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We present a new method and implementation to obtain Bayesian posteriors on the amplitude parameters
fh0; cos ι;ψ ;ϕ0g of continuous gravitational waves emitted by known pulsars. This approach leverages the
well-established F -statistic framework and software. We further explore the benefits of employing a
likelihood function that is analytically marginalized over ϕ0, which avoids signal degeneracy problems in
the ψ-ϕ0 subspace. The method is tested on simulated signals, hardware injections in Advanced-LIGO
detector data, and by performing percentile-percentile self-consistency tests of the posteriors via Monte-
Carlo simulations. We apply our methodology to PSR J1526-2744, a recently discovered millisecond pulsar.
We find no evidence for a signal and obtain a Bayesian upper limit h95%0 on the gravitational-wave amplitude
of approximately 7 × 10−27, comparable with a previous frequentist upper limit.
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I. INTRODUCTION

Continuous gravitational waves (CWs) are long-lasting
periodic gravitational wave signals the detection of which
is one of the goals of gravitational wave astronomy.
The simplest way to produce continuous gravitational

waves that could be detected by the current generation of
detectors is through a varying mass quadrupole moment in
a fast-rotating neutron star. In the absence of precession, the
signal is expected at twice the rotation frequency and with
twice the rotational spin-down of the star. The position and
orientation of the neutron star influence how the gravita-
tional wave couples to the detector, and the position also
determines the observed gravitational-wave phase, through
the Doppler effect. All in all the signal is described by
pþ 4 parameters: the p so-called phase-evolution param-
eters (frequency and its first k derivatives, sky position and
binary orbital parameters if applicable) and the amplitude
parameters fh0; cos ι;ψ ;ϕ0g—intrinsic amplitude, orienta-
tion, polarization angle, and initial phase, respectively.
There are three broad classes of CW searches, depending

on the amount of knowledge available on the source. All-
sky searches [1–6] assume no information about the sources
and search over a broad signal parameter space. Directed
searches [7–13] focus on objects with known sky position

but have limited or no knowledge on their spin parameters.
Targeted searches [14–17] use electromagnetic observations
of pulsars to accurately infer the gravitational-wave phase-
evolution parameters.
Owing to the massive reduction in parameter-space

size compared to wide-parameter-space searches, a tar-
geted search using a fully coherent combination of all the
data, leading to the maximum possible sensitivity, is
possible [14,16,18,19]. Narrow-band searches around
expected signal parameters can typically also still be
performed at nearly maximum sensitivity [16,18].
Since the presence of a neutron star is assured and its

rotational frequency and spin-down are known, a null
measurement is directly informative about the gravita-
tional-wave emission of the source. Targeted searches of
known sources are, therefore, a crucial class of CW
searches.
Previously, only a single Bayesian method and imple-

mentation existed for amplitude-parameter estimation
on known pulsars [20], often referred to as the Time
Domain method or Heterodyne method. This method has
been successfully used for targeted searches for a long
time [14,16,21–26].
In this paper, we introduce a new expression and

implementation of the CW signal likelihood function, based
on the well-established F -statistic framework. Combining
this likelihood with standard stochastic (Markov Chain
Monte Carlo (MCMC) and nested) sampling methods
allows us to perform the Bayesian parameter estimation.
In principle, this approach can be used for any subspace of
the full CW parameter space, but in this first study we focus
on targeted searches, where all phase-evolution parameters
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of the source are assumed to be known, and the posterior is
computed over the unknown amplitude parameters only
(i.e., amplitude h0 and orientation angles fι;ψ ;ϕ0g of the
source). As an incidental benefit, this avoids convergence
difficulties for the samplers that can arise if the parameter
space is too large; e.g., see [27].
The paper is organized as follows. In Sec. II, we describe

the continuous gravitational wave signal model. In Sec. III,
we derive the F -statistic-based likelihood function,
describe its software implementation and discuss two tests
to validate the method. Section IV introduces and tests a
likelihood function that is analytically marginalized over
the initial-phase parameter ϕ0. Section V illustrates the
application of the method to the hardware injections in
Advanced LIGO data. In Sec. VI, we apply this method to
perform parameter estimation on a putative CW signal from
PSR J1526-2744 and obtain a Bayesian upper limit on h0
from this posterior. Section VII summarizes the method and
the results and discusses possible future work.

II. SIGNAL MODEL

We assume that the signal is a nearly monochromatic
CW of the form described in Sec. II of [28]. The signal
strain in the detector has the form

sðtÞ ¼ Fþðt; α; δ;ψÞhþðtÞ þ F×ðt;α; δ;ψÞh×ðtÞ; ð1Þ

where “þ” and “×” indicate the two gravitational-wave
polarizations, and Fþðt; α; δ;ψÞ and F×ðt; α; δ;ψÞ are the
detector antenna-pattern functions. These depend on the
relative orientation between the detector and the source as a
function of time t, and on the sky position ðα; δÞ of the
source and the polarization angle ψ . The two waveforms
hþðtÞ and h×ðtÞ are given by

hþðtÞ ¼ Aþ cosϕðtÞ;
h×ðtÞ ¼ A× sinϕðtÞ; ð2Þ

with the two polarizations amplitudes Aþ;× expressible as

Aþ ¼ 1

2
h0ð1þ cos2 ιÞ; A× ¼ h0 cos ι; ð3Þ

in terms of the overall amplitude h0 and the inclination
angle ι between the neutron star angular momentum and
the line of sight. The signal phase ϕðtÞ in Eq. (2) in the
detector frame at time t depends on the signal frequency f
and its derivatives fðkÞ (at some reference time), as well as
the source sky position, and—if the neutron star is in a
binary system—the binary orbital parameters b. As
already anticipated in the previous section, these are
collectively referred to as the phase-evolution parameters
λ≡ fα; δ; f; ḟ;…; bg.

As shown in [28] the signal amplitude parameters
fh0; cos ι;ψ ;ϕ0g can be reparametrized into a set of four
amplitude coordinates Aμ, defined as

A1 ≡ Aþ cosϕ0 cos 2ψ − A× sinϕ0 sin 2ψ ;

A2 ≡ Aþ cosϕ0 sin 2ψ þ A× sinϕ0 cos 2ψ ;

A3 ≡ −Aþ sinϕ0 cos 2ψ − A× cosϕ0 sin 2ψ ;

A4 ≡ −Aþ sinϕ0 sin 2ψ þ A× cosϕ0 cos 2ψ ; ð4Þ

such that the signal sXðtÞ of Eq. (1) at a detector X can now
be written in the form

sXðt;A; λÞ ¼
X4
μ¼1

AμhXμ ðt; λÞ; ð5Þ

where the detector-dependent basis functions hXμ ðt; λÞ are
given by

hX1 ðtÞ≡ aXðtÞ cosϕXðtÞ;
hX2 ðtÞ≡ bXðtÞ cosϕXðtÞ;
hX3 ðtÞ≡ aXðtÞ sinϕXðtÞ;
hX4 ðtÞ≡ bXðtÞ sinϕXðtÞ; ð6Þ

in terms of the signal phase ϕXðtÞ at detector X and antenna-
pattern functions aXðtÞ and bXðtÞ, for which explicit
expressions can be found, again, in [28].

III. THE CW LIKELIHOOD FUNCTION

A. The F -statistic formalism

The F -statistic is a partially maximized [28] (or margin-
alized [29]) likelihood ratio between two hypotheses,
namely a signal (HS) and a noise hypothesis (HN). The
signal hypothesis HS states that the strain data xXðtÞ in
detector X contains a signal sXðtÞ described by Eq. (5) in
addition to (Gaussian) noise nXðtÞ, namely,

xXðtÞ ¼ nXðtÞ þ sXðt;A; λÞ: ð7Þ

The noise hypothesis HN, on the other hand, assumes that
the data contains only (Gaussian) noise nXðtÞ, i.e., sX ¼ 0.
For ease of notation we define a multidetector scalar

product [30,31] between time series xXðtÞ and yXðtÞ as

ðxjyÞ≡ 2
XNDet

X

S−1X

Z
T

0

xXðtÞyXðtÞdt; ð8Þ

where NDet is the number of detectors and SX is the (single-
sided) noise power spectral density (PSD) of detector X
around the narrow frequency band of interest. For sim-
plicity this expression assumes fully stationary noise, but it
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can be easily generalized [31] to the weaker assumption of
stationarity over short time stretches TSFT, which is used in
the actual implementation.
With this definition of scalar product, it can be shown

[32] that the likelihood function for the Gaussian-noise
hypothesis HN can be written as

PðxjHNÞ ¼ κe−
1
2
ðxjxÞ; ð9Þ

where κ is a normalization factor. From Eq. (7) we can
therefore also express the likelihood for the signal hypoth-
esis HS for a particular signal sðt;A; λÞ as

PðxjHS;A; λÞ ¼ κe−
1
2
ðx−sjx−sÞ: ð10Þ

For the detection problem of deciding whether the signal
or noise hypothesis is favored by the data x, both the
frequentist as well as the Bayesian framework require
expressing the likelihood ratio L between the two hypoth-
eses, namely,

Lðx;A; λÞ≡ PðxjHS;A; λÞ
PðxjHNÞ

¼ eðxjsÞ−1
2
ðsjsÞ; ð11Þ

and substituting Eq. (5) for the signal s we can further
write this as

logLðx;A; λÞ ¼ Aμxμ −
1

2
AμMμνAν; ð12Þ

with implicit summation over repeated amplitude indices
μ; ν ¼ 1…4, and the definitions

xμðλÞ≡ ðxjhμÞ; and MμνðλÞ≡ ðhμjhνÞ: ð13Þ

The four numbers xμ are the “matched filter” scalar
products of the data x with the four CW basis functions
hμ of Eq. (6). The symmetric 4 × 4 matrix Mμν, often
referred to as the antenna-pattern matrix, quantifies the
response of the detector network for a particular sky
direction. For ground-based detectors (using the long-
wavelength approximation) the antenna-pattern matrix can
be found more explicitly [28] as

Mμν ¼ γ

0
BBB@

A C 0 0

C B 0 0

0 0 A C

0 0 C B

1
CCCA; ð14Þ

in terms of the coefficients

A≡ ha2i; B≡ hb2i; C≡ ha�bi; ð15Þ

where h:i indicates (noise-weighted) time-averaging. The
prefactor γ is

γ ≡ S−1Tdata; ð16Þ

which characterizes the amount and noise-level of the data,
in terms of the overall noise floor S, given by the harmonic
mean

S−1 ≡ 1

NDet

X
X

S−1X ; ð17Þ

and the total amount of data from all detectors, Tdata.
We discuss some of the statistical properties of the log-
likelihood ratio in Appendix A.
In practice the implementation uses detector strain data

in the form of short Fourier transforms (SFTs) over time
spans TSFT, and stationarity of the noise is only assumed
over these short spans; see [31]. For a total number NSFT of
input SFTs used from all detectors, the total amount of data
is Tdata ≡ NSFTTSFT.
As first shown in [28], using the reparametrization of

Eq. (5), the log-likelihood ratio equation (12) is a quadratic
function over the Aμ and can therefore be maximized
analytically:

F ðx; λÞ≡max
A

logLðx;A; λÞ ¼ 1

2
xμMμνxν; ð18Þ

where we definedMμν as the inverse of the antenna-pattern
matrix Mμν of Eq. (14). The same expression can also be
obtained as a partial Bayes factor by marginalizing the
likelihood ratio over Aμ for a specific (albeit unphysical)
choice of priors on the A, as shown in [29].
Following the standard F -statistic notation of [28], we

introduce the two complex quantities

FaðλÞ≡ 1ffiffiffiffiffi
2γ

p ðx1 − ix3Þ;

FbðλÞ≡ 1ffiffiffiffiffi
2γ

p ðx2 − ix4Þ; ð19Þ

and combining this with the explicit antenna-pattern matrix
of Eq. (14), we can obtain the F -statistic in the form

2F ¼ 2

D
½BjFaj2 þ AjFbj2 − 2CℜðF�

aFbÞ�; ð20Þ

where D≡ AB − C2 is the determinant of the nonzero
2 × 2 block in Mμν, and ℜ denotes the real part.

B. F -statistic-based likelihood

The F -statistic implementation in LALSuite [33] proceeds
by first computing the two complex numbers FaðλÞ; FbðλÞ
and the antenna-pattern matrix coefficients A,B,C, and then
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combining them via Eq. (20). However, we see from
Eq. (12) that these are the same ingredients needed to
express the full likelihood ratio. Specifically, we can express
the two terms in the likelihood as

AμxμðλÞ ¼
ffiffiffiffiffi
2γ

p
ðA1Fℜ

a þA2Fℜ
b −A3Fℑ

a −A4Fℑ
b Þ; ð21Þ

using real ℜ and imaginary ℑ parts of the Fa; Fb, and

AμMμνðλÞAν ¼ h20γðα1Aþ α2Bþ 2α3CÞ
≡ ρ2ðA; λÞ; ð22Þ

which defines the signal power ρ2, also known as the
squared (perfect-match) signal-to-noise ratio (SNR), and
with amplitude angle factors αiðcos ι;ψÞ

α1 ≡ 1

4
ð1þ cos2 ιÞ2 cos2 2ψ þ cos2 ι sin2 2ψ ;

α2 ≡ 1

4
ð1þ cos2 ιÞ2 sin2 2ψ þ cos2 ι cos2 2ψ ;

α3 ≡ 1

4
ð1 − cos2 ιÞ2 sin 2ψ cos 2ψ : ð23Þ

We can use Eq. (11) to express the signal likelihood
function as

PðxjHS;A; λÞ ¼ Lðx;A; λÞPðxjHNÞ; ð24Þ

where L can be computed from the byproducts of the
F -statistic calculation, namely Eqs. (21) and (22), and the
noise likelihood does not depend on any signal parameters.
Note that this likelihood, although derived from an

F -statistic framework, is fundamentally the same as that
used in the time domain method of [20], and is mathemati-
cally equivalent to the (non-noise-marginalized) expression
in Eq. (19) of [34].

C. Bayesian parameter-estimation framework

1. Likelihood

In a targeted CW search, the phase-evolution parameters
λ are assumed to be known from electromagnetic obser-
vations, while the amplitude parameters are generally
unknown. Using Bayes’ theorem, the posterior for the
unknown amplitude parameters A is

PðAjx;HS; λÞ ¼ PðAjHS; λÞ
PðxjHS;A; λÞ
PðxjHS; λÞ

; ð25Þ

where PðAjHS; λÞ is the prior on the amplitude parameters,
PðxjHS;A; λÞ is the signal likelihood derived in Sec. III B,
and PðxjHS; λÞ is the amplitude-marginalized signal like-
lihood. Using Eq. (24) and collecting all A-independent
factors into a proportionality constant k, this yields

PðAjx;HS; λÞ ¼ kLðx;A; λÞPðAjHS; λÞ; ð26Þ

where k can be determined via the normalization con-
dition

R
PðAj…Þd4A ¼ 1.

2. Priors

Typically we have weak or no prior information on the
intrinsic amplitude of the signal h0 and the angle param-
eters fι;ψ ;ϕ0g of the source.
If there are no observational constraints on the rotation

axis of the pulsar, we assume isotropic “ignorance” priors
on the angle parameters, following the standard choices
that we recap below [26,29,34]:

(i) The initial phase ϕ0 corresponds to the pulsar
rotation angle at a reference time and the ignorance
prior is uniform over the range ϕ0 ∈ ½0; 2πÞ.

(ii) The ignorance prior for the direction of the rotation
axis is also uniform ∈ ½0; 2πÞ and it translates to
uniform priors in cos ι∈ ½−1; 1� and ψ ∈ ½0; 2πÞ.

(iii) From Eq. (4) we see that ψ → ψ þ π leaves the Aμ

unchanged, and further that ψ → ψ þ π=2 flips
their sign, which can be compensated by ϕ0 →
ϕ0 þ π. We can therefore choose a gauge where
ψ ∈ ½−π=4; π=4Þ and ϕ0 ∈ ½0; 2πÞ.

When pulsar observations do constrain these priors, they
can be modified appropriately.
When it comes to h0, the choice of prior range

½hlow; hhigh� and probability distribution is less straightfor-
ward and ultimately depends on the specific case being
considered.
When targeting a known pulsar, one could inform the

hhigh from the observed pulsar parameters, namely, the
spin-down upper limit hsd0 of Eq. (34), which indicates
the maximal possible amplitude of a CW signal if all
the rotational energy lost by the pulsar was converted
into gravitational waves. One could, therefore, require
hhigh ≤ hsd0 .
If a previous targeted search has established an h0 upper

limit hUL0 for the pulsar, then, under the assumption that the
signal amplitude does not change over time, one could
require hhigh < hUL0 .
Another possibility is to use physical estimates on the

possible range of ellipticities of neutron stars, which is a
measure of the nonaxisymmetric deformation defined as

ε ¼ jIxx − Iyyj
Izz

; ð27Þ

where Iaa denotes the moment of inertia of the object along
axis a. One can then derive an h0 prior range from the
range of possible ε using (e.g., see [35])
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h0ðεÞ ¼
4π2GεIzzf2

c4d
; ð28Þ

where f is the CW signal frequency and d is the distance to
the pulsar. The maximum deformation εmax that the
neutron star crust can sustain before breaking also provides
an indication of the largest possible gravitational wave
amplitude.
Putting all these considerations together one could argue

that hhigh should be the smallest among (i) the spin-down
limit hsd0 , (ii) the amplitude corresponding to the largest
sustainable deformation, and (iii) the largest amplitude
compatible with previous observations.
Quadrupolar deformations can also be sourced by an

internal magnetic field B, and are predicted to be very
small. Usually, the smallest signal amplitudes correspond to
this sort of mechanism, so one could place hlow ∼ h0ðBÞ.
We refer the reader to [36] and references therein for further
discussion.
When a strong signal is present, the prior has minimal

influence on the resulting posterior, because the likelihood
will be strongly peaked. In the realm of a weak or
nondetectable signal, however, a uniform prior on h0 leads
to a more “conservative” (i.e., higher) upper limit com-
pared to a log-uniform distribution, as discussed in [37]. A
prior distribution uniform in the logarithm, on the other
hand, ensures a uniform sampling when our ignorance
spans several orders of magnitude. To alleviate the concern
that an upper limit based on log-uniform h0 priors is range
dependent, [37] showed that such dependence is, in
fact, weak.

3. Software

We use the “Demod” [38] implementation of the F -
statistic within the LALSuite [33] software library for the
Ffa;bg calculation. This uses Fourier transforms of the
data—the SFTs—computed over relatively short periods
of time, such that the instantaneous signal frequency does
not move during that time period by more than a Fourier
bin. The method involves the usage of the Dirichlet kernel
[31], which peaks at the frequency (k�) of the signal on the
SFT data. For efficiency, the kernel is approximated by
truncating it to a few bins (Δk) on each side of k� for
computational efficiency. We use a Δk of 8 bins unless
stated otherwise.
The signal likelihood function expressed in Sec. III B is

used with a stochastic sampler to compute the likelihood in
the fh0; cos ι;ψ ;ϕ0g parameter space weighted by the
prior. See [39] for a discussion on stochastic sampling.
For this, we use the Python library BILBY [40], specifically
the class core.sampler, to interface the different available
Python samplers with our likelihood function. Since the
latter is implemented in C99, we use the SWIGLAL
wrapper of [41] to pass it to BILBY in Python.

4. Timing

On an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz
processor, the median time for a single computation of the
likelihood function is ∼OðμsÞ with the ϕ0-marginalized
likelihood of Sec. IV needing around twice as much time
than the full likelihood. This processor is slower than the
one used by [20], where it was reported that their standard
likelihood takes 81 μs to be computed.
The full runtime of the pipeline depends on the size of

the prior space to probe and the number of CPU cores that
can be used in parallel. For the known-pulsar search
reported in Sec. VI, with 32-core parallelization, the search
in the four-dimensional parameter space took 154 seconds
whereas the search in the three-dimensional space (using
the ϕ0-marginalized likelihood of Sec. IV) concluded in
124 seconds. Note that we reused the narrow-banded SFTs
already prepared for the templated search that was reported
in [18], so the cost of data-preparation steps prior to the
actual search is not included here.

D. Tests

1. Recovery of a simulated signal

The first test of the method is to check if it correctly
recovers the parameters of a simulated signal. We test in the
absence of noise to avoid the signal peak in the posterior
getting shifted from the injection point.
We simulate a one-year-long signal of h0 ≈ 4 × 10−27 in

the H1 and L1 detectors and compute the likelihood
assuming a noise floor of 1 × 10−25=

ffiffiffiffiffiffi
Hz

p
, corresponding

to an SNR of ρ ≈ 100. The phase parameters of the signal
are given in Table I. The year-long data is converted into
SFTs of 10 s in this test. The nested sampler DYNESTY [42]
is used with options nlive ¼ 5000 and dlogz ¼ 0.01. The
priors for fcos ι;ψ ;ϕ0g are as described in Sec. III C 2.
For this test, we choose a simple uniform h0 prior in the

TABLE I. Settings of injection and recovery tests in Figs. 1, 2,
5, and 6: SFT time base, number of Dirichlet-kernel bins, sampler
options, and phase-evolution parameters of a fake signal. True
values of amplitude parameters are shown in the figures as orange
lines.

Parameter Value

TSFT (seconds) 10
Δk (bins) 8
nlive 5000
dlogz 0.01
Start of fake signal (global positioning
system (GPS))

1234567890.0

Reference epoch (GPS) 1242451890.0
Right Ascension, α (rad) 0.26
Declination, δ (rad) 0.30
CW Frequency, f (Hz) 100.0
CW Frequency Derivative, ḟ (Hz s−1) −1 × 10−15
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range [10−28, 7.1 × 10−27] centered on the h0 of the injected
signal.
Figure 1 shows the posterior distributions recovered by

our pipeline. The true amplitude parameters of the injected
signal, indicated by the orange lines, are accurately
recovered by the method at the maximum of the posterior,
as is expected in the absence of noise.
As discussed in Sec. III C 2, the signal is degenerate

under the transformation ψ → ψ þ π=2;ϕ0 → ϕ0 þ π. This
results in a bimodal posterior distribution in the ψ − ϕ0

subspace when the ψ value of the signal is close to the edges
of its [−π=4, π=4) range. A nested sampler like DYNESTY

tends to handle multimodal likelihoods better than an
MCMC sampler (see, e.g., [43,44]). In Fig. 2, the simulated
signal of Table I but with ψ ¼ −π=4 is recovered using
DYNESTY, with two modes in the posterior split by π=2
radians in ψ and by π radians in ϕ0. In Fig. 3, the same
signal is searched using BilbyMCMC [45] with the default
parameters. It recovers only one of the modes in the ψ − ϕ0

subspace. Owing to its better performance in multimodal
parameter spaces, DYNESTY is chosen as the default sampler
for the rest of this paper.

2. Percentile-percentile plots

A second test is the percentile-percentile (PP) plot, which
checks whether the Bayesian credible intervals on the
posterior distributions of parameters, as returned by the

FIG. 1. Corner plot showing the recovery of a simulated signal
(ρ ≈ 100) without noise. The true values of the signal amplitude
parameters are shown in orange. The blue vertical lines show the
16th and 84th percentile of the distribution, and together they
bracket a 68% credible interval in the high probability-density
region. The title for each 1D posterior plot shows the median
value and the 1-σ error of the parameter. The 2D isoprobability
levels contain ≈39%, ≈87% and ≈99% of the posterior area
corresponding to the 1-,2- and 3-σ levels of a two-dimensional
Gaussian distribution.

FIG. 2. The fake signal of Fig. 1 with the modification of
ψ ¼ −π=4 as recovered by the DYNESTY sampler. The multimodal
posteriors in ψ − ϕ0 parameter space are recovered by this nested
sampler.

FIG. 3. The fake signal of Fig. 1 with the modification of
ψ ¼ −π=4 as recovered by the BilbyMCMC sampler, with
nsamples ¼ 1000 under its default settings. The sampler recov-
ers only one mode of the posterior in ψ − ϕ0 space.
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method, correspond to frequentist confidence intervals
when sampling from the priors. To do this, we construct
10 000 fake signals whose amplitude parameters are drawn
randomly from their priors and whose phase-evolution
parameters are fixed to the values in Table II. The h0 prior
is log uniform in the range ½1 × 10−28; 4 × 10−26�. We
embed the signals in simulated Gaussian noise contiguously
spanning the three observation runs from the two Advanced
LIGO detectors (henceforth O1O2O3) with a noise floor of
9 × 10−24=

ffiffiffiffiffiffi
Hz

p
. The SFT time baseline is TSFT ¼ 1800 s.

The highest SNR of a simulated signal in this test is ρ ≈ 50.
We use DYNESTY with nlive ¼ 500 and dlogz ¼ 0.1, a less
stringent convergence criterion than used in the previous
section to reduce the computational cost of this test.

Ideally, x% of the total number of injections should fall
in the x% credible interval. This corresponds to a uniform
distribution of the measured credible intervals. We test that
this is the case with a Kolmogorov-Smirnov (KS) test,
quantifying the conformity of the two distributions with a
p-value (higher p-values imply better agreement). The
results are shown in Fig. 4.
Although the KS p-value shown in Fig. 4 for h0 is quite

small and indicates some level of systematic bias (which we
describe in Appendix B), we argue that in practice this does
not pose a critical issue. As can be seen in the figure,
although the h0 KS p-value is small, the absolute error in
the percentage of recovered signals is actually quite small.
For example, 89.2% of the signals fall within the 90%
credible interval for h0.

IV. ϕ0-MARGINALIZED LIKELIHOOD

A. Expression for the marginalized likelihood Lϕ0

As shown in [46] (Sec. 5.4), the likelihood ratio L of
Eq. (24) can be analytically marginalized over ϕ0.
This has several advantages for parameter estimation: it

avoids the bimodality of posteriors in ψ-ϕ0 discussed in
the previous section, and it leaves us with fewer dimensions
to explore numerically. For example, for the purpose of
calculating h0 upper limits, this tends to yield better
numerical robustness and accuracy. Additionally, the ϕ0-
marginalized likelihood provides a consistency check for
the results from full-likelihood.
From Eq. (4) we can explicitly factor out the ϕ0

dependence in the Aμxμ term that appears in the like-
lihood-ratio equation (24):

Aμxμ ¼ qs sinϕ0 þ qc cosϕ0

¼ q cosðϕ0 − φ0Þ; ð29Þ

with

qs ≡− sin2ψðx1A× þ x4AþÞþ cos2ψðx2A× − x3AþÞ;
qc ≡ cos2ψðx1Aþ þ x4A×Þ þ sin2ψðx2Aþ − x3A×Þ; ð30Þ

and tanφ0 ≡ qs=qc, and

q2ðx;h0;cos ι;ψÞ≡q2s þq2c

¼ 2h20γ½α1jFaj2þα2jFbj2þ2α3ℜðF�
aFbÞ�:
ð31Þ

We can see from Eq. (22) that the signal power ρ2 does not
depend on ϕ0, and therefore writing the likelihood ratio in
the form

Lðx;AÞ ¼ e−
1
2
ρ2eq cosðϕ0−φ0Þ; ð32Þ

TABLE II. Settings of PP plot tests in Figs. 4, 7, and 14: Time
span of data (Tspan), Time base of SFTs (TSFT), number of bins in
Dirichlet kernel (Δk), sampler options, and phase-evolution
parameters of fake signals.

Parameter Value

Tspan (seconds) 142739988.0
TSFT (seconds) 1800
Δk (bins) 8
Sampler dynesty
nlive 500
dlogz 0.1
Start of fake signals (GPS) 1126623625.0
Reference epoch (GPS) 1081123148.8
Right Ascension, α (rad) 1.13
Declination, δ (rad) 1.16
CW Frequency, f (Hz) 687.24
CW Frequency Derivative, ḟ (Hz s−1) −3.2 × 10−15

FIG. 4. PP plot with maximum ρ ≈ 50. We sample 10 000
injections from the prior range h0 ∈ ½10−28; 4 × 10−26� and the full
ranges as mentioned in Sec. III C 2 for the other amplitude
parameters. The legend shows the per-parameter KS p-values.
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makes the ϕ0 dependence fully explicit. Using the uniform
ϕ0 prior of Sec. III C 2, we can now obtain the ϕ0-

marginalized likelihood ratio Lϕ0 in the form

Lϕ0ðx; h0; cos ι;ψÞ≡
Z

2π

0

Lðx;AÞPðϕ0jHSÞdϕ0

¼ 1

2π

Z
2π

0

Lðx;AÞdϕ0

¼ 1

2π
e−

1
2
ρ2
Z

2π

0

eq cosðϕ0−φ0Þdϕ0

¼ e−
1
2
ρ2I0ðqÞ; ð33Þ

where we used the Jacobi-Anger expansion [47] to see thatR
2π
0 eq cosϕdϕ ¼ 2πI0ðqÞ, in terms of the modified Bessel
function of the first kind I0.

B. Tests

1. Recovery of a simulated signal

We test again the recovery of the simulated signal
(without noise) of Sec. III D 1, this time using the ϕ0-

marginalized likelihood Lϕ0 . The resulting posterior dis-
tributions on fh0; cos ι;ψg are shown in blue in Fig. 5,

indicating that these parameters have again been accurately
recovered by the method, as they coincide with the
maximum of the posterior.
Additionally, the posteriors on fh0; cos ι;ψg computed

by the four-dimensional likelihood of Sec. III and numeri-
cally marginalized over ϕ0, and by the three-dimensional
(ϕ0-marginalized) likelihood should be equivalent. To
show that this is indeed the case in the noiseless scenario,
the posteriors from the full likelihood are overlaid in purple
on the posteriors from the ϕ0-marginalized likelihood
in Fig. 5.
To test that this is true also when noise is present, we

search for the simulated signal of Sec. III D 1 with Gaussian
noise (with a noise floor of 10−25=

ffiffiffiffiffiffi
Hz

p
) using the two

likelihood functions. A comparison of the resulting poste-
riors is shown in Fig. 6. The ϕ0-marginalized likelihood (in
blue) and the full likelihood (in purple) produce posteriors
that are consistent with each other. The peaks of both sets of
posteriors deviate from the true values, as is expected in the
presence of noise.

2. PP plots

Next, we produce PP plots for the ϕ0-marginalized
likelihood, as was done for the full likelihood in
Sec. III D 2. We simulate signals with amplitudes from
the range h0 ∈ ½10−28; 4 × 10−26� in contiguous O1O2O3
data, with a maximum signal SNR of ρ ≈ 50, with the same
setup of Table II. The results with the per-parameter KS-test

FIG. 5. Blue: The posterior distributions on fh0; cos ι;ψg in the
absence of noise for the signal of Sec. III D 1, analyzed using the
ϕ0-marginalized likelihood. See caption of Fig 1 for description.
Purple: The posteriors from the full likelihood (same as in Fig. 1)
are overlaid on the posteriors from the ϕ0-marginalized like-
lihood to show that the analytical marginalization (blue) and the
numerical marginalization over ϕ0 agree with each other. The true
injection parameters are shown in orange.

FIG. 6. Recovery of the simulated signal of Sec. III D 1 by the
ϕ0-marginalized likelihood (in blue) and the full likelihood (in
purple) in the presence of noise. The true parameters of the signal
are shown in orange. The posteriors peak away from these true
values because of the presence of noise.
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p-values are shown in Fig. 7. The KS p-values are of
similar magnitude to the ones in Fig. 4.
However, a PP test with (unrealistically) high SNR

signals in the range of up to ρ ≈ 1000 reveals an increasing
bias in the h0 posterior, indicating a current limitation of the
method, affecting both the full as well as the marginalized-
ϕ0 likelihoods. We discuss this problem and its underlying
causes in Appendix B. However, such high signal strengths
are unrealistic in the present-day scenario of ground-based
continuous gravitational wave searches, and solving this
issue is beyond the scope of this paper.

V. RECOVERY OF HARDWARE INJECTIONS

We apply the parameter-estimation method on the CW
hardware injections present in the data of the Advanced
LIGO detectors. Namely, we search for 17 of the 18
hardware injections1 added in O3a data. We use both the
full likelihood of Sec. III as well as the ϕ0-marginalized
likelihood of Sec. IV, but for simplicity we present here only
the results from the latter. The phase-evolution parameters
of each search are fixed at those of the respective hardware
injection.We use isotropic priors on cos ι and ψ as discussed
in Sec. III C 2, and a log-uniform amplitude prior in the
range h0 ∈ ½10−28; 10−23�, which includes the true h0 of all
hardware injections. The DYNESTY nested sampler is used
with nlive ¼ 5000 and dlogz ¼ 0.01.
Note that here we cannot perform a PP-style consistency

test of how many injections are found within which
percentiles because the injections were not drawn from a
prior that we know. But given the small number of
injections, we would not expect to find signals in the tails
of the posteriors. Table III shows for the targeted hardware
injections, the number of standard deviations (σs) in the

distance between the maximum posterior point and the true
value of each of fh0; cos ι;ψg parameters, along with the
SNR of the maximum posterior point. In the case of
hardware injections, it can be difficult to identify the cause
of larger deviations, given there can be inaccuracies in the
actuation forces that generated the hardware injections, as
well as non-Gaussian noise artifacts in the data that can
affect the results. Therefore we also employ lalapps_knope
of [20] to recover the hardware injections and cross-check
against our results.
We show the posterior distributions on the amplitude

parameters of two hardware injections, Pulsar 3 and 6 in
Figs. 8 and 9, respectively.
Below we discuss the hardware injections for which the

recovered posteriors are far away from the true fh0; cos ι;ψg
values or are noninformative, ordered by how certain we are
of what caused the subpar recovery:
Pulsar 5 lies at 52.8 Hz where PSD plots indicate the

presence of non-Gaussian noise artifacts that degrade the
recovery.
Pulsars 14, 4, and 1 at 1991.1, 1390.8, and 848.9 Hz,

respectively, are recovered in H1 and L1 separately within
3σ credible region. The large Δs in the multidetector search
is likely due to an error in the actuation function used for L1
hardware injections, which impairs coherent H1-L1 injec-
tion recovery, especially for high-frequency injections (see
caption of Table IV in [48]). A discrepancy between the ϕ0

values in H1 and L1 is seen by both our method (using full
likelihood) and by lalapps_knope. Our posteriors on the h0
in single and multidetector searches for these injections are
consistent with those from knope.

FIG. 7. PP plot using the ϕ0-marginalized likelihood with
maximum ρ ≈ 50.

TABLE III. Recovery of hardware injections. For every Pulsar
we indicate the recovered SNR ρ of the injection and the distance
(Δ) between the maximum posterior point and the true value of
the parameters h0; cos ι;ψ , in terms of standard deviations (σs) of
their 1D posterior distributions.

Pulsar ID SNR (ρ) Δh0=σh0 Δ cos ι=σcos ι Δψ=σψ
0 29.9 1.35 1.42 2.83
1 102.1 2.48 7.25 1.70
2 32.6 2.67 2.57 0.93
3 24.8 1.89 0.76 2.35
4 97.3 15.49 9.28 1.70
5 74.3 3.10 1.50 0.89
6 86.1 1.30 1.01 1.51
7 31.1 1.90 2.77 1.76
8 26.0 0.87 1.47 0.95
9 32.9 0.15 0.38 0.15
10 55.6 2.48 2.65 2.40
11 17.2 1.77 0.41 1.21
12 18.4 1.08 1.00 0.86
13 0.4 0.25 0.13 0.24
14 84.8 29.99 12.05 2.88
16 68.2 0.28 0.11 0.83
17 21.1 0.49 0.19 0.33

1“Pulsar 15” at 2991 Hz is omitted for simplicity as there were
no SFTs readily available at that high frequency.
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VI. FIRST APPLICATION TO SEARCH
FOR EMISSION FROM PSR J1526-2744

As a first “real-world” application of the method, we
apply it to PSR J1526-2744, which was discovered in a
joint survey by TRAPUM and FERMI-LAT [18]. Among
the nine pulsars discovered in the survey, PSR J1526-2744
is the only pulsar whose timing could be solved, and the
solution is derived from 13 years of FERMI-LAT data that
overlap with the Advanced LIGO observation runs.
The pulsar parameters are given in Table IV. PSR J1526-

2744 is a binary pulsar at a distance d of 1.3 kpc with spin-
down upper limit of

hsd0 ¼
�
5

2

GIzzjν̇j
c3d2ν

�
1=2

≈ 7 × 10−28; ð34Þ

where ν and ν̇ are the pulsar’s rotational frequency and
spin-down, and Izz is its principal moment of inertia
assumed to be the canonical value of 1038 kgm2.
In [18] we reported single-template and narrow-band

continuous wave search results and frequentist upper limits
for the emission from the pulsar. Here we describe the
Bayesian targeted search for continuous waves from PSR
J1526-2744 using our new parameter-estimation pipeline.
We assume emission at twice the spin frequency of the
pulsar. This is the only mode of emission if the deformed
neutron star rotates about one of its principal axis (triaxial
aligned model of [49]) and one of the two dominant modes
in the more general triaxial nonaligned case of [49].
We use a coherent combination of data from the O1, O2,

and O3 observation runs [50] of the Advanced LIGO
detectors, gated to remove loud and short glitches in the
time domain [51], cleaned to remove narrow lines in the
frequency domain, and Fourier transformed with a time base
of TSFT ¼ 60 s.
The phase-evolution parameters of the search (includ-

ing the binary orbital parameters) are fixed at the values
prescribed by the timing solution from [18]; see Table IV.
We use a log-uniform distribution in amplitude in the
range h0 ∈ ½10−28; 4 × 10−22�, based on an ellipticity range

FIG. 9. Posteriors for the amplitude parameters of the hardware
injection “Pulsar 6” in O3a data. See Fig. 8 for details.

FIG. 8. Posterior probability distribution for the amplitude
parameters of the hardware injection “Pulsar 3” in O3a data
using the ϕ0-marginalized likelihood. The true values of the
hardware injection are marked in orange. The dashed lines
indicate the 5% and 95% quantiles of the distribution.

TABLE IV. Gravitational wave parameters of pulsar PSR
J1526 − 2744. The uncertainty on the last digit is written inside
the parenthesis, as in Table 3 of [18].

Parameter Value

Reference epoch (MJD) 59355.47
Right Ascension, α 15h26m45:s103ð2Þ
Declination, δ −27°4405:0091ð8Þ
CW Frequency, f (Hz) 803.4892041950(5)
CW Frequency Derivative, ḟ (Hz s−1) −1.142ð2Þ × 10−15

Orbital period, P (days) 0.2028108285(7)
Projected semi-major axis, ap (lt-s) 0.22410(3)
Epoch of ascending node, tasc (MJD) 59303.20598(1)
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of ε∈ ½1.9 × 10−10; 7.6 × 10−4� for this pulsar, probing
below the expected minimum ellipticity of millisecond
pulsars [52] and up to (slightly above) the maximum
neutron star ellipticity according to [53].
We perform two searches, one using the full-likelihood

function of Sec. III and one with the ϕ0-marginalized
likelihood function of Sec. IV. We use DYNESTY with
options nlive ¼ 5000 and dlogz ¼ 0.01, which produces a
posterior distribution with a total of 8516 samples across
the four amplitude parameters. In the case of the margin-
alized likelihood, using DYNESTY with the same options,
the posterior distribution contains 6532 samples over the
non-ϕ0 amplitude-parameter space.
The resulting posterior distributions on the signal

parameters are shown in Figs. 10 and 11. The h0 posterior
is consistent with expectations from noise. Since we do not
see a signal, the posterior distributions of other signal
parameters are noninformative. The 95% upper limit on h0
is obtained by integrating the h0 posterior up to the value of
h0 such that 95% of the distribution lies below it. The h95%0

value for PSR J1526-2744 is found as 6.5 × 10−27 from the
full likelihood and 6.7 × 10−27 from the ϕ0-marginalized
likelihood. This is a factor of 9.2 larger than the spin-down
upper limit of the pulsar and a factor of 1.9 smaller than the
frequentist upper limit reported in [18].

Bayesian and frequentist upper limits are answers to
different questions, and we do not expect them to be
numerically the same. The Bayesian asks: given the data
and the prior beliefs, what is the value such that with 95%
probability, the true value lies below it? In frequentism,
95% is the fraction of repeated trials where in the presence
of a signal with parameters at the upper limit value, the
procedure recovers the signal. See [54] for a comparison of
the two. A factor of ≈2 difference between the two upper
limits is not uncommon in known-pulsar searches, as seen,
for example, in [26] and Table 4 in [14].
This h95%0 upper limit can be translated into a 95% con-

fidence upper limit on the ellipticity ε:

ε95% ¼ 1.3 × 10−8
�

h95%0

6.7 × 10−27

�

×

�
d

1.3 kpc

��
803.5 Hz

f

�
2
�
1038 kgm2

Izz

�
: ð35Þ

VII. CONCLUSION AND DISCUSSION

New pulsars are being discovered at a rate faster than
ever before and when their timing solution is known they
can be targeted for continuous gravitational wave emission
with exquisite sensitivity. The most recent constraints are
approaching the regime of the expected minimum elliptic-
ity for neutron stars as proposed by [52], making targeted

FIG. 10. Bayesian posterior distribution on the amplitude
parameters of the continuous-gravitational-wave signal from
PSR J1526-2744 using the full-likelihood function of Sec. III.
The vertical blue lines show the 5% and 95% quantiles of the
distribution, bracketing a 90% credible interval for the parameter.
The title for each 1D posterior plot shows the median value and
the 1-σ error of the parameter.

FIG. 11. Bayesian posterior distribution on the non-ϕ0 ampli-
tude parameters of the continuous-gravitational-wave signal from
PSR J1526-2744 using the ϕ0-marginalized likelihood function
of Sec. IV. See Fig. 10 for details.
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searches ([14,16,55]) a very relevant class of continuous-
gravitational-wave searches.
In this paper we introduce and demonstrate a new

Bayesian parameter-estimation pipeline, combining well-
established machinery from the F -statistic, LALSuite, and
BILBY, in order to search for continuous gravitational
waves from known pulsars. Previously, only a single
Bayesian pipeline existed for such amplitude-parameter
estimation [20,56], which operates in the time domain
exploiting the knowledge of the signal to reduce the
amount of the data to be analyzed via heterodyning,
low-pass filtering, and downsampling. Our method works
in the frequency domain using only a limited bandwidth of
frequency of data decided by the evolution of the signal
frequency. At its core, this method is based on the
computation of the F -statistic [28,30], utilizing its com-
ponents to compute the likelihood function.
We use the method to estimate the amplitude parameters

of continuous-wave hardware injections in O3a data. Of the
17 hardware injections we targeted, the true fh0; cos ι;ψg
of all but 5 are recovered within their 3σ credible intervals.
Of these five, for 1 the posterior remains uninformative.
The true parameters of the remaining 4 lay in the tail of
their posteriors. We identify likely causes for this with the
help of lalapps_knope [20].
We demonstrate the method by searching for continuous

gravitational wave emission from PSR J1526-2744. The
search yields no evidence for a signal, and the obtained
95% confidence upper limits are consistent with those
derived with a frequentist method as seen in Fig. 12.
In this paper we assume a simple Gaussian model for the

noise, weighting the Fa and Fb quantities according to the
estimated noise on a per-SFT basis [31], but we do not

account for uncertainties in the noise-level estimation.
The other Bayesian known-pulsar search pipeline [20]
addresses this issue with an analytical marginalization of
the unknown standard deviation of the noise leading to a
Student’s t-likelihood function. Another approach would be
including the uncertainties due to the PSD estimation as
additional explicit parameters, and sampling over these
with certain priors. A similar approach could also be
applied to account for the calibration uncertainties of the
detectors, as already done with other types of gravitational
wave searches [57,58].
In addition to the targeted application on known pulsars

discussed in this paper, a future application of this method is
anticipated in the final stages of the follow-up of interesting
detection candidates from wide-parameter-space search
pipelines. We plan to characterize the method for this
application, allowing for additional exploration of (expected
small) uncertainties in phase-evolution parameters.
One limitation of this method is an underestimation of h0

in the ultrahigh SNR regime, which is discussed in
Appendix B. Full characterization of and potential solu-
tions to this problem lie beyond the scope of this paper and
will be considered in future work.
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APPENDIX A: STATISTICAL PROPERTIES
OF THE LOG-LIKELIHOOD RATIO

The log-likelihood ratio logL of Eq. (12) depends
linearly on the four xμ, which each follow a Gaussian
distribution when the noise is Gaussian. Thus logL is also
a Gaussian-distributed quantity. In the case of a signal
with amplitude parameters Aμ

s , the four xμ have expect-
ation values sμ ≡ E½xμ� ¼ Aν

sMνμ, and second moment
E½xμxν� ¼ Mμν þ sμsν. Therefore the expectation of the
log-likelihood ratio is

E½logL� ¼ Aμsμ −
1

2
ρ2; ðA1Þ

which in the perfect-match signal case Aμ ¼ Aμ
s and the

noise case Aμ
s ¼ 0 yields, respectively,

FIG. 12. 95% confidence upper limits on continuous gravita-
tional wave emission from PSR J1526-2744 derived via Bayesian
and frequentist methods. Blue: posterior distribution on h0
derived using the full-likelihood method (from Fig. 10), with
the 95% upper limit denoted by the dashed-blue line. Orange:
posterior distribution on h0 derived using the ϕ0 marginalized
likelihood method (from Fig. 11), with the 95% upper limit
denoted by the dashed-orange line. Dashed-red line: the frequent-
ist upper limit reported in [18].

ASHOK, COVAS, PRIX, and PAPA PHYS. REV. D 109, 104002 (2024)

104002-12



E½logL�As¼A ¼ 1

2
ρ2;

E½logL�As¼0 ¼ −
1

2
ρ2: ðA2Þ

The corresponding variance is found as

Var½logL� ¼AμE½xμxν�Aν − ρ2AμE½xμ� þ
1

4
ρ4 −E½logL�2

¼ ρ2 þ ðAμsμÞ2 − ρ2Aμsμ þ
1

4
ρ4 −E½logL�2

¼ ρ2; ðA3Þ

in both the noise and signal cases. Figure 13 shows a
histogram with the distribution for the noise-only case,
where agreement with the expected Gaussian distribution
can be seen.

APPENDIX B: LIMITATIONS IN THE
ULTRAHIGH SNR REGIME

For ultrahigh SNR (of the order of ρ ≈ 1000) signals, the
accuracy of the h0 estimation is compromised.
We set up a PP test with simulated signals of amplitudes

drawn from the prior range h0 ∈ ½10−25; 10−23� in data
spanning 10 days with a noise floor of 9 × 10−24=

ffiffiffiffiffiffi
Hz

p
.

The corresponding SNR range of the signals is
ρ∈ ½12; 1200�. We use the ϕ0-marginalized likelihood
and DYNESTY sampler to recover these signals and
produce PP plots as described in Sec. III D 2. In the
resulting PP plot, shown in Fig. 14, the h0 curve reveals a
systematic bias.

The biases in the h0 curve likely arise due to a
combination of approximations in the computation of
per-SFT quantities contributing to the F a and F b:

(i) the phase evolution of the signal during the time
span of an SFT is approximated by a linear term
[ϕðtÞ ¼ 2πft] and higher-order corrections are
neglected,

(ii) the antenna-pattern coefficients are assumed con-
stant during the time span of an SFT,

FIG. 13. Histogram of 10 000 log-likelihood ratio logL [given
by Eq. (12)] values for the noise-only case. The red line shows the
expected Gaussian distribution with a mean of −0.5 and a
standard deviation of 1.

FIG. 14. PP plot of ϕ0-marginalized likelihood with a maxi-
mum SNR of ρ ≈ 1200 for the included signals, using the default,
TSFT ¼ 1800 s and Δk ¼ 8 bins. The expected 1-, 2- and 3σ
deviations under the finite (N ¼ 1000) number of injections are
in the shaded grey region in decreasing opacity.

FIG. 15. Percentage mismatch in the signal power (ρ2) of 1000
simulated signals. The approximations in the computations of
per-SFT quantities induce an ≈3% bias in the posteriors of h0 at
TSFT ¼ 1800 s.
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(iii) the number of bins used in the Dirichlet kernel is
truncated to a finite number Δk,

(iv) uncertainties in the noise estimation and biases
inherent to the process [60].

To quantify these biases, we simulate 1000 noiseless
signals with SNRs in the range ρ∈ ½12; 1240� and compute
the percentage difference in their true signal power and that
computed by our codes. For TSFT ¼ 1800 s, the bias
amounts to ≈3% as seen in Fig. 15. In the low-SNR
regime, this 3% bias is absorbed in the width of the
individual posterior distributions, and its effect does not
show up in the PP plots. But in ultrahigh SNR signals, the
posterior distributions on the amplitude parameters are
narrowly peaked, and systematic biases, even at a few per
cent levels, begin to matter. This is seen in the PP plots
composed of simulated signals with very high SNR.
It is worth noting that ultrahigh SNR signals can emerge

in individual SFTs and contaminate the noise floor esti-
mation if their per-SFT signal power (ρ2) is large. For an
example SFT (with data x̃) we show the square root of the
rescaled periodogram r computed as

r ¼ 2

TSFT
jx̃j2; ðB1Þ

and the estimated ASD (using a running median with 101
bins) in the top panel of Fig. 16 for TSFT ¼ 1800 s and in
the bottom panel for TSFT ¼ 1 s.
We turn off the noise estimation and explore further the

effects of (i), (ii), and (iii) by producing PP plots using the
three-dimensional likelihood with varying TSFT andΔk. We
simulate 1000 signals with SNR in the range ρ∈ ½12; 1200�
with phase-evolution parameters of Table II. For every PP
plot we compute

δh ¼ 0.9 − CoverageðC:I: ¼ 0.9Þ ðB2Þ

where Coverage denotes the measured fraction of injections
in the credible interval, thus quantifying the bias in the h0
curve. The resulting figure, Fig. 17, shows variation of δh (in
color code) with TSFT and Δk. The h0 bias shows an overall
decrease with increasing Δk and decreasing TSFT.
A study of the interplay between (i), (ii), (iii), and

(iv) under different conditions of TSFT, Δk, signal power
and phase-evolution parameters is interesting for improving
the accuracy of h0 estimation in these SNR regimes, but
further study is postponed to future work.

FIG. 16. An example SFT of (i) TSFT ¼ 1800 s in the top panel
and (ii) TSFT ¼ 1 s in the bottom panel, when an ultra-high SNR
signal is present. The black-dashed line shows the true value of
ASD. In the top panel, the signal appears in the rescaled
periodogram (

ffiffiffi
r

p
, blue curve), and the estimated ASD in the

SFT (in orange) shows an elevation when the running median
window includes the bins elevated by the signal. In the bottom
panel, with TSFT ¼ 1 s, the per-SFT ρ2 of the signal is lower, and
does not affect the noise estimation.

FIG. 17. Effects on the PP plot h0 curve due to the varying time
base of SFTs and the number of frequency bins included in the
Dirichlet kernel function. In a PP plot, at C:I: ¼ 90% we expect
90% of the simulated signals to be recovered. The color code
shows the deviation from this expectation in terms of the
difference between the measured value for C:I: ¼ 90% and
90%. The PP plots contain 1000 signals in the SNR range
ρ∈ ½12; 1200� with a frequency of ≈700 Hz. Noise estimation is
turned off.
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