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Recently, Bueno, Cano, and Hennigar [Regular black holes from pure gravity, arXiv:2403.04827.]
proposed a generic approach for incorporating an infinite tower of higher-curvature corrections into the
Einstein theory. In this study, we compute quasinormal modes for certain regular D-dimensional black
holes resulting from this infinite series of higher-curvature corrections, specifically focusing on the
D-dimensional extensions of the Bardeen and Hayward black holes. We demonstrate that while the
fundamental mode is minimally affected by moderate coupling constants, the higher overtones exhibit
significant sensitivity even to small coupling values, yielding unconventional modes characterized by
vanishing real oscillation frequencies. When comparing the frequencies derived from the metric truncated
at several orders of higher-curvature corrections with those resulting from the infinite series of terms, we
observe a rapid convergence of the frequencies to their limit for the complete regular black hole. This
validates the extensive research conducted on specific theories with a finite number of higher-curvature
corrections, such as the Lovelock theory.

DOI: 10.1103/PhysRevD.109.104005

I. INTRODUCTION

The black-hole solution of the vacuum Einstein equa-
tions possesses singularity at the origin. A number of
attempts were made to resolve the singularity problem via
adding some, frequently not well-motivated, matter, to the
gravitational sector, such as various types of exotic matter
(including nonexisting nonlinear electrodynamics), stress-
energy tensors violating energy conditions, etc. [1–23].
Recently, new families of regular black holes in D ≥ 5

spacetime dimensions have been obtained as a result of
inclusion of the infinite number of higher-curvature terms
correcting the Einstein action [24]. This approach is part
of the quasitopological gravity [25–29]. The privilege of
this approach is that no exotic or poorly motivated state of
matter is introduced to produce a singularity free black
hole. The obtained regular black holes [24] are generic
regular, static, and spherically symmetric solutions of the
corresponding theories.
Here, we consider two of the aforementioned regular

black-hole solutions, also because their four-dimensional
analogs were derived within different contexts: the Hayward
black hole [5] and the Bardeen-like black hole [2]. The four-
dimensional Hayward metric was derived within the

asymptotically safe gravity [30] and, initially as a model
for a quantum corrected evaporating black hole [5]. The
Bardeen metric was initially suggested as an ad hoc solution,
but, apart from exotic electrodynamics, cited above, it can
describe a quantum corrected black hole found either via
corrections to the black-hole thermodynamics [31] or via T
duality [32].
One of the questions we aim to address is the extent to

which truncation of the infinite series at the initial few
orders, as occurs, for example, in the Lovelock theory, is
justified. If the fundamental characteristics of black holes
in the truncated theory significantly differ from those in
theories with an infinite number of higher-curvature cor-
rections, then studying the truncated theory at a lower order
yields little, if any, meaningful information.
One of such basic characteristics of black holes is its

set of proper oscillation frequencies, called quasinormal
modes. They are important not only from the point of
view of observation of radiation phenomena around black
holes [33], but also for testing stability of fields under
consideration [34]. The quasinormal modes of the four-
dimensional Hayward and Bardeen black holes have been
extensively studied in the literature (see Refs. [35–45] and
references therein). Here, we attack scalar and electromag-
netic perturbations of the D-dimensional generalizations of
the Hayward and Bardeen black holes. Special attention is
devoted to the overtones’ behavior, because, as was shown
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in [46,47], relatively small near-horizon corrections could
hardly lead to a strong change of the fundamental mode that
is localized near the peak of the effective potential, but, on
the contrary, the first few overtones are extremely sensitive
to the least near horizon deformations. This phenomenon
was called outburst of overtones and extensively studied in
several recent publications [45,48–52].
We will show that the fundamental mode is greatly

affected by the coupling parameter for both models,
once the coupling constant is increased up to the extreme
value supporting the existence of the event horizon.
What is more, the first few overtones of the Hayward
D-dimensional black hole change a lot even for relatively
small values of the coupling, and the second and higher
overtones (depending on D) show peculiar behavior: The
real oscillation frequency quickly goes to zero, once the
coupling is turned on.
Simultaneously, we demonstrate that, if we take into

account a finite number of curvature-correction terms, the
fundamental mode rapidly converges to its value in the
limit of an infinite number of higher-curvature corrections,
thereby affirmatively addressing the earlier question
regarding the justification of lower order theories.
Our work is organized as follows. Section II introduces

the basic equations on the metric, perturbation equations,
and effective potentials. Sections III describes the numerical
and semianalytic methods used for calculations of quasi-
normal modes and asymptotic tails. Sections IV and V
summarize the obtained numerical results on quasinormal
modes of the D-dimensional regular black holes, and
asymptotic tails are considered in Sec. VI. In Sec. VII,
we discuss the obtained results and mention possible new
directions of study.

II. THE BASIC EQUATIONS

Following Bueno, Cano, and Hennigar [24], the action
of the Einsteinian theory with general higher-curvature
corrections has the form

IQT ¼ 1

16πG

Z
dDx

ffiffiffiffiffi
jgj

p �
Rþ

Xnmax

n¼2

αnZn

�
; ð1Þ

where αn are arbitrary coupling constants with dimensions of
length2ðn−1Þ, and Zn are the quasitopological densities [53].
The spherically symmetric D-dimensional black hole is

given by the following metric:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
D−2;

fðrÞ≡ 1 − r2ψðrÞ; ð2Þ

such that ψðrÞ satisfies

hðψðrÞÞ ¼ μ

rD−1 ; ð3Þ

where μ is the positive constant proportional to the
ADM mass.
The function hðψÞ is given by the series,

hðψÞ≡ ψ þ
Xnmax

n¼2

αnψ
n: ð4Þ

For an infinite tower of higher-curvature corrections
(nmax → ∞), Bueno, Cano, and Hennigar [24] have pro-
posed the smooth monotonic functions, which allow for
analytic expressions for the metric functions.
The general relativistic equations for a scalar (Φ) and

electromagnetic (Aμ) fields can be written as follows:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð5aÞ

1ffiffiffiffiffiffi−gp ∂μðFρσgρνgσμ
ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð5bÞ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic tensor.
After separation of variables, equations for the test

massless fields in the background of the spherically
symmetric black hole can be reduced to the wavelike form

d2Ψ
dr2�

þ ðω2 − Vðr�ÞÞΨðr�Þ ¼ 0; ð6Þ

where the tortoise coordinate is defined as follows:

dr� ¼
dr
fðrÞ : ð7Þ

The effective potentials for the scalar (V0) and electro-
magnetic (V1 and V2) [54,55] fields

V0ðrÞ ¼ fðrÞ
�
lðlþD − 3Þ

r2
þ ðD − 2ÞðD − 4Þ

4r2
fðrÞ

þD − 2

2r
df
dr

�
; ð8aÞ

V1ðrÞ ¼ fðrÞ
�
lðlþD − 3Þ

r2
þ ðD − 2ÞðD − 4Þ

4r2
fðrÞ

−
D − 4

2r
df
dr

�
; ð8bÞ

V2ðrÞ ¼ fðrÞ
�ðlþ 1ÞðlþD− 4Þ

r2
þ ðD− 4ÞðD− 6Þ

4r2
fðrÞ

þD− 4

2r
df
dr

�
: ð8cÞ
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III. METHODS USED FOR FINDING
OF QUASINORMAL MODES AND

ASYMPTOTIC TAILS

Quasinormal modes of asymptotically flat black holes
are frequencies for which the corresponding wave functions
satisfy the particular boundary conditions: purely ingoing
waves at the event horizon and purely outgoing ones at
infinity. The methods for finding quasinormal modes have
been reviewed in a great number of papers. Therefore, here,
we will only briefly sketch the main properties of them.

A. WKB method

The semianalytic Wentzel-Kramer-Brillouin (WKB)
method is based on the expansion of the wave function
in the WKB series at some order at the two asymptotic
regions: infinity and the event horizon and matching of
these WKB asymptotic solutions with the Taylor expansion
near the peak of the effective potential. Thus, we imply the
two turning points and a single maximum of the effective
potential for an effective application of the WKB approach.
The general WKB formula [56–59]

ω2 ¼ V0 þ A2ðK2Þ þ A4ðK2Þ þ A6ðK2Þ þ…

− iK
ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p
ð1þ A3ðK2Þ þ A5ðK2Þ þ A7ðK2Þ…Þ;

ð9Þ

where for quasinormal modes, we have

K ¼ nþ 1

2
; n ¼ 0; 1; 2;…; ð10Þ

was further improved by using the Padé approximants [59].
Here, we will use the sixth WKB order and the Padé
splitting with m̃ ¼ 4 because it shows the best accuracy for
the Schwarzschild limit. We use the Mathematica WKB
code shared in [60]. We will see that the WKBmethod with
Padé approximants is sufficiently accurate for finding the
fundamental mode even at l ¼ 0 case, while the usual
WKB formula is usually reasonably accurate at the sixth
order only for l > n. This observation is in concordance
with numerous applications of the WKB method and
comparison of the results with those obtained by time-
domain integration and Frobenius techniques (see, for
instance, [45,61,62] and references therein).

B. Time-domain integration

In order to study asymptotic tails, we will use the time-
domain integration method suggested by Gundlach and co-
workers [63]. The appropriate discretization scheme is

ΨðNÞ ¼ ΨðWÞ þ ΨðEÞ −ΨðSÞ

− Δ2VðSÞΨðWÞ þ ΨðEÞ
4

þOðΔ4Þ: ð11Þ

The points are designated as follows: N ≡ ðuþ Δ; vþ ΔÞ,
W ≡ ðuþ Δ; vÞ, E≡ ðu; vþ ΔÞ, and S≡ ðu; vÞ. Initial
Gaussian data are imposed on the two null surfaces
u ¼ u0 and v ¼ v0. When using the Prony method, this
approach allows one to find also the fundamental mode for
l > 0 with reasonable accuracy. It is essential that in the
time-domain integration method, all overtones are taken
into consideration, which makes it possible to judge about
the stability of the perturbation.

C. Frobenius method

We will use the Frobenius method, suggested by E.
Leaver [64] for finding quasinormal modes, which is based
on the convergent series expansion and providing, thereby,
precise calculation of quasinormal modes. For quicker
convergence, we use the Nollert improvement of the
Leaver procedure [65,66].
The wavelike equation has a regular singular point at the

event horizon r ¼ r0 and the irregular singular point at
infinity. We introduce the new function yðrÞ in such a way

ΨðrÞ ¼ Pðr;ωÞyðrÞ ð12Þ
that the factor Pðr;ωÞ provides regularity of yðrÞ in the
whole range from the event horizon to infinity, once the
quasinormal modes boundary conditions are fulfilled.
Then, yðrÞ can be written as the following series:

yðrÞ ¼
X∞
k¼0

ak

�
1 −

r0
r

�
k
: ð13Þ

Further, we find the recurrence relation for the coefficients
ak and, after employing the Gaussian eliminations, obtain
the nonalgebraic equation with infinite continued fraction,
which is solved numerically. It is essential that, when the
convergence radius for the series (13) is insufficient, we
employ analytic continuation of the function though a
sequence of positive real midpoints using the approach
developed in [67]. For an initial guess for the quasinormal
frequency, we use the value found by the WKB or time-
domain integration approaches.

IV. QUASINORMAL MODES OF THE
D-DIMENSIONAL HAYWARD BLACK HOLES

The D-dimensional generalization of the Hayward black
hole is the solution for the following choice of the function
hðψÞ [24]:

hðψÞ ¼ ψ

1 − αψ
; ð14Þ

which corresponds to the following values of the coeffi-
cients in (4):

αn ¼ αn−1:
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Then, Eq. (3) can be solved with respect to the metric
function,

fðrÞ ¼ 1 −
μr2

rD−1 þ αμ
: ð15Þ

In order to measure all quantities in units of the event
horizon, we fix the constant μ as follows:

μ ¼ rD−1
0

r20 − α
; 0 ≤ α ≤

D − 3

D − 1
r20: ð16Þ

From Tables I–IVand Figs. 1 and 2, we can see that both
the real oscillation frequency and the damping rate decrease
as the coupling α is increased up to some near critical value
for which small nonmonotonic behavior is possible for
the damping rate, as can be noticed in Figs. 1 and 2. From
Table V, we see that the sixth order WKBmethod with Padé
approximants produces sufficiently accurate results even
for the worst l ¼ 0 case, once we are limited by the
fundamental mode. However, for the overtones, we have to
resort to the convergent Frobenius method. From Figs. 1
and 2, we see that while the fundamental mode changes by
only a few percents, the real oscillation frequency of the
first and a few higher overtones change by a few times,
leading even to a qualitatively new behavior when ReðωÞ
tends to zero and the mode apparently disappears from the
spectrum. Such an outburst of overtones is due to the
deformation of the black hole metric near the event horizon
when the coupling α is turned on. It is also worth

mentioning that a similar behavior of the vanishing real
part of the frequency has recently been observed for the
massive scalar field in the background of brane-localized
black holes, as discussed in [68].
At the same time, an important technical observation

we have made is that the conventional WKB method, even
up to the sixth order—typically considered the most
accurate—proves insufficiently precise, even for l ¼ 1,
n ¼ 0, unless supplemented by Padé approximants. For
instance, the disparity between the conventional WKB data
and the WKB data incorporating Padé approximants can
amount to 10%, whereas the latter only deviates from the
exact Frobenius results by a fraction of one percent (see
Table VI). Therefore, we conclude that the sixth order
WKB formula with the Padé approximant is suitable for
obtaining sufficiently accurate values of the quasinormal
modes of the Hayward black holes. In the ancillary
Mathematica® file,1 we share the values of the dominant
modes for 5 ≤ D ≤ 11.
We can see the qualitatively similar behavior for higher

multipole numbers from the expressions for quasinormal
frequencies in the eikonal (l → ∞) limit. Following [69],
we define

κ ¼ lþ 1

2
ðD − 3Þ;

TABLE I. Dominant (n ¼ 0) quasinormal modes of the scalar and electromagnetic fields for the Hayward black hole (D ¼ 5, r0 ¼ 1)
calculated using the sixth order WKB formulas with the Padé approximant (m̃ ¼ 4).

α Scalar field (l ¼ 0) Scalar field (l ¼ 1) V1 (l ¼ 1) V2 (l ¼ 1)

0 0.533313 − 0.383482i 1.016023 − 0.362324i 0.753155 − 0.317570i 0.952729 − 0.350732i
0.1 0.513522 − 0.344841i 0.975694 − 0.328308i 0.736623 − 0.286883i 0.922189 − 0.317769i
0.2 0.485086 − 0.307249i 0.927288 − 0.295652i 0.709222 − 0.256504i 0.882942 − 0.284722i
0.3 0.447699 − 0.276072i 0.870875 − 0.266048i 0.672309 − 0.227728i 0.833939 − 0.253698i
0.4 0.410762 − 0.252623i 0.807429 − 0.240295i 0.625649 − 0.202608i 0.775548 − 0.226912i
0.49 0.377823 − 0.232288i 0.744662 − 0.219755i 0.577222 − 0.183931i 0.715849 − 0.206776i

TABLE II. Dominant (n ¼ 0) quasinormal modes of the scalar and electromagnetic fields for the Hayward black hole (D ¼ 6, r0 ¼ 1)
calculated using the sixth order WKB formulas with the Padé approximant (m̃ ¼ 4).

α Scalar field (l ¼ 0) Scalar field (l ¼ 1) V1 (l ¼ 1) V2 (l ¼ 1)

0 0.889368 − 0.532938i 1.446598 − 0.509220i 1.047467 − 0.434546i 1.400026 − 0.498177i
0.1 0.865535 − 0.492948i 1.406060 − 0.473736i 1.017864 − 0.408643i 1.367990 − 0.463403i
0.2 0.832881 − 0.453052i 1.357627 − 0.439019i 0.990503 − 0.380849i 1.327738 − 0.428081i
0.3 0.791088 − 0.417394i 1.301068 − 0.406335i 0.955109 − 0.350414i 1.278185 − 0.393560i
0.4 0.745566 − 0.389018i 1.236510 − 0.376336i 0.911101 − 0.320106i 1.218611 − 0.361360i
0.5 0.698387 − 0.363259i 1.163511 − 0.348625i 0.858389 − 0.292015i 1.148538 − 0.332429i
0.59 0.652794 − 0.339172i 1.088942 − 0.324592i 0.803432 − 0.269975i 1.075395 − 0.308741i

1The Mathematica® file is available from https://arxiv.org/src/
2403.07848v2/anc.
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and expand the effective potential in terms of α. Then, from
the first-order WKB formula, we obtain (cf. [58])

ω ¼ κ

Rs

�
1þ 2α

ðD − 3Þ2R2
s
þ 2ð2Dþ 1Þα2

ðD − 3Þ4R4
s

�

− i

�
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

p

Rs

�
1 −

2ðD − 2Þα
ðD − 3Þ2R2

s

−
2ð3D2 þ 2Dþ 4Þα2

ðD − 3Þ4R4
s

�
þOðκ−1; α3Þ; ð17Þ

where we have introduced

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

D − 3

r �
D − 1

2
μ

� 1
D−3

: ð18Þ

The formula (17) provides quite a good approximation
for the dominant modes of the scalar and electromagnetic
(V2) fields already for l ≥ 2. For the other electromagnetic
polarization (V1) the eikonal formula is accurate only for
sufficiently large l. We believe that the approximation can

TABLE IV. Dominant (n ¼ 0) quasinormal modes of the scalar and electromagnetic fields for the Hayward black hole (D ¼ 8, r0 ¼ 1)
calculated using the sixth order WKB formulas with the Padé approximant (m̃ ¼ 4).

α Scalar field (l ¼ 0) Scalar field (l ¼ 1) V1 (l ¼ 1) V2 (l ¼ 1)

0 1.668942 − 0.784260i 2.320534 − 0.760343i 1.883886 − 0.643983i 2.292528 − 0.751149i
0.1 1.638830 − 0.743134i 2.277900 − 0.723564i 1.913170 − 0.634942i 2.256823 − 0.714800i
0.2 1.600256 − 0.701983i 2.227565 − 0.686962i 1.487985 − 0.363511i 2.213444 − 0.677413i
0.3 1.552660 − 0.663907i 2.168898 − 0.651829i 1.621770 − 0.517020i 2.161046 − 0.640270i
0.4 1.498059 − 0.631064i 2.101577 − 0.618607i 1.599535 − 0.501117i 2.098547 − 0.604240i
0.5 1.438112 − 0.601114i 2.024465 − 0.586785i 1.548089 − 0.472289i 2.024452 − 0.569773i
0.6 1.371496 − 0.570760i 1.934580 − 0.555137i 1.478035 − 0.441605i 1.935998 − 0.536580i
0.7 1.293392 − 0.537224i 1.825696 − 0.521669i 1.392431 − 0.412445i 1.827461 − 0.503190i
0.71 1.284631 − 0.533567i 1.813347 − 0.518106i 1.382963 − 0.409587i 1.815106 − 0.499736i

FIG. 1. Dominant quasinormal modes of the scalar field (l ¼ 0) for the Hayward black hole (D ¼ 5): n ¼ 0 (blue, top), n ¼ 1 (green),
n ¼ 2 (red), n ¼ 3 (magenta, bottom).

TABLE III. Dominant (n ¼ 0) quasinormal modes of the scalar and electromagnetic fields for the Hayward black hole (D ¼ 7,
r0 ¼ 1) calculated using the sixth order WKB formulas with the Pad approximant (m̃ ¼ 4).

α Scalar field (l ¼ 0) Scalar field (l ¼ 1) V1 (l ¼ 1) V2 (l ¼ 1)

0 1.270695 − 0.665502i 1.881482 − 0.641045i 1.396098 − 0.525823i 1.845853 − 0.630962i
0.1 1.243472 − 0.624555i 1.839963 − 0.604535i 1.367197 − 0.495529i 1.812011 − 0.594948i
0.2 1.207611 − 0.583608i 1.790642 − 0.568601i 1.315762 − 0.484553i 1.770205 − 0.558289i
0.3 1.162657 − 0.546125i 1.733106 − 0.534344i 1.284492 − 0.461881i 1.719313 − 0.522050i
0.4 1.111858 − 0.514869i 1.667177 − 0.502260i 1.241617 − 0.431980i 1.658335 − 0.487314i
0.5 1.057286 − 0.486705i 1.591965 − 0.471912i 1.187389 − 0.401239i 1.586099 − 0.454785i
0.6 0.997438 − 0.457833i 1.504869 − 0.442113i 1.121902 − 0.372080i 1.500388 − 0.424225i
0.66 0.957290 − 0.439127i 1.444789 − 0.423710i 1.076819 − 0.355724i 1.440646 − 0.406203i
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be improved by taking into account the terms beyond
the eikonal limit. However, the analysis of such terms is
beyond the scope of the present work.

V. QUASINORMAL MODES OF THE
D-DIMENSIONAL BARDEEN-LIKE

BLACK HOLES

The D-dimensional Bardeen-like black hole is obtained
by choosing [24]

hðψÞ ¼ ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2ψ2

p ; ð19Þ

so that the coefficients in (4) are chosen as

αn ¼
ð1 − ð−1ÞnÞΓðn

2
Þ

2
ffiffiffi
π

p
Γðnþ1

2
Þ αn−1:

Then the metric function takes the following form:

fðrÞ ¼ 1 −
μr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ðD−1Þ þ α2μ2
p : ð20Þ

Again, we fix the constant μ in units of the event
horizon as

μ ¼ rD−1
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r40 − α2

p ; 0 ≤ α ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

D − 1

r
r20: ð21Þ

Since the metric function for the Bardeen-like black hole
is not a rational function, in order to employ the Frobenius
method we approximate the metric function by expanding
fðrÞ in terms of the small coupling parameter α and taking
a finite number of terms N. This approach is equivalent
to a consideration of the finite number of terms in (4),
nmax ¼ N. In order to check convergence, we have calcu-
lated the same mode using different values of N and check
that the difference Δω≡ ωN − ωNþ2 quickly approaches

FIG. 2. Dominant quasinormal modes of the electromagnetic field (l ¼ 1), V1 (top panels) and V2 (bottom panels), for the D ¼ 5
Hayward black hole: n ¼ 0 (blue, top), n ¼ 1 (green), n ¼ 2 (red), n ¼ 3 (magenta, bottom).

TABLE V. Quasinormal modes of the scalar field for the
Hayward black hole (D ¼ 5) calculated using the sixth order
WKB with Padé approximant m̃ ¼ 4 and the accurate Frobenius
method: r0 ¼ 1, l ¼ 0, n ¼ 0.

α WKB6 Padé Frobenius

0 0.533313 − 0.383482i 0.533836 − 0.383375i
0.1 0.513522 − 0.344841i 0.514228 − 0.344623i
0.2 0.485086 − 0.307249i 0.485554 − 0.306933i
0.3 0.447699 − 0.276072i 0.448378 − 0.275427i
0.4 0.410762 − 0.252623i 0.410725 − 0.252508i
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zero. The convergence is fast (see Fig. 3), and the modes
quickly approach the accurate value, for which the sixth
order WKB formula with Padé approximant correctly
reproduces three decimal places (see Table VII). We
therefore conclude that the numerical values obtained with
the Padé approximant provide good practical estimations
for the quasinormal modes. Notice that the WKBmethod is
applied to the regular black hole for which infinite number
of terms in (4) are taken into account.
The above observation has two important implications.

We see that the dominant quasinormal modes for the black-
hole solution, obtained by taking into account the lower-
order curvature corrections only, are the same as the
corresponding modes of the regular black holes for an
infinite tower of the curvature corrections [24]. Therefore,
we conclude that observations of the quasinormal ringing
cannot probe the regularity of the black-hole solution. The
second essential conclusion is that the first few orders of the
expansion in powers of the coupling constant provide a
reasonable approximation to the basic observational char-
acteristics of black holes, such as quasinormal modes. This
observation justifies numerous considerations of quasinor-
mal modes in the theories with particular finite order
expansions, such as Lovelock and Gauss-Bonnet theories
(see, for example, [62,70–72] and references therein).
The observation mentioned above regarding the prox-

imity of quasinormal modes for black holes, obtained with

corrections up to the first few orders versus those for the
complete regular metric obtained via an infinite tower of
corrections, evidently must also apply to other observable
quantities. These may include lensing parameters, quasi-
periodic oscillations, and shadows, the latter due to the
correspondence between null geodesics and eikonal qua-
sinormal modes [73–75].
Hence, this observation stands as the most significant

result of our work. The natural question arises: Does it only
apply to the Bardeen metric, or is it a general phenomenon?
To ascertain the universality of this observation, we
compare the values calculated by the sixth order WKB
method with Padé approximants for all five regular black
hole metrics derived in [24] for l ¼ 2 scalar perturbations,
as an illustration. Figure 4 demonstrates that, for the
considered parameters, even the first corrections yield a
relative error within a small fraction of one percent. The
relative error becomes larger as the expansion parameter
(coupling constant) increases. Nevertheless, we observe
the quick convergence of the quasinormal mode with
respect to N.
Referring Tables VIII–XI, we observe a decrease in both

the real oscillation frequency and damping rate as the
coupling is increased. Qualitatively, this behavior of the
dominant mode can be explained by the characteristics of
the potential peak, which in units of the event horizon,
becomes lower as α grows. However, in the units of the

FIG. 3. Convergence of the approximated Frobenius modes of the l ¼ n ¼ 0 scalar field for the Bardeen-like black hole (D ¼ 6,
α ¼ 0.5r20): Difference between the approximation by N and N þ 2 terms approaches zero for large N.

TABLE VI. Quasinormal modes of the electromagnetic field for the Hayward black hole calculated using the sixth order WKB with
Padé approximant m̃ ¼ 4 and the accurate Frobenius method; r0 ¼ 1, l ¼ 1, n ¼ 0, D ¼ 5.

α WKB6 Padé (V1) Frobenius (V1) WKB6 Padé (V2) Frobenius (V2)

0 0.753155 − 0.317570i 0.755414 − 0.315465i 0.952729 − 0.350732i 0.952728 − 0.350739i
0.1 0.736623 − 0.286883i 0.736044 − 0.286128i 0.922189 − 0.317769i 0.922129 − 0.317794i
0.2 0.709222 − 0.256504i 0.708579 − 0.255546i 0.882942 − 0.284722i 0.882831 − 0.284745i
0.3 0.672309 − 0.227728i 0.671503 − 0.226158i 0.833939 − 0.253698i 0.833832 − 0.253814i
0.4 0.625649 − 0.202608i 0.625005 − 0.201118i 0.775548 − 0.226912i 0.775337 − 0.227031i
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asymptotic mass, the dependence of the coupling parameter
becomes not so straightforward and cannot be attributed to
such a simple geometric feature of the effective potential.
Additionally, we note an outburst of overtones in this
scenario, although we refrain from presenting numerical
data for this case to prevent overloading the manuscript.
The qualitative behavior of the overtones of the

Bardeen-like black hole is similar to the one of the
Hayward black hole: The real part of the quasinormal
modes quickly approaches zero when α approaches some
critical values (see Fig. 5). This is an interesting obser-
vation, worthy of further investigation, because if it occurs
that similar behavior is appropriate not only for the
Bardeen and Hayward metrics, but also for other models

with higher-curvature corrections, that may be a general
distinctive feature of such models.
Again, using the first-order WKB formula, we can derive

the eikonal approximation for the quasinormal modes of
the Bardeen-like black holes,

ω ¼ κ

Rs

�
1þ 2α2

ðD − 3Þ3R4
s
þ 2ð6D − 1Þα4

ðD − 3Þ6R8
s

�

− i
�
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
D − 3

p

Rs

�
1 −

2ð3D − 4Þα2
ðD − 3Þ3R4

s

−
2ð33D2 − 42Dþ 4Þα4

ðD − 3Þ6R8
s

�
þOðκ−1; α6Þ; ð22Þ

where

κ ¼ lþD − 3

2
; Rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

D − 3

r �
D − 1

2
μ

� 1
D−3

: ð23Þ

The formula (22) for l ≥ 2 produces the best approxima-
tion for the quasinormal modes of the scalar field.
The well-known correspondence between the eikonal

quasinormal modes of a stationary, spherically symmetric,
and asymptotically flat black holes and parameters of the
circular null geodesic states that the real and imaginary
parts of the l ≫ n quasinormal mode are multiples of the
frequency and instability timescale (Lyapunov exponent) of
the circular null geodesics, respectively [73]. Although this
correspondence has a number of limitations and counter-
examples [62,74–76], here, one can easily check that it
takes place for the test fields under consideration.

VI. LATE-TIME TAILS

Here, having in mind both metrics (Hayward and
Bardeen-like) under consideration and all three types of
perturbations (one scalar type and two electromagnetic
ones), we will derive the law of decay at asymptotically
late times t → ∞.
For both types of black holes, the asymptotic behavior

of the tortoise coordinate (7) does not depend on α up to
the order

r� ¼ r −
μ

ðD − 4ÞrD−4 þO
�

1

r2D−7

�
: ð24Þ

After inverting the expansion (24),

r ¼ r� þ
μ

ðD − 4ÞrD−4�
þO

�
1

r2D−7�

�
; ð25Þ

and substituting it into Eq. (8), we find that the dominant
asymptotic behavior of the effective potentials does not
depend on the coupling α,

TABLE VII. Quasinormal modes of the scalar field for the
Bardeen-like black hole (D ¼ 6) calculated using the sixth order
WKB with Padé approximant m̃ ¼ 4 and the accurate Frobenius
method: r0 ¼ 1, l ¼ 0, n ¼ 0.

α WKB6 Padé Frobenius

0 0.889368 − 0.532938i 0.889440 − 0.533099i
0.1 0.887793 − 0.530506i 0.887858 − 0.530595i
0.2 0.882812 − 0.523575i 0.882801 − 0.523083i
0.3 0.877348 − 0.505622i 0.873279 − 0.510663i
0.4 0.856523 − 0.491524i 0.857543 − 0.493955i
0.5 0.832193 − 0.474787i 0.833494 − 0.475104i
0.6 0.802351 − 0.459097i 0.801825 − 0.458251i
0.7 0.767434 − 0.441219i 0.766962 − 0.440699i

FIG. 4. Relative error (in percent) of the value of the dominant
quasinormal mode of the scalar field (l ¼ 2) for various regular
black holes (D ¼ 5), approximated by N terms: (black squares)

fðrÞ ¼ 1 − μr2

rD−1þαμ
(Hayward) for α ¼ 0.25μ2, (blue diamonds)

fðrÞ ¼ 1 − r2
α ð1 − e−αμ=r

D−1Þ for α ¼ 0.25μ2, (red up-pointing

triangles) fðrÞ ¼ 1 − 2μr2

rD−1þ2αμþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðD−1Þþ4αμrD−1

p for α ¼ 0.05μ2,

(magenta down-pointing triangles) fðrÞ¼1− 2μr2

rD−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðD−1Þþ4α2μ2

p
for α ¼ 0.25μ2, (orange circles) fðrÞ¼1− μr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ðD−1Þþα2μ2
p (Bardeen-

like) for α ¼ 0.25μ2.
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TABLE VIII. Dominant (n ¼ 0) quasinormal modes of the scalar and electromagnetic fields for the Bardeen-like black hole (D ¼ 5,
r0 ¼ 1) calculated using the sixth order WKB formulas with the Padé approximant (m̃ ¼ 4).

α Scalar field (l ¼ 0) Scalar field (l ¼ 1) V1 (l ¼ 1) V2 (l ¼ 1)

0 0.533313 − 0.383482i 1.016023 − 0.362324i 0.753155 − 0.317570i 0.952729 − 0.350732i
0.1 0.531847 − 0.380844i 1.013460 − 0.360304i 0.752125 − 0.316798i 0.950776 − 0.348650i
0.2 0.528364 − 0.374375i 1.005287 − 0.354323i 0.748352 − 0.311494i 0.944429 − 0.342432i
0.3 0.521732 − 0.355720i 0.990715 − 0.344737i 0.739855 − 0.302329i 0.932715 − 0.332219i
0.4 0.504574 − 0.341758i 0.968787 − 0.332376i 0.726140 − 0.289623i 0.914260 − 0.318597i
0.5 0.483434 − 0.327118i 0.938798 − 0.318268i 0.705780 − 0.273850i 0.887628 − 0.302794i
0.6 0.459207 − 0.313154i 0.899793 − 0.302778i 0.677313 − 0.256347i 0.851507 − 0.286100i
0.7 0.431968 − 0.295691i 0.849026 − 0.284961i 0.639158 − 0.238986i 0.803595 − 0.268483i

TABLE IX. Dominant (n ¼ 0) quasinormal modes of the scalar and electromagnetic fields for the Bardeen-like black hole (D ¼ 6,
r0 ¼ 1) calculated using the sixth order WKB formulas with the Padé approximant (m̃ ¼ 4).

α Scalar field (l ¼ 0) Scalar field (l ¼ 1) V1 (l ¼ 1) V2 (l ¼ 1)

0 0.889368 − 0.532938i 1.446598 − 0.509220i 1.047467 − 0.434546i 1.400026 − 0.498177i
0.1 0.887793 − 0.530506i 1.444057 − 0.507282i 1.044769 − 0.432564i 1.397966 − 0.496106i
0.2 0.882812 − 0.523575i 1.435691 − 0.501144i 1.038236 − 0.428655i 1.391189 − 0.489756i
0.3 0.877348 − 0.505622i 1.420879 − 0.491274i 1.030445 − 0.422186i 1.378874 − 0.479239i
0.4 0.856523 − 0.491524i 1.398580 − 0.478388i 1.019034 − 0.411643i 1.359700 − 0.465006i
0.5 0.832193 − 0.474787i 1.367978 − 0.463507i 1.001857 − 0.397112i 1.332151 − 0.448028i
0.6 0.802351 − 0.459097i 1.327976 − 0.446989i 0.976852 − 0.379010i 1.294524 − 0.429333i
0.7 0.767434 − 0.441219i 1.275562 − 0.427896i 0.940844 − 0.358343i 1.243898 − 0.409066i
0.77 0.737964 − 0.424787i 1.227682 − 0.411548i 0.906119 − 0.343144i 1.197250 − 0.392951i

TABLE X. Dominant (n ¼ 0) quasinormal modes of the scalar and electromagnetic fields for the Bardeen-like black hole (D ¼ 7,
r0 ¼ 1) calculated using the sixth order WKB formulas with the Padé approximant (m̃ ¼ 4).

α Scalar field (l ¼ 0) Scalar field (l ¼ 1) V1 (l ¼ 1) V2 (l ¼ 1)

0 1.270695 − 0.665502i 1.881482 − 0.641045i 1.396098 − 0.525823i 1.845853 − 0.630962i
0.1 1.268829 − 0.663047i 1.878718 − 0.639001i 1.391245 − 0.526462i 1.843552 − 0.628812i
0.2 1.262903 − 0.655812i 1.870165 − 0.632883i 1.382012 − 0.531282i 1.836359 − 0.622426i
0.3 1.258851 − 0.646843i 1.854999 − 0.622871i 1.374964 − 0.535106i 1.823434 − 0.611762i
0.4 1.234485 − 0.624964i 1.832143 − 0.609754i 1.365993 − 0.532606i 1.803457 − 0.597294i
0.5 1.208145 − 0.607569i 1.800732 − 0.594621i 1.351809 − 0.524739i 1.774905 − 0.579928i
0.6 1.174627 − 0.590892i 1.759635 − 0.577852i 1.330253 − 0.512522i 1.735987 − 0.560535i
0.7 1.134138 − 0.572626i 1.705665 − 0.558438i 1.297435 − 0.495866i 1.683461 − 0.539121i
0.8 1.082436 − 0.547658i 1.630504 − 0.533276i 1.244634 − 0.473285i 1.609427 − 0.513586i
0.81 1.076195 − 0.544523i 1.621150 − 0.530207i 1.237593 − 0.470552i 1.600195 − 0.510604i

TABLE XI. Dominant (n ¼ 0) quasinormal modes of the scalar and electromagnetic fields for the Bardeen-like black hole (D ¼ 8,
r0 ¼ 1) calculated using the sixth order WKB formulas with the Padé approximant (m̃ ¼ 4).

α Scalar field (l ¼ 0) Scalar field (l ¼ 1) V1 (l ¼ 1) V2 (l ¼ 1)

0 1.668942 − 0.784260i 2.320534 − 0.760343i 1.883886 − 0.643983i 2.292528 − 0.751149i
0.1 1.666827 − 0.781897i 2.317714 − 0.758372i 1.881243 − 0.615438i 2.290105 − 0.749094i
0.2 1.660201 − 0.774818i 2.308858 − 0.752618i 1.805462 − 0.573794i 2.282373 − 0.743136i
0.3 1.648428 − 0.765112i 2.293407 − 0.742639i 1.753821 − 0.613950i 2.268966 − 0.732498i
0.4 1.629763 − 0.745468i 2.270047 − 0.729480i 1.740449 − 0.631430i 2.248263 − 0.718004i
0.5 1.601906 − 0.728127i 2.237870 − 0.714326i 1.725736 − 0.632044i 2.218763 − 0.700581i
0.6 1.565776 − 0.711031i 2.195736 − 0.697632i 1.703628 − 0.624599i 2.178683 − 0.681056i
0.7 1.521195 − 0.692466i 2.140348 − 0.678328i 1.669943 − 0.611112i 2.124612 − 0.659294i
0.8 1.463718 − 0.667690i 2.063055 − 0.653194i 1.615919 − 0.590095i 2.048149 − 0.633088i
0.84 1.433891 − 0.654268i 2.021402 − 0.639942i 1.584189 − 0.578309i 2.006807 − 0.620012i
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Vp ¼ ðlþ d
2
− 1Þðlþ d

2
− 2Þ

r2�
þ μ

Kp

rD−1�
þO

�
1

r2D−4�

�
;

p ¼ 0; 1; 2: ð26Þ

Here, Kp is a constant, which also does not depend on α.
For the scalar field [77],

K0 ¼ −
lðlþD − 3ÞðD − 2Þ

D − 4
; ð27aÞ

and for the electromagnetic field, we find

K1 ¼
lðlþD − 3ÞðD − 2Þ

D − 4
þ ðD − 3Þ2; ð27bÞ

K2 ¼
lðlþD − 3ÞðD − 2Þ

D − 4
þ 1: ð27cÞ

Therefore, following [77,78], we conclude that the
late-time tails do not depend on α and coincide with the

power-law falloff derived for the Tangherlini black
holes [77]:

Ψ ∝ t−ð2lþD−2Þ; for oddD; ð28Þ

Ψ ∝ t−ð2lþ3D−8Þ; for evenD: ð29Þ

Indeed, in Fig. 6, we see an example of the above
asymptotic decay law for the Bardeen-like black hole at
D ¼ 5. However, for even D, the second-order time-
domain integration scheme gives an incorrect power-law
decay due to the so-called ghost potential (see discussion in
the Appendix A of [78]).

VII. CONCLUSIONS

In the present work, we calculated quasinormal modes
of D-dimensional generalization of the Hayward and
Bardeen-like black holes, which were obtained as a result
of infinite tower of higher-curvature corrections to the

FIG. 5. Dominant quasinormal modes of the scalar field (l ¼ 0) for the Bardeen-like black hole (D ¼ 6): n ¼ 0 (blue, top), n ¼ 1
(green), n ¼ 2 (red), n ¼ 3 (magenta, bottom).

FIG. 6. Late-time decay of a massless scalar field on a logarithmic plot for l ¼ 0 (left) and l ¼ 1 (right) perturbations around the five-
dimensional Bardeen-like black hole. The decay law is ∝ t−3 for l ¼ 0 and ∝ t−5 for l ¼ 1, α ¼ 0.6. Similar plots with the same decay
law can be obtained for the five-dimensional Hayward black hole.

R. A. KONOPLYA and A. ZHIDENKO PHYS. REV. D 109, 104005 (2024)

104005-10



Einstein action. We have shown that even at small and
moderate values of the coupling constant, the overtones
deviate at a much stronger rate than the fundamental mode,
leading to a qualitatively new features of the spectrum, such
as modes with very small (tending to zero) real oscillation
frequency. This is demonstration of the phenomenon,
known as the outburst of overtones, which happens when
the black hole geometry is deformed in the near-horizon
zone. Once the near-horizon deformations are relatively
small, that is, the coupling α is small, the fundamental
mode changes only slightly, so that the first few overtones
bring the information about the near-horizon geometry.
An important observation we have made during our

study is that, when examining theories truncated at different
orders of higher-curvature corrections, the dominant qua-
sinormal modes rapidly converge to their limit value with
an infinite number of correction terms. This result signifies
that considering only the initial correcting orders, as in
Gauss-Bonnet and Lovelock gravities, is well justified as a
robust approach to the complete theory.

Our work could be extended by consideration of the
massive scalar and vector fields, because, as was recently
shown in [68,79,80], the massive term produces qualitatively
new behavior at both the quasinormal ringing stage and at
asymptotic tails. However, our primary interest is to general-
ize the above study of overtones to other black-hole models
with higher-curvature corrections in order to know whether
the peculiar overtones’ behavior, which takes place for the
Bardeen and Hayward metrics, is also appropriate to other
higher curvature corrected black-hole solutions. While in the
present work, we checked the convergence of the quasi-
normal frequencies as to the increasing maximal order of
higher-curvature corrections for all the five metrics of [24],
no detailed analysis of the quasinormal spectra for the
remaining three regular black holes was done.

ACKNOWLEDGMENTS

A. Z. was supported by Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq).

[1] A. D. Sakharov, Nachal’naia stadija rasshirenija Vselennoj i
vozniknovenije neodnorodnosti raspredelenija veshchestva,
Sov. Phys. JETP 22, 241 (1966).

[2] J. Bardeen, Non-singular general relativistic gravitational
collapse, in Proceedings of the 5th International Conference
on Gravitation and the Theory of Relativity (Springer, 1968).

[3] I. Dymnikova, Vacuum nonsingular black hole, Gen.
Relativ. Gravit. 24, 235 (1992).

[4] Arvind Borde, Open and closed universes, initial singular-
ities and inflation, Phys. Rev. D 50, 3692 (1994).

[5] Sean A. Hayward, Formation and evaporation of regular
black holes, Phys. Rev. Lett. 96, 031103 (2006).

[6] Jose P. S. Lemos and Vilson T. Zanchin, Regular black
holes: Electrically charged solutions, Reissner-Nordström
outside a de Sitter core, Phys. Rev. D 83, 124005 (2011).

[7] Cosimo Bambi and Leonardo Modesto, Rotating regular
black holes, Phys. Lett. B 721, 329 (2013).

[8] Alex Simpson and Matt Visser, Black-bounce to traversable
wormhole, J. Cosmol. Astropart. Phys. 02 (2019) 042.

[9] Manuel E. Rodrigues and Marcos V. de Sousa Silva,
Bardeen regular black hole with an electric source,
J. Cosmol. Astropart. Phys. 06 (2018) 025.
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