar fields.
Furthermore, we explain how the ghosts can be eliminated
and how arbitrarily given spherically symmetric and static/
time-dependent geometries are realized. In Sec. III, by
using the formulation of Sec. II, we construct a model
realizing a wormhole where a stellar object like a neutron

star could hide the throat. Also, here we discuss the energy
conditions and compare the mixed object obtained with
ordinary neutron stars. In Sec. IV, we consider a wormhole
inside the event horizon of a black hole. The wormhole
could connect two universes by the throat, but if the black
hole in our universe is really a black hole, the object in
another universe connected by the throat can be regarded as
a white hole. Finally, Sec. V is devoted to summary and
discussion.

II. EINSTEIN’S GRAVITY COUPLED
TO TWO SCALARS

The arbitrarily given spherically symmetric spacetimes
can be realized in the framework of Einstein’s gravity
coupled with two scalar fields even if the spacetime is
dynamical or time-dependent. In the model of Ref. [35],
there appear ghosts, which make the model inconsistent
because the kinetic energy of the ghost is unbounded
below in the framework of classical mechanics and the
ghosts generate negative norm states, which break the
Copenhagen interpretation of quantum theories [36]. In
the subsequent works [37–40], it has been shown that
the ghosts can be eliminated by constraints given by the
Lagrange multiplier fields. These constraints are similar to
the mimetic constraint of Ref. [41], where nondynamical
dark matter effectively appears.
The action in the model of Ref. [35] is given by that of

four-dimensional Einstein’s gravity coupled with two scalar
fields ϕ and χ,

SGRϕχ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
Aðϕ; χÞ∂μϕ∂μϕ

− Bðϕ; χÞ∂μϕ∂μχ −
1

2
Cðϕ; χÞ∂μχ∂μχ

− Vðϕ; χÞ þ Lmatter

�
: ð1Þ

Here Aðϕ; χÞ, Bðϕ; χÞ, and Cðϕ; χÞ are arbitrary functions,
Vðϕ; χÞ is the scalar-field potential, and Lmatter is the matter
Lagrangian density. The gravitational coupling constant
κ is defined by using Newton’s gravitational constant G,
κ2 ¼ 8πG, although we mainly use geometrized units
c ¼ G ¼ 1 throughout the paper.
By the variation of the action (1) with respect to the

metric gμν, we obtain the Einstein equations,

0 ¼ 1

2κ2

�
−Rμν þ

1

2
gμνR

�
þ 1

2
gμν

�
−
1

2
Aðϕ; χÞ∂ρϕ∂ρϕ − Bðϕ; χÞ∂ρϕ∂ρχ −

1

2
Cðϕ; χÞ∂ρχ∂ρχ − Vðϕ; χÞ

�

þ 1

2
½Aðϕ; χÞ∂μϕ∂νϕþ Bðϕ; χÞð∂μϕ∂νχ þ ∂νϕ∂μχÞ þ Cðϕ; χÞ∂μχ∂νχ� þ

1

2
Tmatter μν; ð2Þ

where the Greek indices run over μ; ν;… ¼ 0, 1, 2, 3 and Tmatter μν is the energy-momentum tensor of matter. On the other
hand, the variations of the action (1) with respect to the fields ϕ and χ give the following equations:
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0 ¼ 1

2
Aϕ∂μϕ∂

μϕþ A∇μ
∂μϕþ Aχ∂μϕ∂

μχ þ
�
Bχ −

1

2
Cϕ

�
∂μχ∂

μχ þ B∇μ
∂μχ − Vϕ;

0 ¼
�
−
1

2
Aχ þ Bϕ

�
∂μϕ∂

μϕþ B∇μ
∂μϕþ 1

2
Cχ∂μχ∂

μχ þ C∇μ
∂μχ þ Cϕ∂μϕ∂

μχ − Vχ ; ð3Þ

where Aϕ ¼ ∂Aðϕ; χÞ=∂ϕ, etc. These field equations are
nothing but the Bianchi identities. In Appendix, we show
that the field equations (3) can be surely obtained from the
Einstein equations (2).

A. Elimination of the ghosts

The metric of a general spherically symmetric and time-
dependent spacetime is given by,

ds2¼−e2νðt;rÞdt2þe2λðt;rÞdr2þr2ðdϑ2þsin2ϑdφ2Þ: ð4Þ

The argument that the metric in (4) is a general one is given
in Ref. [35] (see also the textbook [42]). We may also
assume the ansatz

ϕ ¼ t; χ ¼ r; ð5Þ

which does not give any loss of generality. The detailed
arguments have been given in the previous papers
[35,37–40].
In Sec. III, we discuss how we can construct models

realizing an arbitrarily given spherically symmetric geom-
etry expressed by themetric (4). In the realizations, however,
the functions A and/or C are often negative, and therefore ϕ
and/or χ become ghosts. In order to eliminate the ghosts, we
impose constraints by introducing the Lagrange multiplier
fields λϕ and λχ and modifying the action (1) SGRϕχ →
SGRϕχ þ Sλ, where the additional term Sλ is given by

Sλ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
λϕðe−2νðt¼ϕ;r¼χÞ

∂μϕ∂
μϕþ 1Þ

þ λχðe−2λðt¼ϕ;r¼χÞ
∂μχ∂

μχ − 1Þ�: ð6Þ

By varying Sλ with respect to λϕ and λχ , we obtain the
following constraints:

0 ¼ e−2νðt¼ϕ;r¼χÞ
∂μϕ∂

μϕþ 1;

0 ¼ e−2λðt¼ϕ;r¼χÞ
∂μχ∂

μχ − 1; ð7Þ

which is consistent with the assumption (5). The constraints
(7) are similar to the mimetic constraint of Ref. [41], where
nondynamical dark matter appears.
The constraints from Eq. (7) make the scalar fields ϕ

and χ nondynamical, and the fluctuations of ϕ and χ around
the background (5) do not propagate. We now write the
fluctuations as follows:

ϕ ¼ tþ δϕ; χ ¼ rþ δχ; ð8Þ

and, by using Eq. (7), we find

∂tðe−2νðt;rÞδϕÞ ¼ ∂rðe−2λðt;rÞδχÞ ¼ 0: ð9Þ

Equation (9) tells us that, by imposing the initial condition
δϕ ¼ 0 and by imposing the boundary condition δχ → 0
when r → ∞, we can find that both of δϕ and δχ vanish in
the whole spacetime, δϕ ¼ 0 and δχ ¼ 0. This tells us that
both ϕ and χ are nondynamical or frozen degrees of
freedom.
As partially or completely shown in Refs. [37–40],

even in the model given by the modified action
SGRϕχ þ Sλ, λϕ ¼ λχ ¼ 0 consistently appear as a solution
and therefore any solution of Eqs. (2) and (3) which are
based on the original action (1) is a solution even for the
modified model with the action SGRϕχ þ Sλ.

B. Reconstruction of models which realize any given
spherically symmetric and static/time-dependent

spacetime

We now try to construct a model which has a solution
realizing the metric functions e2νðt;rÞ and e2λðt;rÞ given
in Eq. (4).
The ðt; tÞ, ðr; rÞ, ðϑ; ϑÞ, and ðt; rÞ components of Eq. (2)

have the following form:

e−2λþ2ν

κ2

�
2λ0

r
þ e2λ − 1

r2

�
¼ −e2ν

�
−
A
2
e−2ν −

C
2
e−2λ − V

�
þ e2νρ;

1

κ2

�
2ν0

r
−
e2λ − 1

r2

�
¼ e2λ

�
A
2
e−2ν þ C

2
e−2λ − V

�
þ e2λp;
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1

κ2
	
−r2e−2ν½̈λþ ðλ̇ − ν̇Þλ̇� þ e−2λðrðν0 − λ0Þ þ r2ν00 þ r2ðν0 − λ0Þν0Þ
 ¼ r2

�
A
2
e−2ν −

C
2
e−2λ − V

�
þ r2p;

2λ̇

κ2r
¼ B; ð10Þ

where the dot and prime denote differentiation with respect to the time coordinate t and radial coordinate r, respectively. In
this paper, we assume that the matter is a perfect fluid with ρ and p being the energy density and the pressure of matter,
defined by

Tmatter tt ¼ −gttρ; Tmatter ij ¼ pgij; ð11Þ

where i; j ¼ r; ϑ;φ. Equations (10) can be algebraically solved with respect to A, B, C, and V as follows:

A ¼ e2ν

κ2

�
−e−2ν½̈λþ ðλ̇ − ν̇Þλ̇� þ e−2λ

�
ν0 þ λ0

r
þ ν00 þ ðν0 − λ0Þν0 þ e2λ − 1

r2

��
− e2νðρþ pÞ;

B ¼ 2λ̇

κ2r
;

C ¼ e2λ

κ2

�
e−2ν½̈λþ ðλ̇ − ν̇Þλ̇� − e−2λ

�
−
ν0 þ λ0

r
þ ν00 þ ðν0 − λ0Þν0 þ e2λ − 1

r2

��
;

V ¼ e−2λ

κ2

�
λ0 − ν0

r
þ e2λ − 1

r2

�
−
1

2
ðρ − pÞ: ð12Þ

Then we can obtain a model that realizes the space-
time defined by the metric (4) by finding ðt; rÞ-dependence
of ρ and p and by replacing ðt; rÞ in Eq. (12) with
ðϕ; χÞ.
In the following, by using the above model of the two

scalar fields, we construct a model whose solution is a
wormhole inside a stellar object. In general, the fluid which
forms the wormhole generates instability because the fluid
violates the energy conditions. Due to the constraints (7),
the two scalar fields do not propagate, nor do they fluctuate
and are therefore nondynamical. This tells us that in the
wormhole solution given by the two scalar fields, there
does not appear any instability, which is different from the
standard but exotic fluid which is often used to construct
wormhole solutions.

III. WORMHOLE INSIDE A STELLAR OBJECT

We may consider a wormhole whose throat is hidden by
a stellar object like a neutron star. This can be done by
choosing the radius of the neutron star to be larger than the
radius of the throat. Similar objects have been numerically
studied in Refs. [19–26], where ghost scalar fields are used
to realize the objects. In the present paper, we construct the
object analytically, and the ghost is eliminated by using the
constraint of Sec. II A.
To this end, a general spherically symmetric and static

spacetime whose metric can be obtained from Eq. (4)
in the form,

ds2 ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2ðdϑ2 þ sin2ϑdφ2Þ: ð13Þ

In the case of a wormhole whose throat has a radius r0,
near the throat r ∼ r0, the metric functions e2ν and e2λ

behave as

e2ν ∼ e2ν0 þ ν1ðr − r0Þ; e2λ ∼
r0

r − r0
e2λ0 ; ð14Þ

with constants ν0, ν1, and λ0. If we redefine the radial
coordinate r by using

l ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr − r0Þ

p
; ð15Þ

near the throat, the metric (13) takes the form

ds2∼−
�
e2ν0 þν1l2

4r0

�
dt2þe2λ0dl2þr02ðdϑ2þsin2ϑdφ2Þ:

ð16Þ

Notice that in Eq. (15) the radial coordinate l is defined to
be positive, but in the expression (16), we may analytically
continue l into the region where l is negative. Let us assume
that the region where l is positive corresponds to our
universe, and then the region where l is negative corre-
sponds to another universe connected with our universe by
the wormhole.
We now consider a stellarlike object similar to a neutron

star supported by a perfect fluid. The conservation law of
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the perfect fluid with the energy density ρ and the pressure
p is given by,

0 ¼ ∇μTμr ¼ ν0ðρþ pÞ þ p0; ð17Þ

while other components of the conservation law are
trivially satisfied. If the equation of state (EoS) ρ ¼ ρðpÞ
is given, Eq. (17) can be integrated as

ν ¼ −
Z

pðrÞ dp
ρðpÞ þ p

: ð18Þ

The EoS of compact stars, like neutron stars, can be
approximated by a polytropic EoS that gives a more or less
realistic description of neutron matter at high densities.
Here we consider two simple EoSs:
(1) The rest-mass-polytrope,

p1 ¼ K1ρ
1þ 1

n1
b : ð19Þ

Here ρb ¼ nbmb is the rest-mass density of the
neutron fluid, where nb is the baryon number density
and mb is the baryon mass. The values of the
constants K1 and n1 depend on the properties of
the fluid under consideration. Such an EOS was
used, for instance, in Refs. [43–46] in modeling
general relativistic isotropic and anisotropic fluid
spheres. In what follows, we refer to this choice as
EoS1. It is known that for the neutron stars, n1 can
take values in the range 0.5 ≤ n1 ≤ 3 [46].

(2) The parametric relation between the pressure and
energy density,

ρ ¼ ρb þ n2p2; p2 ¼ K2ρ
1þ 1

n2
b ; ð20Þ

with the constant K2 ¼ kc2ðnðchÞb mbÞ−1=n2 , where c

is the velocity of light, nðchÞb is a characteristic value
of nb, and k and n2 are parameters whose values
depend on the properties of the neutron matter (see
Sec. III B). In what follows we refer to this choice
as EoS2.

Upon substituting the EoSs (19) and (20) into the
conservation law (18), one can find the following expres-
sions for the metric function ν:

for the EoS1∶ ν ¼ νc − ðn1 þ 1Þ ln ð1þ K1ρ
1=n1
b Þ; ð21Þ

for the EoS2∶ ν ¼ νc − ln ½1þ K2ðn2 þ 1Þρ1=n2b �; ð22Þ

where νc is an integration constant.
Given one of the aforementioned EoSs, let us consider an

example case where we assume the following profiles for
ρ ¼ ρðrÞ and λ ¼ λðrÞ:

ρ¼
(
ρc
h
1− ðr−r0Þ2

ðRs−r0Þ2
i

when r0 ≤ r≤Rs

0 when r>Rs

; e−2λ ¼ 1−
r0
r
;

ð23Þ

where r0 is a constant corresponding to the radius of the
throat, ρc is the value of the energy density at the throat
r ¼ r0, andRs is the radius of the surface of the neutron fluid.
For both polytropes (19) and (20), consider the case

n1 ¼ n2 ¼ 1. Then, by substituting the expression (23)
into (21) and (22), we find in the region r0 ≤ r ≤ Rs:

for the EoS1∶ e2ν ¼ e2νch
1þ K1ρcð1 − ðr−r0Þ2

ðRs−r0Þ2Þ
i
4
;

ðe2νÞ0 ¼ 8K1ρce2νcðr − r0ÞðRs − r0Þ−2h
1þ K1ρcð1 − ðr−r0Þ2

ðRs−r0Þ2Þ
i
5

; ð24Þ

for the EoS2∶ e2ν ¼ e2νch
1þ 2K2ρcð1 − ðr−r0Þ2

ðRs−r0Þ2Þ
i
2
;

ðe2νÞ0 ¼ 8K2ρce2νcðr − r0ÞðRs − r0Þ−2h
1þ 2K2ρcð1 − ðr−r0Þ2

ðRs−r0Þ2Þ
i
3

: ð25Þ

Then at the surface r ¼ Rs, we find for both EoSs

e2νðr¼RsÞ ¼ e2νc ; ðe2νÞ0jr¼Rs
¼ 8K1;2ρc

Rs − r0
e2νc : ð26Þ

Next, as an example, we may assume that outside the
fluid, i.e., when r > Rs, the metric function

e2ν ¼ e−2λ ¼ 1 −
r0
r
: ð27Þ

This implies that we deal with asymptotically flat space-
time. In turn, the continuities of e2ν and ðe2νÞ0 at the surface
of the fluid give

e2νc ¼ 1 −
r0
Rs

; 8K1;2ρcRs ¼ r0: ð28Þ

These expressions determine the size of the throat r0 and
the value of the integration constant νc in terms of ρc and
Rs. Note here that in the case of n1;2 ≠ 1 the ansatz (27)
results in r0 ¼ 0.
The ansatz (27) for the metric functions outside the fluid

implies that the ADM mass M is given by

M ¼ r0
2
¼ 4K1;2ρcRs: ð29Þ

This yields the mass-radius relation of the configuration
under consideration. In Sec. III B, we will compare this
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mass-radius relation with that of ordinary neutron stars
described by the same EoSs.
But before note that, in ordinary stars modeled by the toy

profiles of the type (23), the mass could be proportional to
the third power of the radiusM ∝ Rs

3 if the matter is not so
compressed because the mass M could be proportional to
the volume ∼ 4π

3
Rs

3. For example, instead of (23), we may
consider the following matter profile in a compact star
without a wormhole ðr0 → 0Þ:

ρ ¼
8<
: ρc



1 − r2

R2
s

�
when r ≤ Rs

0 when r > Rs

: ð30Þ

Then the mass M⋆ corresponding to ordinary matter of the
compact star, which is generally different from the ADM
mass, is given by

M⋆ ¼ 4π

Z
Rs

0

dr r2ρðrÞ

¼ 4πρc

Z
Rs

0

dr r2
�
1 −

r2

R2
s

�
¼ 8πρcR3

s

15
; ð31Þ

and we really find that M⋆ ∝ Rs
3. Note that this mass-

radius relation differs strongly from that typical of realistic
neutron stars (see, e.g., Refs. [44–47]). The reason is
that we employ the toy profile (30) which enables us to
find the analytical expression (31), in contrast to the
realistic neutron stars whose models are constructed only
numerically.
In the case of the Schwarzschild black hole, the ADM

mass M is proportional to the Schwarzschild radius. If the
energy density ρc at the throat has a maximum, as it takes
place for ordinary neutron stars, Eq. (29) tells us that the
mass M is proportional to the radius Rs of the stellarlike
object, as in the case of the Schwarzschild black hole,
although Rs must be larger than the Schwarzschild
radius r0.

A. Energy conditions

Consider now the null, weak, strong, and dominant
energy conditions, which state that the energy-momentum
tensor Tμν satisfies, respectively, the inequalities

Tμνkμkν ≥ 0; TμνVμVν ≥ 0;

�
Tμν −

1

2
gμνT

�
VμVν ≥ 0;

TμνVμVν ≥ 0; and TμνVν is not spacelike:

for any null vector kμ, gμνkμkν ¼ 0, and for any timelike vector Vμ, gμνVμVν < 0 (see, e.g., Ref. [10]). For the system under
consideration, we have the energy-momentum tensor Tμ

ν ¼ diagð−ρtot; pr
tot; pϑ

tot; pϑ
totÞ, where the subscript “tot” denotes the

total (the scalar fields plus the fluid) energy density and pressure. In terms of these quantities, the above conditions yield

NEC∶ ρtot þ pr
tot ≥ 0; ρtot þ pϑ

tot ≥ 0;

WEC∶ ρtot þ pr
tot ≥ 0; ρtot þ pϑ

tot ≥ 0; ρtot ≥ 0;

SEC∶ ρtot þ pr
tot ≥ 0; ρtot þ pϑ

tot ≥ 0; ρtot þ pr
tot þ 2pϑ

tot ≥ 0;

DEC∶ ρtot ≥ 0; ρtot ≥ jpr
totj; ρtot ≥ jpϑ

totj:

With the ansatz for λ in the form (23) and (27), we have
the following expressions for the principal pressures valid
over the whole space (inside and outside the fluid):

ρtot ¼ 0; ð32Þ

pr
tot ¼

2rðr − r0Þν0 − r0
κ2r3

; ð33Þ

pϑ
tot ¼

2r2ðr − r0Þðν00 þ ν02Þ þ rð2r − r0Þν0 þ r0
2κ2r3

: ð34Þ

Using these expressions, one can find in the limit r → r0

ðρtot þ pr
totÞ → −

1

κ2r20
; ðρtot þ pϑ

totÞ →
1þ r0ν0ðr0Þ

2κ2r20
:

For the choice of the metric function ν in the form (24)
and (25), ν0ðr0Þ ¼ 0. Then it is evident from these expres-
sions that all the above energy conditions are violated in the
vicinity of the throat.
The violation of the energy conditions usually generates

the instability of the configuration. For example, the speed
of sound often becomes larger than the speed of light. If we
construct a wormhole spacetime by using the two-scalar
model in the last section, however, any instability does not
appear because the two scalar fields are nondynamical and
they do not propagate nor fluctuate, and therefore there
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does not appear sound generated by the oscillation of the
effective fluid created by the two scalar fields, although the
effective fluid violates the energy conditions.

B. Comparison with ordinary neutron stars

In this subsection, we construct mass-radius relations for
the system under consideration and compare them with
those of ordinary neutron stars with the same EoSs. To do
this, it is necessary to choose appropriate values of the
parameters appearing in the polytropic EoSs (19) and (20).
For our purposes, we take for the EoS1 n1 ¼ 1 and K1 ¼
100 km2 (in units c ¼ G ¼ 1) [48]. In turn, for the EoS2,
we take the following set of parameters for the neutron fluid

(in CGS units): mb ¼ 1.66 × 10−24 g, nðchÞb ¼ 0.1 fm−3,
k ¼ 0.1, and n2 ¼ 1 [49].
In general, the total mass of the system under consid-

eration is given by [5–8]

MðrÞ ¼ r0
2
þ 4π

Z
r

r0

ρtotðr0Þr02dr0: ð35Þ

For the choice of the metric function λ in the form (23),
ρtot ≡ 0 [see Eq. (32)]. Then only the first term on the right-
hand side of (35) is present, which agrees with (29).
Usually, the mass-radius curves for ordinary neutron

stars are constructed by varying the central density of the
fluid ρc. As a result, for every particular value of ρc, one has
some particular values of M and Rs.
In the case of the mixed system “neutron star plus

wormhole” under consideration, we have the mass-radius
relation in the form (29). In order to compare it with the
relations for ordinary neutron stars, we may proceed as
follows: we take some ρc and assume that the radius of the
fluid Rs is equal to the radius of an ordinary neutron star
obtained for the same ρc. The corresponding results of
calculations are given in the left panels of Fig. 1 for
both EoSs.

FIG. 1. Left panels: the ADMmass for ordinary neutron stars and mixed systems as a function of the radius. Right panels: the radius as
a function of the ADM mass. The vertical dashed lines correspond to the limiting mixed system with r0 → Rs.
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Alternatively, we can take some ρc and assume that the
mass of the mixed system is equal to the mass of an
ordinary neutron star obtained for the same ρc. The
corresponding results of calculations are given in the right
panels of Fig. 1 for both EoSs.
According to the observational data (see, e.g., Ref. [47]),

the typical values of the mass of ordinary neutrons stars
lie in the range M ∼ ð1–2ÞM⊙, while they radii are of the
order of R ∼ 8–12 km. As seen from Fig. 1, for the mixed
systems under consideration, such characteristics are acces-
sible both for the EoS1 (see the top left panel) and for the
EoS2 (see the bottom right panel).

IV. WORMHOLE INSIDE THE BLACK HOLE

First of all, we should note that the standard Reissner-
Nordström spacetime can be regarded as a wormhole
because the geometry connects many universes, as can
be seen from the corresponding Penrose diagram of the
spacetime.
We now consider an object that describes a wormhole

inside a black hole whose geometry differs from the
Reissner-Nordström spacetime; that is, we consider a
wormhole inside the event horizon. Such a wormhole
could have a timelike throat. Then the object falling into
the black hole via the event horizon goes first through
the wormhole, then through the horizon, and eventually

appears in another universe, where the black hole may
behave as a white hole.
In this section, we neglect the contribution of the matter.

As an example, let us consider the ansatz

e−2λ¼ðr−rhorizonÞðr2−r02Þ
r3

; e2ν¼1−
rhorizon

r
: ð36Þ

Here we assume that the radius r0 of the throat is smaller
than the Schwarzschild radius rhorizon, r0 < rhorizon. The
behavior for large r tells us that the ADM mass M is given
by M ¼ rhorizon

2
. Compared with Eq. (14), here we have

e2ν0 ¼ 1 −
rhorizon
r0

; ν1 ¼
rhorizon
r02

;

e2λ ∼
r03

2r0ðr0 − rhorizonÞðr − r0Þ
: ð37Þ

Therefore the metric given by Eq. (36) has a wormhole
throat at r ¼ r0, although the region around the throat is
timelike.
In the limit r0 → 0, the metric given by Eq. (36)

reduces to the one of the Schwarzschild spacetime:
e−2λ; e2ν → 1 − r0

r ¼ 1 − 2M
r . In turn, in this limit, the

functions A, B, C, and V from Eq. (12) vanish. In fact,
we find

A →
e2ν

κ2

�
e−2λ

�
ν0 þ λ0

r
þ ν00 þ ðν0 − λ0Þν0 þ e2λ − 1

r2

��

→
e4ν

κ2

�− 2r0
r3 ð1 − r0

r Þ − r02

r4

2ð1 − r0
r Þ2

þ
r02

r4

2ð1 − r0
r Þ2

þ
r0
r3

1 − r0
r

�
¼ 0;

B ¼ 0;

C →
e2λ

κ2

�
−e−2λ

�
−
ν0 þ λ0

r
þ ν00 þ ðν0 − λ0Þν0 þ e2λ − 1

r2

��
→ e−4νA → 0;

V →
e−2λ

κ2

�
λ0 − ν0

r
þ e2λ − 1

r2

�
→

e−2λ

κ2

�
−

r0
r3

1 − r0
r

þ
r0
r3

1 − r0
r

�
¼ 0: ð38Þ

Therefore, in the limit r0 → 0, the scalar fields ϕ and χ decouple and the model reduces to the vacuum Einstein gravity
without a cosmological constant.
We now consider the orbit of a test particle to check the motion of the particle after it penetrates the horizon. The motion

can be described by the corresponding geodesic equation obtained from the Lagrangian

L ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνẋμðτÞẋνðτÞ

q
¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

rhorizon
r

��
dt
dτ

�
2

−
ðr − rhorizonÞðr2 − r02Þ

r3

�
dr
dτ

�
2

s
: ð39Þ

Here τ is an affine parameter which parametrizes the orbit of the test particle. For simplicity, we do not consider
here the motion in the angular directions. The Euler-Lagrange equations derived from the Lagrangian (39) are
as follows:
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0 ¼ d
dτ

2
64 mð1 − rhorizon

r Þ dt
dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − rhorizon
r ÞðdtdτÞ2 − ðr−rhorizonÞðr2−r02Þ

r3 ðdrdτÞ2
q

3
75; ð40Þ

0¼ d
dτ

2
64 mrhorizonðr−rhorizonÞðr−r0Þ

r3
dr
dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1− rhorizon
r ÞðdtdτÞ2− ðr−rhorizonÞðr2−r02Þ

r3 ðdrdτÞ2
q

3
75

−
m½rhorizonr2 ðdtdτÞ2−ð−3rhorizonr02

r4 þ 2r02

r3 þ rhorizon
r2 ÞðdrdτÞ2�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− rhorizon

r ÞðdtdτÞ2− ðr−rhorizonÞðr2−r02Þ
r3 ðdrdτÞ2

q : ð41Þ

Equation (40) yields the conserved energy of the particle E,

mð1 − rhorizon
r Þ dt

dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rhorizon

r ÞðdtdτÞ2 − ðr−rhorizonÞðr2−r02Þ
r3 ðdrdτÞ2

q ¼ E: ð42Þ

We now choose τ to be the proper time of the test
particle, which is defined by

−dτ2 ¼ gμνdxμdxν

¼ −
�
1 −

rhorizon
r

�
dt2 þ ðr − rhorizonÞðr2 − r02Þ

r3
dr2:

ð43Þ

This gives

�
dt
dτ

�
2

¼ r2 − r02

r2

�
dr
dτ

�
2

þ r
r − rhorizon

: ð44Þ

Then Eq. (42) is simplified to be

m

�
1 −

rhorizon
r

�
dt
dτ

¼ E: ð45Þ

Expressing dt
dτ from Eq. (45) and substituting it into

Eq. (44), we find

r2 − r02

r2

�
dr
dτ

�
2

¼ E2r2

m2ðr− rhorizonÞ2
−

r
r− rhorizon

¼ E2r2

m2ðr− rhorizonÞ2
�
1−

m2

E2

�
1−

rhorizon
r

��
;

ð46Þ

which is consistent with Eq. (41). We should note that
½1 − m2

E2 ð1 − rhorizon
r Þ� > 0, as long as m2

E2 < 1, as usually
assumed. Therefore, dr

dτ does not vanish as long as
r > r0. Thus, if

dr
dτ < 0 at a certain instant of time, we find

dr
dτ < 0 until the particle reaches the throat as r → r0.
Furthermore, when r≳ r0, Eq. (46) has the following form:

ðr − r0Þ
�
dr
dτ

�
2

∼
�
2C
3

�
2

≡ E2r02

m2ðr0 − rhorizonÞ2
�
1 −

m2

E2

�
1 −

rhorizon
r0

��
; ð47Þ

which gives

ðr − r0Þ32 ∼ Cðτ0 − τÞ or r ∼ r0 þ C
2
3ðτ0 − τÞ23: ð48Þ

Therefore, the test particle reaches the throat in a finite
proper time and after that, it appears in another universe and
goes through the horizon. Therefore, instead of a black
hole, there is a white hole in another universe. We may
consider the inverse process, that is, the particle falling into
the black hole in another universe may appear in our
universe from a white hole. The wormholes inside the black
holes connect an infinite number of universes, as in the
Reissner-Nordström black hole, although the object con-
sidered in this paper has only event (outer) horizons. In
Fig. 2, the Penrose diagram of the wormholes inside the
black holes is given. This Penrose diagram has been also
found in Ref. [27].
We now consider the Hawking temperature of the geo-

metry given by Eq. (36). Near the horizon r ∼ rhorizon, the
metric has the following form:

ds2 ∼ −
r − rhorizon
rhorizon

dt2 þ rhorizon3

ðr − rhorizonÞðrhorizon2 − r02Þ
dr2

þ r2ðdϑ2 þ sin2ϑdφ2Þ: ð49Þ

We Wick-rotate the time coordinate t by changing t ¼ {p
and define a new variable q as

q≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhorizon3ðr − rhorizonÞ

rhorizon2 − r02

s
; ð50Þ

FIG. 2. The Penrose diagram of wormholes inside black holes.
The thick lines correspond to horizons, the thin lines − to
infinities, and the dashed lines - - - to the throat r ¼ r0.
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using which we rewrite the metric (49) in the form

ds2∼
rhorizon2−r02

4rhorizon4
q2dp2þdq2þrðqÞ2ðdϑ2þsin2ϑdφ2Þ:

ð51Þ

In order to avoid the conical singularity at q ¼ 0,
the Euclidean time p should have a periodicity

p ∼ pþ 4πrhorizon2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhorizon2−r02

p , which gives the Hawking temperature

TH,

TH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhorizon2 − r02

p
4πrhorizon2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − r02

p
16πM2

: ð52Þ

In the case of the standard Schwarzschild black hole, which
corresponds to the limit r0 → 0, we find the usual result,
TH → 1

8πM. Therefore, Eq. (52) tells us that the temperature
of the black hole with a wormhole considered in this paper
is lower than that of the standard Schwarzschild black hole
with the identical ADM mass M. Especially, in the limit
r0 → rhorizon, the Hawking temperature vanishes, TH → 0,
which is similar to the extremal limit of the Reissner-
Nordström black hole.
We may assume that the thermodynamical entropy S is

given by the area of the horizon,

S ¼ 4πrhorizon2: ð53Þ

Then Eq. (52) yields

TH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
4π − r02

q
S

; ð54Þ

which gives

dS
dTH

¼
8πS2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
4π − r02

q
8πr02 − S

: ð55Þ

By using the thermodynamic identity, the specific heat C is
given by

C≡ dQ
dTH

¼ TH
dS
dTH

¼ −
2SðS − 4πr02Þ
S − 8πr02

¼ −
8πrhorizon2ðrhorizon2 − r02Þ

rhorizon2 − 2r02
; ð56Þ

where Q is the heat. For the Schwarzschild black hole, i.e.,
when r0 → 0, we findC → −8πrhorizon2 ¼ −32πM2, which
is always negative. The specific heat C in Eq. (56) is also
negative when the radius of the black hole is large,
rhorizon ≫ r0, as for the standard Schwarzschild black hole.
In turn, the specific heat C vanishes in the extremal limit

rhorizon → r0. One can also see that the specific heat
diverges when rhorizon ¼

ffiffiffi
2

p
r0, which implies that there

is a maximum Tmax
H in the Hawking temperature TH, which

is also clear from Eq. (52),

Tmax
H ¼ 1

8πr0
: ð57Þ

The above properties are very similar to the properties of
the Reissner-Nordström black hole, whose specific heat
and temperature vanish in the extremal limit where the
radius of the outer horizon coincides with the radius of the
inner horizon, and there is a maximum in the Hawking
temperature in the Reissner-Nordström black hole, where
the specific heat diverges. In our model, the radius r0 of the
throat plays the role of the radius of the inner horizon in the
Reissner-Nordström black hole.

V. SUMMARY AND DISCUSSION

In this paper, we consider two exotic objects: (i) a
wormhole whose throat is hidden by a stellar object like a
neutron star; and (ii) a wormhole inside a black hole. These
objects can be realized within the models which include
two scalar fields by using the formulation of Ref. [35].
Within the formulation, we can construct models that
realize an arbitrarily given spherically symmetric and
static/time-dependent geometry. In the original formulation
of Ref. [35], however, the models include ghosts, which
make the model physically inconsistent both as classical
theory and as quantum theory. In the works [37–40],
however, it has been shown that the ghosts can be
eliminated by the corresponding constraints. The latter is
given by adding terms including the Lagrange multiplier
fields to the action. These constraints are similar to the
mimetic constraint of Ref. [41]. In the original mimetic
model, nondynamical dark matter effectively appears. Our
model could be regarded as an extension of the mimetic
theory and we realized effectively more general but non-
dynamical matter, including exotic matter like a phantom.
We also compared the mass-radius relations of the mixed
configurations “neutron star plus wormhole” with those of
ordinary neutron stars and demonstrated that it is possible
to get masses and sizes of the mixed systems comparable to
those typical of neutron stars.
We have also investigated the structure of the exotic

objects. For the wormhole whose throat is hidden inside the
star, the ADM mass is proportional to the radius of the star,
as in the case of the Schwarzschild black hole, although the
mass of ordinary stars constructed with some ad hoc profile
of matter similar to that of mixed systems is proportional to
the third power of the radius. We have also found that the
null energy condition and therefore all the energy con-
ditions are violated near the throat. The violation does not,
however, generate any instability because the effective fluid
is given by the nondynamical scalar fields. The scalar fields
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do not propagate and do not fluctuate, and therefore there
does not appear sound generated by the oscillation
of the effective fluid. In this sense, the effective fluid is
frozen.
For the wormhole, the throat is timelike and we have

clarified the causal structure. This wormhole has properties
similar to those of the Reissner-Nordström black hole,
which has an electric charge and two horizons. Both in the
case of the Reissner-Nordström black hole and for the
wormhole inside the black hole, an infinite number of
universes are connected via horizons and/or throats.
Furthermore, in the case of the Reissner-Nordström black
hole, there appears an extremal limit where the radii of the
two horizons coincide with each other, and, in the limit, the
Hawking temperature vanishes. In the case of the wormhole
inside the black hole considered in this paper, the extremal
limit appears when the radius of the throat coincides with
the radius of the horizon. In this limit, the Hawking
temperature vanishes, again.
We may speculate how one can describe the creation of

such exotic objects. As is clear from the arguments given in
the Sec. II B, we may consider the time evolution of the
spacetime. For this case, by starting from some appropriate
initial configuration of the spacetime, of the scalar fields,
and of matter, we may describe the formation of exotic
objects. For example, we may start with an almost flat
background and a spherically symmetric distribution of
low-density matter. Alternatively, we may consider as the
initial condition that there are a wormhole and spherically
symmetric low-density matter. Then, for the time-dependent
and spherically symmetric spacetime, instead of (17), the
conservation law yields

0 ¼ −ρ̇ − λ̇ðρþ pÞ; 0 ¼ ν0ðρþ pÞ þ p0: ð58Þ

In the time-dependent case, the above equations should be
generalized as follows:

∂Tt
t

∂t
þ∂Tr

t

∂r
þðTt

t−Tr
rÞ
∂λ

∂t
þTr

t

�
∂

∂r
ðνþλÞþ2

r

�
¼0; ð59Þ

and

∂Tt
r

∂t
þ∂Tr

r

∂r
þTt

r
∂

∂t
ðνþλÞþðTr

r−Tt
tÞ
∂ν

∂r
þ2

r
ðTr

r−Tϑ
ϑÞ¼0;

ð60Þ

respectively. Since in generalTt
r ≠ 0, theEq. (58) are, strictly

speaking, incorrect. By analogy with Eq. (18), we can
integrate the above equations as follows:

νðt; rÞ ¼ −
Z

pðt;rÞ dp
ρðpÞ þ p

þ ν0ðtÞ;

λðt; rÞ ¼ −
Z

ρðt;rÞ dρ
ρþ pðρÞ þ λ0ðrÞ: ð61Þ

Here ν0ðtÞ and λ0ðrÞ are arbitrary functions of t and r,
respectively. Therefore we may consider them as a proper
initial distribution of the matter.
It might be interesting to consider the fusion of two black

holes or neutron stars. If one or two of the black holes or
neutron stars have wormhole(s) inside, during the fusion,
there might appear an energy flow between our universe
and another universe. If the flux goes to another universe,
the radiation after the fusion might become smaller.
Conversely, if the flux comes from another universe, the
radiation might be enhanced. Anyway, such fusions may
provide us with some clue concerning the wormhole and
another universe.
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APPENDIX: DERIVING THE FIELD
EQUATIONS (3) FROM THE EINSTEIN

EQUATIONS (2)

In this appendix, we show that the field equations (3) for
the scalar fields ϕ and χ can be obtained from the Einstein
equations (2) by using the Bianchi identity and the
conservation law.
Multiplying Eq. (2) by ∇ν and using the Bianchi

identity ∇νð−Rμν þ 1
2
gμνRÞ ¼ 0 and the conservation law

∇νTmatter μν ¼ 0, we obtain,

0 ¼ 1

2
∂μ

�
−
1

2
Aðϕ; χÞ∂ρϕ∂ρϕ − Bðϕ; χÞ∂ρϕ∂ρχ −

1

2
Cðϕ; χÞ∂ρχ∂ρχ − Vðϕ; χÞ

�

þ 1

2
∇νfAðϕ; χÞ∂μϕ∂νϕþ Bðϕ; χÞð∂μϕ∂νχ þ ∂νϕ∂μχÞ þ Cðϕ; χÞ∂μχ∂νχg

¼ 1

2

�
−
1

2
ðAϕ∂μϕþ Aχ∂μχÞ∂ρϕ∂ρϕ − A∂ρϕ∇μ∂ρϕ − ðBϕ∂μϕþ Bχ∂μχÞ∂ρϕ∂ρχ − Bð∇μ∂ρϕ∂

ρχ þ ∂ρϕ∇μ∂
ρχÞ
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−
1

2
ðCϕ∂μϕþ Cχ∂μχÞ∂ρχ∂ρχ − C∂ρχ∇μ∂

ρχ − Vϕ∂μϕ − Vχ∂μχ

�

þ 1

2
fðAϕ∂

νϕþ Aχ∂
νχÞ∂μϕ∂νϕþ Að∇ν

∂μϕ∂νϕþ ∂μϕ∇ν
∂νϕÞ

þ ðBϕ∂
νϕþ Bχ∂

νχÞð∂μϕ∂νχ þ ∂νϕ∂μχÞ þ Bð∇ν
∂μϕ∂νχ þ ∂μϕ∇ν

∂νχ þ∇ν
∂νϕ∂μχ þ ∂νϕ∇ν

∂μχÞ
þ ðCϕ∂

νϕþ Cχ∂
νχÞ∂μχ∂νχ þ Cð∇ν

∂μχ∂νχ þ ∂μχ∇ν
∂νχÞg: ðA1Þ

Taking into account our assumptions (4) and (5), the μ ¼ t and μ ¼ r components become

0 ¼ 1

2

�
1

2
Aϕe−2ν − Ae−2νν̇ − Bð−e−2λν0 þ e−2λν0Þ − 1

2
Cϕe−2λ þ Ce−2λλ̇ − Vϕ

�

þ 1

2

�
−Aϕe−2ν þ Aðe−2νν̇þ e−2νν̇ − e−2νλ̇Þ þ Bχe−2λ

þ B

�
−e−2λν0 þ 2e−2λ

r
þ e−2λν0 − e−2λλ0 þ e−2λν0

�
− Ce−2λλ̇

�

¼ 1

2

�
−
1

2
Aϕe−2ν þ Ae−2νðν̇ − λ̇Þ þ Bχe−2λ −

1

2
Cϕe−2λ þ B

�
2e−2λ

r
þ e−2λν0 − e−2λλ0

�
− Vϕ

�
;

0 ¼ 1

2

�
1

2
Aχe−2ν − Ae−2νν0 − Bð−e−2νλ̇þ e−2νλ̇Þ − 1

2
Cχe−2λ þ Ce−2λλ0 − Vχ

�

þ 1

2

�
Ae−2νν0 − Bϕe−2ν þ Bð−e−2νλ̇þ e−2νν̇ − e−2νλ̇þ e−2νλ̇Þ þ Cχe−2λ þ C

�
−e−2λλ0 þ 2e−2λ

r
þ e−2λν0 − e−2λλ0

��

¼ 1

2

�
1

2
Aχe−2ν − Bϕe−2ν þ Bðe−2νν̇ − e−2νλ̇Þ þ 1

2
Cχe−2λ þ C

�
2e−2λ

r
þ e−2λν0 − e−2λλ0

�
− Vχ

�
; ðA2Þ

while other components vanish trivially. Here we have used the Christoffel symbols

Γt
tt ¼ ν̇; Γr

tt ¼ e−2ðλ−νÞν0; Γt
tr ¼ Γt

rt ¼ ν0; Γt
rr ¼ e2λ−2νλ̇; Γr

tr ¼ Γr
rt ¼ λ̇;

Γr
rr ¼ λ0; Γi

jk ¼ Γ̄i
jk; Γr

ij ¼ −e−2λrḡij; Γi
rj ¼ Γi

jr ¼
1

r
δij: ðA3Þ

On the other hand, the field equations (3) for the scalar fields ϕ and χ have the following form:

0 ¼ −
1

2
Aϕe−2ν þ Ae−2νðν̇ − λ̇Þ þ Bχe−2λ −

1

2
Cϕe−2λ þ Be−2λ

�
2

r
þ ν0 − λ0

�
− Vϕ;

0 ¼ 1

2
Aχe−2ν − Bϕe−2ν þ Be−2νðν̇ − λ̇Þ þ 1

2
Cχe−2λ þ Ce−2λ

�
2

r
þ ν0 − λ0

�
− Vχ : ðA4Þ

The above expressions completely coincide with the equations in (A2). Therefore the field equations (3) can be surely
obtained from the Einstein equations (2).
Especially, in the static case, we have from Eq. (12),

A ¼ e2ν

κ2

�
e−2λ

�
ν0 þ λ0

r
þ ν00 þ ðν0 − λ0Þν0 þ e2λ − 1

r2

��
− e2νðρþ pÞ;

B ¼ 0;

C ¼ e2λ

κ2

�
−e−2λ

�
−
ν0 þ λ0

r
þ ν00 þ ðν0 − λ0Þν0 þ e2λ − 1

r2

��
;

V ¼ e−2λ

κ2

�
λ0 − ν0

r
þ e2λ − 1

r2

�
−
1

2
ðρ − pÞ: ðA5Þ
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Then the first equation in (A4) is trivially satisfied, and the second equation gives

1

2
Aχe−2ν − Bϕe−2ν þ Be−2νðν̇ − λ̇Þ þ 1

2
Cχe−2λ þ Ce−2λ

�
2

r
þ ν0 − λ0

�
− Vχ ¼ −ν0ðρþ pÞ − p0 ¼ 0; ðA6Þ

which is nothing but the conservation law (17).
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