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Primordial black holes can be formed from the collapse of large-amplitude perturbation on small scales
in the early Universe. Such an enhanced spectrum can be realized by introducing a flat region in the
potential of single-field inflation, which makes the inflaton go into a temporary ultraslow-roll period. In this
paper, we calculate the bispectrum of curvature perturbation in such a scenario. We explicitly confirm that
bispectrum satisfies Maldacena’s theorem. At the end of the ultraslow-roll period, the bispectrum is
generated by bulk interaction and field redefinition. At the end of inflation, bispectrum is generated only by
bulk interaction. We also calculate the one-loop correction to the power spectrum from the bispectrum,
called the source method. We find it consistent with the calculation of the one-loop correction from the
second-order expansion of in-in perturbation theory.
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I. INTRODUCTION

Despite no observational evidence, primordial black
holes (PBHs) have been a research interest [1–4] because
they are a potential dark matter candidate [5,6] and they can
explain the origin of binary black holes found by gravita-
tional wave events [7]. The most widely studied formation
mechanism of a PBH is the collapse of large-amplitude
quantum fluctuations on small scales generated in single-
field inflation. On large scales, quantum fluctuations are
tightly constrained by cosmic microwave background
(CMB) observation [8–10]. Their power spectrum is almost
scale invariant with the amplitude 2.1 × 10−9. On small
scales, observational constraints are loose enough so it is
possible to have a theory of large amplitude of the power
spectrum [11–17]. Typically Oð0.01Þ amplitude of power
spectrum is needed to produce a significant amount of
PBHs [18,19].
In our paper [20], we pointed out that such a large

amplitude of small-scale perturbation can affect prediction

on large scales. This is possible because cubic self-
interaction between perturbation with long and short wave-
lengths induces the one-loop correction to the large-scale
power spectrum. We considered a PBH formation from an
extremely flat region in the potential that induces a
temporary ultraslow-roll (USR) period [21–25]. In the
end, we argued that our result could be generalized into
any PBH formation model with a sharp transition of the
second slow-roll (SR) parameter. We found that if the small-
scale power spectrum reached Oð0.01Þ, the one-loop
correction to the large-scale power spectrum would become
comparable to its tree-level contribution breaking the
perturbativity of the theory. Therefore, we have concluded
that PBH formation in single-field inflation is ruled out.
In this paper, we explore the features of this cubic self-

interaction. In Sec. II, we briefly review the power
spectrum of curvature perturbation. In Sec. III, we calcu-
late the bispectrum of curvature perturbation generated by
cubic self-interaction. We explicitly confirm that it satisfies
Maldacena’s theorem. In Sec. IV, we calculate the one-
loop correction to the large-scale power spectrum by two
different methods. We find the same result of the one-loop
correction in both methods. In Sec. V, we conclude
our paper.

II. TWO-POINT FUNCTIONS

In this section, we briefly review the analytical formula of
curvature perturbation in PBH formation [26–32]. We
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consider a formation model from an extremely flat region in
the potential [33] that leads to a temporary USR motion of
the inflaton. The action of canonical inflation is given by

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½M2
plR − ð∂μϕÞ2 − 2VðϕÞ�; ð1Þ

where Mpl is reduced Planck scale, g ¼ det gμν, gμν and R
are metric tensor and its Ricci scalar. Consider a spatially
flat, homogeneous and isotropic background,

ds2 ¼ −dt2 þ a2ðtÞdx2 ¼ a2ðτÞð−dτ2 þ dx2Þ; ð2Þ

where τ is conformal time. Equations of motion for the scale
factor aðtÞ and the homogeneous part of the inflaton ϕðtÞ
are the Friedmann equations,

H2 ¼ 1

3M2
pl

�
1

2
ϕ̇2 þ VðϕÞ

�
; Ḣ ¼ −

ϕ̇2

2M2
pl

; ð3Þ

with H ¼ ȧ=a being the Hubble parameter, and the Klein-
Gordon equation,

ϕ̈þ 3Hϕ̇þ dV
dϕ

¼ 0: ð4Þ

Here, a dot denotes time derivative.
When CMB-scale fluctuations leave the horizon at

around ϕCMB (see Fig. 1), the potential is slightly tilted
to realize slow-roll inflation, satisfying,

���� ϕ̈

ϕ̇H

���� ≪ 1; ϵ≡ −
Ḣ
H2

¼ ϕ̇2

2M2
plH

2
≪ 1; ð5Þ

where ϵ is a SR parameter. In the SR period, ϵ is
approximately constant. Then the inflaton goes through
an extremely flat region of the potential, between time ts to

te, experiencing an USR period. When inflaton enters this
region with dV=dϕ ≈ 0, (4) becomes ϕ̈ ≈ −3Hϕ̇, so
ϕ̇ ∝ a−3, which breaks SR approximation [24]. This makes
ϵ strongly time dependent and extremely small as

ϵ ¼ ϕ̇2

2M2
plH

2
∝ a−6: ð6Þ

We also define the second SR parameter,

η≡ ϵ̇

ϵH
¼ 2ϵþ 2

ϕ̈

ϕ̇H
; ð7Þ

which is approximately constant and very small in SR
period jηj ≪ 1, but large in USR period η ≈ −6. The latter
regime satisfies the condition of the growth of the non-
constant mode of perturbation found in [34], namely,
3 − ϵþ η < 0, so that enhanced spectrum is obtained then.
After the USR period, the inflaton enters the SR period

again until the end of inflation. In both SR and USR
periods, because ϵ is very small, the scale factor can be
approximated as a ¼ −1=Hτ ∝ eHt.
Small perturbation from the homogeneous part, ϕðtÞ, of

the inflaton ϕðx; tÞ and metric can be expressed as

ϕðx; tÞ ¼ ϕðtÞ þ δϕðx; tÞ;
ds2 ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ; ð8Þ

where γij is the three-dimensional metric on slices of
constant t, N is the lapse function, and Ni is the shift
vector. We choose comoving gauge condition

δϕðx; tÞ ¼ 0; γijðx; tÞ ¼ a2ðtÞe2ζðx;tÞδij; ð9Þ

where ζðx; tÞ is comoving curvature perturbation. Here,
tensor perturbation is not relevant. Also, N and Ni are
obtained by solving constraint equations.
Expanding the action (1) up to the second order of the

curvature perturbation yields,

Sð2Þ½ζ� ¼ M2
pl

Z
dtd3xa3ϵ

�
ζ̇2 −

1

a2
ð∂iζÞ2

�
: ð10Þ

In terms of the Mukhanov-Sasaki variable v ¼ zMplζ,

where z ¼ a
ffiffiffiffiffi
2ϵ

p
, the action becomes canonically

normalized,

Sð2Þcan½v� ¼ 1

2

Z
dτd3x

�
ðv0Þ2 − ð∂ivÞ2 þ

z00

z
v2
�
; ð11Þ

where a prime denotes derivative with respect to τ. In
momentum space, quantization is performed by promoting
the Mukhanov-Sasaki variable as an operator

FIG. 1. Schematic picture of the inflaton potential realizing
PBH formation. When the inflaton is around ϕCMB, scales probed
by CMB observations leave the horizon and it is in the SR regime.
It enters an extremely flat region at t ¼ ts undergoing an USR
period. It enters the SR period again at t ¼ te until ϕend, the end of
inflation.
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vkðτÞ ¼ MplzζkðτÞ ¼ vkðτÞâk þ v�kðτÞâ†−k;

where mode function vkðτÞ approximately satisfies

v00k þ
�
k2 −

2

τ2

�
vk ¼ 0; ð12Þ

in both SR and USR regimes, and the operators satisfy the
commutation relation ½âk; â†−k0 � ¼ ð2πÞ3δðkþ k0Þ under
the normalization condition,

v0�k vk − v0kv
�
k ¼ i: ð13Þ

The general solution of mode function vkðτÞ is

vkðτÞ ¼
Akffiffiffiffiffi
2k

p
�
1 −

i
kτ

�
e−ikτ þ Bkffiffiffiffiffi

2k
p

�
1þ i

kτ

�
eikτ; ð14Þ

whereAk and Bk are determined by boundary conditions or
definition of a vacuum state.
At early time, t≲ ts, the inflaton was in SR period with

Bunch-Davies initial vacuum. Then the mode function of
the curvature perturbation ζk ¼ vk=zMpl is given by

ζkðτÞ ¼
�

iH
2Mpl

ffiffiffiffiffiffiffi
ϵSR

p
�

⋆

1

k3=2

× ½A1;ke−ikτð1þ ikτÞ − B1;keikτð1 − ikτÞ�; ð15Þ

with the particular choice of A1;k ¼ 1 and B1;k ¼ 0. Here
ϵSR is ϵ in SR period and subscript ⋆ denotes the value at
the horizon crossing epoch τ ¼ −1=k.
At ts ≲ t≲ te, the inflaton is in USR period. We define τs

and τe as conformal time corresponding to ts and te,
respectively. The SR parameter ϵ can be written as ϵðτÞ ¼
ϵSRðτ=τsÞ6 based on proportionality in (6). Therefore, the
curvature perturbation becomes,

ζkðτÞ ¼
�

iH
2Mpl

ffiffiffiffiffiffiffi
ϵSR

p
�

⋆

�
τs
τ

�
3 1

k3=2

× ½A2;ke−ikτð1þ ikτÞ − B2;keikτð1 − ikτÞ�; ð16Þ

where coefficients A2;k and B2;k are determined by match-
ing to the SR solution (15) at the boundary. We consider
instantaneous transition from SR to USR, because it is a
good approximation to numerical solutions [31]. Solutions
of the coefficients by requiring continuity of ζkðτÞ and
ζ0kðτÞ at transition τ ¼ τs are

A2;k ¼ 1 −
3ð1þ k2τ2sÞ

2ik3τ3s
; ð17Þ

B2;k ¼ −
3ð1þ ikτsÞ2

2ik3τ3s
e−2ikτs : ð18Þ

At late time, t≳ te, the inflaton goes back to SR
dynamics. The curvature perturbation can be written as

ζkðτÞ ¼
�

iH
2Mpl

ffiffiffiffiffiffiffi
ϵSR

p
�

⋆

�
τs
τe

�
3 1

k3=2

× ½A3;ke−ikτð1þ ikτÞ − B3;keikτð1 − ikτÞ�; ð19Þ

where coefficients A3;k and B3;k are determined by match-
ing to the USR solution (16) at the boundary. Solutions of
the coefficients by requiring continuity of ζkðτÞ and ζ0kðτÞ at
transition τ ¼ τe are

A3;k ¼
−1

4k6τ3sτ3e

n
9ðkτs − iÞ2ðkτe þ iÞ2e2ikðτe−τsÞ

− ½k2τ2sð2kτs þ 3iÞ þ 3i�½k2τ2eð2kτe − 3iÞ − 3i�
o
;

ð20Þ

B3;k ¼
3

4k6τ3sτ3e

n
e−2ikτs ½3þ k2τ2eð3 − 2ikτeÞ�ðkτs − iÞ2

þ ie−2ikτe ½3iþ k2τ2sð2kτs þ 3iÞ�ðkτe − iÞ2
o
: ð21Þ

The two-point functions of curvature perturbation and
power spectrum can be written as

hζkðτÞζk0 ðτÞi≡ ð2πÞ3δ3ðkþ k0Þ⟪ζkðτÞζ−kðτÞ⟫; ð22Þ

Δ2
sðk; τÞ≡ k3

2π2
⟪ζkðτÞζ−kðτÞ⟫; ð23Þ

the bracket h� � �i ¼ h0j � � � j0i denotes the vacuum expect-
ation value (VEV), and Δ2

sðkÞ is the power spectrum
multiplied by the phase space density. We define ks and
ke as wave numbers which cross the horizon at τs and τe,
respectively. At the end of inflation, τ0ð→ 0Þ, the tree-level
power spectrum is

Δ2
sð0Þðk; τ0Þ ¼

k3

2π2
jζkðτ0Þj2

¼
�

H2

8π2M2
plϵSR

�
⋆

�
ke
ks

�
6

jA3;k − B3;kj2; ð24Þ

where coefficientsA3;k and B3;k are given by (20) and (21),
respectively.
On large scale, the power spectrum approaches an almost

scale-invariant limit,

Δ2
sðSRÞðkÞ≡ Δ2

sð0Þðk ≪ ks; τ0Þ ¼
�

H2

8π2M2
plϵSR

�
⋆

; ð25Þ
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with a small wave number dependence due to the horizon
crossing condition manifested in the spectral tilt,

ns − 1 ¼
d logΔ2

sðSRÞ
d log k

¼ −2ϵSR − ηSR; ð26Þ

where ηSR is η in SR period. This large-scale limit must be
consistent with CMB observation. On small scale with
larger wave number, ks ≲ k≲ ke, the power spectrum is
oscillating around,

Δ2
sðPBHÞ ≈ Δ2

sðSRÞðksÞ
�
ke
ks

�
6

; ð27Þ

whose high-density peak may collapse into PBHs. It is
amplified by factor ðke=ksÞ6 compared to the CMB-scale
power spectrum. Plot of the typical power spectrum is
shown in Fig. 2.

III. THREE-POINT FUNCTIONS

Three-point functions is generated by cubic self-inter-
action. Expanding (1) to third-order of ζ yields the
interaction action [35],

Sð3Þ½ζ� ¼ Sbulk½ζ� þ SB½ζ� þM2
pl

Z
dtd3x2fðζÞ

�
δL
δζ

�
1

;

ð28Þ

where the explicit form will be given shortly. The bulk
interaction Sbulk½ζ� reads,

Sbulk½ζ� ¼ M2
pl

Z
dtd3xa3

�
ϵ2ζ̇2ζ þ 1

a2
ϵ2ð∂iζÞ2ζ − 2ϵζ̇∂iζ∂iχ −

1

2
ϵ3ζ̇2ζ þ 1

2
ϵζð∂i∂jχÞ2 þ

1

2
ϵη̇ ζ̇ ζ2

�
; ð29Þ

where χ ¼ ϵ∂−2ζ̇. The boundary interaction SB½ζ� reads [36,37]

SB½ζ� ¼ M2
pl

Z
dtd3x

d
dt

�
−9a3Hζ3 þ a

H
ζð∂iζÞ2 −

1

4aH3
ð∂iζÞ2∂2ζ −

aϵ
H

ζð∂iζÞ2

þ a
2H2

ζð∂i∂jζ∂i∂jχ − ∂
2ζ∂2χÞ − a3

2H2
ζð∂i∂jχ∂i∂jχ − ∂

2χ∂2χÞ − ϵa3

H
ζζ̇2 −

ηa3

2
ζ2∂2χ

�
; ð30Þ

where total spatial derivatives are omitted. Boundary interactions without ζ̇ are unimportant because they will not contribute
to the correlation of ζ. The last term is interaction proportional to the equation of motion in the lowest order,

�
δL
δζ

�
1

¼ d
dt
ðϵa3ζ̇Þ − ϵa∂2ζ: ð31Þ

The function fðζÞ is explicitly given by

fðζÞ ¼ η

4
ζ2 þ ζ̇

H
ζ þ 1

4a2H2

h
−ð∂iζÞ2 þ ∂

−2
∂i∂jð∂iζ∂jζÞ� þ

1

2H
½∂iζ∂iχ − ∂

−2
∂i∂jð∂iζ∂jχÞ

i
: ð32Þ

Performing field redefinition ζ ¼ ζ þ fðζÞ generates a third-order terms from the second-order action (10) as

Sð2Þ½ζ� ¼ Sð2Þ½ζ� þ
Z

dtd3x

�
ð−2ÞfðζÞ

�
δL
δζ

�
1

−
d
dt

�
a

2H2
ζð∂i∂jζ∂i∂jχ − ∂

2ζ∂2χ Þ

−
a3

2H2
ζð∂i∂jχ∂i∂jχ − ∂

2χ∂2χ Þ − ϵa3

H
ζζ̇2 −

ηa3

2
ζ2∂2χ

��
; ð33Þ

FIG. 2. Power spectrum of the curvature perturbation. At CMB
scale, k ≪ ks, the power spectrum is almost scale invariant. p� ¼
0.05 Mpc−1 is the pivot scale with amplitude Δ2

sðSRÞðp�Þ ¼
2.1 × 10−9, based on observational result [9]. At small scale,
between ks and ke, the power spectrum is amplified to typically
Δ2

sðPBHÞ ∼Oð0.01Þ to form appreciable amount of PBHs.
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where χ ¼ ϵ∂−2ζ̇. Such additional third-order action can-
cels the last term in (28) and all the boundary interactions
including ζ̇ in (30), so the total action is [35–37]1

Sð2Þ½ζ� þ Sð3Þ½ζ� ¼ Sð2Þ½ζ� þ Sbulk½ζ�: ð34Þ

In terms of ζ, the total action is simply given by the second-
order action (10) and bulk interaction (29). The interaction
Hamiltonian in terms of ζ is

Hint ¼ −M2
pl

Z
d3xa2

�
ϵ2ðζ 0Þ2ζ þ ϵ2ð∂iζÞ2ζ

− 2ϵ2ζ 0∂iζ∂i∂−2ζ 0 −
1

2
ϵ3ðζ 0Þ2ζ

þ 1

2
ϵ3ζð∂i∂j∂−2ζ 0Þ2 þ

1

2
ϵη0ζ 0ζ2

�
: ð35Þ

In the standard SR inflation without PBH formation, the
first three terms and last three terms of (35) have coupling
Oðϵ2Þ and Oðϵ3Þ, respectively. However, for inflation
model with PBH formation, everything is the same except
the last term of (35) becomes OðϵÞ because η has Oð1Þ
transition [40–44]. Therefore, the leading interaction is

Hint ¼ −
1

2
M2

pl

Z
d3xa2ϵη0ζ 0ζ2: ð36Þ

Three-point functions of ζ can be written schemati-
cally as

hζk1
ðτÞζk2

ðτÞζk3
ðτÞi ¼ hζk1

ðτÞζk2
ðτÞζk3

ðτÞi
þ redefinition terms; ð37Þ

where the first term is generated by bulk interaction (35)
and the second term is boundary contribution at τ from field
redefinition. Higher-order correction to the expectation
value of an operator OðτÞ is calculated by the in-in
perturbation theory,

hOðτÞi ¼
��

T̄ exp

�
i
Z

τ

−∞
dτ0Hintðτ0Þ

��

ÔðτÞ
�
T exp

�
−i

Z
τ

−∞
dτ0Hintðτ0Þ

��	
; ð38Þ

where T and T̄ denote time and antitime ordering. For
three-point functions, the operator is ζk1

ðτÞζk2
ðτÞζk3

ðτÞ.
The first-order expansion of (38) reads,

hOðτÞi ¼ 2

Z
τ

−∞
dτ1ImhÔðτÞHintðτ1Þi: ð39Þ

The bispectrum ⟪ζk1
ðτÞζk2

ðτÞζk3
ðτÞ⟫ is defined as

hζk1
ðτÞζk2

ðτÞζk3
ðτÞi ¼ ð2πÞ3δðk1 þ k2 þ k3Þ

× ⟪ζk1
ðτÞζk2

ðτÞζk3
ðτÞ⟫: ð40Þ

The squeezed limit, when one of wave numbers in
the bispectrum is very small, the bispectrum satisfies
Maldacena’s theorem [35]2

lim
k1→0

⟪ζk1
ðτÞζk2

ðτÞζ−k2
ðτÞ⟫

¼ −ðnsðk2; τÞ − 1Þ⟪ζk2
ðτÞζ−k2

ðτÞ⟫⟪ζk1
ðτÞζ−k1

ðτÞ⟫
¼ −ðnsðk2; τÞ − 1Þjζk2ðτÞj2jζk1ðτÞj2; ð42Þ

where we define,

nsðk; τÞ − 1 ¼ d logΔ2
sðk; τÞ

d log k
: ð43Þ

We emphasize that Maldacena’s theorem is satisfied by the
bispectrum of ζ, not ζ. We now calculate the bispectrum at
four different epochs.

A. Slightly after the end of USR period

In this subsection, we calculate bispectrum at a time
slightly after the end of the USR period. Note that every

1We understand that there should be additional fourth-order
action of ζ, which arises from substituting field redefinition to the
cubic-order action. This should not be an issue in calculating
bispectrum. However, such quartic self-interaction can affect the
one-loop correction to the power spectrum. Fortunately, the
fourth-order action of ζ has been calculated by [38,39] and it
is expected to generates independent contributions to the one-
loop correction than those induced by the cubic self-interaction
because it involves the higher-order SR parameter. We will
calculate the one-loop correction induced by the cubic self-
interaction in Sec. IV.

2Maldacena’s theorem is valid for attractor single-clock
inflation. When a nonattractor period exists, it is generalized
as described in [45,46]. As an example, generalized Maldacena’s
theorem in the USR period is

lim
k1→0

⟪ζk1
ðτÞζk2

ðτÞζ−k2
ðτÞ⟫

¼ 1

6H2
Ṗsðk1; τÞ½ðnsðk2; τÞ − 1ÞHPsðk2; τÞ þ Ṗsðk2; τÞ�

þ ð1 − nsðk2; τÞÞPsðk1; τÞPsðk2; τÞ; ð41Þ

where Psðk; τÞ≡ ⟪ζkðτÞζ−kðτÞ⟫. In our context, for perturbation
with p ≪ ks, Ṗsðp; τeÞ ≪ HPsðp; τeÞ as we can check from (16),
so the consistency condition reduces to the standard one [47].
This is also expected based on [48].
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time τe is written in this subsection implicitly means it is evaluated at τþe when the inflaton is already in the second SR
period. The three-point functions of ζ is given by

hζk1
ðτeÞζk2

ðτeÞζk3
ðτeÞi ¼ 2

Z
τe

−∞
dτ1Imhζk1

ðτÞζk2
ðτÞζk3

ðτÞHintðτ1Þi: ð44Þ

Substituting in (36) yields the bispectrum,

⟪ζk1
ðτeÞζk2

ðτeÞζk3
ðτeÞ⟫¼ −2M2

pl

Z
τe

−∞
dτ1ϵðτ1Þη0ðτ1Þa2ðτ1ÞIm½ζk1ðτeÞζk2ðτeÞζk3ðτeÞζ�̃k1ðτ1Þζ

�̃
k2
ðτ1Þζ0̃k3

�ðτ1Þ� þ perm: ð45Þ

Here and hereafter,þperm means summation over a cyclic permutation of suffices with a tilde in the preceeding expression.
To evaluate the time integral, we remind that η is almost constant in both SR and USR periods, so η0ðτÞ ≈ 0 except for sharp
transitions around τ ¼ τs and τ ¼ τe. Therefore, η0ðτÞ can be written as

η0ðτÞ ¼ Δη½−δðτ − τsÞ þ δðτ − τeÞ�; ð46Þ

where Δη ≈ 6. After evaluating the time integral, the bispectrum becomes,

⟪ζk1
ðτeÞζk2

ðτeÞζk3
ðτeÞ⟫ ¼ −2M2

plϵðτeÞa2ðτeÞΔηζk1ðτeÞζ�̃k1ðτeÞζk2ðτeÞζ
�̃
k2
ðτeÞImðζk3ðτeÞζ 0̃k3

�ðτeÞÞ
þ 2M2

plϵðτsÞa2ðτsÞΔηIm½ζk1ðτeÞζk2ðτeÞζk3ðτeÞζ�̃k1ðτsÞζ
�̃
k2
ðτsÞζ0̃k3

�ðτsÞ� þ perm: ð47Þ

From the normalization condition (13), we can obtain,

ImðζkðτeÞζ0�k ðτeÞÞ ¼
1

4M2
plϵðτeÞa2ðτeÞ

: ð48Þ

Substituting it into (47), we find the squeezed limit of the bispectrum as

⟪ζk1
ðτeÞζk2

ðτeÞζ−k2
ðτeÞ⟫ ¼ −



Δη − 4ΔηM2

plϵðτsÞa2ðτsÞIm
�
ζ2k2ðτeÞ
jζk2ðτeÞj2

ζ�k2ðτsÞζ0�k2ðτsÞ
��

jζk1ðτeÞj2jζk2ðτeÞj2: ð49Þ

We define a coefficient CðkÞ ¼ CeðkÞ þ CsðkÞ, where

CeðkÞ ¼ Δη; CsðkÞ ¼ −4ΔηM2
plϵðτsÞa2ðτsÞIm

�
ζ2kðτeÞ
jζkðτeÞj2

ζ�kðτsÞζ0�k ðτsÞ
�
: ð50Þ

Plot of CeðkÞ and CsðkÞ are shown in Fig. 3. For comparison, we also plot nsðk; τeÞ − 1 directly from the mode function
(16). We can see that CsðkÞ almost overlaps with nsðk; τeÞ − 1, but they are not precisely equal. Clearly, the coefficient
CðkÞ ≠ nsðk; τeÞ − 1, implies that the bispectrum of ζ does not satisfy Maldacena’s theorem.
The bispectrum of ζ is given by the bispectrum of ζ plus contribution from field redefinition. Because ηðτeÞ ≈ 0, the

leading field redefinition (32) is ζ̇ζ=H. Noting that aðτeÞH ¼ ke, the bispectrum of ζ reads,

⟪ζk1
ðτeÞζk2

ðτeÞζk3
ðτeÞ⟫ ¼ ⟪ζk1

ðτeÞζk2
ðτeÞζk3

ðτeÞ⟫
þ k−1e ½⟪ζ 0k2

ðτeÞζ−k2
ðτeÞ⟫⟪ζk3

ðτeÞζ−k3
ðτeÞ⟫þ ⟪ζk2

ðτeÞζ−k2
ðτeÞ⟫⟪ζ 0k3

ðτeÞζ−k3
ðτeÞ⟫

þ⟪ζk1
ðτeÞζ−k1

ðτeÞ⟫⟪ζ 0k3
ðτeÞζ−k3

ðτeÞ⟫þ ⟪ζk1
ðτeÞζ 0−k1

ðτeÞ⟫⟪ζk3
ðτeÞζ−k3

ðτeÞ⟫
þ⟪ζk1

ðτeÞζ−k1
ðτeÞ⟫⟪ζk2

ðτeÞζ 0−k2
ðτeÞ⟫þ ⟪ζk1

ðτeÞζ 0−k1
ðτeÞ⟫⟪ζk2

ðτeÞζ−k2
ðτeÞ⟫�: ð51Þ

The leading terms in the squeezed limit, k1 → 0, are

⟪ζk1
ðτeÞζk2

ðτeÞζ−k2
ðτeÞ⟫ ¼ ⟪ζk1

ðτeÞζk2
ðτeÞζ−k2

ðτeÞ⟫
þ k−1e ⟪ζk1

ðτeÞζ−k1
ðτeÞ⟫½⟪ζ 0k2

ðτeÞζ−k2
ðτeÞ⟫þ ⟪ζk2

ðτeÞζ 0−k2
ðτeÞ⟫�; ð52Þ
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and more explicitly

⟪ζk1
ðτeÞζk2

ðτeÞζ−k2
ðτeÞ⟫ ¼ −



Δη − 4ΔηM2

plϵðτsÞa2ðτsÞIm
�
ζ2k2ðτeÞ
jζk2ðτeÞj2

ζ�k2ðτsÞζ0�k2ðτsÞ
�

−2Re
�
ζk2ðτeÞζ0�k2ðτeÞ
kejζk2ðτeÞj2

��
jζk1ðτeÞj2jζk2ðτeÞj2: ð53Þ

We define contribution from field redefinition as

BðkÞ ¼ 2Re
�
ζkðτeÞζ0�k ðτeÞ
kejζkðτeÞj2

�
; ð54Þ

so the total coefficient is TðkÞ ¼ CðkÞ − BðkÞ. The plot of BðkÞ and TðkÞ are shown in Fig. 3. We can see that TðkÞ precisely
equals to nsðk; τeÞ − 1, which confirms Maldacena’s theorem. Equality TðkÞ ¼ nsðk; τeÞ − 1 holds exactly, which one can
confirm by substituting mode function (16) to the explicit form of TðkÞ.

B. Slightly before the end of USR period

In this subsection, we calculate bispectrum at a time slightly before the end of the USR period. Note that every time τe is
written in this subsection implicitly means it is evaluated at τ−e when the inflaton is still in the USR period. At this time, there
is still no sharp transition at τe, so the bispectrum of ζ is

⟪ζk1
ðτeÞζk2

ðτeÞζk3
ðτeÞ⟫ ¼ 2M2

plϵðτsÞa2ðτsÞΔηIm½ζk1ðτeÞζk2ðτeÞζk3ðτeÞζ�̃k1ðτsÞζ
�̃
k2
ðτsÞζ0�̃k3ðτsÞ� þ perm: ð55Þ

Because ηðτeÞ ≈ −6, the leading field redefinitions (32) are ηζ2=4 and ζ̇ζ=H. In the squeezed limit, the bispectrum of ζ is

⟪ζk1
ðτeÞζk2

ðτeÞζ−k2
ðτeÞ⟫ ¼ ⟪ζk1

ðτeÞζk2
ðτeÞζ−k2

ðτeÞ⟫þ ηðτeÞ
4

4⟪ζk1
ðτeÞζ−k1

ðτeÞ⟫⟪ζk2
ðτeÞζ−k2

ðτeÞ⟫
þ k−1e ⟪ζk1

ðτeÞζ−k1
ðτeÞ⟫ð⟪ζ 0k2

ðτeÞζ−k2
ðτeÞ⟫þ ⟪ζk2

ðτeÞζ 0−k2
ðτeÞ⟫Þ: ð56Þ

More explicitly, it can be written as

⟪ζk1
ðτeÞζk2

ðτeÞζ−k2
ðτeÞ⟫ ¼ −



−4ΔηM2

plϵðτsÞa2ðτsÞIm
�
ζ2k2ðτeÞ
jζk2ðτeÞj2

ζ�k2ðτsÞζ0�k2ðτsÞ
�

−2Re
�
ζk2ðτeÞζ0�k2ðτeÞ
kejζk2ðτeÞj2

�
þ Δη

�
jζk1ðτeÞj2jζk2ðτeÞj2: ð57Þ

FIG. 3. Plot of CeðkÞ, CsðkÞ, BðkÞ, TðkÞ, and nsðk; τeÞ − 1. We choose ke=ks ¼ 10 just for illustrative purposes.
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C. Exactly at the end of USR period

In this subsection, we calculate the bispectrum at exactly the end of the USR period. The bispectrum of ζ is

⟪ζk1
ðτeÞζk2

ðτeÞζk3
ðτeÞ⟫ ¼ −2M2

plϵðτeÞa2ðτeÞ
1

2
Δηζk1ðτeÞζ�̃k1ðτeÞζk2ðτeÞζ

�̃
k2
ðτeÞImðζk3ðτeÞζ0�̃k3ðτeÞÞ

þ 2M2
plϵðτsÞa2ðτsÞΔηIm½ζk1ðτeÞζk2ðτeÞζk3ðτeÞζ�̃k1ðτsÞζ

�̃
k2
ðτsÞζ0�̃k3ðτsÞ� þ perm; ð58Þ

where factor 1=2 arises because only the left half of the Dirac-Delta function is integrated. In the squeezed limit, it becomes

⟪ζk1
ðτeÞζk2

ðτeÞζ−k2
ðτeÞ⟫ ¼ −



1

2
Δη − 4ΔηM2

plϵðτsÞa2ðτsÞIm
�
ζ2k2ðτeÞ
jζk2ðτeÞj2

ζ�k2ðτsÞζ0�k2ðτsÞ
��

jζk1ðτeÞj2jζk2ðτeÞj2: ð59Þ

After adding contribution from field redefinition, the bispectrum of ζ in squeezed limit is

⟪ζk1
ðτeÞζk2

ðτeÞζ−k2
ðτeÞ⟫ ¼ ⟪ζk1

ðτeÞζk2
ðτeÞζ−k2

ðτeÞ⟫þ ηðτeÞ
4

4⟪ζk1
ðτeÞζ−k1

ðτeÞ⟫⟪ζk2
ðτeÞζ−k2

ðτeÞ⟫
þ k−1e ⟪ζk1

ðτeÞζ−k1
ðτeÞ⟫ð⟪ζ 0k2

ðτeÞζ−k2
ðτeÞ⟫þ ⟪ζk2

ðτeÞζ 0−k2
ðτeÞ⟫Þ; ð60Þ

and more explicitly

⟪ζk1
ðτeÞζk2

ðτeÞζ−k2
ðτeÞ⟫ ¼ −



1

2
Δη − 4ΔηM2

plϵðτsÞa2ðτsÞIm
�
ζ2k2ðτeÞ
jζk2ðτeÞj2

ζ�k2ðτsÞζ0�k2ðτsÞ
�

−2Re
�
ζk2ðτeÞζ0�k2ðτeÞ
kejζk2ðτeÞj2

�
− ηðτeÞ

�
jζk1ðτeÞj2jζk2ðτeÞj2: ð61Þ

We need to define ηðτeÞ ¼ −Δη=2 so the squeezed limit of bispectrum becomes a continuous function from τ−e to τþe .
Therefore, bispectrums (53), (57), and (61) are equal.

D. At the end of inflation

At the end of inflation, τ0ð→ 0Þ, contribution from field redefinition are negligible because ηðτ0Þ ≈ 0 and ζ̇ decays.
Therefore, the bispectrum of ζ and ζ are equal

hζk1
ðτ0Þζk2

ðτ0Þζk3
ðτ0Þi ¼ hζk1

ðτ0Þζk2
ðτ0Þζk3

ðτ0Þi; ð62Þ

and it is given by

⟪ζk1
ðτ0Þζk2

ðτ0Þζk3
ðτ0Þ⟫ ¼ −2M2

pl

Z
τ0

−∞
dτ1ϵðτ1Þη0ðτ1Þa2ðτ1ÞIm½ζk1ðτ0Þζk2ðτ0Þζk3ðτ0Þζ�̃k1ðτ1Þζ

�̃
k2
ðτ1Þζ0�̃k3ðτ1Þ� þ perm: ð63Þ

Substituting (46) into the time integral yields,

⟪ζk1
ðτ0Þζk2

ðτ0Þζk3
ðτ0Þ⟫ ¼ −2M2

plϵðτeÞa2ðτeÞΔηIm½ζk1ðτ0Þζk2ðτ0Þζk3ðτ0Þζ�̃k1ðτeÞζ
�̃
k2
ðτeÞζ0�̃k3ðτeÞ�

þ 2M2
plϵðτsÞa2ðτsÞΔηIm½ζk1ðτ0Þζk2ðτ0Þζk3ðτ0Þζ�̃k1ðτsÞζ

�̃
k2
ðτsÞζ0�̃k3ðτsÞ� þ perm: ð64Þ

In the squeezed limit, the bispectrum becomes

⟪ζk1
ðτ0Þζk2

ðτ0Þζ−k2
ðτ0Þ⟫ ¼ −



4ΔηM2

plϵðτeÞa2ðτeÞIm
�
ζ2k2ðτ0Þ
jζk2ðτ0Þj2

ζ�k2ðτeÞζ0�k2ðτeÞ
�

−4ΔηM2
plϵðτsÞa2ðτsÞIm

�
ζ2k2ðτ0Þ
jζk2ðτ0Þj2

ζ�k2ðτsÞζ0�k2ðτsÞ
��

jζk1ðτ0Þj2jζk2ðτ0Þj2: ð65Þ
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We define the coefficient as

C0ðkÞ ¼ 4ΔηM2
plIm



ζ2kðτ0Þ
jζkðτ0Þj2

½ϵðτeÞa2ðτeÞζ�kðτeÞζ0�k ðτeÞ − ϵðτsÞa2ðτsÞζ�kðτsÞζ0�k ðτsÞ�
�
: ð66Þ

The plot of C0ðkÞ is shown in Fig. 4. For comparison, we also plot nsðk; τ0Þ − 1 directly from power spectrum (24). We can
see that C0ðkÞ precisely equals to nsðk; τ0Þ − 1, which confirms Maldacena’s theorem. The equality C0ðkÞ ¼ nsðk; τ0Þ − 1
holds exactly, which one can confirm by substituting mode function (19) to the explicit form of C0ðkÞ.

IV. ONE-LOOP CORRECTION

Schematically, the one-loop correction to the power spectrum of ζ can be written as

⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ ¼ ⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ þ redefinition terms: ð67Þ

The redefinition terms are negligible because they are evaluated at the end of SR period.3 Thus, the one-loop correction at
the end of inflation is simply,

⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ ¼ ⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ: ð68Þ

In this section, we calculate the one-loop correction to the large-scale power spectrum by two different methods: source
method and direct in-in formalism. The source method utilizes bispectrum to calculate the one-loop correction, which is
used by [47]. Prior to this work, source method is implemented by [52,53], in a similar context. On the other hand, direct in-
in formalism is simply a second-order expansion of the in-in perturbation theory (38), as we did in [20].

A. Source method

Recall the second-order and third-order actions given by (10), (29), and (34). The total second-order and leading bulk
interaction reads,

S½ζ� ¼ Sð2Þ½ζ� þ Sbulk½ζ� ¼ M2
pl

Z
dτd3xa2ϵ

�
ðζ 0Þ2 − ð∂iζÞ2 þ

1

2
η0ζ 0ζ2

�
: ð69Þ

The corresponding equation of motion for ζ with long wavelength is

FIG. 4. Plot of C0ðkÞ and nsðk; τ0Þ − 1. We choose ke=ks ¼ 10 just for illustrative purposes.

3Some time after this paper was posted on arXiv, Refs. [49,50] appeared, which calculated the one-loop correction in the same setup
by using the third-order action with boundary terms. With different technical details, both papers claim cancellation between the one-
loop correction induced by the bulk and the boundary cubic self-interactions. In our approach, the boundary interactions and interactions
proportional to the equation of motion are removed by field redefinition, as explained in Sec. III. At present, those papers are criticized
by [51]. We will solve this discrepancy elsewhere, pointing out what is missing in [49,50].
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ζ 00p þ
ða2ϵÞ0
a2ϵ

ζ 0p þ
ða2ϵη0Þ0
4a2ϵ

Z
d3k
ð2πÞ3 ζkζp−k ¼ 0; ð70Þ

where p is a wave vector on the CMB scale. The last term can be regarded as a source term of the second-order differential
equation. The solution can be written as ζ ¼ ζf þ ζs, where ζf and ζs are the homogeneous and inhomogeneous solutions,
respectively. The mode function of the homogeneous solution is

ζfpðτÞ ¼ Ap þ Bp

Z
τ dτ1
a2ðτ1Þϵðτ1Þ

; ð71Þ

where Ap and Bp are arbitrary functions of p. The inhomogeneous solution is given by

ζspðτÞ ¼ −
1

4

Z
τ

−∞

dτ1
a2ðτ1Þϵðτ1Þ

Z
τ1

−∞
dτ2½a2ðτ2Þϵðτ2Þη0ðτ2Þ�0

Z
d3k
ð2πÞ3 ζkðτ2Þζp−kðτ2Þ; ð72Þ

then performing integration by parts leads to,

ζspðτ0Þ ¼ −
1

4

Z
τ0

−∞

dτ1
a2ðτ1Þϵðτ1Þ

a2ðτ1Þϵðτ1Þη0ðτ1Þ
Z

d3k
ð2πÞ3 ζkðτ1Þζp−kðτ1Þ

þ 1

4

Z
τ0

−∞

dτ1
a2ðτ1Þϵðτ1Þ

Z
τ1

−∞
dτ2a2ðτ2Þϵðτ2Þη0ðτ2Þ

Z
d3k
ð2πÞ3

d
dτ2

½ζkðτ2Þζp−kðτ2Þ�: ð73Þ

Because we are interested in the finite effect of the amplified perturbation on small scale due to the USR period, the wave
number integration domain is restricted to ks ≲ k≲ ke. Substituting (46) to the time integral and use approximation p ≪ k
yields4

ζspðτ0Þ ¼ −
1

4
Δη

Z
d3k
ð2πÞ3 ζkðτeÞζp−kðτeÞ þ

1

4
Δη

Z
d3k
ð2πÞ3

2

3ke
ζ 0kðτeÞζp−kðτeÞ: ð74Þ

Note that each ζ in this solution is an operator.
The two-point function of ζ can be written as

⟪ζpðτ0Þζ−pðτ0Þ⟫ ¼ ⟪ζfpðτ0Þζf−pðτ0Þ⟫þ 2⟪ζspðτ0Þζf−pðτ0Þ⟫þ ⟪ζspðτ0Þζs−pðτ0Þ⟫: ð75Þ

The first term is simply the tree-level contribution,

⟪ζpðτ0Þζ−pðτ0Þ⟫ð0Þ ≡ ⟪ζfpðτ0Þζf−pðτ0Þ⟫ ¼ jζpðτ0Þj2; ð76Þ

with power spectrum given in (25). The second and third terms are the one-loop corrections to the two-point function,

⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ ≡ 2⟪ζspðτ0Þζf−pðτ0Þ⟫þ ⟪ζspðτ0Þζs−pðτ0Þ⟫: ð77Þ

The one-loop correction comes from the correlation between inhomogeneous and homogeneous solutions and the
correlation of two inhomogeneous solutions.
First, we calculate the correlation of two inhomogeneous solutions. It reads

⟪ζspðτ0Þζs−pðτ0Þ⟫ ¼
�
Δη
4

�
2
Z

d3k1d3k2
ð2πÞ6 ⟪ζ̄k1

ðτeÞζp−k1
ðτeÞζ̄k2

ðτeÞζ−p−k2
ðτeÞ⟫; ð78Þ

where ζ̄ is defined as

4Note that the second term in (74) cannot be neglected. The approximation ζ0pðτeÞ ≪ aHζpðτeÞ holds only for mode functions with
p ≪ ke, which are far outside the horizon at τe.
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ζ̄kðτeÞ ¼ ζkðτeÞ −
2

3ke
ζ 0kðτeÞ: ð79Þ

Performing the Wick contraction, it becomes

⟪ζspðτ0Þζs−pðτ0Þ⟫ ¼
�
Δη
4

�
2
Z

d3k
ð2πÞ3

�����ζk − 2

3ke
ζ0k

����
2

jζkj2 þ
����
�
ζk −

2

3ke
ζ0k

�
ζ�k

����
2
�
τ¼τe

: ð80Þ

We can estimate how large is such correction. Performing
integration around k ∼ ks leads to

⟪ζspðτ0Þζs−pðτ0Þ⟫ ∼Oð1Þjζpðτ0Þj2
jζksðτeÞj2
jζpðτ0Þj2

Δ2
sðPBHÞ: ð81Þ

Substituting typical numerical values for PBH formation,
p=ks ∼ 10−6 for PBHwith massOð10ÞM⊙,Δ2

sðPBHÞ ∼ 0.01,

and Δ2
sðSRÞðpÞ ∼ 10−9, we obtain

⟪ζspðτ0Þζs−pðτ0Þ⟫
⟪ζpðτ0Þζ−pðτ0Þ⟫ð0Þ

∼Oð1Þ
½Δ2

sðPBHÞ�2
Δ2

sðSRÞðpÞ
�
p
ks

�
3

≪ 1: ð82Þ

Therefore, the correlation of two inhomogeneous solutions
is very small because of cubic suppression between large
and small scale.
Next, we calculate the correlation between inhomo-

geneous and homogeneous solutions. It reads,

⟪ζspðτ0Þζf−pðτ0Þ⟫¼
1

4
Δη

Z
d3k
ð2πÞ3

�
−⟪ζkðτeÞζ−kðτeÞζpðτeÞ⟫

þ 2

3ke
⟪ζ 0kðτeÞζ−kðτeÞζpðτeÞ⟫

�
: ð83Þ

Note that we use ζpðτ0Þ ≈ ζpðτeÞ. This can be understood
intutively as follows. We are calculating the one-loop
correction generated by cubic self-interaction. The vertex
factor of the one-loop correction corresponds to the
bispectrum. Such a bispectrum evolves in time with the
dominant contribution at τ ¼ τe. The one-loop correction at
the end of inflation is obtained by integrating the bispec-
trum over time to the end of inflation, which captures the
main contribution at τ ¼ τe.
In this source method, the one-loop correction to the

large-scale power spectrum is proportional to the squeezed
limit of the three-point functions. The first term is nothing
but the squeezed limit of the bispectrum that is given by
(59). The second term are three-point correlations involving
the time derivative of ζ, which can be calculated from in-in
perturbation theory (39). The squeezed limit of such
correlations, when one ζ is a long-wavelength perturbation,
is given by

⟪ζ 0kðτeÞζ−kðτeÞζpðτeÞ⟫ ¼ −2M2
pl

Z
τe

−∞
dτ1ϵðτ1Þη0ðτ1Þa2ðτ1ÞIm½ζ0kðτeÞζkðτeÞζpðτeÞζ0�̃k ðτ1Þζ�̃kðτ1Þζ�̃pðτ1Þ� þ perm: ð84Þ

Note that permutated terms with ζ0p can be neglected because they are much smaller than the others. Performing a time
integral with η0ðτÞ given in (46), we obtain

⟪ζ 0kðτeÞζ−kðτeÞζpðτeÞ⟫ ¼ −4M2
plϵðτeÞa2ðτeÞ

1

2
ΔηjζpðτeÞj2jζkðτeÞj2Imðζ0kðτeÞζ0�k ðτeÞÞ

þ 4M2
plϵðτsÞa2ðτsÞΔηjζpðτeÞj2Im½ζ0kðτeÞζkðτeÞζ0�k ðτsÞζ�kðτsÞ�: ð85Þ

The first term obviously vanishes, so only the second term contributes to the correlations. Substituting (59) and (85)
into (83) yields,5

5Compared with [47], the author obtains only the first term in (83), although there is the second term due to integration by parts.
However, this is not an essential difference. A more important discrepancy is [47] substitutes Maldacena’s theorem to the first term,
the squeezed bispectrum. The bispectrum of ζ at the end of the USR period does not satisfy Maldacena’s theorem, as explained in
Secs. III A–III C. The bispectrum of ζ at the end of inflation satisfies Maldacena’s theorem because it is equal to the bispectrum of ζ,
as explained in Sec. III D. The one-loop correction to the power spectrum at the end of inflation is proportional to the bispectrum of ζ
at the end of the USR period, not the bispectrum of ζ at the end of inflation. Therefore, substituting Maldacena’s theorem into the first
term in (83) is incorrect.
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⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ ¼
1

2
ðΔηÞ2jζpðτeÞj2

Z
d3k
ð2πÞ3



1

2
jζkðτeÞj2 − 4M2

plϵðτsÞa2ðτsÞIm
��

ζkðτeÞ −
2

3ke
ζ0kðτeÞ

�

× ζkðτeÞζ�kðτsÞζ0�k ðτsÞ
��

: ð86Þ

We compare this result to direct in-in formalism in the next subsection.

B. Direct in-in formalism

The second-order expansion of in-in perturbation theory reads,

hOðτÞi ¼ hOðτÞi†ð0;2Þ þ hOðτÞið1;1Þ þ hOðτÞið0;2Þ;

hOðτÞið1;1Þ ¼
Z

τ

−∞
dτ1

Z
τ

−∞
dτ2hHintðτ1ÞÔðτÞHintðτ2Þi;

hOðτÞið0;2Þ ¼ −
Z

τ

−∞
dτ1

Z
τ1

−∞
dτ2hÔðτÞHintðτ1ÞHintðτ2Þi: ð87Þ

Because we are interested in the one-loop correction to the large-scale power spectrum, the operatorOðτÞ is ζpðτ0Þζ−pðτ0Þ.
Substituting the leading interaction (36) leads to,

hζpðτ0Þζ−pðτ0Þið1;1Þ ¼
1

4
M4

pl

Z
τ0

−∞
dτ1a2ðτ1Þϵðτ1Þη0ðτ1Þ

Z
τ0

−∞
dτ2a2ðτ2Þϵðτ2Þη0ðτ2Þ

Z Y6
a¼1

�
d3ka
ð2πÞ3

�
δðk1þk2þk3Þδðk4þk5þk6Þ

× hζ 0k1
ðτ1Þζk2

ðτ1Þζk3
ðτ1Þζpðτ0Þζ−pðτ0Þζ 0k4

ðτ2Þζk5
ðτ2Þζk6

ðτ2Þi; ð88Þ

hζpðτ0Þζ−pðτ0Þið0;2Þ ¼ −
1

4
M4

pl

Z
τ0

−∞
dτ1a2ðτ1Þϵðτ1Þη0ðτ1Þ

Z
τ1

−∞
dτ2a2ðτ2Þϵðτ2Þη0ðτ2Þ

Z Y6
a¼1

�
d3ka
ð2πÞ3

�
δðk1 þ k2 þ k3Þδðk4 þ k5 þ k6Þ

× hζpðτ0Þζ−pðτ0Þζ 0k1
ðτ1Þζk2

ðτ1Þζk3
ðτ1Þζ 0k4

ðτ2Þζk5
ðτ2Þζk6

ðτ2Þi: ð89Þ

The total one-loop correction reads,

⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ ¼ ⟪ζpðτ0Þζ−pðτ0Þ⟫ð1;1Þ þ 2Re⟪ζpðτ0Þζ−pðτ0Þ⟫ð0;2Þ: ð90Þ

Performing the time integral with η0ðτÞ given in (46) and the Wick contraction, we obtain

⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ ¼
1

4
M4

plðΔηÞ2jζpðτ0Þj2
Z

d3k
ð2πÞ3 16



½ϵ2a4jζkj2Imðζpζ0�p ÞImðζkζ0�k Þ�τ¼τe

− 4ϵðτeÞa2ðτeÞϵðτsÞa2ðτsÞImðζpðτ0Þζ�pðτeÞÞImðζ0kðτeÞζkðτeÞζ�kðτsÞζ0�k ðτsÞÞ
− 2ϵðτeÞa2ðτeÞϵðτsÞa2ðτsÞImðζpðτeÞζ0�p ðτeÞÞImðζ2kðτeÞζ�kðτsÞζ0�k ðτsÞÞ

þ ½ϵ2a4jζkj2Imðζpζ0�p ÞImðζkζ0�k Þ�τ¼τs

�
: ð91Þ
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The last term is much smaller than the other terms because the curvature perturbation is not amplified at τ ¼ τs yet. After
some algebra we find,6

⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ ¼
1

4
ðΔηÞ2jζpðτeÞj2

Z
d3k
ð2πÞ3



jζkðτeÞj2 − 8M2

plϵðτsÞa2ðτsÞIm
��

ζkðτeÞ −
2

3ke
ζ0kðτeÞ

�

× ζkðτeÞζ�kðτsÞζ0�k ðτsÞ
��

: ð93Þ

Hence, the calculation of the one-loop correction by the direct in-in formalism and source method (86) leads to the same
result.
One-loop correction (93) can be written as7

⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ ¼ ΔηjζpðτeÞj2
Z

d3k
ð2πÞ3

�
1

2
CsðkÞ − CtðkÞ þ

1

4
Δη

�
jζkðτeÞj2; ð94Þ

where CsðkÞ is defined in (50) and CtðkÞ is defined as

CtðkÞ ¼ −4ΔηM2
plϵðτsÞa2ðτsÞIm

�
ζ0kðτeÞζkðτeÞ
3kejζkðτeÞj2

ζ�kðτsÞζ0�k ðτsÞ
�
: ð95Þ

Plot of CtðkÞ is shown in Fig. 5. For comparison, we also plot CsðkÞ and nsðk; τeÞ − 1 in the same figure. We can see that
CsðkÞ ≈ CtðkÞ ≈ nsðk; τeÞ − 1, so we can approximate the integral as

Z
d3k
ð2πÞ3

�
1

2
CsðkÞ − CtðkÞ

�
jζkðτeÞj2 ≈ −

1

2

Z
d3k
ð2πÞ3 ðnsðk; τeÞ − 1ÞjζkðτeÞj2

¼ −
1

2

Z
d log kΔ2

sðk; τeÞ
d logΔ2

sðk; τeÞ
d log k

≈ −
1

2
Δ2

sðPBHÞ: ð96Þ

FIG. 5. Plot of CsðkÞ, CtðkÞ, and nsðk; τeÞ − 1. We choose ke=ks ¼ 10 just for illustrative purposes.

6Note that we have to consider the difference between ζpðτeÞ and ζpðτ0Þ for the second term in (91) because it is comparable to
ImðζpðτeÞζ0�p ðτeÞÞ in the first and third term. From (19), we can obtain

Imðζpðτ0Þζ�pðτeÞÞ ¼ −
�

H2

4M2
plϵSRp

3

�
⋆

p3

3k3s

�
ke
ks

�
3

: ð92Þ

Substituting (48) and (92) to (91) leads to (93).
7Incorrectly substituting Maldacena’s theorem to (83) leads to subtraction of the second term in (97) by the contribution from the field

redefinition at the end of USR period. Recall equality nsðk; τeÞ − 1 ¼ Δη − BðkÞ þ CsðkÞ that we discussed below (54). From Fig. 3, we
can see that BðkÞ ≈ Δη. Substituting Maldacena’s theorem means that one implicitly includes the contribution from the field redefinition
BðkÞ, which almost cancels Δη. This is the reason Ref. [47] obtains only the first term in (97), although there is a factor of 2 discrepancy
that might come from the prefactor of (77).

NOTE ON THE BISPECTRUM AND ONE-LOOP CORRECTIONS … PHYS. REV. D 109, 103541 (2024)

103541-13



Then, the one-loop correction becomes,

⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ ≈−
1

2
ΔηjζpðτeÞj2Δ2

sðPBHÞ

þ 1

4
ðΔηÞ2jζpðτeÞj2

Z
d3k
ð2πÞ3 jζkðτeÞj

2:

ð97Þ

We compare the one-loop correction to the tree-level
contribution as

⟪ζpðτ0Þζ−pðτ0Þ⟫ð1Þ
⟪ζpðτ0Þζ−pðτ0Þ⟫ð0Þ

≈ −
1

2
ðΔηÞΔ2

sðPBHÞ

þ 1

4
ðΔηÞ2

Z
d3k
ð2πÞ3 jζkðτeÞj

2: ð98Þ

In order to trust perturbation theory, this ratio must be much
smaller than unity. The first term is the one-loop correction
predicted by [47]. For Δ2

sðPBHÞ ∼ 0.1, the ratio is Oð0.1Þ, so
contribution of the first term is quite small.8 However, there
is also the second term. Requiring the second term to be

much smaller than unity leads to the upper bound
Δ2

sðPBHÞ ≪ Oð0.01Þ.
In (97), we obtain the bare one-loop correction. Issue

related to regularization and renormalization is discussed in
[20]. Although we focus on SR to USR to SR transition
with Δη ≈ 6, our result is general for any sharp η transition.
We briefly discuss other PBH formation models from
single-field inflation in [20].

V. CONCLUSION

In this paper, we consider a single-field inflation model
with sharp transition of the second SR parameter from SR
to USR to SR period, which leads to PBH formation. We
have derived the bispectrum and one-loop correction in
such a setup. We have shown explicitly that the bispec-
trum in squeezed limit satisfies Maldacena’s theorem. We
have also clarified which terms in the cubic self-
interaction of the curvature perturbation yield contribu-
tion to the squeezed bispectrum. At the end of the USR
period, the bispectrum is generated by the bulk inter-
action and field redefinition. At the end of inflation,
bispectrum is generated only by bulk interaction. We have
also demonstrated that the calculation of the one-loop
correction by source method and direct in-in formalism
leads to the same result, confirming the conclusion of our
paper [20] that the one-loop correction to the large-scale
power spectrum provides a significant constraint to the
small-scale power spectrum.
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