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General relativity (GR) and unimodular gravity (UG) provide two equivalent descriptions of gravity that
differ in the nature of the cosmological constant. While GR is based on the group of diffeomorphisms that
permits the cosmological constant in the action, UG is based on the subgroup of volume-preserving
diffeomorphisms together with Weyl transformations that forbid the presence of the cosmological constant.
However, the cosmological constant reappears in UG as an integration constant so it arises as a global
degree of freedom. Since gauge symmetries are simply redundancies in our description of physical systems,
a natural question is whether there exists a “parent theory” with the full diffeomorphisms and Weyl
transformations as gauge symmetries so that it reduces to GR and UG, respectively, by performing suitable
(partial) gauge fixings. Wewill explore this question by introducing Stueckelberg fields in both GR and UG
to complete the gauge symmetries in each theory to that of the would-be parent theory. Despite the
dynamical equivalence of the two theories, we find that precisely the additional global degree of freedom
provided by the cosmological constant in UG obstructs the construction of the parent theory.
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I. INTRODUCTION

Unimodular gravity (UG) is a theory that is very similar to
general relativity (GR). The linearization of these theories on
top of flat spacetime leads to the propagation of a massless
spin-2 field. However, they are based on different gauge
groups. UG admits a formulation in which it is invariant
under Weyl transformations and transverse diffeomor-
phisms, whereas GR is based on the whole group of
diffeomorphisms. The differences between the two theories
were explored in [1] (see also [2]), showing that they are
equivalent up to the behavior of the cosmological constant at
the classical level.Whereas inGR the cosmological constant
is a coupling constant, in UG it is absent at the level of the
action and enters as an integration constant in the equations
of motion. Consequently, in UG, it behaves as a global
degree of freedom, in the sense that it does not depend on the
spacetime point (see [3,4] for further discussion). At the
quantum level, the tree-level amplitudes were shown to be
equivalent in both theories [5,6], whereas the analysis at the
loop level is more convoluted since the theory is not
renormalizable and one needs to treat the theory as an
effective field theory. Although there has been a lot of work

in trying to discern whether the two theories were equivalent
or not at the loop level [7–11], it was shown that there exists a
quantization scheme in which one could show the equiv-
alence of both theories [12,13]. Different choices of renorm-
alization and quantization schemes may lead to different
predictions (notice that some of the computations involve
running of coupling constants that are not directly related to
observables) but the existence of a quantization scheme that
provides the same predictions for both theories is enough to
ensure the equivalence at the perturbative quantum level.
Given that the two theories are so similar except for the

gauge symmetries, a legitimate question is whether there
exists a “parent theory” that is invariant under both Weyl
transformations and diffeomorphisms, and such that suit-
able gauge fixings of the parent theory lead to UG and GR.
We address such a question by introducing Stueckelberg
fields in GR to make it Weyl invariant and in UG to make it
invariant under longitudinal diffeomorphisms. We find that
the resulting theories are not equivalent, and we trace the
obstruction to find such a parent theory to the presence of
the global degree of freedom in UG, a global aspect that
was missed in the analysis presented in [14].1
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Here is a brief outline of the article. In Sec. II we present
the analysis for WTDiff and Fierz-Pauli, the linear versions
of UG and GR. Sections II A and II B provide a short
introduction to the origin of gauge symmetries as a need to
describe massless integer spin fields in a manifestly Lorentz
invariant way. Section II C illustrates how WTDiff differs
from Fierz-Pauli in the sense that it contains an additional
global degree of freedom, the linear version of the cosmo-
logical constant. Section II D looks for theories that are
invariant underWeyl transformations and diffeomorphisms,
introducing Stueckelberg fields in WTDiff and Fierz-Pauli.
The theories obtained in this way are inequivalent, and we
demonstrate that it is not possible to reach a parent theory
such that WTDiff and Fierz-Pauli are suitable gauge fixings
of it. Section III is devoted to repeating the same analysis for
the nonlinear theories. Section III A contains a brief pre-
sentation of GR and UG. After that, in Sec. III B we
introduce a Stueckelberg field to make GR invariant under
the Weyl transformations, and in Sec. III C we introduce
Stueckelberg fields to make UG invariant under the full set
of diffeomorphisms. In Sec. IV we present the trinity
formulation of UG, focusing on the metric teleparallel
equivalent to UG in Sec. IVA and the symmetric teleparallel
to UG in Sec. IV B. We show that they are inequivalent to
theirGRversion, in the same sense thatUG is inequivalent to
GR. Finally, we finish in Sec. V by summarizing the
conclusions that can be drawn up from our work.
Notation and conventions. In this article, we use the

signature ð−;þ; � � � ;þÞ for the spacetime metric, and we
work in natural units c ¼ ℏ ¼ 1. We also introduceHðabÞ ≔
1
2!
ðHab þHbaÞ and H½ab� ≔ 1

2!
ðHab −HbaÞ, and similarly

for an object with n indices instead of 2. Latin indices
(a; b; c; d;…) refer to arbitrary coordinates in spacetime and
run from 0 to n − 1, where n is the dimension of the
spacetime manifold that we assume to be n > 3. For the
curvature tensors we use the conventions in the book of
Wald [15], i.e., ½∇a;∇b�Vc ≕ − Rabd

cVd, Rab ≔ Racb
c.

II. LINEAR THEORY OF MASSLESS
SPIN-2 PARTICLES

A. The origin of gauge symmetry

Let us begin with the spin-1 field propagating on top of
flat spacetime as an illustrative example. If we have a vector
field Aa, its n components may lead to the propagation
of n degrees of freedom. However, from the group theory
perspective, we know that if we aim to describe the
propagation of massless particles, we need to ensure that
it propagates only n − 2 degrees of freedom [16,17]. Let us
take a state that represents a plane wave,

AaðxÞ ¼ ϵaðpÞeip·x; ð1Þ

p2 ¼ 0; ð2Þ

with p · x ≔ paxa. First of all, notice the Aa field decom-
poses into 1 ⊕ ðn − 1Þ as irreducible representations of the
Poincaré group. Actually, the trivial representation corre-
sponds to the scalar encoded in Aa, namely the projection in
the direction of pa, i.e., paϵ

aðpÞ or in coordinate space
∂aAaðxÞ. We can remove that scalar degree of freedom by
simply imposing a constraint paϵ

aðpÞ ¼ 0, which, equiv-
alently, in coordinate space is ∂aAa ¼ 0, the so-called
Lorenz condition. However, we still need to eliminate
one of the remaining states that Aa encode in order to
describe a massless particle. The first thing to notice is that
there are no more Lorentz invariant constraints that we can
impose on Aa in order to remove degrees of freedom. If we
intend to preserve Lorentz invariance explicitly, we cannot
impose a non-Lorentz invariant constraint such as the
Coulomb gauge. It is this absence of additional potential
Lorentz-invariant constraints that leads to the introduction
of gauge symmetry. Notice that if we impose the constraint
ϵ · p ¼ 0, any shift on the polarization vector of the form

ϵa → ϵ0a ¼ ϵa þ αðpÞpa ð3Þ

will lead to a new vector that still verifies the constraint

ϵ · p ¼ 0 → ϵ · p ¼ 0; p2 ¼ 0: ð4Þ

Thus, it is natural to impose that configurations related by a
transformation of the form (3), are physically equivalent
(i.e., they belong to the same gauge orbit). We can write
down this equivalence in coordinate space, and it leads to
the standard form of gauge symmetry:

Aa → Aa þ ∂aαðxÞ;
□α ¼ 0: ð5Þ

Up to this point, we have seen that in order to describe a
massless spin-1 particle through a vector field Aa, we need
to ensure that it contains a dispersion relation of the form
p2 ¼ 0, that the vector field is divergenceless ∂aAa ¼ 0,
and that it displays the gauge symmetry in Eq. (5) (which
kills the additional degrees of freedom in Aa).
Let us now repeat the analysis with a tensor hab aiming

to describe a massless spin-2 particle. The first thing that
we notice is that the tensor hab contains 1

2
nðnþ 1Þ potential

degrees of freedom, but we want it to propagate only the
1
2
nðn − 3Þ [16,17] associated with a massless spin-2 par-

ticle. Again, take that hab represents a plane wave:

hab ¼ ϵabðpÞeip·x; ð6Þ

p2 ¼ 0: ð7Þ

The first thing to notice is that again hab decomposes
nontrivially into irreducible representations of the Poincaré
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group. For instance, it contains a symmetric traceless
representation, a vector representation, and two scalars;
i.e., the decomposition is 1

2
nðnþ 1Þ ¼ 1 ⊕ 1 ⊕ ðn − 1Þ ⊕

1
2
ðnþ 1Þðn − 2Þ. To be more explicit, the first scalar

encoded in hab is, of course, the trace h ¼ habηab; then
we have the n-vector Aa ¼ ∂bhba, which can be broken into
the scalar ∂aAa ¼ ∂a∂bhab ≕ ð∂2 · hÞ and the divergenceless
vector, as in the previous section. In addition, we have the
remaining traceless symmetric tensor hab that contains
more components than the ones a massless particle con-
tains. We can remove the two scalars and the vector
component by imposing suitable conditions. These con-
ditions are that the tensor is traceless h ¼ 0, which removes
one of the scalars; and the Lorentz transversality condition
paϵ

ab ¼ 0, which removes simultaneously the other scalar
ð∂2 · hÞ ¼ 0, and the vector. This is the best that we can do
by using constraints that preserve Lorentz invariance. To
remove the remaining components of hab in a manifestly
Lorentz invariant way, we need to introduce gauge sym-
metries again. Given that we are imposing the constraints
ϵabηab ¼ 0 and paϵ

ab ¼ 0, any transformation on the
tensor ϵab of the form

ϵab→ ϵ0ab ¼ ϵabþξaðpÞpbþξbðpÞpa; α ·p¼ 0; ð8Þ

will preserve the constraints

paϵab ¼ ϵabη
ab¼ 0→paϵ0ab ¼ ϵ0abη

ab ¼ 0; p2¼ 0: ð9Þ

Hence, it is natural to impose that configurations related
by a transformation of this form are physically equivalent.
In coordinate space, these transformations take the form

hab → hab þ ∂aξb þ ∂bξa;

∂aξ
a ¼ 0; □ξa ¼ 0: ð10Þ

Thus, for describing a massless spin-2 particle through a
tensor field hab in a minimal way, we need to ensure that it
contains a dispersion relation of the form p2 ¼ 0, the tensor
needs to be traceless h ¼ 0 and divergenceless ∂ahab ¼ 0,
and it realizes the gauge symmetry as in Eq. (10).

B. Nonminimal realizations: Enlarging
the gauge symmetries

In practice, it is cumbersome to work with constrained
fields (traceless, transversal, etc.). Thus, for practical
purposes, working with the previous minimal constructions
is not useful. The idea to avoid this is that we can eliminate
the constraints that we are imposing at the expense of
enlarging the gauge symmetry.
Let us illustrate this with the spin-1 field. Here there is

only one way of enlarging the gauge symmetry in such a
way that we only have the Aa field as a configuration
variable and we still propagate only the n − 2 desired

degrees of freedom associated with the massless particle.
Once we relax the condition ∂aAa ¼ 0, we can consider
more general transformations, not only those that preserve
the constraint. This means that we no longer need to impose
any constraint on α, the gauge parameter of the trans-
formation, and we can perform arbitrary transformations of
the form

Aa → Aa þ ∂aα: ð11Þ
Now, it is easy to write down a Lagrangian for such a
theory. We need to only write down only the most general
quadratic Lagrangian displaying this gauge symmetry and
such that it gives rise to a massless dispersion relation. This
is, of course, the Maxwell Lagrangian

LMaxwell ¼ −
1

4
FabFab; ð12Þ

where Fab ≔ ∂aAb − ∂bAa.
The situation is different for the massless spin-2 particle.

Here, there are two ways in which one can enlarge the
amount of gauge symmetry until one works with an
unconstrained field hab. However, it is instructive to enlarge
the gauge symmetry in two steps. First of all, we relax the
constraint ∂ahab ¼ 0. With this, we notice that we can now
do more general gauge transformations, since we can relax
the condition that the vector generating them obeys a wave
equation, as in the previous case. The result is a trans-
formations of the form

hab → h0ab ¼ hab þ ∂aξ
T
b þ ∂

T
bξa; ð13Þ

where ξTa is an arbitrary transverse vector field ∂aξTbη
ab ¼ 0,

in order to preserve the traceless condition on hab. It is
possible to write a Lagrangian that gives rise to a linear
dispersion relation and implements this symmetry as long
as we keep the constraint that the tensor is traceless:

LTDiff ¼ −
1

2
∂ahcd∂ahcd þ ∂ahac∂bhbc: ð14Þ

Hereinafter we drop boundary terms depending on gauge
parameters. Finally, we come to the point of relaxing the
constraint h ¼ 0. This can be achieved by two different
enlargements of the gauge transformations. First of all, the
most natural thing to do is to relax the constraint that the
vectors generating the transformation are divergenceless
∂aξ

Ta ¼ 0, since we do not need to ensure that the trace of h
is preserved anymore. To put it explicitly, this means that
we work with a tensor field hab with the following gauge
symmetry:

hab → h0ab þ ∂aξb þ ∂bξa ð15Þ

for arbitrary ξa. These transformations enlarge the set of
linearly realized transverse diffeomorphisms to the whole

NONEXISTENCE OF A PARENT THEORY FOR … PHYS. REV. D 109, 104004 (2024)

104004-3



set of linearly realized diffeomorphisms. The most general
Lagrangian that one can write down displaying this gauge
symmetry and giving rise to a quadratic dispersion relation
is, of course, the Fierz-Pauli Lagrangian [18]

LFP ¼ −
1

2
∂chab∂chab þ ∂ahab∂chcb

− ∂ahab∂bhþ 1

2
∂ah∂ah: ð16Þ

There is though, another way of relaxing the constraint
h ¼ 0. We can keep the transverse diffeomorphisms and
introduce the linearly realized Weyl transformations on the
tensor hab. Explicitly, this means that we consider the
following gauge group:

hab → h0ab ¼ hab þ ∂aξ
T
b þ ∂bξ

T
a þ χηab; ð17Þ

where the χ is an arbitrary scalar function and ξTa is
transverse (divergenceless). Imposing this gauge group,
the set of linear Weyl transformations and transverse
diffeomorphisms that are realized at the Lagrangian level
and the massless condition, leads up to a global constant to
the so-called WTDiff Lagrangian [19]

LWTDiff ¼ −
1

2
∂chab∂chab þ ∂ahab∂chcb

−
2

n
∂ahab∂bhþ nþ 2

2n2
∂ah∂ah: ð18Þ

C. Same local degrees of freedom, different number
of global degrees of freedom

At this point, one may lead to the conclusion that both
theories need to be equivalent since they lead to the
propagation of the same number of local degrees of
freedom. However, as we will now discuss, there is a
mismatch in the number of global degrees of freedom.
Fierz-Pauli case. To see this, let us begin with the Fierz-

Pauli theory. The corresponding equations of motion are
EFP

ab ¼ 0, where EFP
ab is given by

EFP
ab ≔ □hab − 2∂ðaj∂chcjbÞ

þ ∂a∂bhþ ηabð∂2 · hÞ − ηab□h; ð19Þ

which fulfills

ηabEFP
ab ¼ ðn − 2Þ½ð∂2 · hÞ −□h�; ð20Þ

∂
bEFP

ab ¼ 0: ð21Þ

We can now perform a gauge fixing to reach h ¼ 0 and
∂ahab ¼ 0. Notice that given a value for ∂ahab and h, we
can always perform a diffeomorphism:

∂ah0ab ¼ ∂ahab þ□ξb þ ∂
b
∂aξ

a; ð22Þ

h0 ¼ hþ 2∂aξ
a; ð23Þ

such that ∂ah0ab ¼ h0 ¼ 0. This leads to the following
system of equations for ξa that always admits a solution:

∂aξ
a ¼ −

1

2
h; ð24Þ

□ξa ¼ 1

2
∂
ah − ∂bhba: ð25Þ

Hence, we can always make a gauge fixing such that
Eq. (19) reduce to a sourceless wave equation for a
transverse traceless tensor:

□hab ¼ 0; ð26Þ

∂ahab ¼ h ¼ 0: ð27Þ

WTDiff case. Following [20], we can try to do the same
for the WTDiff theory (18). In this case, the dynamical
equations are EWTDiff

ab ¼ 0,2 with

EWTDiff
ab ≔ □hab − 2∂ðaj∂chcjbÞ þ

2

n
∂a∂bh

þ 2

n
ηabð∂2 · hÞ −

nþ 2

n2
ηab□h: ð28Þ

which fulfills

ηabEWTDiff
ab ¼ 0; ð29Þ

∂
bEWTDiff

ab ¼ −
n − 2

n
∂a

�
ð∂2 · hÞ − 1

n
□h

�
: ð30Þ

From the second one we can derive the general result that,
on-shell, the quantity in the square bracket must be
constant, i.e.,

ð∂2 · hÞ − 1

n
□h ¼ c; ð31Þ

where c is the integration constant.
Now one can try to find a gauge leading to □hab ¼ Jab

such that the field hab is traceless and transverse and such
that the source Jab is independent of hab. However, it is not

2Because of the Weyl symmetry, this equation is actually
independent of the trace of hab. Indeed, if we decompose hab ¼
ĥab þ 1

n ηabh (where by construction ηabĥab ¼ 0), we find the
identity

EWTDiff
ab ¼ □ĥab − 2∂ðaj∂cĥ

c
jbÞ þ

2

n
ηabð∂2 · ĥÞ:
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difficult to check that due to the presence of c one cannot
achieve both conditions simultaneously. Let us show this in
more detail.
First, we perform a Weyl gauge transformation to reach

h ¼ 0. It is always possible to do so since under a Weyl
transformation, we have

h0 ¼ hþ nχ; ð32Þ

and taking χ ¼ −h=n, we reach h0 ¼ 0. The condition (31)
implies then that, in this gauge, ð∂2 · hÞ ¼ c. This can be
integrated to obtain an expression for the divergence of hab,

∂ahab ¼
c
n
xb þ aTb; ð33Þ

where aTa is any arbitrary divergenceless vector field
∂
aaTa ¼ 0. The vector aTa can be removed through a gauge
transformation. To see this, notice that under a transversal
diffeomorphism,

∂ah0ab ¼ ∂ahab þ□ξTb; ð34Þ

so the condition ∂ah0ab ¼ c
n x

b leads to an equation for ξTb

that always admits a solution:

□ξTb ¼ −aTb: ð35Þ

Hence, in this gauge, we end up again with a sourceless
wave equation for hab,

□hab ¼ 0; ð36Þ

with

∂ahab ¼
c
n
xb; h ¼ 0: ð37Þ

Note that the transversality condition is violated for non-
vanishing c.
To explore the other possibility, we can make a field

redefinition,

hab ↦ Hab þ
1

2

c
n
ηabx2; ð38Þ

in such a way that this new tensor Hab is transverse,
although it is not traceless anymore:

∂aHab ¼ 0; Hc
c ¼ −

1

2
cx2: ð39Þ

The equation of motion (36) in terms of Hab contains a
constant source term proportional to c:

□Hab ¼ −cηab: ð40Þ

It is also remarkable that Eq. (40) coincides with the
lowest-order contribution to the graviton equation in the
presence of a cosmological constant c (obtained, for
instance, from the linearization of GR). We will see later
that in the full nonlinear theory, the integration constant c is
promoted to be the full cosmological constant entering
Einstein equations. Since this c is arbitrary, it corresponds
to an additional degree of freedom of WTDiff, which needs
to supplement the set of initial conditions.
Up to this point, we have noticed that although both

theories lead to the propagation of the same number of local
degrees of freedom, they are not equivalent because there is
one additional number required to specify the initial
conditions for WTDiff, c. In that sense, they cannot be
regarded as two formulations of the same theory. Let us
further dig into this question in the following subsection.

D. Stueckelberg-ing

It is always possible to enlarge the number of gauge
symmetries of a theory at the expense of introducing
additional fields that are often called Stueckelberg fields,
being the opposite to minimal formulations in terms of the
number of fields. One natural question that we can ask is
whether there exists a “parent” theory that involves more
fields, not only the tensor hab, but is invariant both under
general diffeomorphisms and Weyl transformations acting
linearly on the tensor hab such that Fierz-Pauli and WTDiff
are suitable gauge fixings of both of them. Although based
on our discussion about the global mode of WTDiff we
may anticipate that this is not possible, it is interesting to
perform the analysis explicitly.
Fierz-Pauli case. Let us begin with Fierz-Pauli. The

parent theory that we seek would be a theory in which the
action is invariant under linearizedWeyl transformations on
the tensor hab in addition to linearized diffeomorphisms.
The way to achieve this through a Stueckelberg field is to
introduce a field φ in the action by making the replacement
hab → hab þ φηab. In this way, we realize the Weyl
symmetry in the φ field as a shift symmetry

hab → h0ab ¼ hab þ χηab; ð41Þ

φ → φ0 ¼ φ − χ: ð42Þ

After introducing the field φ, we are led to the following
Lagrangian:

LFP-St ¼ LFP − ðn − 2Þ∂ahab∂bφþ ðn − 2Þ∂ah∂aφ

þ 1

2
ðn − 1Þðn − 2Þ∂aφ∂aφ; ð43Þ

whose equations of motion are
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□φ −
1

ðn − 1Þðn − 2Þ η
abEFP

ab ¼ 0; ð44Þ

EFP
ab þ ðn − 2Þð∂a∂bφ − ηab□φÞ ¼ 0: ð45Þ

One important thing to notice is that the equation of φ is the
trace of the second one, so it is redundant (in any gauge).
Therefore, from now on we just keep Eq. (45).
It is immediate to see that the unitary gauge φ ¼ 0 is a

legal one, since the equation of motion of φ becomes
redundant. Here by legal we mean that fixing the gauge
in the action and fixing it in the equations lead to the same
dynamics. However, wewant to emphasize that what we call
here illegal gauge fixings can perfectly be used at the level of
the equations of motion (as long as there exists a gauge
transformation leading to them) without any inconsistency.
It is only incorrect to use them at the level of the action, in the
sense of imposing the conditions directly on the fields before
performing the variation that leads to the equations of
motion of the theory. Notice that by “gauge fixing at the
level of the action”we do not mean to introduce a Lagrange
multiplier in the Lagrangian to enforce the constraint. Such a
procedure would introduce additional (algebraic) equations
of motions that would follow from the variation of the
Lagrange multiplier fields and would lead to the same
dynamics reached by fixing the gauge directly in the
equations of motion. We give a more elaborate analysis
of legal and illegal gauge fixings in Appendix A.
The question now is whether one can find a legal gauge

that leads to the WTDiff dynamics. In principle, fixing the
gauge at the level of the action to be φ ¼ − 1

n h leads to the
WTDiff Lagrangian (18). However, this is an illegal gauge
fixing, as we will see below. To show that it is always
possible to reach this gauge, we recall that under a generic
gauge transformation the fields change as

hab → h0ab ¼ hab þ 2∂ðaξbÞ þ χηab; ð46Þ

φ → φ0 ¼ φ − χ: ð47Þ

We want to see if for generic fφ; habg we can find fξa; χg
such that we end up with φ0 ¼ −h0=n. The latter condition
fixes the divergence of the vector ξa:

∂aξ
a ¼ −

1

2
h −

n
2
φ: ð48Þ

A trivial example of such a vector field would be

ξa ¼ δa0

Z
t

t0

dt0
�
−
1

2
hðt0; xiÞ − n

2
φðt0; xiÞ

�
: ð49Þ

Let us now show that this gauge fixing is illegal. In this
gauge, the only independent equation of motion (45)
reduces to

EWTDiff
ab þ n − 2

n
ηab

�
ð∂2 · hÞ − 1

n
□h

�
¼ 0: ð50Þ

Since EWTDiff
ab is traceless and the second term in (50) is pure

trace, this equation is fulfilled if and only if both terms in
(50) vanish independently. The first one leads to the
WTDiff equations and this implies (31) with the appear-
ance of the integration constant c. However, the second
term in (50) enforces c ¼ 0. This proves that the gauge
fixing φ ¼ −h=n is illegal since the equations resulting
from fixing the gauge at the level of equations do not
reproduce the dynamics of the WTDiff action, which
admits an arbitrary c.
WTDiff case. We can repeat the same analysis for

WTDiff. We can introduce a Stueckelberg field to enlarge
the gauge symmetries from Weyl and transverse diffeo-
morphisms to Weyl and general diffeomorphisms, at the
expense of introducing an additional Stueckelberg field. We
want to distinguish between longitudinal and transverse
diffeomorphisms. For such a purpose, we notice that for an
arbitrary diffeomorphism, we can always decompose the
vector ξa into a transverse part and a longitudinal part:

ξa ¼ ξTa þ ∂aσ ð∂aξTa ¼ 0Þ: ð51Þ

When we expand such a transformation acting on hab,
we have

hab → h0ab ¼ hab þ ∂aξ
T
b þ ∂bξ

T
a þ 2∂a∂bσ: ð52Þ

To make WTDiff invariant also under longitudinal diffeo-
morphisms (18), we need to introduce a Stueckelberg field
making the replacement

hab → hab þ 2∂a∂bφ: ð53Þ

The resulting Lagrangian, after some integrations by
parts, is

LWTDiff-St ¼ LWTDiff þ 2
ðn − 2Þ

n
∂ahab∂b□φ

− 2
n − 2

n2
□∂

aφ∂ah

þ 2
ðn − 1Þðn − 2Þ

n2
□∂aφ□∂

a
□φ; ð54Þ

whose equations are

∂
a
∂
bEWTDiff

ab −
2ðn − 1Þðn − 2Þ

n2
□3φ ¼ 0; ð55Þ

EWTDiff
ab −

2ðn − 2Þ
n

�
∂a∂b□φ −

1

n
ηab□

2φ

�
¼ 0: ð56Þ
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Observe that, again, the equation of φ can be obtained by
taking ∂

a
∂
b in the second one so it is redundant (for any

gauge), so we can just keep the second one (56).
As a consequence of the substitution (53), the simulta-

neous transformation (52) and

φ → φ0 ¼ φ − σ ð57Þ
become a symmetry of the theory. Therefore, Eq. (54)
exhibits the following symmetry:

hab → h0ab ¼ hab þ ∂aξ
T
b þ ∂bξ

T
a þ 2∂a∂bσ þ χηab; ð58Þ

φ → φ0 ¼ φ − σ: ð59Þ

Notice that this is not the same as the one found in the
Fierz-Pauli case, Eq. (47). This shows explicitly two
different ways of realizing the gauge group of Weyl
transformations and full diffeomorphisms using only a
scalar field and a tensor hab. One could wonder whether
there is some kind of field redefinition that maps one theory
into the other one, but we will now argue why this is not
possible because there is a mismatch in the global degrees
of freedom of the theory.
Let us now show that it is not possible to find a legal

gauge fixing of the Weyl symmetry leading to the Fierz-
Pauli theory. The gauge in which □φ ¼ − 1

2
h performed at

the level of the action leads to the Fierz-Pauli Lagrangian.
This means that performing such gauge fixing we would
lose the global degree of freedom associated with the
constant c. This seems contradictory, so let us analyze in
detail. Introducing this into the action (54), one recovers the
Fierz-Pauli Lagrangian from Eq. (16). First of all, it is
always possible to reach this gauge through a suitable Weyl
transformation: under a Weyl transformation, the trace h
and φ change as

h → h0 ¼ hþ nχ; ð60Þ

φ → φ0 ¼ φ; ð61Þ

where χ is the gauge parameter of the transformation. By
imposing □φ0 ¼ − 1

2
h0, we find the χ that generates the

gauge transformation that we are looking for is

χ ¼ −
1

n
ðhþ 2□φÞ: ð62Þ

Thus, it is always possible to reach that gauge. To see that
this is illegal, we realize that the only independent Eq. (56)
after evaluating the gauge □φ ¼ − 1

2
h becomes

□ðð∂2 · hÞ −□hÞ ¼ 0; ð63Þ

EFP
ab −

n − 2

n
ηabðð∂2 · hÞ −□hÞ ¼ 0: ð64Þ

By taking the divergence of the second one, and recalling that
the EFP

ab part is divergenceless, we find that the combination
ðð∂2 · hÞ −□hÞ must be constant. Therefore, Eq. (63) is
redundant and the system of equations becomes

EFP
ab ¼ cηab ð65Þ

for some constant c.
The equations that follow from the Lagrangian after

gauge fixing are not the equations that we obtain by
performing the gauge fixing directly at the level of the
equations of motion. To be more precise, since the gauge-
fixed Lagrangian is Fierz-Pauli, the equations that follow
from that Lagrangian do not contain an integration con-
stant. However, the equations obtained by performing the
gauge fixing at the level of the equations of motion do
contain such a constant (65). Thus, the gauge fixing is
illegal in the sense that we explain in Appendix A.
At the linear level, which we have analyzed until now,

we conclude that there is not a parent theory as we have
dubbed it, from which Fierz-Pauli and WTDiff are two
suitable (legal) gauge fixings. The reason behind it is that
while the two theories agree on the local degrees of
freedom that they propagate, WTDiff contains an extra
global degree of freedom that can be understood as the
linear version of the cosmological constant.
One might wonder whether this mismatch arises from the

fact that we are comparing WTDiff with Fierz-Pauli with-
out a cosmological constant and we should add it in our
analysis. Another possibility is that we are always focusing
on the trivial flat spacetime background, which is only
acceptable in WTDiff as long as the initial conditions fix
c ¼ 0, and we need to consider the theories in arbitrary
backgrounds. The reason for the impossibility to find a
parent theory is actually that UG contains all the possible
values of the cosmological constant within a single theory,
whereas in Fierz-Pauli different values of the cosmological
constant correspond to different theories. To remove any
doubt, we extend the analysis considering the nonlinear
versions of these linearized theories in the following
sections, and we find the same result.

III. NONLINEAR THEORIES

GR and UG are the nonlinear completions of Fierz-Pauli
and the linearized theory of WTDiff. Both of them propa-
gate 2 local degrees of freedom, just as their linear versions.
However, the difference due to the mismatch in the global
degrees of freedom is still present. UG contains a fiduciary
nondynamical background structure (see Appendix B), a
nondynamical volume form, something that is tightly
related to this fact. For a comprehensive review of UG
and its comparison with GR, see [1].
Because of this global degree of freedom and based on

the analysis at the linear level, we expect that it is not
possible to introduce Stueckelberg fields for GR and UG,
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enlarging the gauge symmetry by adding Weyl trans-
formations and longitudinal diffeomorphisms, in such a
way that we go to the same parent theory.

A. General relativity and unimodular gravity

Let us quickly review general relativity and unimodular
gravity in order to settle the notation that we will be using.
Let us begin with GR. GR is given by the equations
following from the Einstein-Hilbert action with cosmo-
logical constant

SGR-Λ½g� ¼
1

2κ2

Z
dnx

ffiffiffiffiffi
jgj

p
ð−2Λþ R½g�Þ; ð66Þ

and the case with the vanishing cosmological constant will
be represented as SGR. The equations of motion that follow
from this action are, of course, Einstein equations:

Rab½g� −
1

2
R½g�gab þ Λgab ¼ 0: ð67Þ

The action is invariant under general coordinate trans-
formations (GCT), and since there is no background
structure, GCT are identified with active diffeomorphisms
(Diff).
Unimodular gravity can be understood as the theory that

is derived from the Einstein-Hilbert action principle by
imposing the constraint that the determinant of the metric is
fixed to be a nondynamical background volume form
ω ≔ ωðxÞdnx (see Appendix B):

SUG-λ½g; λ� ¼
1

2κ2

Z
dnx½

ffiffiffiffiffi
jgj

p
ð−2Λþ R½g�Þ

þ λð
ffiffiffiffiffi
jgj

p
− ωÞ�; ð68Þ

where λðxÞ is a suitable Lagrange multiplier. The variation
of this action yields to the traceless version of Einstein
equations. However, it is convenient to work with uncon-
strained variables again, at the expense of enlarging the
gauge symmetry. This can be achieved by introducing the
auxiliary metric tensor g̃ whose components are

g̃ab ¼ gab

�
ω2

jgj
�1

n

; ð69Þ

which by construction satisfies

ffiffiffiffiffi
jg̃j

p
¼ ω: ð70Þ

The reason for introducing this metric is that, when
performing variations, only the g-metric is varied, since
ω is not a dynamical field. Thus, any object written in terms
of the tensor g̃ that we vary with respect to g will
automatically produce the traceless variation with respect
to the tensor g̃:

δg̃ab ¼
�
ω2

jgj
�−1

n
�
δgab −

1

n
g̃abg̃cdδgcd

�
: ð71Þ

In terms of this metric, the unconstrained action of UG can
be expressed as

SUG½g;ω� ¼
1

2κ2

Z
dnxωR½g̃ðg;ωÞ�: ð72Þ

We separate the background volume form with a semicolon
instead of a comma from the rest of the fields to indicate
clearly that it is nondynamical. We will follow this notation
from now on. The equations of motion that follow from this
action principle are, of course, the traceless version of
Einstein equations

Rab½g̃� −
1

n
R½g̃�g̃ab ¼ 0; ð73Þ

which, upon using Bianchi identities, become the Einstein
equations with the cosmological constant entering as an
arbitrary integration constant [1]:

Rab½g̃� −
1

2
R½g̃�g̃ab þ Λg̃ab ¼ 0: ð74Þ

Finally, we comment on the local symmetries of this theory.
Contrary to the GR case, UG presents a background
structure, ωðxÞ, which remains unaffected under active
diffeomorphisms [i.e., it transforms as (B6)]. With this in
mind, we proceed to enumerate the symmetries of the UG
action:
(1) General coordinate transformations. This is clear

since the theory is written in terms of two tensor
quantities: the metric gab and the scalar density ω, in
addition to the matter fields (we assume they are
introduced as usual via tensor-valued quantities).

(2) Active diffeomorphisms of unit determinant (TDiff).
These diffeomorphisms are also called transversal or
volume-preserving, and they are defined by (B3)
together with the condition jJj ¼ 1. To be precise,
by this symmetry we mean the realization in which
ωðxÞ is treated as a background structure in the sense
of Appendix B.

(3) Weyl reescalings of the metric. By this we mean
transformations of the form

gabðxÞ → eϕðxÞgabðxÞ;
ωðxÞ → ωðxÞ: ð75Þ

This symmetry is explicitly manifest in formulation
(72) of UG. This action depends only on the metric g
through the auxiliary metric g̃, which is constructed
with the Weyl-invariant quantities ω and gab=jgj1=n.
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The gauge symmetries (those besides GCT) that this
theory displays act at the infinitesimal level as follows:

δξg̃ab ¼ ∇̃aξb þ ∇̃bξa þ χg̃ab; ∇̃aξ
a ¼ 0; ð76Þ

where ∇̃ is the Levi-Civita connection associated with the
metric g̃. If we couple to the matter fields through the metric
g̃ as we do in GR, they automatically inherit the invariance
under TDiff and Weyl transformations of the metric (notice
that g̃ is already Weyl invariant).

B. Making GR gauge invariant under
Weyl rescalings of the metric

Let us begin with the GR action with an arbitrary
cosmological constant Λ, Eq. (66). We want this action
to be invariant under Weyl rescalings of the metric, and this
means transformations that act on the metric as

gab → e2ϕðxÞgab: ð77Þ
For such a purpose, we introduce a new field πðxÞ in the
action to build the new action depending on both fields π
and the metric as

SGR-Λ-St½g; π� ¼ SGR-Λ½e2πg�: ð78Þ
For this action to be invariant under Weyl rescalings of the
metric we need that the π field transforms through a shift

π → π − ϕ; ð79Þ
which in conjunction with Eq. (77) allows us to deduce that
the combination e2πgab is invariant. Hence, the action
SGR-Λ-St½g; π� is Weyl invariant. We can use the trans-
formation properties of the Ricci scalar under these
rescalings of the metric to write down the action
SGR-Λ-St½g; π� explicitly in terms of the Stueckelberg field
π and the metric g. Under a transformation g → e2ϕg the
Ricci scalar transforms as [Eq. (D.9) from [15] with
Ω ¼ eϕ]

R½e2ϕg� ¼ e−2ϕðR½g� − 2ðn − 1Þgab∇a∇bϕ

− ðn − 1Þðn − 2Þgab∇aϕ∇bϕÞ; ð80Þ
where □ ≔ gab∇a∇b and ð∂ϕÞ2 ¼ gab∇aϕ∇bϕ.
The change in the determinant is a simple exponential

factor in π: jgj → e2πnjgj. We obtain the following action
after integration by parts:

SΛGR-St½g; π� ¼
1

2κ2

Z
dnx

ffiffiffiffiffi
jgj

p
eðn−2Þπ½−2Λe2π þ R

þ ðn − 1Þðn − 2Þð∂πÞ2�: ð81Þ

Here we may want to go to a gauge in which the theory is
still invariant TDiff and Weyl transformations but not under

longitudinal Diff. To achieve this, we would do the
following. We can write down the metric as follows:

gab ¼ jgj1n gabjgj1n ¼ jgj1ng0ab; ð82Þ

where we have introduced the auxiliary field g0ab ≔
gab=jgj1n, which is automatically invariant under Weyl
rescalings and transforms as a tensor under TDiff, though
not under longitudinal Diff. Now, to end up in an action that
is only Weyl and TDiff invariant, we fix the longitudinal
Diff by imposing

e2πjgj1n ¼ ω
2
n; ð83Þ

where ω is an arbitrary (but fixed) background structure.
Consistency of (83) requires ω to be a scalar density with
the same weight as

ffiffiffiffiffijgjp
under GCT.

The question now is whether it is possible to reach this
condition through a longitudinal Diff. The answer is in the
affirmative, since for an arbitrary value of the factor e2πjgj1n,
let us call it a density function FðxÞ2n, a longitudinal Diff
leads to the following transformation rule:

e2πjgj1n ¼ F
2
n → ðFjJjÞ2n; ð84Þ

where we have used that e2π is a scalar and that jgj picks a
factor of jJj. Thus, to reach the gauge (83), we just take:

jJj ¼ ω

F
¼ ωffiffiffiffiffijgjp

enπ
: ð85Þ

If we fix this gauge at the level of the action, and call

g̃ab ≔ ω
2
ng0ab ¼

�jgj
ω2

�
−1
n

gab; ð86Þ

we get

SGR-Λ-St½gjð83Þ; π� ¼
1

2κ2

Z
dnxωR½g̃� − Λ

κ2

Z
dnxω; ð87Þ

where in the first equality we used (78) and in the second
one we took into account (70). In (87) we see that, as a
result of the gauge fixing, we obtain UG action (72) plus a
nondynamical constant contribution.
Fixing this gauge at the level of the action leads to UG,

but this gauge fixing turns out to be illegal. To see it, we can
compute the equations of motion from (81). By varying
with respect to π and gab, we, respectively, get (after
recasting the equations a bit)

0 ¼ ðn − 2ÞR½e2πg� − 2nΛ; ð88Þ

0 ¼ Rab½g� −
1

2
R½g�gab þ Λe2πgab − ðn − 2Þ∇a∇bπ

þ ðn − 2Þgab□π þ ðn − 2Þ∂aπ∂bπ

þ 1

2
ðn − 2Þðn − 3Þgabð∂πÞ2: ð89Þ
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Notice that the first one implies the following constraint
between the Ricci scalar R½e2πg� and the cosmological
constant:

R½e2πg� ¼ 2n
n − 2

Λ: ð90Þ

Fixing the unitary gauge π ¼ 0 in (88) and (89) leads to
Einstein equations with cosmological constant Λ and its
trace, meaning that both of them are not independent, as it
should be. Similarly, in the gauge enπ ¼ ωjgj−1=2, which
leads to UG at the level of the action, we get that the Ricci
scalar is still fixed by the coupling constant entering the
action when we perform it at the level of the equations of
motion

R½g̃� ¼ 2n
n − 2

Λ: ð91Þ

Hence, we conclude that this gauge fixing is illegal.

C. Making UG gauge invariant under longitudinal
diffeomorphisms

Let us now consider UG, and let us make it invariant
under the full Diff (i.e., including longitudinal ones). For
such a purpose, we will introduce the Stueckelberg fields
YaðxÞ as follows:

SUG-St½g; Y;ω� ¼
Z

dnxωðxÞR
��

ωðxÞ2
jgðYðxÞÞj

�1
n

×

���� det
�
∂YaðxÞ
∂xb

�����
−2=n

gcdðYðxÞÞ

×
∂YcðxÞ
∂xa

∂YdðxÞ
∂xb

�
: ð92Þ

This can be obtained from the UG action (72) by making
the following replacement everywhere:

gabðxÞ → GabðYðxÞÞ ¼
∂YcðxÞ
∂xa

∂YdðxÞ
∂xb

gcdðYðxÞÞ: ð93Þ

The fields Ya are assumed to be invertible functions. The
theory enjoys a symmetry that is WTDiff × Diff 0. Here,
WTDiff is the symmetry that UG already displays, realized
in the metric as in Eq. (76) while leaving the Ya untouched,
and Diff 0 comes from the introduction of the Stueckelberg
fields Ya. The latter corresponds to the following realiza-
tion of the whole set of diffeomorphisms:

gabðxÞ⟶Diff
0 ∂fc

∂xa
∂fd

∂xb
gcdðfðxÞÞ; ð94Þ

ωðxÞ⟶Diff
0
ωðxÞ; ð95Þ

YaðxÞ⟶Diff
0
ðf−1ÞaðYðxÞÞ; ð96Þ

where the transformations of Ya have been implemented to
leave GabðYðxÞÞ invariant under these transformations:

GabðYðxÞÞ⟶Diff
0
GabðYðxÞÞ: ð97Þ

To recover the original UG action, one just has to take the
gauge fixing YaðxÞ ¼ xa. This can always be achieved, due
to the invertibility of Ya, by just performing the diffeo-
morphism for which fa ¼ Ya, so that in this gauge we find

GabðYðxÞÞjYaðxÞ¼xa ¼ gabðxÞ: ð98Þ

Let us now derive the equations of motion. If we introduce
the abbreviation

G̃abðYðxÞÞ ≔
�

ωðxÞ
jGðYðxÞÞj

�1
n

GabðYðxÞÞ;

G ≔ detðGabÞ ð99Þ

(notice that the Y does not enter the dependency of ω), we
realize that the dynamical fields gab and Ya only appear in
the action through the combination G̃ab, so

δSUG-St ¼
Z

dnxωðxÞ
�
Rab½G̃� −

1

n
G̃abR½G̃�

�
δGab

����
YðxÞ

;

ð100Þ

where we took into account that, since G̃abðYðxÞÞ has a
fixed determinant [equal to 1=ωðxÞ], varying with respect
to it is equivalent to varying with respect to the traceless
part of GabðYðxÞÞ. In (100), the subscript YðxÞ indicates
that the object in the square bracket is evaluated in YðxÞ.
Now we can compute the variation Gab coming from both
Ya and gab. It is convenient to introduce

Ma
b ≔ ∂bYa; Na

b ≔ ∂bðY−1Þa; ð101Þ

where ∂a just means partial with respect to the ath slot. These
matrices are the inverse of each other in the following sense:
Ma

bðxÞNb
cðYðxÞÞ ¼ Na

bðYðxÞÞMb
cðxÞ ¼ δac, as a conse-

quence of the chain rule, which implies

δNb
dðYðxÞÞ ¼ −Nb

eðYðxÞÞNf
dðYðxÞÞδMe

fðxÞ: ð102Þ

Then

δGabðYðxÞÞ ¼ δ½gcdNa
cNb

d�YðxÞ
¼ −2½gcdNa

cNb
eNf

d�YðxÞδMe
fðxÞ

þ ½δgcdNb
cNb

d�YðxÞ; ð103Þ
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where we made use of (102). The first piece of (103), which
corresponds to the variations with respect to gab, leads to

�
Na

cNb
d

�
Rab½G̃� −

1

n
G̃abR½G̃�

��
YðxÞ

¼ 0; ð104Þ

which can simply be written as the traceless Einstein
equations by multiplying by appropriate factors of Ma

bðxÞ:
�
Rab½G̃� −

1

n
G̃abR½G̃�

�
YðxÞ

¼ 0; ð105Þ

On the other hand, the second term in (103) (the equation of
motion of Ya), which contains δMe

fðxÞ ¼ ∂fδYeðxÞ, can be
integrated by parts to obtain

∂d

�
ωðxÞ

�
2gcfNd

fNa
cNb

e

×

�
Rab½G̃� −

1

n
G̃abR½G̃�

��
YðxÞ

	
¼ 0: ð106Þ

This equation is redundant because it is an immediate
consequence of the first one (105). For this to be a well-
defined Stueckelberg-ization of the UG theory, we have to
check that the gauge fixing YaðxÞ ¼ xa, which leads to the
UG action, also works at the level of equations of motion.
Since the equation of Ya is redundant, we can just focus on
the equation of themetric (105), which clearly reduces to that
of UG if we take YaðxÞ ¼ xa, thanks to (98).
We can now try to fix a gauge in which we reach GR. For

that purpose, we would make a Weyl transformation (77)
that allows us to reach the gauge in which

�
ωðxÞ

jgðYðxÞÞj
�1

njdetðMa
bÞj−2=n ¼ 1

⇔ ωðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðYðxÞÞj

p
jdetðMa

bÞj: ð107Þ

In this gauge, the action reduces to

Z
dnx

����det
�
∂YaðxÞ
∂xb

�����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðYðxÞÞj

p

× R

�
gcdðYðxÞÞ

∂YcðxÞ
∂xa

∂YdðxÞ
∂xb

�
; ð108Þ

and this is the GR action after applying an active diffeo-
morphism xa → YaðxÞ. Of course, this gauge transforma-
tion is illegal, in the sense that when performed at the level
of the action it does not lead to traceless equations of
motion, unlike what we find in the equations of motion
after fixing the gauge in them.

IV. TRINITY FORMULATION OF GR AND UG

For the sake of completeness and also to extend and
clarify a bit the results presented in [21], in this section we
will present the trinity formulation of UG. We will also
show how the trinity formulation of UG is different from
the trinity formulation of GR in the same sense that UG is
different from GR: due to the difference in the behavior of
the cosmological constant. For that purpose, we will argue
that introducing Stueckelberg fields in the trinity formu-
lation of GR still leads to theories that are not inequivalent
to the trinity formulation of UG, since we miss the global
degree of freedom encoded in the cosmological constant.
For this section, we do not perform the analysis of making
the trinity formulation of UG invariant under diffeomor-
phisms because it is more convoluted and it does not add
anything new into the discussion.
To present UG and its trinity formulation, let us begin

with unimodular gravity in the second order formalism:

SUGð2Þ ½g;ω� ¼
1

2κ2

Z
dnxωR½g̃� þ GBH; ð109Þ

where GBH represents the Gibbons-Hawking-York term
which is there to ensure that we have a well-defined
variational problem [22,23].
First of all, let us show that this action is equivalent to its

version in which we consider an arbitrary connection that
we impose to be torsionless and metric compatible,
resulting in the Levi-Civita connection. For that purpose,
let us consider the following action:

SUGð1Þ ½g;Γ;ω� ¼
1

2κ2

Z
dnxωg̃abRab½Γ�

þ
Z

dnxωλabcTa
bc½Γ�

þ
Z

dnxωλ̂abcQabc½g;Γ;ω�; ð110Þ

where we have introduced the torsion Ta
bc ≔ 2Γa½bc� and

the nonmetricity Qcab ≔ ∇Γ
c g̃ab (∇Γ being the covariant

derivative of Γ). Notice that we are defining the non-
metricity with respect to the auxiliary metric g̃, not
the dynamical metric g. In this way we ensure that the
action is Weyl invariant since it is built out from Weyl-
invariant objects. The fields λa

bc and λ̂abc are Lagrange
multiplier densities that enforce the torsionless and metric-
compatibility conditions. These constraints can be solved
and plugged back into the action. This automatically leads
to the action from Eq. (109).
Stueckelberg-ing Palatini equivalent of GR to have Weyl

invariance. In the same vein that we did for GR, we can
introduce a Stueckelberg field that realizes the Weyl
invariance. We want to make the theory invariant under
transformations of the form
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gab → e2ϕðxÞgab; ð111Þ

which are Weyl transformations realized in the standard
way. For such a purpose, we would need to introduce
everywhere a Stueckelberg field that compensates the
transformation on gabðxÞ, i.e., a field πðxÞ transforming as

πðxÞ → πðxÞ − ϕðxÞ ð112Þ

that we introduce replacing gab everywhere in the action by
e2πgab. In that sense, we consider the theory

SGRð1Þ ½g;Γ� ¼
1

2κ2

Z
dnx

ffiffiffiffiffi
jgj

p
gabRab½g;Γ�

þ
Z

dnx
ffiffiffiffiffi
jgj

p
λa

bcTa
bc½Γ�

þ
Z

dnx
ffiffiffiffiffi
jgj

p
λ̂abcQabc½g;Γ�: ð113Þ

This theory is clearly invariant under diffeomorphisms. If
we introduce the Stueckelberg field, we promote it to a
theory that is Weyl and Diff invariant. The resulting action
reads

SGR-Stð1Þ ½g;Γ; π� ¼ SGRð1Þ ½e2πg;Γ�: ð114Þ

We can now repeat the same exercise that we did before and
integrate the constraints. The torsion is trivially integrated,
and we simply get that the connection needs to be
symmetric. The nonmetricity is a little bit subtle, due to
the term π appearing in the constraint

∇Γ
cðe2πgabÞ ¼ 0: ð115Þ

This implies that the connection is compatible with the
metric e2πgab (not only the metric, gab). We can plug this
back into the action and the result is the Stueckelberg-ized
version of GR that is invariant under diffeomorphisms and
Weyl transformations. The inequivalence between this
version of GR and UG has been shown in Sec. III B and
it arises here also. Hence, the Palatini version of UG is
again different from the Palatini version of GR, in the sense
that there is an additional global degree of freedom.

A. Metric teleparallel equivalent to UG

We consider the most general even-parity scalar that can
be built with the torsion that is given by

T ½g;Γ;ω� ≔ −
c1
4
TabcTabc −

c2
2
TbacTabc

þ c3Tb
abTca

c; ð116Þ

where indices have been raised/lowered with g̃. We con-
sider the theory whose Lagrangian density is precisely this

term and impose that the Riemann curvature is zero as well
as the compatibility of the connection with the auxiliary
metric g̃. This leads to the following Lagrangian:

ST ½g;Γ;ω� ¼
1

2κ2

Z
dnxωT ½g;Γ;ω�

þ
Z

dnxωλbcdaRbcd
a½Γ�

þ
Z

dnxωλ̂abcQabc½g;Γ;ω�: ð117Þ

Let us begin again by solving the constraints. First of all,
we have the constraint that the connection is locally flat:

Rabc
d½Γ� ¼ 0: ð118Þ

Following [24], we see that the most general connection
which has zero Riemann curvature is the one associated
with an arbitrary matrix function belonging to the general
linear group GLð4;RÞ since the curvature is the field
strength associated with the connection. Hence, since the
trivial connection (all components vanishing) satisfies the
constraint, any GLð4;RÞ transformation of the trivial
connection will lead to another solution:

Γa
bc ¼ ðΛ−1Þad∂bΛd

c: ð119Þ

If we now impose the second constraint, we have:

∇Γ
ag̃bc ¼ ∂ag̃bc − Γd

abg̃dc − Γd
acg̃bd ¼ 0: ð120Þ

Plugging in the general connection from Eq. (119), we find
the constraint

∂ag̃bc ¼ g̃dcðΛ−1Þde∂aΛe
b þ g̃bdðΛ−1Þde∂aΛe

c: ð121Þ

The torsion is the antisymmetric part of the connection,
which for the connection in Eq. (119) is given by

Ta
bc ¼ 2ðΛ−1Þad∂½bΛd

c�: ð122Þ

In the absence of nonmetricity, we can relate the Ricci
scalar R½Γ� associated with the general connection Γ and
the Ricci scalar R½g̃� associated with the Levi-Civita
connection compatible with g̃ as

R½g̃;Γ� ¼ R½g̃� − T ½g;Γ;ω�ci¼1 þ 2∇̃dTd: ð123Þ

Note that the scalar T with c1 ¼ c2 ¼ c3 ¼ 1 is equivalent
to the Ricci scalar of the Levi-Civita connection, which
constitutes the UG Lagrangian. Therefore, this formulation
of UG is equivalent to the original formulation of UG,
Eq. (109), and hence is different from GR.
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B. Symmetric teleparallel equivalent to UG

We want to describe now everything in terms of the
nonmetricity. For that purpose, we introduce the most
general parity-even scalar that is quadratic in the non-
metricity

Q½g;Γ;ω� ≔ −
c1
4
QabcQabc þ c2

2
QabcQbac þ c3

4
Qab

bQac
c

þ ðc4 − 1ÞQb
baQc

ca −
c5
2
Qab

bQc
ca; ð124Þ

To this action we have to incorporate the Lagrange multi-
pliers that enforce the zero Riemann curvature condition
and restrict the connection to be torsionless:

SQ½g;Γ;ω� ¼
1

2κ2

Z
dnxωQ½g;Γ;ω�

þ
Z

dnxωλbcdaRbcd
a½Γ�

þ
Z

dnxωλabcTa
bc½Γ�: ð125Þ

For a torsionless connection, we have the following relation
among the Ricci scalar for the general connection and the
scalar Q with suitable choices of the parameters ci:

R½g̃;Γ� ¼R½g̃�−Q½g;Γ;ω�ci¼1þ ∇̃aðQab
b−Qb

baÞ: ð126Þ

Thus, the dynamics encoded by the tensorQ for this choice
of parameters is the same as the Ricci scalar for the metric g̃
for a flat connection: R½g̃;Γ� ¼ 0. Again, we find the same
result that we have found for the metric teleparallel
equivalent. Introducing the Stueckelberg fields would not
alter this conclusion in any way, and hence wewould obtain
a theory invariant under Diffs and Weyl transformations.
However, the global degree of freedom that we miss in the
GR version of the trinity formulation would still be lacking
in the Stueckelberg-ized version.
Up to this point, we have carefully presented the trinity

formulation of UG, and we have compared it to the trinity
formulation of GR. As we have advanced, there is a
mismatch between the global degrees of freedom: the
UG trinity displays the cosmological constant, whereas
the GR trinity contains no degrees of freedom. Hence, we
also conclude that the trinity formulation of UG is
inequivalent to GR (and its trinity formulation) because
of the global degree of freedom present in the theory, a fact
that does not seem to be emphasized enough in [21].

V. CONCLUSIONS

In this paper we have explored the relation between GR
and UG from the point of view of their gauge symmetries.
We have posed the question of whether there exists a parent

theory that is invariant under Weyl transformations and
diffeomorphisms such that GR and UG are suitable gauge
fixings of it. We approached the problem by introducing
Stueckelberg fields, in GR to make it invariant under Weyl
transformations and in UG to make it invariant under the
whole set of diffeomorphisms. We have found that the
resulting theories are not equivalent, and we have isolated
the obstruction that forbids one to find such a theory: the
cosmological constant that appears in UG as a global
degree of freedom, something that is tightly related to the
existence of a background volume form.
The difference between UG and GR points toward future

extensions of UG that may lead to an interesting phenom-
enology. The cosmological constant, as it appears in UG as a
global degree of freedom, contains no dynamics. However, it
is clear from our analysis that future works attempting to
make extensions of UG should go in the direction of giving a
dynamics to the cosmological constant [25,26]. It is this
approach that can give rise to a phenomenology that is
different from the phenomenology of GR as it is found
in [25]. Direct extensions of UG in the form of higher
derivative generalizations or additional fields lead to theories
that are equivalent to their associated higher derivative
generalizations from GR [1].
We have also taken the opportunity to present a careful

discussion of the trinity formulation of UG and clarify its
relation with the trinity formulation of GR. We have
developed some points regarding the inequivalence between
these formulations that were not completely clear in [21].
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APPENDIX A: EXAMPLES OF ILLEGAL
GAUGE FIXINGS

Let us study two examples of theories in which perform-
ing a gauge fixing at the level of the action and at the level
of the equations of motion do not lead to the same results.
This is what we will call an illegal gauge fixing. Let us
emphasize again that an illegal gauge fixing always refers
to imposing the conditions on the fields before performing
the variation on the action. By no means are we suggesting
that it is not possible to use these gauges in the equations of
motion. Notice, however, that it is also possible to impose
them at the action level as long as one introduces suitable
Lagrange multipliers to enforce the constraints (the gauge
fixing conditions). Their variation leads to a set of algebraic
equations equivalent to the equations found by performing
the gauge fixing directly in the equations of motion.

1. Electrodynamics in the Coulomb gauge
with matter content

Take Maxwell action coupled to a conserved current ja:

S ¼
Z

dnx

�
−
1

4
FabFab þ Aaja

�
: ðA1Þ

Its equations of motion can be directly computed, and one
finds

□Aa − ∂
að∂bAbÞ ¼ ja: ðA2Þ

Now we can always perform a gauge transformation such
that A0 ¼ 0. To see this, under a gauge transformation we
have

Aa → A0
a ¼ Aa þ ∂aα; ðA3Þ

and we can always choose an α such that A0
0 ¼ 0; for

example,

αðt; xÞ ¼ −
Z

t

t0

dt0A0ðt0; xÞ ðA4Þ

does the job. In this gauge Aa
∂a is a purely spatial vector

that we denote as A, and the equations of motion reduce to

∂tð∇ · AÞ ¼ j0; ðA5Þ

ð−∂2t þ∇2ÞA −∇ð∇ · AÞ ¼ j: ðA6Þ

The same is not obtained if we fix the gauge at the level of
the action though. In this sense (i.e., at the action level),
this gauge fixing is “illegal.” To see this, upon substituting
A0 ¼ 0 in the action we find

SjA0¼0 ¼
Z

dnx

�
1

2
ð∂tAÞ2 −

1

2
ð∇ × AÞ2 þ j · A

�
: ðA7Þ

If we vary this action, we notice that all the information
related to charge conservation [the Gauss law (A5)] is lost,
and we only get the second equation for A:

ð−∂2t þ∇2ÞA −∇ð∇ · AÞ ¼ j: ðA8Þ

Thus, this gauge fixing cannot be performed at the level of
the action in order to reduce the number of variables since
we lose information about the existence of a conserved
charge. Although it should be possible to still fix this gauge
at the level of the action and implement a variational
principle (by enforcing the Gauss law somehow), we will
still refer to these kinds of gauge fixings as illegal gauge
fixings.

2. Stueckelberg-ing Proca and the Lorenz gauge

Let us consider now a massive spin-1 theory:

SProca ¼
Z

dnx

�
−
1

4
FabFab −

1

2
m2AaAa

�
: ðA9Þ

We introduce a Stueckelberg field by making the replace-
ment Aa → Aa þ ∂aφ, giving the following action:

SProca−St ¼
Z

dnx
�
−
1

4
FabFab −

1

2
m2AaAa

−m2Aa
∂aφ −

1

2
m2

∂aφ∂
aφ

�
: ðA10Þ

This action is invariant under the following gauge trans-
formation that hits the two fields:

Aa → A0
a ¼ Aa þ ∂aα; ðA11Þ

φ → φ0 ¼ φ − α: ðA12Þ

The equations of motion of the theory are

□φþ ∂aAa ¼ 0; ðA13Þ

∂aFab −m2Ab −m2
∂
bφ ¼ 0: ðA14Þ

We now can fix the gauge in which ∂aAa ¼ 0, which is the
Lorenz gauge, since we can always find a gauge trans-
formation that ends up in that gauge. To see this, given a
field configuration Aa, upon a gauge transformation we
have that the divergence of the transformed field is

∂aA0a ¼ ∂aAa þ□α: ðA15Þ
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Hence, we can always find a α obeying the following
equation:

□α ¼ −∂aAa: ðA16Þ

The situation is completely different if we try to imple-
ment this gauge fixing at the level of the action. The whole
coupling between the Aa and the Stueckelberg field occurs
through a term that vanishes in the Lorenz gauge. To see it
explicitly, we can take the action and perform an integration
by parts to reach

SProca−St ¼
Z

dnx

�
−
1

4
FabFab −

1

2
m2AaAa

þm2
∂aAaφ −

1

2
m2

∂aφ∂
aφ

�
: ðA17Þ

If we fix the Lorenz gauge, we lose the coupling between
Aa and φ, reaching the following action:

SProca−Stj∂aAa¼0 ¼
Z

dnx

�
−
1

4
FabFab

−
1

2
m2AaAa −

1

2
m2

∂aφ∂
aφ

�
; ðA18Þ

and its equations of motion are clearly the decoupled
equations of the vector Aa and the scalar φ:

□φ ¼ 0; ðA19Þ

∂aFab −m2Ab ¼ 0: ðA20Þ

We conclude that again, this (partial) gauge fixing is not
acceptable since it does not lead to the same equations of
motion.

APPENDIX B: PASSIVE AND ACTIVE
DIFFEOMORPHISMS

In this appendix we discuss the difference between
passive and active diffeomorphisms in the presence of
background structures, in order to fix terminology and be
clearer in the subsequent sections. In a sense, as groups,
both active and passive diffeomorphisms are the same
group but simply realized in a different way on the fields.
On the one hand, passive diffeomorphisms correspond to

general coordinate transformations (these we are abbrevi-
ating in this paper as GCT). These transformations only
relabel the points of the manifold with new coordinates but
do not move them nor the fields. For a given tensor field, a
coordinate transformation affects both its components and
its functional dependency on the coordinates. In practice, a
coordinate transformation xa → x0a ¼ faðxÞ modifies a
tensor field Ta���

b���, as it is well-known, as

Ta���
b���ðxÞ ¼ ðJ−1ÞacjfðxÞ � � � Jdbjx � � �T 0c���

d���ðfðxÞÞ;

Jcajx ≔
∂fc

∂xa
ðxÞ: ðB1Þ

At the level of the action it is also important to keep in mind
how the product of dnx and a volume scalar density
transforms under these transformations. They do it in an
opposite way so their product is invariant:

sðxÞdnx ¼ s0ðfðxÞÞdnx0: ðB2Þ

On the other hand, active diffeomorphisms truly act
on the points of the manifold (abbreviated as Diff). With
respect to a fixed coordinate system, the fields must
transform so that they take the same value at the same
points. In practice one does the substitution3

Ta���
b���ðxÞ⟶Diff ðJ−1ÞacjfðxÞ � � �Jdbjx � � �Tc���

d���ðfðxÞÞ; ðB3Þ

where now in xa → x0a ¼ faðxÞ, fa should not be seen as
functions describing “how the coordinates of an arbitrary
given point change” but as the functions that, at a fixed set
of coordinates, give “the new coordinates of the considered
point after the transformation.” Of course, an additional
factor with a power of the determinant jJj must be added
to (B3) in the case of a tensor density. By default, the
functional expressions of all the fields are assumed to be
affected by these Diff.
In general, any theory written in a covariant way (i.e., in

abstract tensor notation) is invariant under both GCT and
also under Diff that hit all of the tensorial quantities
simultaneously. Because of (B2) the invariance of a
covariant action under GCT is guaranteed. To see that
such an action is also invariant under Diff we first perform
the substitutions (B4) for all tensors and densities but not
for the dnx, which remains the same (because coordinates
are not changing in an active diffeomorphism). As a result
we get (where s represent some scalar density and D a
certain domain in Rn)

S0 ≔
Z
D
LðxÞsðxÞdnx

⟶
Diff

Z
fðDÞ

LðfðxÞÞðsðfðxÞÞjJjÞdnx ðB4Þ

[if done with care for all the fields, the LagrangianL should
transform exactly as in (B4)]. Finally, we perform a change
in the variable of integration and work with ya ¼ faðxÞ

3Infinitesimally, the effect of an active diffeomorphism is
described by the Lie derivative δξTa���

b��� ¼ ðLξTÞa���b���. In par-
ticular, for the metric field, we have the following infinitesimal
transformation: δξgab ¼ ðLξgÞab ¼ ∇aξb þ ∇bξa.
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instead of xa. Then, from the dnx we will get an inverse
Jacobian jJj−1 so at the end, the action looks as

Z
D
LðyÞsðyÞdny; ðB5Þ

which is nothing but the original action S0 because y is just
a dummy variable.
Although mathematically different, the transformations

GCT and Diff are actually in one-to-one correspondence.
From now on we will adopt the passive point of view and
simply refer to this symmetry as GCT.

Besides all of this, the situation changes dramatically
when we consider background structures. We say that a
tensor density Ωa���

b��� is a background structure if it is not
affected by active diffeomorphisms. More precisely, such a
field transforms as a scalar (ignoring indices and density
weights),

Ωa���
b���ðxÞ⟶Diff Ωa���

b���ðfðxÞÞ: ðB6Þ

When there are background structures, the theory distin-
guishes between GCT and active diffeomorphisms [since
they preserve Ωa���

b��� in the sense of (B6)].
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