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Tolman-Ehrenfest effect for an ideal gas in a background
of time-independent electric, magnetic, and gravitational fields
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The statistical mechanics of an ideal gas of point particles moving in a time independent background
metric with go; # 0 is investigated. An explicit calculation shows that when there is no background
electrostatic or magnetostatic field the thermodynamic pressure, energy density, and thermally averaged
energy-momentum tensor depend on temperature and chemical potential only through the ratios T/ /goo
and po/+/goo- A background magnetostatic field does not change this, however with a background
electrostatic field the previous results are multiplied by a factor exp(—eA/T), which is an exception to the
strict Tolman-Ehrenfest rule because the system is open.
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I. INTRODUCTION

The Tolman-Ehrenfest effect [1-3] originated with the
observation that classical electromagnetic radiation in ther-
mal equilibrium with matter in a static background metric
(009, = 0 and gy; = 0) would have a thermally averaged
energy-momentum tensor whose temperature dependence
always occurs in the ratio 7'/ /9o, Where T} is spacetime
independent. There are a number of arguments [4—10] that
support the Tolman-Ehrenfest result for the static case
goj = 0. Reference [10] specifically treats the ideal gas.

There are arguments that the Tolman-Ehrenfest effects
is valid when gy; #0 [11-19]. A special example in
this category is that of a rotating Minkowski reference
frame [18,19] in which g,, is nonzero but there is no
curvature.

The Schwarzschild metric illustrates the issue. In the
original (7,r,0,¢) coordinates the metric is static:

@5 = (1220

r

(dr)?

S ) S ¥y
1—26M/r "

(1.1)

with dQ? = d6? + sin@d¢?. The thermodynamic functions
for an ideal gas in this background metric will depend on T,
only through the ratio 7y/+/1 —2GM/r. A change to the
outgoing Eddington-Finkelstein time coordinate [20,21]

2GM 4GM
(ds)* = ( - T) (dr)? + Tdt’dr

2GM
- (1 + ) (dr)? — r*dQ>.
r

Since g,, # 0 this metric is not static but stationary. It will
follow from the calculation described herein that an ideal
gas of point particles in this metric will be the same function
of To/+/1—-2GM/r.

The more important situations are those in which the
metric is stationary and cannot be changed to static by a
coordinate transformation. Though in this paper the metric
is not required to satisfy the Einstein field equations, there
are two familiar stationary metrics that do solve the field
equations and are not coordinate equivalent to a static
metric: the Kerr metric describing an uncharged, but
rotating black hole; and the Kerr-Newmann metric describ-
ing a charged, rotating black hole [22]. In Boyer-Lindquist
coordinates (t, r, 6, ¢) both metrics have g,, # 0. The Kerr-
Newman black hole is surrounded by a static electric field
and a static magnetic field. There are many other stationary
metrics that solve the field equations [23]. A limitation of
the present analysis is that equilibrium statistical mechan-
ics, whether done in the canonical or the grand canonical
ensemble, applies to situations in which the total number of
particles is conserved. Thus if the metric has an event
singularity statistical mechanics is only applicable well

(1.3)

' =t —2GMIn(r — 2GM) (1.2) outside the event horizon. . '
The Kerr-Newman example motivates extending the
. investigation to include arbitrary background electrostatic
changes the form of the line element to and/or magnetostatic fields and this leads to a specific
- exception to the Tolman-Ehrenfest effect. The exception can
"hweldon@WVU.edu be illustrated by a simple example. Consider an ideal gas of
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nonrelativistic point particles with no gravitational field. In
kinetic theory the distribution function for such a gas in
thermal equilibrium is

3/2
fO = ny i / e_Pz/zmTO'
mTO

(1.4)
The particle density no = [[d°p/(27)*]f, is spatially uni-
form. Suppose the particles have charge e and a time-
independent external electric and magnetic field is imposed.
After equilibrium is achieved the new distribution function
should satisfy the Vlasov equation [24]

g+v/—f+e(E+va)

l,
o " ox i op,

=0. (1.5

In a complete analysis E and B would be the sum of the
external fields and the internal fields; the internal fields
being determined self-consistently by solving Maxwell’s
equations with the charge density and current density
computed from the distribution function f. If the external
fields are much stronger than the internal fields produced by
the charged particles then E and B may taken as the external
fields, with time-independent scalar and vector potentials A
and A. The solution to the Vlasov equations is

2

3/2
f(x,p) =ny (—T> / e~ l(P=eA)?/2m+eAo)/ Ty (1.6)
miyo

where A, and A are evaluated at the position x(7) of the
particle and f has no explicit time dependence. The particle
density is

3
”("):/ éﬂl;f (x.p) = moeM/To. (1.7)

The factor exp[—eA/T,] will appear in other thermody-
namic functions: pressure, energy density, entropy den-
sity. (The gauge transformation that eliminates A, would
make A time-dependent and the distribution function
would no longer satisfy the Vlasov equation.) It will turn
out that in the presence of a stationary gravitational
field the same factor exp[—eAq/T,] will occur, whereas
the Tolman-Ehrenfest expectation would be a factor
exp[—eAg/goo/ To]. This is not in conflict with derivations
of the Tolman-Ehrenfest effect [4-18] which rely
n (%), = 0.

Throughout the discussion the particles are thermalized;
the internal electric and magnetic fields produced by the
charged particles are neglected and A, A are unthermal-
ized, external potentials.

The central problem is that the non-vanishing of g,
makes the Hamiltonian for a point particle moving on the
geodesics of a time-independent background metric rather
complicated. It will be shown in Sec. II that the particle

Hamiltonian in the absence of a background electrostatic or
magnetostatic field is

T

1 -
=0 {\/goo(mz—g’fp,»p,-)+(g°fpf)2+g‘)fpf . (1.8)

Here p;(7) are the canonical momenta and the metric
components are evaluated at the particle position x'(r).
Though covariant metric components g,; do not appear in
H, the minimum value of H occurs at p; = —mgjo/+/Joo
and the minimum energy is m1,/goo.

Outline. Section II derives the Hamiltonian H and
incorporates a time-independent background of static elec-
tric and magnetic fields. The Hamiltonian leads to the
partition function and the thermodynamic pressure in the
grand canonical ensemble in terms of two parameters T,
and a chemical potential p,. The pressure due to the
particles is of the form efolto—¢do) p,

Section III computes P explicitly and after using a
particular addition theorem for Bessel functions the final

result is
_ T
P () e (n5)
2” 9oo Ty

with no dependence on gy, or gji.

Section IV contains the computation of the thermally
averaged energy-momentum tensor. The particle contribu-
tion has the perfect fluid form

(1.9)

(Thaw) = ePWomM UV (p + P) — g*P].  (1.10)

Section V discusses the low temperature limit and how to
change from classical Boltzman statistics to Bose or Fermi
statistics.

Appendix A details the change of integration variables
from the canonical momenta to Euclidean momenta that
makes possible the integration in Sec. IIL.

Appendix B proves a result used in Sec. [V, namely that
the thermally averaged energy-momentum tensor may be
calculated from the variational derivative of the partition
function with respect to the time-independent metric:

51IIZ_ ﬁo\/g
89 2

[(Tg:n> + Tfleld} (111)

Because gy; # 0 it is not trivial to compute Hejq in terms of
the canonical momenta 7/ and the covariant fields F k- The
result is displayed in (2.23). The derivative of this
Hamiltonian density with respect to the metric, keeping
7/ and F; fixed, yields the usual Hilbert energy-momen-
tum tensor 7%, when the momenta are re-expressed in
terms of field strengths.
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Appendix C gives specific results for the energy density,
number density, and entropy density. At low temperature
the entropy density is given by a local form of the Sackur-
Tetrode equation.

Greek letters run over 0, 1, 2, 3; Latin letters over 1, 2, 3.
The metric signature is (+———) and g = |det(g,,)l;
and h =c = 1.

II. HAMILTONIAN AND PARTITION FUNCTION

The first step is to derive the expression (2.31) for the
thermodynamic pressure. The starting point is the action
for N particles in a background comprised of a time-
independent metric plus electrostatic and magnetostatic
fields [25]

S = —i{m/ G (X)) dXndxt, + e/Aﬂ(x,,)dxﬁ}

n=1

- dﬁ?Fﬂy(x)F’”’(x). (2.1)

The particle coordinates xi, depend on the time coordinate

xj or equivalently on the proper time dz, = g, (x, )dxhdxs.

With gy; # 0 the proper time is not time reversal invariant
and the particle motion is not time-reversal invariance.

A. Hamiltonian for N particles

The Lagrangian for N particles is a sum of identical
terms

N
Ly= ZL(xﬁl, vh)
n=1

where v, = dx//dx? and each term has the form

L(x',v/) = _m\/goo + 29,007 + gjv/ vk — e(Ag + Ajr).

The metric and the vector potential are evaluated at the
position of the particle x*(¢). The canonical momentum is

oL _ —m(gjo + guv")
00" \/goo + 2900 + gipv' 07

In terms of the velocity v/ = dx//dt this means that

Hpart = pjvj -L
_ m(goo + go;v’)
\/900 + 2g0iv" + gipv' 0"

tedy.  (2.3)

To express the velocity in terms of the momentum it is
convenient to define

P =pj+eA; (2.4)
Note that p; depends only on ¢ and A; depends on x'(r).
Equation (2.2) may be inverted to express the velocity in
terms of momenta

g® 0072 _ it 1)
\/ g"m* = pipy]
The matrix ¢/* is given by
‘ g0
b = gt —=— (2.6)
g
and satisfies

(For the special case in which g;; is diagonal, one can
calculate ¢* by Cramer’s rule and show that ¢/* is diagonal
and ¢/ = 1/g;;.) The Hamiltonian for each particle is

Hpart = FI-‘— eAO

1 .
= [\/ g% (m* = pipy) + gOfp/f:| - (28)

The minimum of H is m.,/gy, and occurs at p}- =
—mgjo/+/Joo- For small velocity H may be expanded as

gijUin
2400

_ AP

H= m./—goo{l - +2 [g‘” ] + (’)(v3)} (2.9)
Yoo

which shows that for small velocity if g,,v° # O the energy

is higher than for a static metric.

B. The equation of motion

Though equilibrium statistical mechanics does not
employ the equation of motion it is important to check
that the Hamiltonian does give the correct equation of
motion for the particles. Hamilton’s first equation

oH
L (2.10)
reproduces (2.5). Hamilton’s second equation
dp; OH
- =7 2.11
dt ox/ ( )

will yield the equation of motion. It is convenient to employ
the proper velocity
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dx*
# = — 2.12
= (2.12)

with components

J

W = v _ (2.13)
V900 + 290" + gigv'v”
0 1

u (2.14)

\/900 + 2g0;0" + gigv'v”

Since u, = g,,u", reference to (2.2) and (2.3) shows that

pj=—mu;—eA; (2.15)

H o = mug + eAy. (2.16)
Hamilton’s second equation (2.11) becomes
du; dA; ou 0A
J j 0 0

mdt+edt m()x/+edx/ ( )

A simple way to compute the spatial derivative of u is to
apply 0/0x’ to m* = ¢"“u,u,, which results in

auo 1 v

Multiplying (2.17) by u° and using u°(d/dt) = d/dr gives

du; 1
m d—;—i(djgm,)u”u” = eFj,u”. (2.19)
As yet there are only three equations. To obtain the
fourth contract (2.19) with u/ and use u/(du;/dr) =

—u°(duy/dr) to obtain

duo .
m—— = eFyu.

- (2.20)

The four components of (2.19) and (2.20) are summ-
arized by

du; 1
m(d—;—i(ﬁﬂgﬂy)u”ug = eF,,u". (2.21)

The contravariant form of this equation is

du* .
m(——+,g,u'u” | = eF*“u,, (2.22)

dr

which is the correct equation of motion for a particle in a
background electric/magnetic field [26]. Solutions for the
particle trajectories are obtained in [27].

C. Hamiltonian for the background
electric/magnetic field

The Hamiltonian for the background electromagnetic
field is also needed. The canonical Hamiltonian density
given by Noether’s theorem in terms of the canonical
momenta 7/ = 0Lgeq/0(0pA;) and canonical fields F; is

e matgy 7 F g
field — —
1e 2900\/§ gOO
9 : :
+ \/T_ijFfmC]kam + ﬂ]ajAO (223)

as shown in Appendix C.

D. Partition function for the ideal gas

In a gas of N particles the Hamiltonian for each particle
is of the form (2.8) and is a function of each particle’s
contravariant position coordinates x!, x2, x* and its covar-
iant momenta p{, p,, p3. The Hamiltonian for N particles is
the sum of the single particle Hamiltonians:

N
Hy =" Hpy(xi, pl) (2.24)
n=1

and the total Hamiltonian is Hy + [ d*xHpe. The
Boltzman factor e #ofv is a product of N exponentials.
The integration of each factor e #fmr over its six-
dimensional phase space is the same and so the partition
function for N particles is

1 dxd’p N
— _/} H art _ﬂ Hle
NN [/ @ap ¢ ] e 223)
(Because of the convention # — 1 the denomina-

tor h* = (2zh)® - (27)3.)
In the grand canonical ensemble the partition function
depends on the chemical potential p:

7 = Z(eﬁnﬂo)NZN’ (2.26)
=0
and therefore
Pxd®
InZ = / : 3p e~PolHpnto) — By Hipg. (2.27)
(27)

The momentum integration variable may be shifted from
the canonical p; to p’

P =pj+eA; (2.28)

this removes A; from the partition function as expected
from the Bohr-Van Leeuwen theorem [28].

104001-4
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The partition function is directly related to the thermo-
dynamic pressure [29]

InZ = p, / d*x\/gP. (2.29)
Therefore
1
P= Pparl - %Hﬁeld’ (230)

where the pressure exerted by the gas of particles is

P :E d3p/
part \/§ (2][)3

The next step is to perform this integration.

e_ﬂO (Hpan_ﬂ()) .

(2.31)

III. CALCULATION OF THE PARTICLE
PRESSURE

The terms in Hp,, involving u, and eA, have no
momentum dependence and so

szm — pPoluo—eAo) p (31)

_ T d3 ! B
P==0 [ L onti, (3.2)

v9J (27)
The dependence on u, may be written
Voo H
Pomo = =3 (33)
Ty /900

and is in agreement with Oscar Klein’s argument [30] that
both T, and p, will always occur divided by /gg. The
factor exp[—eA( /Ty in (3.1) is an exception to the Tolman-
Ehrenfest rule and will remain in the final result. This
section will show that P is given by (3.25) and is a function

only of the ratio Ty/+/goo-

A. Euclidean momenta
To compute P it is necessary to change the integration
variables from p;. with metric gj; into Euclidean momenta

k,. The details of this transformation are given in
Appendix A. The Hamiltonian becomes

! vVm?+k>+s-k|,

H= (3.4)
/goo
where s is a Euclidean vector with length squared
s* = go;¢"° = 1 = goog™- (3.5)

The minimum of A occurs at k, = —ms,/V' 1 — s> and the
value of the minimum is still m,/ggy. The change in
integration variables requires

dp' =/ gg"d’k, (3.6)
which leads to
_ Bk _
P—T\/OO/— ~hoHt, 3.7
0 g (2”)3 e ( )

B. Dimensionless variables

The change to a dimensionless integration variable
u = k/m and introduction of a dimensionless parameter

m
z= . 3.8
o (3:8)
converts the exponent in the integrand of (3.2) to
BoH = z[V1+u?+s-u]. (3.9)
The pressure integral is
_ m* [ du -
P(s,z) =— —PoH, 3.10
0= [ S (3.10)

It appears that P is a function of the two variables s and z.
To show that it actually depends only on a particular
combination of these two variables requires performing the
integration. The angular integration gives

4

P(s,z) = m—/w udu e=*V''* sinh[szu].  (3.11)

27%57% Jo
Next expand the sinh in an infinite series:

_ mt &

Iy
P(s,z)= d z\/ 1+u 2f+2_ 3.12
(s,2) 2r224= (20 +1)! Jo e ! (3.12)

The necessary integrals are modified Bessel functions of
the second kind [31]:

3

) ue_zml/ﬂ +2:M % £+1
/0 d ’ rd) (Z> Kyn(z) (3.13)

and the pressure becomes

P(s.z) = %i% 6) HKM(Z). (3.14)

By using the asymptotic value of K,_,(z) either for low
temperature (z > 1) or for high temperature (z < 1) one
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can perform the sum on # and obtain the leading term and
the sub-leading term in either regime and confirm the
Tolman-Ehrenfest effect to that order. This suggests that the
infinite series representation can be simplified.

C. Simpler expression for P

It will turn out that the entire series is only a function of
the single variable

Z\/I—szzm”goo.

3.15
. (3.15)

To show this define the derivative combination

0 1 0
D=z— ——s | = .1
Z0z+<s s)&s’ (3.16)
with the property

D(zvV1- s2) =0. (3.17)

Application of D to (3.14) gives

o~ 235 e 1) (2) ko

s2f —
+oe-2) @f Keald)

+ Zf z =2 d
7 “dz

The last line is simplified by using the identity [31]

Kf+2(2)]- (3.18)

d
ZCTZKKJQ(Z) = (£ +2)Kpin(z) —2Kpis(z).  (3.19)
All terms proportional to K,,, combine:
~ mt L 22 2\ -2
DP(S, Z) = g 2(5) Kf+2(Z)
m (&) -2
8—2 (—) Ko@) (3:20)

The two series cancel and thus DP(s, z) = 0 and so P(s, z)
is a function only of the single variable (3.15):

4

P(s,z) = 8m—ﬂ2‘1’(z\/ 1—s%), (3.21)
or equivalently
fg7<)_gﬂmg:wmm_ﬁy (322)
0

To obtain an explicit form for ¥, set s =0

(%)2 Ky(2) = (). (3.23)

Z

This determines the function ¥ and so for s # 0

4 )
Pls,z) = M Kalevl =)

S22 [V1-sP

In more physical variables

_ T Vi
P= ( 0 ) K, <m—g°°).
2n° v 900 T
(That the two expressions (3.14) and (3.25) for P are equal
amounts to

(3.24)

(3.25)

1 s (772 K, (zV1 —s?)
12;7(5) Kpia(z) = [2' 1—s2]2 ) (3.26)

which is a known addition theorem for Bessel func-
tions [32].)

D. Energy density

For later purposes it is convenient to compute the
quantity

ap' oP -
HePoH =T, — — P.

f (2z)? T
Using (3.19) gives

p+P= ) <\/];%)K3< @>. (3.28)

5= (3.27)

IV. THE ENERGY-MOMENTUM TENSOR

Appendix B shows that the thermally averaged energy-
momentum tensor may be computed from the variation
derivative of the partition function. Eqgs. (B7) and (B24)
give

51nZ_

ﬁO g v
59 - 2\/_ {<T11;an> + Tﬁeld] (4.1)
v
Since InZ = [ d3x\/§P this is equivalent to
’ 2 d(\/gP)
(T + Tty == =2V (4
\/_ ag;w

Using /gP from (2.30) gives

104001-6
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2 0(/5Ppar)

Th ) = — 4.3
(T = === (43)
v 2 0H field
Iflleld \/— agt (44)
uv

A. Field EMT

In Appendix B, H;;q is expressed in terms of canonical
momenta 7/ and canonical fields F jx with the result (B19).
The partial derivative (4.4) is computed keeping 7/ and F ik
fixed; when the result is re-expressed in terms of the fields
the result is the usual Hilbert energy-momentum tensor:

v

Thea = —FrFPg,, + 9#7 FsF7. (4.5)

B. Particle EMT

To implement Eq. (4.3) begin with P, = efolo=¢4) p,
Since P depends only on the gy, component of the metric
the derivative in (4.3) is

oP _
—2808 5 ——g"P

(3
Joo

part> — ePoluo—eAo)

(4.6)

As shown in (3.24) the gy, dependence of P occurs only
through the ratio Ty/\/goo and so a gy derivative is
equivalent to a T derivative:

oP oP _
900 900 0 T, p+ (4.7)
Therefore
(They) = eﬁo%-mo){&g&” (P gJ(:o P) g””P} (4.8)

The thermal average of the particle velocity is zero because
v/ = 0H e /Op -

3/
/ (6; l;?’ /Uje_/}(](Hpan_ﬂO) — O'
T

(4.9)

The normalized velocity vector of the ideal gas is therefore
U* = 8,/+/Go0. Which allows (4.8) to be expressed in the
perfect fluid form

(Tl = hbame) (VAL + P)

= {UﬂUD<ppan + Ppart)

_ guvp}

— 9P} (4.10)

Because of the external potential Ag(x) the covariant
divergence of (T%,,) is not zero:

v Ui e
(Thar) _QJT—()(ajAo)- (4.11)

V. DISCUSSION

A. Low temperature example
The spatial dependence of P comes entirely from g, and
so P is constant on surfaces of constant gq,. The full particle
pressure P, = e/0#0=¢A)P has somewhat different iso-

baric surfaces if Ay # 0. The result (3.25) for P may be
evaluated when Z = m,/qgyy/To > 1 using the asymptotic

behavior K,(Z) — e™%\/x/2Z:

3/2
Poar = i ( mTo > / ePolmo—eAo=—m/go0) 1
V900 \27+/9o0

The resulting thermodynamic functions (number density,
entropy density, and energy density) are displayed in
Appendix C. The gradient of the pressure is

(5.1)

5 9j900
+ aAO]—— .
! 4(900)3/2

For the Kerr-Newman metric in Boyer-Lindquist coordi-
nates #, r, 9, ¢ both gy, and A, depend on r and 0. At large
distances the 6 dependence is negligible

d;P 5

Ppart 2 900

2GM

~l— 5.3
Yoo , (5.3)
Q

Ay~ = 5.4
o5 (54)

and the pressure gradient is radial:

dP GMm  eQ
part

|l -———+— 55
dr n< Z TR > (5:5)

after using fyPp & n and neglecting the O(T,/m) cor-
rection. The first term in the parenthesis is the gravitational
force exerted on the particle by the central mass; the second
term is the electrostatic force on the particle.

B. Quantum statistics

The calculations presented are for distinguishable point
particles obeying Boltzman statistics. If instead the par-
ticles are indistinguishable and obey either Bose-Einstein
or Fermi-Dirac statistics the particle pressure becomes

po— —o [ 4P
part — é\/g (277:)3

In[1 — Ee~PolHpn—to)] (5.6)
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where £ =1 for Bose statistics and £ = —1 for Fermi
statistics. When expanded in a series

Z geﬂo Ho— er / 4> p
(27)°

the integral is the same as (3.2) except that f3 is replaced by
bp,. The value of the integral may be read off from (3.25)

—bﬂol:l

(5.7)

m? & T, V900
- Bo(ro—eAy)\b
Prpan M%ZFE” )(A@Jle’%)
(5.8)

and satisfies the Tolman-Ehrenfest rule except for the eA,
dependence. If the ensemble contains particles and anti-
particles the total particle pressure requires adding to (5.8)
another such series with p replaced by —uy. A simple

check of (5.8) is that of massless bosons with g = Ag =0
in which case
77,'2 ( TO >4
P = — . 59
part 90 ,_g()O ( )

APPENDIX A: CHANGE TO EUCLIDEAN
MOMENTA

The calculation in Sec. III of the partition function
requires integrating exp[—f,H| with respect to the canoni-
cal momenta dp;dp,dp;, where

00 |:\/900 ljp

with ¢/ as defined in (2.6), and p’; = p; + eA;. The spatial
metric g;; may be expanded at any point x' in terms of three
Euclidean frame vectors

D+ 9P|, (A1)

3
9jk = — Zf(a)jf(a)kv (A2)
a=1

which are the analogs of vierbeins in three-dimensional
space. (The minus sign arises because the eigenvalues of g
are negative.) The contravariant form of the frame vectors is

floy=="fa) (A3)

Equations (A2), and (A3) imply

3
Y Fiofwi =5
a=1

Flaf )i = 8a
Z Figfly = —cl. (A4)
The quadratic term in H is
—cYpip; = Z(fl )(f P/) (A5)
a=1
which suggests introducing Euclidean momenta k,,
ko = £l P} (A6)

(This is not a canonical transformation: the defining
Poisson bracket {x', p;} = & implies {x'.k,} = f(,) H
is now

S T I v o
H= gOO |: gOO(mZ + k2) + QOJ Zf(a)jka] . (A7)
a=1

Define a Euclidean vector

0j .
s, = o (8)
g
with length
3 .
2= s = 900” =1 goog™.  (A9)
a=1
The Hamiltonian has the simple form
_ 1
H:\/W[\/mukus-k]. (A10)
g
The inverse of relation (A6) is
3
pPj= Zf(a)jka’ (All)
a=1

which gives for the Jacobian of the change from p) to
Euclidean k,
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00

. NBr— |9
d p = |det(gz.))|d k |det(9”y)|d ¢

gg™d’k (A12)

where g = |det(g,,)|. These results yield (3.7).

APPENDIX B: 7" FOR PARTICLES
AND BACKGROUND FIELD

1. Calculation of 7%

part
The energy-momentum tensor for the particles may be
calculated using the Hilbert variational principle:

from H

V9 5
_7 ISart ):5gﬂl/(x> dx/OLpart(xl)
oL,
:53(x—x’)[ "““] (B1)
()gm, Ao X1

where the metric variation is performed before the equations
of motion are imposed on the particle velocity and position.
The following steps depend three facts: (i) Ly, does not

depend on the momentum p;, (ii) Ly = p jdoxj — Hpun
and p jaoxf does not depend on the metric, (iii) H,, does
not depend on the velocity dyx':

[6me] B [ame} (B2)
agﬂl/ dpx’ X' aglw aoxi-xi,P/
oH ]
= - |2 (B3)
|:ag;w 0ox' ' .p;
oH
5., B4
w 1x',p;
Therefore
\/_ v oH art
I &(x—x')| == B5
o Tha() = Fx=x) | T2 (B9)
The partition function for the particles
Pxd’p _
anpaIt —/ (2”)3 e ﬂO(Hpan /40) (B6)

has a variational derivative

&’ dx w
f/ PAX g p=ola) — (BT)

oln Zpart
3G, (*'

_/}0 ( part _”0)

This is the starting point of Sec. IV.

Explicit form for Ty It is not difficult to explicitly
differentiate H,,,; with respect to g,, by considering the
metric dependence of the covariant particle velocity u,.
From (2.15) u; is independent of the metric because p; and
A; are. The derivative of g“ﬂuauﬂ = 1 with respect to g*¥
yields

ouy u,u,
— = ) B8
ag” 2u® (B8)

This gives the derivative of Hp, = mug + eAg. A change
from the contravariant metric to the covariant metric gives

ut u

MO

VT = 8 (x = x)m (B9)

as expected.

2. Calculation of T%;,,; from Hy;eq
a. The canonical Hy;e1q

Because gy; # 0 itis not trivial to compute Heiq in terms
of the canonical momenta 7/ and the magnetic field F ;.
The starting point is the Lagrange density

g
_V9 FFopd“q”,

y (B10)

*Cfield -

which implies a canonical momentum

aﬁﬁeld _

(60A) (B11)

~VGF
and the Hamiltonian density

- g
Hﬁeld = ﬂ'jaOAj + %FaﬂFaﬂ
— 2iFy; + ‘/TgFaﬂFaﬂ + 10,4y (BI2)

To express this in terms of canonical variables requires the
identity

gt = —/gF%g; = —\/99% F ,; (B13)
which may be solved for F;:
Fo:i[—gfL”k+ngf0} (B14)
j = 00 NG J

This allows the first term in (B12) to be expressed in terms
of momentum and covariant field strength. For the second
term in (B12) use the quantity

104001-9



H. ARTHUR WELDON

PHYS. REV. D 109, 104001 (2024)

aO 0
cH = g™ — gﬂ (B15)
g%
to obtain
FOa F()y
FogF = F e chF,, + 2= (B16)

gOO

Because ¢ is zero if either & = 0 or 4 = 0 and F** is zero
if @ = 0 the identity simplifies to

FOjgij()k

FopF% = Fycl’ " F 221 (B17)
g

This allows the second term in (B12) to be expressed as

k
5 00?/’5+‘[F I ckmF .

The resulting Hamiltonian density in terms of canonical
variables is therefore

V9 1o pap
TFaﬂF -

(B18)

”j”kgjk +”jF jkgko
2900\/5 900

+ \/Tgijchff ckm 4 1i0A,.

Hieta = —

(B19)
A simple check is that 9yA; = 0He1q/07;.

b. The metric derivative of Hy;c1q

The canonical momenta 7/ and the magnetic field F ik do
not depend on the metric. The metric dependence of Heq
due to /g is easy to compute from (B19) and gives

aHﬁeld _ _9 v of
{aﬂ (4 FosF (B20)

after using (B 18) to convert canonical momentum back into
fields. To compute the metric derivative with /g fixed

aHfield

o (B21)

N

is more difficult and must be calculated for the separate
cases puv = 00, jO, jk. After computing the metric deriva-
tives it is necessary to use the relation

FO% — gO"Fﬂjcjk (B22)
which follows from (B13). The final result is
OHiela g x g VE R
Tg”i = _§ lla U/}g(ﬂ+ Z F 2 (B23)

A change from contravariant ¢"* to covariant g,, and the
relation In Zgey = —foHfeqd give

6lnZ ﬁeld

\[ HY
T
S D ﬂ 07~ * field"

(B24)

APPENDIX C: THERMODYNAMIC FUNCTIONS

1. Exact relations
a. Thermodynamic quantities

The thermodynamic pressure due to the particles is

Ty [ &°p'
Ppart — _0 p3 e_ﬁO(Hpan_/"O). (Cl)
Vg (27)
Differentiation gives
oP oP eA
part part 0
T C2
Ho aﬂO + 1y 0T part+ppan+n\/g—00 ( )
where
1 / Pp
p ar fp— He_ﬁO(Hpan_ﬂO). C3
part \/§ (2”)3 ( )

The first term in (C2) is related to the number density:

n 0Pt
= = PoPrart- C4
900 Oug 07 pat ( )
This is the ideal gas law
T
Ppr = n— (C5)
900

in local form. The second term in (C2) is related to the local
entropy density

OP .

S = 1/900 ano

1 eA
= |:Ppart+ppart+n—_ (C6)

0 W} |
T v/ 9oo
2. Low temperature regime

Using the approximation (5.1) the number density is

3/2
n(x) = mTo / ePolro—eAo—m /gog)
278/900

The entropy density s(x) can be computed from (C6) and
afterward if the chemical potential is expressed in terms of
the density the result is

(€7)
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s(x) = nB—i—ln{

which is the local form of the Sackur-Tetrode equation [33]. The energy density of the particles is

prnlx) =1

o) ] <Cg>
m+§j%J. (c9)
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