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1Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

2Departamento de Física Teórica, Instituto de Física, Universidad Nacional Autónoma de México,
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We consider the effects of a bare mass term for the inflaton, when the inflationary potential takes the
form VðϕÞ ¼ λϕk about its minimum with k ≥ 4. We concentrate on k ¼ 4, but discuss general cases as
well. Further, we assume λϕ2

end ≫ m2
ϕ, where ϕend is the inflaton field value when the inflationary

expansion ends. We show that the presence of a mass term (which may be present due to radiative
corrections or supersymmetry breaking) can significantly alter the reheating process, as the equation of
state of the inflaton condensate changes from wϕ ¼ 1

3
to wϕ ¼ 0 when λϕ2 drops below m2

ϕ. We show that,

for a mass mϕ ≳ 3λ
1
4TRH, the mass term will dominate at reheating. The value of λ is relatively model

independent as it is normalized by the cosmic microwave background perturbation spectrum. For T models
of inflation, this leads to mϕ ≳ TRH=250. We compute the effects on the reheating temperature for cases
where reheating is due to inflaton decay (to fermions, scalars, or vectors) or to inflaton scattering (to scalars
or vectors). For scattering to scalars and in the absence of a decay, there is always a residual inflaton
background that acts as cold dark matter. In this case, we derive a strong upper limit to the inflaton bare
mass which for T models is mϕ < 350 MeVðTRH=1010 GeVÞ3=5. We also consider the effect of the bare
mass term on the fragmentation of the inflaton condensate.
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I. INTRODUCTION

The hypothesis of a violent inflationary phase during the
first moments of the Universe makes it possible to address
several cosmological issues, ranging from the flatness of
the Universe to the horizon or entropy problem [1].
However, a complete inflationary model requires above
all a mechanism for a graceful exit. Indeed, the prolonged
period of exponential expansion must end with a suffi-
ciently efficient transfer of the oscillation modes of the
inflaton condensate ϕ to a thermal bath [2,3], i.e., reheating,
that ensures a temperature ≳2 MeV to allow for standard
big bang nucleosynthesis. Moreover, the density fluc-
tuation spectrum produced during inflation should agree
with observations of the cosmic microwave background

(CMB) anisotropy spectrum [4], which in turn constrains
the parameters of the inflaton potential VðϕÞ.
The process of transferring the energy stored in inflaton

oscillations to Standard Model particles is not instanta-
neous [5–8]. Rather, in many models, an oscillating
inflaton condensate decays or scatters progressively pro-
ducing a bath of relativistic particles. The efficiency of the
reheating process depends on the rate of the energy transfer
as well as on the shape of the inflaton potential, VðϕÞ, about
its minimum [9,10]. Even if the exact shape of the potential
at the end of inflation is unknown it can often be
approximated about its minimum by a polynomial function
of ϕ.
In many models of inflation, the inflaton potential can be

approximated about its minimum by a quadratic term,
VðϕÞ ¼ 1

2
m2

ϕϕ
2. The Starobinsky model [11] is one exam-

ple. In this case, only one Fourier mode of the inflaton
oscillation contributes to the reheating process. The energy
density in radiation, ρR, grows rapidly at first, and redshifts
as ρR ∝ a−

3
2, where a is the cosmological scale factor, as

decays continue to add to the radiation bath. Because
ρϕ ∝ a−3, eventually, the radiation bath comes to dominate
the total energy density, at which time we can define a
reheating temperature. This occurs when the cosmological
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scale factor, aRH satisfies ρRðaRHÞ ¼ ρϕðaRHÞ. This occurs
(up to a numerical factor) when HðaRHÞ ≃ Γϕ, or
TRH ≃

ffiffiffiffiffiffiffiffiffiffiffiffi
ΓϕMP

p
, where H is the Hubble parameter, Γϕ is

the width of the inflaton condensate, and MP ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
≃ 2.4 × 1018 GeV is the reduced Planck mass.

For a potential whose expansion about its minimum is
VðϕÞ ¼ λϕk, with k ≥ 4, the exercise is more subtle, and
requires a more involved analysis [9,10]. The reheating
process will in general depend on the spin of the final state
particles in either inflaton decays or scatterings. In fact, in
some cases reheating does not occur. For example, for
k ¼ 4, the evolution of ρϕ ∝ a−4 is the same as the
evolution of ρR ∝ a−4 for inflaton decays or scatterings
to vector bosons [12], precluding the condition ρϕðaRHÞ ¼
ρRðaRHÞ to occur. However, we cannot exclude the pres-
ence of a bare mass term 1

2
m2

ϕϕ
2, which may be subdomi-

nant at the end of inflation, and during the early phases of
the oscillations, but which becomes dominant when ϕ has
redshifted down to a point am defined by λϕ4ðamÞ ¼
1
2
m2

ϕϕ
2ðamÞ. The presence of this term, even if it is small,

would then modify the reheating mechanisms, making for
example reheating by decays to vector bosons possible in
the case k ¼ 4.
Many models of inflation have potentials that, when

expanded about their minimum, are described by a series of
self-interactions beyond their mass term. For example, the
well-studied Starobinsky potential [11], contains a full
series of interaction terms. However, for ϕ < ϕend, where
ϕend ¼ ϕðaendÞ is the inflaton field value when the infla-
tionary expansion ends (when ä ¼ 0), terms that are higher
order than the quadratic (mass term), become greatly
suppressed and do not substantially affect the subsequent
evolution of the inflaton condensate. In contrast, models
such the so-called α-attractor T models of inflation [13],
described by a potential of the form,

VðϕÞ ¼ λM4
P

���� ffiffiffi
6

p
tanh

�
ϕffiffiffi
6

p
MP

�����k; ð1Þ

contain only even interaction terms starting with λM4−k
P ϕk

yielding a massless inflaton for k ≥ 4.
A bare mass term may be present at the tree level, may be

produced as a result of supersymmetry breaking in a
supersymmetric model, or may be produced radiatively.
Though we will treat the mass as a free parameter, we note
that there are (1) upper limits on the mass imposed by slow-
roll parameters that determine the inflationary observables,
ns and r; (2) in the absence of fine-tuning, there is a lower
bound on the mass derived from loop corrections to the
potential à la Coleman-Weinberg. Both of these limits will
be discussed below. In any case, the presence of a mass
term seems unavoidable, at least at higher order, justifying
a detailed analysis of its effect on the reheating process.

More specifically, the reheating phase in the T models
with k ≥ 4, as an example, is altered when a mass term is
added to the potential in Eq. (1). As a result, for k ¼ 4, the
evolution of the energy density transitions from a radiation-
dominated Universe (VðϕÞ ∝ ϕ4, ρϕ ∝ a−4) to a matter-
dominated Universe (VðϕÞ ∝ ϕ2, ρϕ ∝ a−3).1 If the reheat-
ing process is sufficiently slow, then the quadratic term can
come to dominate the inflaton energy density and would
result in higher reheating temperature than would have
been achieved from the quartic term alone. The presence of
a bare mass term generalizes previous results [9,10].
Furthermore, it was recently shown in [14,15] that the

effects of the fragmentation of the inflaton condensate
through its self-interaction λϕk, k ≥ 4 could considerably
affect the reheating process. It was noticed that in the case of
reheating generated via fermion decay, fragmentation
stopped the reheating process too early, leaving the
Universe with a bath of massless (and thus stable) particles
(inflatons). This would be in contradiction with CMB/BBN
(big bang nucleosynthesis) observations. However, if the
quadratic term 1

2
m2

ϕϕ
2 were to dominate before the end of the

fragmentation of the inflaton (am < aF where aF is the scale
factor when fragmentation is complete), the latter would
stop, allowing the condensate to continue the reheating
process safely through its decay, Γϕ ∝ mϕ. For example,
for k ¼ 4, the conformal self-resonance responsible for the
exponential growth of a narrow range of relativistic ϕ
momentum modes is shut down as they become nonrelativ-
istic. The effective frequencies lose the oscillatory driving,
and become incapable of fragmenting the inflaton conden-
sate [14,15]. This will be discussed in more detail below.
The paper is organized as follows: in Sec. II, we describe

the effect of the transition from a ϕ4 → ϕ2 potential on the
evolution of the inflaton condensate and its impact on the
reheating temperature. In Sec. III, we derive the upper limit
to the inflaton mass from CMB observables and the bare
mass expected from radiative corrections which in the
absence of fine-tuning represents a lower limit to the mass.
For numerical limits, we use T models of inflation as an
example. Then in Sec. IV, we derive the relations between
the inflaton coupling to matter and the reheating temper-
ature in view of the transition to a matter dominated
expansion. These results are generalized to k ≠ 4 in
Sec. V and the consequences on the fragmentation of the
inflaton condensate are discussed in Sec. VI. Our summary
is found in Sec. VII.

II. THE TRANSITION, ϕ4 → ϕ2

We begin by supposing that the dominant contribution in
a series expansion of the inflaton potential about its

1More generally, the Universe transitions from an expansion
with an equation of state, w ¼ Pϕ=ρϕ ¼ ðk − 2Þ=ðkþ 2Þ
(VðϕÞ ∝ ϕk, ρϕ ∝ a−6k=ðkþ2Þ) to a matter-dominated Universe.
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minimum is the quartic term and that at the end of inflation,
this dominates over a quadratic mass term, so that

λϕ4
end ≫

1

2
m2

ϕϕ
2
end: ð2Þ

For a > aend, the evolution of the energy density of ϕ is
governed by the Friedmann equation for ρϕ

dρϕ
dt

þ 3ð1þ wÞHρϕ ≃ 0: ð3Þ

Where ρϕ ¼ hVðϕÞi ¼ Vðϕ0Þ, the mean being taken over
the oscillation of ϕ and ϕ0 is the envelope of the
oscillations. More precisely,

ϕðtÞ ¼ ϕ0ðtÞPðtÞ; ð4Þ

with PðtÞ a quasiperiodic function encoding the (an)
harmonicity of short-timescale oscillations in the potential.
For k ¼ 4, Eq. (3) gives

ρϕ ¼ ρend

�
aend
a

�
4

; ð5Þ

where ρend is the value of the density of energy of the
inflaton at the end of inflation, when ä ¼ 0. This condition
is equivalent to w ¼ −1=3 or ϕ̇2

end ¼ VðϕendÞ. Hence,

ρend ¼
3

2
VðϕendÞ; ð6Þ

where for the T models with potential given in Eq. (1) we
have [10]

ϕend ≃
ffiffiffi
3

8

r
MP ln

�
1

2
þ k
3
ðkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 3

p
Þ
�
: ð7Þ

The parameter λ in Eq. (1) is determined from the
normalization of the CMB anisotropies [4]. The normali-
zation of the potential for different values of k can be
approximated by [10]

λ ≃
18π2AS�
6k=2N2�

; ð8Þ

where N� is the number of e-folds from horizon crossing to
the end of inflation and AS� ≃ 2.1 × 10−9 is the amplitude of
the curvature power spectrum. For N� ¼ 56 e-folds we find

λ ¼ 3.3 × 10−12, and ρ
1
4

end ¼ 4.8 × 1015 GeV (when k ¼ 4).
As ϕ0 decreases, eventually the evolution of the con-

densate will be governed by the quadratic term. This occurs
at a ¼ am when

1

2
m2

ϕϕ
2
0ðamÞ ¼ λϕ4

0ðamÞ: ð9Þ

Using ϕ4
0ðaÞ ¼ ðρend=λÞðaenda Þ4 for aend < a < am gives

am
aend

¼
�
4λρend
m4

ϕ

�
1=4

≃ 9.1 × 103
�
109 GeV

mϕ

�
: ð10Þ

In deriving (10), we note that the envelope function ϕ0 is
determined by the average energy density hρϕi ¼ Vðϕ0Þ.
Thus unless reheating occurs rapidly, the quadratic term
will dominate the reheating process even if the quartic
dominates after when oscillations begin. This will have
huge consequences on the reheating temperature, as well as
on the physics of fragmentation as we will see.
Indeed, if reheating occurs at a ¼ aRH > am, the process

is affected by the bare mass term. For a > am, the equation
of state changes from w ¼ 1=3 (for k ¼ 4) to w ¼ 0 (for
k ¼ 2) and the solution for a ≫ am to the Friedmann
equation becomes

ρϕ ¼ 1

2
ρϕðamÞ

�
am
a

�
3

¼ ρend

�
aend
am

�
4
�
am
a

�
3

: ð11Þ

Furthermore,

ρm ≡ ρϕðamÞ ¼ 2ρend

�
aend
am

�
4

¼ m4
ϕ

2λ
: ð12Þ

Combining Eqs. (10) and (11) we obtain

ρϕja>am
¼ mϕρ

3
4

end

ð4λÞ14
�
aend
a

�
3

: ð13Þ

This form for ρϕ dominates the energy density until
reheating defined by ρϕðaRHÞ ¼ ρRðaRHÞ. Here, ρR is the
energy density transferred to the thermal bath via the
Boltzmann equation

dρR
dt

þ 4HρR ¼ ð1þ wÞΓϕρϕ: ð14Þ

From the above, we can determine the reheating temper-
ature for a given mass, mϕ for which the bare mass affects
the reheating process, and therefore modifies the calcu-
lation of TRH. The condition am < aRH implies that ρm >
ρϕðaRHÞ and thus the condition for the quadratic part to
dominate the reheating process is given by

ρm ≳ ρRH ⇒ ρRH ≲m4
ϕ

2λ
; ð15Þ

from Eq. (12).
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Defining ρRH ¼ αT4
RH with α ¼ gRHπ2

30
for gRH relativistic

degrees of freedom at aRH, we obtain

TRH ≲ mϕ

ð2αλÞ14 ≃ 250mϕ; ð16Þ

which means that if the energy transfer between the
condensate and the thermal bath is slow and the reheating
temperature TRH lower than the limit obtained in Eq. (16),
we must take into account the quadratic term to determine
TRH when aRH > am.

III. LIMITS ON THE INFLATON BARE MASS

As noted earlier, the CMB observables impose an upper
limit tomϕ and in the absence of any fine-tuning, couplings
of the inflaton to Standard Model fields (necessary for
reheating), provide a lower bound to mϕ from radiative
corrections to the potential.
Planck [4] has determined with relatively high precision,

the value for the tilt of the CMB anisotropy spectrum, ns ¼
0.9649� 0.0042 (68% CL). In addition, the tensor-to-
scalar ratio, r < 0.036 is constrained by BICEP/Keck
observations [16,17]. To translate these limits to an upper
limit on mϕ, we use the T model in Eq. (1) as an example.
Recall that the conventional slow-roll parameters for a

single-field inflationary model are given by

ϵ≡ 1

2
M2

P

�
V 0

V

�
2

; η≡M2
P

�
V 00

V

�
; ð17Þ

where the prime denotes a derivative with respect to the
inflaton field, ϕ. The number of e-folds can be computed
using

N� ≃
1

M2
P

Z
ϕ�

ϕend

VðϕÞ
V 0ðϕÞ dϕ ≃

Z
ϕ�

ϕend

1ffiffiffiffiffi
2ϵ

p dϕ
MP

; ð18Þ

where ϕ� corresponds to the horizon exit scale k� ¼
0.05 Mpc−1 used in the Planck analysis. The scalar tilt
and tensor-to-scalar ratio can be expressed in terms of the
slow roll parameters as

ns ≃ 1 − 6ϵ� þ 2η�; ð19Þ

r ≃ 16ϵ�: ð20Þ

In a more precise model determination of N�, and ns, there
is some dependence on the reheating temperature and
equation of state [18,19]. The computation is based on
the self-consistent solution of the relation between N� and
its corresponding pivot scale k�,

N� ¼ ln

�
1ffiffiffi
3

p
�
π2

30

�
1=4

�
43

11

�
1=3 T0

H0

�
− ln

�
k�

a0H0

�

−
1

12
ln gRH þ 1

4
ln

�
Vðϕ�Þ2
M4

Pρend

�

þ ln

�
aend
aRH

�
ρend
ρRH

�
1=4

�
; ð21Þ

where the present Hubble parameter and photon temper-
ature are given by H0 ¼ 67.36 km s−1Mpc−1 [4] and T0 ¼
2.7255 K [20]. For the T models dominated by a quadratic
term, agreement with Planck/BICEP/Keck data requires N�
between roughly 42–56 [21].
In the absence of a mass, mϕ ¼ 0, N� ≃ 56 with ϕ� ¼

6.96MP and ðns; rÞ ¼ ð0.964; 0.0034Þ, independently of
the efficiency of reheating [10,15]. Therefore, to set limits
on a possible mass term for k ¼ 4, we set N� ¼ 56. For
nonzero masses both ns and r increase, but the limit on mϕ

is determined mainly from ns. Figures 1 and 2 show the
numerically computed CMB observables ns and r for a
variety of bare masses and inflaton-matter couplings. As is
customary, the Planck ðk� ¼ 0.05 Mpc−1Þ and Wilkinson
microwave anisotropy probe ðk� ¼ 0.002 Mpc−1Þ pivot
scales are chosen for ns and r, respectively. For mϕ ≠ 0,

FIG. 1. Scalar tilt ns (top) and tensor-to-scalar ratio r (bottom)
as functions of the Yukawa coupling y (22), for a selection of bare
masses mϕ and k ¼ 4.
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the effective equation-of-state parameter evolves as w ¼
−1=3 → 1=3 → 0 → 1=3 from the end of inflation to the
end of reheating.2 The top panel of Fig. 1 depicts the bare
mass dependence of the scalar tilt, as a function of an
inflaton-matter Yukawa coupling [see Eq. (22)]. For
mϕ ¼ 0, N� ≃ 56 for any y, leading to the purple horizontal

line. For mϕ ¼ 0.025
ffiffiffi
λ

p
MP, the smallest nonzero mass in

the figure, the resulting curve presents two regimes. At
y≳ 10−1, ns is independent of y since reheating is
completed before matter domination, aRH < am.
However, for y≲ 10−1, reheating is completed by the
dissipation of the quadratic, harmonic oscillations of ϕ.
A dependence of ns on y is induced, since now the last term
of (21) is relevant for the determination ofN�. For smaller y
reheating is delayed, resulting in a smaller N� and as a
consequence ns. In the case of larger masses, the pure
quartic regime is reduced, or outright lost, and the relation
of ns and y is determined by the duration of reheating in the
matter dominated era, and the modification of the slow roll
dynamics due to the presence of the large bare mass.
Analogous conclusions can be drawn from the bottom
panel of Fig. 1. In this case the addition of the bare mass
increases the value of the tensor-to-scalar ratio, both from

the modified inflation dynamics, and from the dependence
on y of the number of e-folds N�.
Figure 2 compares the corresponding ðns; rÞ curves

against the Planckþ BK18 constraints [16]. Here the range
of couplings spans reheating temperatures from TRH ∼ 2 ×
1014 GeV for y ¼ 1, to TRH ∼Oð10Þ MeV for y ¼ 10−15.
We note that for the smallest bare masses high reheating
temperatures are favored by the CMB data. On the other
hand, for the largest masses considered, lower TRH are
preferred. At the nominal N� ¼ 56, corresponding to y ≈ 1

in the figure, we find that mϕ < 0.2
ffiffiffi
λ

p
MP ≃ 8.8 ×

1011 GeV at 68% CL with ðns; rÞ ¼ ð0.971; 0.0050Þ and
mϕ < 0.25

ffiffiffi
λ

p
MP ≃ 1.1 × 1012 GeV at 95% CL with

ðns; rÞ ¼ ð0.975; 0.0061Þ. Above these masses, the values
of ns and r rise very quickly and agreement with data is
lost. Applying this limit on mϕ in Eq. (16) gives
TRH ≲ 2.8 × 1014 GeV. In other words, for larger reheating
temperatures, the energy transfer is sufficiently efficient to
avoid any interference of a possible quadratic interaction
without violating theCMBdata.Allowing for the full range in
coupling y or equivalently TRH and expanding the range in
N�, we see from Fig. 2, that the 68% CL upper limit ismϕ <
0.33

ffiffiffi
λ

p
MP ¼ 1.4 × 1012 GeV (for y ≥ 10−15 and a 95%CL

upper limit of mϕ ≲ 0.38
ffiffiffi
λ

p
MP ¼ 1.6 × 1012 GeV. For

largermasses it becomes impossible to simultaneously satisfy
the Planck constraints to 2σ and the BBN bound
TRH ≳MeV.
In addition to an upper bound to mϕ, we expect that

radiative corrections to the potential will provide finite mass
which unless fine-tuned away, will determine a lower bound
on the inflaton mass. Since the inflaton must (at some level)
be coupled to SM particles, loops involving SM particles
with weak scale masses will contibute radiatively to the
inflatonmass. Therefore, expect that through the coupling of
the inflaton to either fermions or scalars, would lead to amass
term proportional to ymf or μ [see Eqs. (22) and (35) for
couplings to fermions and scalars, respectively].While loops
involving SM fermions are probably no larger than the weak
scale, the coupling to scalars could generate a significant
contribution tomϕ. Furthermore, in a supersymmetric theory
we would also expect contributions to the scalar mass of
order the supersymmetry breaking scale. However, as noted,
any lower limit to the inflaton mass would be subject to the
degree of fine-tuning by canceling a bare mass termwith any
one-loop corrections. Therefore unlike the upper limit
discussed above, we do not apply a firm lower limit its
mass, but we recognize that it should not be surprising to
generate weak scale masses, even in theories with the
potential given in Eq. (1) for k ≥ 4.

IV. CONSEQUENCES OF THE INFLATON
COUPLING TO MATTER

Reheating to create a thermal bath of Standard Model
particles requires some coupling of the inflaton to the

FIG. 2. Same as Fig. 1 shown in the ðns; rÞ plane. The gray
(light gray) shaded regions correspond to the 68% (95%) CL
Planckþ BK18 regions [16].

2The dependence of N� on the instantaneous equation-of-state
parameter can be made evident by rewriting the last term
of (21) as

ln

�
aend
aRH

�
ρend
ρRH

�
1=4

�
¼ 1 − 3wint

12ð1þ wintÞ
ln

�
ρRH
ρend

�
;

where wint denotes the e-fold average of the equation of state
parameter during reheating [19].
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StandardModel. The relation between this coupling and the
reheating temperature is dependent not only on the shape of
the inflaton potential about its minimum, but also on
whether the reheating is produced by inflaton decay (in
to either fermions, scalars, or vectors) or scattering. As in
[9,10] we will study the three possible cases: fermion
decay, scalar decay, and scalar scattering, adding the
vectorial final states (decay and scattering) analyzed
in [12].

A. Inflaton decay to fermions

Given a Yukawa-like coupling of the inflaton to
fermions,

Lϕff ¼ yϕf̄f; ð22Þ

the inflaton decay rate is

Γϕ ¼ y2eff
8π

mϕ: ð23Þ

Here, the effective Yukawa coupling yeffðkÞ ≠ y is defined
by averaging over an oscillation. In general for k ≠ 2, the
effective coupling must be calculated numerically
[10,22,23].
The general expressions for the reheating temperature,

defined by ρϕðaRHÞ ¼ ρRðaRHÞ and αT4
RH ¼ ρRðaRHÞ, are

given in the Appendix. TRH depends strongly on the spin of
the final state decay products, and for decays to fermions,
Eq. (A11) gives with l ¼ 1=2 − 1=k and k < 7

TRH ¼
�
1

α

�1
4

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kðk − 1Þp
7 − k

λ
1
k
y2eff
8π

�k
4

MP; ð24Þ

or

TRH¼
8<
:
ðλαÞ

1
4
y2eff
π MP≃4.2×1014y2eff GeV k¼4

ð3αÞ
1
4

�
y2effmϕMP

20π

	1
2≃3.3×1012yeff

ffiffiffiffiffiffiffiffiffiffiffiffi
mϕ

109GeV

q
GeV k¼2

:

ð25Þ

Notable in Eq. (25) is that TRH exhibits a different
dependence on the coupling and mass of the inflaton. In
particular, TRH ∝ y2eff in the case am > aRH, TRH ∝
yeff

ffiffiffiffiffiffiffimϕ
p if am < aRH. We will see that for sufficiently

low coupling, the quadratic term can dominate the reheat-
ing process leading to a higher reheating temperature.
When the limit in Eq. (16) is satisfied, reheating is

sufficiently late to be determined by the quadratic term
[k ¼ 2 in Eq. (25)] and that can be translated into a limit on
the coupling yeff ,

yeff ≲ ymeff ¼ 0.02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ

109 GeV

r
: ð26Þ

We show in Fig. 3 the value of the reheating temperature
as function of yeff for different values of the inflaton bare
mass mϕ ¼ 103; 109, and 1011 GeV, neglecting the effects
of an effective final state mass (see below) and thus
yeff ¼ y. To obtain the figure, we solved numerically the
complete set of Friedmann equations for ρR and ρϕ, taking
the full potential VðϕÞ ¼ 1

2
m2

ϕϕ
2 þ λϕ4. We also show for

comparison with dashed lines, the analytical value of TRH
obtained in Eq. (25). We clearly see the change of behavior
TRH ¼ fðyeffÞ below the limiting value in Eq. (26) where
the bare mass term controls the final reheating temperature.
For yeff ≲ ymeff, TRH ∝ yeff , whereas for larger values of yeff ,
when the reheating is dominated by the quartic part of the
potential, the reheating temperature ∝ y2eff and is indepen-
dent of mϕ.
A background field value for ϕ, however, induces an

effective mass for the fermion, f, meff ¼ yϕ, and the rates
for producing the fermions are suppressed by R−1=2 where
R ∝ m2

eff=m
2
ϕ ∝ y2ðϕ0=MPÞ4−k=λ [10].3 The mass of the

inflaton is defined by

m2
ϕðtÞ≡ V 00ðϕ0ðtÞÞ: ð27Þ

FIG. 3. Reheating temperature as a function of the Yukawa
coupling y when a bare mass term is added to a quartic potential
(k ¼ 4). Solid lines are obtained by solving numerically the
Boltzmann equations for energy densities, while dashed lines are
given by the analytical approximations in Eq. (25). Here we
neglect the effective mass of the final state fermion, R ¼ 0
and yeff ¼ y.

3Collective effects can additionally become important for
sufficiently large couplings y, resulting in a further Pauli
suppression for the efficiency of the decays. For k ¼ 2, these
preheating effects become relevant for y ≳ 10−5 [24].
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When R ≫ 1, there is a significant suppression in the
decay rate and yeff ≪ y. Note that in the case of a quartic
potential, mϕ ∝ ϕ. As meff ∝ ϕ also, R is constant,
R ≃ 1.4y2=λ ≃ 4.2 × 1011y2. In other words, the effect of
R results in a suppression of the reheating efficiency by a
constant factor R−1

2 ≃ 1.5 × 10−6=y throughout the reheat-
ing process. This suppression begins to be efficient (R≳ 1)
for y≳ 1.5 × 10−6 [10]. On the other hand, for a quadratic
potential, R ¼ 4ðϕ0=mϕÞ2y2 decreases with time, redshift-

ing as a−
3
2. Which means that if there is no suppression

during the quartic dominated era (a < am), then there is no
suppression in the quadratic era (a > am).
The kinematic suppression in the effective coupling yeff

for R ≫ 1 can be parametrized as [10]

y2eff ≃ ckR−1=2ðω=mϕÞy2; ð28Þ

where ck is a k dependent constant
4 and ω is the oscillation

frequency. For k ¼ 4, c4 ≃ 0.5, and ω ≃ 0.49mϕ. This
leads to

yeff ≃
1

2
×

y

R
1
4

≃ 6 × 10−4
ffiffiffi
y

p ðk ¼ 4Þ: ð29Þ

We note that only when R ∼ 0.1, do we recover yeff ¼ y.
Note also that unless yeff is relatively small,
yeff ≲ 2 × 10−3, the Lagrangian coupling, y, is nonpertur-
bative [10,14], where this perturbativity limit on yeff
assumes y≲ ffiffiffiffiffiffi

4π
p

.
For k ¼ 2, c2 ≃ 0.38 and ω ¼ mϕ. At the end of

reheating, ρRH ¼ 1
2
m2

ϕϕ
2
0ðaRHÞ ¼ αT4

RH, so that

ϕ0ðaRHÞ ¼
ffiffiffiffiffiffi
2α

p T2
RH

mϕ
: ð30Þ

Then, for R ≫ 1, we can write

yeff ≃ 0.15ðmϕ=TRHÞ
ffiffiffi
y

p ðk ¼ 2Þ; ð31Þ

and using Eq. (25) for TRH in terms of yeff we have

yeff ¼ 6.7 × 10−3
�

mϕ

109 GeV

�1
4

y
1
4 ðk ¼ 2Þ: ð32Þ

In this case, nonperturbativity sets in unless
yeff ≲ 1.5ðmϕ=ϕ0Þ12, assuming that yeff < y. Note that for
k > 4 the limit becomes more severe as R is larger and
increases in time.

Because of the suppression in the decay rate, the relation
between TRH and the decay coupling y shown in Fig. 3 needs
to be reassessed. Indeed, when y≳ 1.5 × 10−6, R≳ 1 and
the suppression effect should be taken into account. The
relation between TRH and y when the effects of kinematic
suppression are included is shown in Fig. 4. At very low
values of y, R ≪ 1 and the suppression effects can be
ignored. In this case, the relation between TRH and y is
unaffected. However, when yeff ≤ y the relation is altered.
FromEq. (32), this occurswheny > 1.3 × 10−6ðmϕ=GeVÞ13,
or when y > 1.3 × 10−5ð1.3 × 10−3Þð6 × 10−3Þ when
mϕ ¼ 103ð109Þð1011Þ GeV. These values are seen in
Fig. 4 when the solid curves begin to deviate from the
dashed curves. The dashed curves show the relation in Fig. 3
when suppression effects are ignored. The expression for yeff
in Eq. (32) can be inserted in Eq. (25) to obtain the relation
betweenTRH and y forwhen suppression effects are included
and reheating is governed by the quadratic term,

TRH ¼ 2.2 × 1010 GeV

�
mϕ

109 GeV

�3
4

y
1
4 ðk ¼ 2Þ: ð33Þ

We saw previously in Eq. (16) that the reheating temper-
ature is determined by the quartic term only if
TRH ≳ 250mϕ. When the kinematic suppression effects
are ignored (y ¼ yeff ), this occurs when y does not satisfy
Eq. (26). In this case, we can use Eq. (29) to determine the
relation between TRH and y,

TRH ¼ 1.5 × 108y GeV ðk ¼ 4Þ; ð34Þ

FIG. 4. As in Fig. 3, the reheating temperature as function of the
Yukawa coupling y for different values of the inflaton bare mass
mϕ ¼ 103 GeV (red dotted), 109 GeV (green dashed), and
1011 GeV (full blue). Here we consider the effective mass of
produced fermion, R ¼ ð2yϕ0=ωÞ2.

4There is an additional dependence of yeff on the sum of the
Fourier modes associated with the inflaton oscillations in the
potential VðϕÞ ∼ ϕk, for each value of k. However, this additional
dependence is Oð1Þ, as shown in [10].
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and thus we expect that reheating is determined by the
quartic term when y > 1.7 × 10−6mϕ=GeV. This occurs at
y ¼ 1.7 × 10−3 formϕ ¼ 103 GeV as can be seen in Fig. 4.
For the larger masses shown, we see that the transition
would only occur in the nonperturbative regime (with
y ≫ 1) and so for the two higher masses, the reheating
temperature is always determined by the quadratic
mass term.

B. Decay to scalars

Another possibility is that reheating occurs predominantly
through inflaton decay to scalars, through the coupling

Lϕb2 ¼ μϕb2 ð35Þ

where b is a real scalar field. As was the case for the fermion
decay, there is also an effect from the effective mass of the
scalar field, andwe parametrize it by considering an effective
coupling μeff . We note that μeff is now a dimensionful
parameter and is enhanced (and not reduced) by R1=2

[10]. The associated decay rate is given by

Γϕb2 ¼
μ2eff
8πmϕ

: ð36Þ

For k ¼ 2 this effective coupling reduces to the Lagrangian
coupling μ but is different for k > 2. It is important to note
that in this case, as mϕ decreases with time, the decay rate
increases with time.
For decays to scalars, l ¼ 1=k − 1=2, and using the

appropriate expression found in the Appendix for γϕ, we
have

TRH ¼
�
1

α

�1
4

�
2k

ffiffiffi
3

p

ð4kþ 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk − 1Þp λ−

1
k
μ2eff

8πM2
P

� k
4ðk−1Þ

MP;

ð37Þ

or

TRH¼
8<
:
ð1αÞ

1
4

�
μ2eff

36πM2
P

	1
3λ−

1
12MP≃1.8×1018

�
μeff
MP

	2
3GeV k¼4

ð3αÞ
1
4

�
MP

20πmϕ

	1
2μeff≃3.3×103μeff

ffiffiffiffiffiffiffiffiffiffiffiffi
109GeV

mϕ

q
k¼2

:

ð38Þ

We show in Fig. 5 the evolution of TRH as function of μ
for the same set of masses mϕ ¼ 103, 109, and 1011 GeV,
in the simplified case with meff ¼ 0. We clearly recognize
the dependence TRH ∝ μ for the smaller values of μ and
TRH ∝ μ2=3 for the larger values, when reheating is domi-
nated by the quartic part of the potential. The value of μ for
which reheating is dominated by the quadratic term
obtained from Eq. (38) with k ¼ 4 is

μ≲ 1.3 × 108
�

mϕ

109 GeV

�3
2

GeV; ð39Þ

which is effectively what is observed in Fig. 5. From
Eq. (39), we see that the reheating temperature for mϕ ¼
103 GeV (red curve) is always due to the quartic term, as
the transition from quadratic to quartic occurs at a low value
of μ beyond the range shown. For the larger values of mϕ,
Eq. (39) indicates when when the slopes of TRH vs μ begins
to change.
In order to account for the effective massm2

eff ¼ 2μϕ0, we
need to include an enhancement of the production rate∝ R

1
2,

with R ¼ 8μϕ0=m2
ϕ for k ¼ 2 and R ≃ 2.8μ=ðλϕ0Þ for

k ¼ 4. The effective dimensionful coupling5 when R ≫ 1
is [10]

μ2eff ≃
c0k
4
ðkþ 2Þðk − 1Þ ω

mϕ
R

1
2μ2; ð40Þ

with c0k ≃ f0.38; 0.37; 0.36g for k ¼ f2; 4; 6g, so that μeff ≃
0.62ð8ϕ0=m2

ϕÞ
1
4μ

5
4 for k ¼ 2. Then using Eq. (30) for ϕ0 and

Eq. (38) for k ¼ 2 to replace TRH, we have

FIG. 5. Reheating temperature as function of the bosonic
coupling μ, for different values of the inflaton bare mass mϕ ¼
103 GeV (red), 109 GeV (green), and 1011 GeV (blue). Solid
lines are obtained by solving numerically the Boltzmann equa-
tions for energy densities, while dashed lines are given by the
analytical approximations in Eq. (38). Here we neglect the
effective mass of produced bosons, R ¼ 0.

5Again, an additional Oð1Þ dependence of μeff on the sum of
the Fourier modes associated with the inflaton oscillations for
each value of k is neglected here [10]. Note also that the values of
c0k were omitted in [10].
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μeff ≃ 3.3 × 10−10 GeV

�
109 GeV

mϕ

�
2
�

μ

GeV

�5
2

: ð41Þ

Then, the effects of the kinematic enhancement will occur
when

μ≳ 2.1 × 106
�

mϕ

109 GeV

�4
3

GeV: ð42Þ

This can be see seen in Fig. 6 formϕ ¼ 109 (1011 GeV as the
point when the solid curves break away from the dashed
curves at μ ≃ 2.1 × 106 ð9.8 × 108Þ GeV, respectively. At
lower values ofμ, the effects of the kinematic suppressioncan
be ignored. For mϕ ¼ 103 GeV, this occurs at a value of μ
below the range shown. It must be noted that the enhance-
ment of the particle production ratewithR ≫ 1 is connected
to the (tachyonic) resonant excitation of b. This typically
signals the breakdown of the perturbative approximation,
requiring the use of lattice codes to capture the bosonic
enhancement originated from the short-time preheating
effects [25,26]. We do not consider this effect in the present
work, and we take the perturbative rate as a lower bound on
the efficiency of the decay process.
In the region when μeff > μ and quadratic reheating

dominates, we can insert Eq. (41) into Eq. (38) to obtain

TRH ¼ 1.1 × 10−6 GeV

�
109 GeV

mϕ

�5
2

μ
5
2 ðk ¼ 2Þ: ð43Þ

At higher values of μ the transition to quartic reheating
occurs and using Eq. (40) with the expression for R for
k ¼ 4, we find that

μeff ≃ 2.5 GeV

�
μ

GeV

�15
14

; ð44Þ

which when inserted in Eq. (38) gives

TRH ≃ 2.5 × 1019 GeV

�
μ

MP

�5
7 ðk ¼ 4Þ: ð45Þ

C. Decay to vectors

Recently, we have considered the possibility of inflaton
decays to vectors [12] motivated by inflationary models in
the context of no-scale supergravity [27] (which easily lend
construction of the T models considered here [9]). Often in
such models, the inflaton couplings to matter fermions and
scalars are highly suppressed [28–30] and reheating is only
possible if the gauge kinetic functions contain inflaton
couplings. The inflaton to vector couplings can be para-
metrized by

L ⊃ −
g

4MP
ϕFμνFμν −

g̃
4MP

ϕFμνF̃μν; ð46Þ

From these Lagrangian couplings, we can derive the
inflaton decay rate

Γϕ→AμAμ
¼ α2effm

3
ϕ

M2
P

; ð47Þ

where α2eff ¼ ðg2eff þ g̃2effÞ=ð64πÞ. Note the dependence of
the width onm3

ϕ, which is very different from the decay into
fermions (∝ mϕ) and to scalars (∝ 1=mϕ). Γϕ→AμAμ

decreases much more rapidly than Γϕ→ff, rendering the
reheating much less efficient, even impossible as long as
the reheating is dominated by the quartic term.
Indeed, for decay to vectors, l ¼ 3=2 − 3=k, and using

the appropriate expression for γϕ, we have from Eq. (A11)

TRH ¼
�
1

α

�1
4

� ffiffiffi
3

p
k
5
2ðk − 1Þ32λ3

k

13 − 4k
α2eff

� k
4ð3−kÞ

MP: ð48Þ

This expression is valid so long as kþ 8 − 6kl > 0, which
is the case for k ¼ 2, but not for k ≥ 4. For kþ 8 − 6kl < 0,
the reheating temperature is given by Eq. (A12) for k > 4.
For k ¼ 4, the radiation density in Eq. (A8) scales as a−4 as
does the inflaton energy density in Eq. (A4) and we never
achieve the condition that ρϕðaRHÞ ¼ ρRðaRHÞ and reheat-
ing never occurs. Thus we have

FIG. 6. Reheating temperature as function of the bosonic
coupling μ, for different values of the inflaton bare mass mϕ ¼
103 GeV (red), 109 GeV (green), and 1011 GeV (blue). Solid
lines are obtained by solving numerically the Boltzmann equa-
tions for energy densities, while dashed lines are given by the
analytical approximations in Eq. (38). Here we consider the
effective mass of produced bosons, R ¼ 8μϕ0=ω2.
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TRH ¼
8<
:

no reheating k ¼ 4

ð3αÞ
1
4

�
2m3

ϕ

5M3
P

	1
2αeffMP ≃ 7.0 × 103αeff

�
mϕ

109 GeV

	3
2 GeV k ¼ 2

: ð49Þ

Thus for a k ¼ 4 inflationary potential, reheating via the
decays to vector bosons does not occur in the absence of a
bare mass term. The bare mass term is then necessary to
ensure a successful reheating. However, the bare mass term
should ensure TRH ≳ 2 MeV, which means

mϕ ≳ 40α
−2
3

eff TeV: ð50Þ

This value is the minimal bare mass necessary to have
reheating through decay to vectors for k ¼ 4.
Finally we note that there are no kinematic enhancement/

suppression effects in this case. Since the inflaton is
coupled to F2 (as opposed to A2), no mass term is
generated. Then geff ¼ g (and g̃eff ¼ g̃) for k ¼ 2, and
for k ¼ 4 only differs by a Fourier coefficient in an
expansion of VðϕÞ [12]. Nevertheless, nonperturbative
preheating effects may play a role for large couplings,
an effect that we leave for future work [31–33].

D. Scattering to scalars

We can also consider the case where the inflaton trans-
fers its energy through the coupling

Lϕ2b2 ¼ σϕ2b2; ð51Þ

where b is a real scalar field. The associated decay rate is
given by [10]

Γϕ2b2 ¼
σ2eff
8π

ρϕ
m3

ϕ

; ð52Þ

where we have introduced the effective coupling σeff
obtained, as for yeff and μeff , after averaging over oscil-
lations of the background inflaton condensate [10]. This
effective coupling is equal to the Lagrangian coupling σ for
k ¼ 2 but is different for k > 2 and as in the case of decays
to fermions there is a kinematic suppression.
For scattering to scalars, l ¼ 3=k − 1=2, and using the

appropriate expression found in the Appendix for γϕ, we
have from Eq. (A11) valid when k ≥ 4,

TRH ¼
�
1

α

�1
4

� ffiffiffi
3

p

ð2k − 5Þ ffiffiffi
k

p ðk − 1Þ32 λ
−3
k
σ2eff
8π

� k
4ðk−3Þ

MP: ð53Þ

For k ¼ 2, 8þ k − 6kl < 0 and ρR redshifts as a−4 which is
faster than ρϕ ∝ a−3. Thus, in this case, reheating is not
possible if the quadratic term becomes dominant before

reheating is complete. The reheating temperature can then
be written as

TRH ¼
(
ð1αÞ

1
4

�
σ2eff
144π

	
λ−

3
4MP ≃ 8.9 × 1023σ2eff GeV k ¼ 4

no reheating k ¼ 2
:

ð54Þ

As one can see, the possibility of reheating through
scattering to scalars is opposite the case of decays to
vectors. Reheating is not possible when the quadratic part
of the potential dominates the reheating process. Naively,
when we neglect the kinematic suppression effects in R,
reheating is therefore only possible if the limit in Eq. (16) is
violated, namely

σeff ≳ 5.3 × 10−7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mϕ

109 GeV

r
: ð55Þ

For smaller couplings, the quadratic term will dominate
before reheating is complete, and as a result never com-
pletes. We note in the expression for TRH in Eq. (54), the
maximum value for σeff that can be used is determined from
aRH > aend, which gives

σ2eff < 2.2 × 10−9: ð56Þ

Furthermore for self couplings this large, we expect that
nonperturbative effects become non-negligible [24]. For
larger values, we have a maximum reheating temperature of
2 × 1015 GeV, which is basically determined from ρend.
As previously noted, for inflaton scattering to scalars,

there is a kinematic suppression when R > 1. In this case,
for k ¼ 4, R ≃ 2.8σ=λ is a constant and6

σ2eff ≃
c00k
8
kðkþ 2Þðk − 1Þ2R−1=2ðω=mϕÞσ2;

≃ 16R−1=2σ2 ≃ 9.6
ffiffiffi
λ

p
σ

3
2; ð57Þ

using c004 ¼ 1.22. Then the reheating temperature in terms
of σ becomes

TRH ¼ 1.6 × 1019 GeVσ
3
2 ðk ¼ 4Þ: ð58Þ

6We neglect the dependence of σeff on the sum of the Fourier
modes associated with the inflaton oscillations for each value
of k [10].
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In Fig. 7, we compare the reheating temperature as a function
of σ when kinematic effects are ignored to the case where
they are included. From Eq. (57), these effects become
important when σ > 3.1 × 10−10. The dashed lines corre-
spond to the solutionwhenkinematic effects are ignored.The
abrupt increase in TRH occurs when Eq. (55) is satisfied (and
σeff ¼ 4σ). In contrast, the solid lines include the kinematic
suppression and reheating is possible when Eq. (55) is used
with Eq. (57) or when

σ ≳ 6.4 × 10−6
�

mϕ

109 GeV

�2
3

: ð59Þ

This limit accounts for the abrupt rise in TRH for the solid
lines in Fig. 7. At higher coupling, the reheating temperature
follows Eq. (58) and scales as σ

3
2 as opposed to σ2 when the

suppression effects are ignored. In the latter case, we see the
curves flatten at large coupling since aRH is approaching aend
and the approximation used in (54) breaks down. These
curves end when aRH ¼ aend, indicated by the vertical gray
dotted line. The solid curves would end when σ ≃ 0.002.
In the absence of a decay term for the inflaton, a bare

mass term will eventually lead to a nonzero relic density of
inflatons after annihilations freeze out. Indeed, even if σeff
is sufficiently large and respects the condition (55), the
presence of a quadratic term may dominate the energy
budget of the Universe. Thus we can derive a limit on a
combination of the inflaton mass, TRH and the coupling σ.

Saturating the limit leaves us with the inflaton as a cold
dark matter candidate.7

Indeed, for σeff sufficiently large to ensure reheating with
k ¼ 4, for a > aRH, the evolution of ρϕ is determined from
the Boltzmann equation including dissipative effects [10]

d
da

ðρϕa 6k
kþ2Þ ¼ −

γϕ
aH

2k
kþ 2

ρlþ1
ϕ

M4l
P
a

6k
kþ2; ð60Þ

and for k ¼ 4, l ¼ 1
4
, and γϕ as given in the Appendix, we

find that ρϕ scales as

ρϕ ¼ 256ρRH

�
aRH
a

�
8

: ð61Þ

Here, we used H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR=3M2

P

p
. In the absence of a mass

term, since Γϕ ∝ γϕρ
1
4

ϕ ∝ a−2 and after reheating,

H ∝ ρ
1
2

R ∝ a−2, the ratio Γ=H remains constant and the
scaling in Eq. (61) remains true indefinitely and the density
of inflatons becomes negligibly small.
However, when mϕ ≠ 0, eventually the mass term

dominates over the quartic term (at a ¼ am) and we can
determine am, when ρϕðamÞ ¼ 1

2
m2

ϕϕ
2ðamÞ,

am
aRH

¼ ρ
1
8

RHλ
1
82

1
8ffiffiffiffiffiffiffimϕ

p ; ð62Þ

where the inflaton density is given by

ρmϕ ¼ ρϕðamÞ ¼
m4

ϕ

2λ
: ð63Þ

as was previously found in Eq. (12).
For a > am, Eq. (60) can be solved, now with k ¼ 2 and

l ¼ 1. In the limit that a ≫ am, the residual inflaton density
is given by

ρϕðaÞ ≃ ρmϕ

�
am
a

�
3

; ð64Þ

so long as ðmϕ=MPÞ ≪ ð2λÞ14=31
3 ≈ .001, which is always

true given the upper limits onmϕ discussed in Sec. III. Thus
the presence of a mass term in the case where reheating is
determined by a quartic coupling of the inflaton to scalars
(which requires k > 2), leads automatically to cold dark
matter candidate.
Given the inflaton density in Eq. (64), it is straightfor-

ward to compute the relic density today and in effect set a
limit on the inflaton bare mass. Today,

FIG. 7. Reheating temperature as function of the scattering
coupling σ, for different values of the inflaton bare mass mϕ ¼
103 GeV (red), 109 GeV (green), and 1011 GeV (blue). Solid
lines are obtained by solving numerically the Boltzmann equa-
tions for energy densities including the effect of R, while dashed
lines neglect the effect of effective masses. The vertical gray
dotted line corresponds to the limit Eq. (56), when neglecting the
effect of R.

7The possibility of inflaton dark matter in a similar context was
considered in [34] where the conditions for freeze-out of a
thermal inflaton given. See also [35–39].
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ρϕ ¼ 8m
5
2

ϕα
3
8T3

0

ð2λÞ58T3
RH2

ξ; ð65Þ

where ξ ¼ ð43=427Þð4=11Þ ≃ 0.036 and relative to the
critical density we have

Ωϕh2 ¼ 1.6

�
mϕ

1 GeV

�5
2

�
1010 GeV

TRH

�3
2 ð66Þ

and thus

mϕ < 0.35

�
TRH

1010 GeV

�3
5

GeV; ð67Þ

using Ωϕh2 < 0.12. This is a remarkably strong limit on a
bare mass term for the inflaton if it remains stable.

E. Scattering to vectors

If the gauge kinetic function is quadratic in the inflaton,
then scattering rather decay to vectors occurs. In this case,
the inflaton to vector couplings can be parametrized by

L ⊃ −
κ

4M2
P
ϕ2FμνFμν −

κ̃

4M2
P
ϕ2FμνF̃μν: ð68Þ

From these Lagrangian couplings, we can derive the
inflaton decay rate

Γϕϕ→AμAμ
¼ β2ρϕ

M4
P
mϕ; ð69Þ

where β2 ¼ ðκ2eff þ κ̃2effÞ=ð4πÞ.
For scattering to vectors, l ¼ 3=2 − 1=k, and using the

appropriate expression for γϕ, we have from Eq. (A12)

TRH ¼
�
1

α

�1
4

� ffiffiffi
3

p
k

4k − 7
β2ðkðk − 1ÞÞ12λ1

k

� 3k
4k−16

×

�
ρend
M4

P

� 4k−7
4k−16

MP; ð70Þ

since 8þ k − 6kl < 0 for k ≥ 2. However, Eq. (70) is only
valid for k > 4. For k ¼ 2ð4Þ, ρϕ ∝ a−3ða−4Þ while ρR ∝
a−4 for all k and reheating is not possible for k < 6. For
these specific cases, we then have

TRH ¼


no reheating k ¼ 4

no reheating k ¼ 2
: ð71Þ

In this case, the presence of a bare mass will not change the
lack of reheating through the scattering to vectors.
As a conclusion, whereas in the case of decays to

fermions or bosons, the presence of a quadratic term only

acts on the value of TRH, decreasing the reheating temper-
ature in the former case, increasing it in the latter case, the
quadratic term when dominant removes the possibility of
reheating through scattering to scalars but reopens the
possibility of reheating through decay to vectors, but it does
not allow reheating through the scattering to vectors.

V. GENERALIZED POTENTIALS

The inflationary potential may be dominated by higher
order terms if k > 4. In this section, we generalize some of
the arguments made above in the event that the inflationary
potential is approximated by

1

2
m2

ϕϕ
2
0 þ λϕk

0M
4−k
P ð72Þ

about its minimum. In this case, the general expression for
the scale factor when the mass term dominates is given by

am
aend

¼
�
2λ

2
kM

2ð4−kÞ
k

P ρ
k−2
k
end

m2
ϕ

� kþ2
6k−12

; ð73Þ

with ρend given by Eq. (6) and λ by Eq. (8). Then

ρϕðamÞ ¼ 2

�
m2

ϕ

2

� k
k−2

λ
−2
k−2M

2ðk−4Þ
k−2
P ; ð74Þ

which clearly reduces to Eq. (12) for k ¼ 4. A parallel
derivation leading to Eq. (16) implies that

ρRH ≲ 2

�
m2

ϕ

2

� k
k−2

λ
−2
k−2M

2ðk−4Þ
k−2
P ð75Þ

for the mass term to dominate at reheating. In terms of the
reheating temperature, this amounts to

TRH ≲
�
1

α

�1
4

�
mϕM

k−4
k
P

ð2λÞ1k
� k

2ðk−2Þ

: ð76Þ

This upper bound on the reheating temperature is depicted
in Fig. 8, for different values of k. For comparison with
Eq. (16), we have

TRH ≲
8<
:

5.0 × 105 GeV
�

mϕ

GeV

	3
4 k ¼ 6

6.3 × 106 GeV
�

mϕ

GeV

	2
3 k ¼ 8

; ð77Þ

using λ ¼ 5.7 × 10−13 and 9.5 × 10−14 for k ¼ 6 and 8,
respectively.
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VI. CONSEQUENCE ON THE INFLATON
FRAGMENTATION

Recently, the authors of [14,15] have shown that frag-
mentation can significantly alter the reheating process.
Indeed, the fragmentation of the inflaton condensate results
in the population of an inflaton-particle bath, whose very
low mass, proportional to the density of the condensate
which remains unfragmented, may not allow reheating
temperatures above the BBN bounds for inflaton decays to
fermions. This fragmentation is due to the presence of a
self-scattering term of type λϕk, with k ≥ 4. The inflaton
condensate does not fragment in the absence of self-
interactions allowing for reheating to occur as dis-
cussed above.
However, the study [14] was carried out in the context of

a monomial potential of the type VðϕÞ ¼ λϕk. It is then
easy to see that the presence of a bare mass term of the type
1
2
m2

ϕϕ
2 can change the conclusions of this study, in

particular if the quadratic term begins to dominate before
the fragmentation halts. If we define aF as the value of
the scale factor at the end of fragmentation, then
aF=aend ¼ 180; 4.5 × 104; 6 × 106, and 7 × 108, for
k ¼ 4, 6, 8, and 10, respectively [14]. In order for a
quadratic term to affect the fragmentation process, we must
have am ≲ aF and using Eq. (10) it becomes easy to
compute, for each value of k, the minimal value of mϕ

necessary to ensure that the quadratic term dominates the
potential before the end of fragmentation. The problem of a
leftover bath of massless inflatons can then be avoided by
stopping the fragmentation process.

More precisely, when reheating begins, self-interactions
can source the growth of the inflaton fluctuations
δϕðt; xÞ ¼ ϕðt; xÞ − ϕ̄ðtÞ, where ϕ̄ denotes the homo-
geneous condensate. At early times, this growth can be
captured by the linear equation of motion

δ̈ϕþ 3Hδ̇ϕ −
∇2δϕ

a2
þ V 00ðϕ̄Þδϕ ¼ 0; ð78Þ

where

V 00ðϕ̄Þ ≃ kðk − 1Þλϕ̄k−2M4−k
P þm2

ϕ: ð79Þ
For mϕ ¼ 0, the oscillating nature of this resulting effective
mass term drives the resonant growth of δϕ and the eventual

FIG. 8. Upper bound on the reheating temperature from
Eq. (76), below which the inflaton mass term drives the process,
as a function of the bare mass mϕ and for different values of k,
k ¼ 4 (solid line), k ¼ 6 (dashed), k ¼ 8 (dotted). In the different
shaded regions, reheating occurs while the inflaton oscillates in a
quadratic potential (k ¼ 2), given by its bare mass mϕ. Above the
lines, for different k, reheating occurs while the inflaton oscillates
in the potential VðϕÞ ∼ ϕk.

FIG. 9. Energy density of the inflaton fluctuations ρδϕ com-
pared to the total energy density ρϕ, for three values of the bare
mass, for k ¼ 4. The vertical dashed line corresponds to the value
of am=aend when mϕ ≠ 0. In both of these cases, although
am > aF, the exponential growth of δϕ is stopped by the
transition to matter domination.
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fragmentation, δϕ ≫ ϕ̄ [14,15,40–48]. However, if mϕ

dominates before fragmentation, V 00 ∼ const, strongly sup-
pressing the oscillatory driving force.8

Figure 9 shows the evolution of the total inflaton energy
density ρϕ, compared to the energy density in its fluctuations
ρδϕ, as computed numerically for a T model of inflation [13]
with k ¼ 4 and three choices of the bare mass (see [15] for
details). The top panel depicts the zero baremass scenario. In
it, the rapid growth of inflaton fluctuations driven by para-
metric resonance can be appreciated. This growth only stops
when ρϕ ≃ ρδϕ (a=aend ≃ 180), corresponding to the near-
complete fragmentation of the inflaton condensate in favor of
free ϕ particles.9 For the bottom two panels we takemϕ > 0.
In both cases, the quartic → quadratic transition time has
been chosen to be posterior to the complete fragmentation of
the inflaton, am > aF. A naive estimate from Eq. (79) would
indicate that the resonant growth of δϕ would not stop until

a
aend

¼
ffiffiffiffiffiffiffi
12λ

p
ϕend

mϕ
≃ 2.6

am
aend

; ð80Þ

that is, the field would be fully fragmented before matter
domination. However, the full numerical solution of the
equation ofmotion (78) shows that the growth of fluctuations
is in reality suppressed from a≲ am=2, as both panels of

Fig. 9 demonstrate. Therefore, reachingquadratic dominance
is a sufficient condition to avert full fragmentation. Note that
for smaller masses than those used in Fig. 9, fragmentation
would nearly completely destroy the condensate and poten-
tially disrupt the reheating process entirely. On the other
hand, for largermasses, the fragmentation process would not
be operative at all.
A qualitative depiction of this result for potentials with

k ≥ 4 is shown in Fig. 10, wherewe plot the limit on themass
mϕ abovewhich the baremass termdominates over λϕk in the
potential as a function of k. We see that, for larger value of k,
where the fragmentation is less efficient due to the increasing
difficulty, for the self-scattering to occur for higher modes,
even a small bare mass term can be sufficient to stop the
fragmentation process and ensure a successful reheating.

VII. CONCLUSION

Reheating in most models of inflation is accomplished
through either inflaton decay or scattering to Standard
Model particles. This typically after inflationary expansion
ends and a period of inflaton oscillations begins. When the
potential is dominated by a quadratic term about its
minimum, decays are necessary, as scatterings will not
in general lead to a radiation dominated universe. However,
potentials dominated by higher order interactions, k > 2,
have anharmonic oscillations and scattering may lead to
reheating, though these models may be subject to additional
constraints arising from the fragmentation of the inflaton
condensate. In addition, the details of the reheating process
and the final reheating temperature depend on the spin of
the final state particles produced in the decay or scattering.
In models of inflation for which the potential can be

expanded about its minimum as VðϕÞ ∝ ϕk, typically the
lowest power, k appearing in the expansion dominates the
reheating process. For k > 2, it is quite possible, as we have
argued that in addition to the inflationary potential, a bare
mass term in the full scalar potential is also present. This
may arise from radiative corrections or supersymmetry
breaking. In Sec. III, we derived upper limits to this mass
from CMB observables. These limits are sufficiently weak
so that the presence of the mass term may affect the
reheating process. Indeed, quite generally, if Eq. (16) for
k ¼ 4 or (76) more generally are satisfied, the final
reheating temperature will be determined by the quadratic
rather than a higher order term.
The qualitative effect of the mass term also depends on

the reheating mechanism (decays or scattering) as well as
the spin of the final states. For decays to fermions, the
reheating temperature is increased by the presence of mass
term, while for scalars, it is decreased. For decays to
vectors, reheating does not occur for k ¼ 4 in the absence
of a mass term and its presence allows for the possibility of
reheating in this case. In contrast, if the mass term becomes
important before the end of reheating for scattering to
scalars, the reheating process is halted. Furthermore, when

FIG. 10. Region in the parameter space where the fragmenta-
tion happens after the domination by the bare mass term 1

2
m2

ϕϕ
2

over λϕk, allowing for a quadratic reheating. The dashed line is
obtained from Eq. (73), while the solid line is obtained
from Eq. (79).

8For a purely quadratic inflaton potential the growth of fluctua-
tions is still present, albeit not exponentially enhanced, due to the
coupling of δϕ with the fluctuations of the metric [49–52].

9The fragmentation of the inflaton condensate is not total even
for mϕ ¼ 0. A small but nonvanishing homogeneous component
ϕ̄ remains, and its presence can induce the decay of the free
inflaton quanta δϕ [14,15].
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reheating is accomplished through scattering to scalars with
k ≥ 4, the density of inflatons quickly redshifts (as a−8)
until the mass term comes to dominate. In this case, the
residual inflaton matter density acts as cold dark matter and
a strong limit on the inflaton mass has been derived in
Eq. (67). Finally we have seen that for scattering to vectors,
reheating with k ¼ 4 is not possible (k ≥ 6 is required) and
the mass term does not come to the rescue in this case.
Understanding the reheating process after inflation is of

great importance as it is not only responsible for providing
an early period of radiation domination necessary for big
bang nucleosynthesis, but may be the source of dark matter.
Thermal production of dark matter in equilibrium remains
an important mechanism, however, it is well established
that nonequilibrium process just as freeze-in [53] may also
be the ultimate source of dark matter in the Universe. For
these cases, a detailed understanding of reheating is
essential and here we examined the role of a bare mass
term for the inflaton in models where the inflationary
dynamics are governed by higher order interactions.
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APPENDIX

The decay (or scattering) rate of the inflaton, averaged
over several oscillations, can be neatly expressed as [10,12]

ΓϕðtÞ ¼ γϕ

�
ρϕ
M4

P

�
l
; ðA1Þ

where

γϕ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk − 1Þp

λ1=kMP
y2eff
8π ; ϕ → f̄f

μ2eff
8π

ffiffiffiffiffiffiffiffiffiffi
kðk−1Þ

p
λ1=kMP

; ϕ → bb

α2½kðk − 1Þ�32λ3
kMP; ϕ → AA

σ2effMP

8π½kðk−1Þ�3=2λ3=k ; ϕϕ → bb

β2½kðk − 1Þ�12λ1
kMP; ϕϕ → AA

ðA2Þ

and

l ¼

8>>>>>>>><
>>>>>>>>:

1
2
− 1

k ; ϕ → f̄f
1
k −

1
2
; ϕ → bb

3
2
− 3

k ; ϕ → AA
3
k −

1
2
; ϕϕ → bb

3
2
− 1

k ; ϕϕ → AA

: ðA3Þ

So long as γϕ ≪ H, the Friedmann equation for ρϕ (3)
can be integrated to give

ρϕðaÞ ¼ ρend

�
a

aend

�
− 6k
kþ2

; ðA4Þ

which sources the Boltzmann equation (14). This can be
rewritten as

1

a4
d
da

ðρRa4Þ ¼
2k

kþ 2

γϕ
aH

ρlþ1
ϕ

M4l
P
; ðA5Þ

and can be integrated to give

ρR ¼ 2k
kþ 8 − 6kl

γϕ
Hend

ρlþ1
end

M4l
P

�
aend
a

�
4
��

a
aend

�kþ8−6kl
kþ2

− 1

�
;

ðA6Þ

whereH2
end ¼ ρend=3M2

P. At later times when a ≫ aend and
8þ k − 6kl > 0, we can approximate ρR as

ρa≫aend
R ¼ 2k

kþ 8 − 6kl

γϕ
Hend

ρlþ1
end

M4l
P

�
aend
a

�3kþ6kl
kþ2

: ðA7Þ

If 8þ k − 6kl < 0, then

ρa≫aend
R ¼ 2k

6kl − k − 8

γϕ
Hend

ρlþ1
end

M4l
P

�
aend
a

�
4

; ðA8Þ

which implies that the temperature would simply redshift
as T ∝ a−1.
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Finally, when ρRðTRHÞ ¼ ρϕðTRHÞ, we obtain [10]

aRH
aend

¼
�
kþ 8 − 6kl

2k
M4l−1

P ρ
1
2
−l
endffiffiffi

3
p

γϕ

� kþ2
3k−6kl

; ðA9Þ

for 8þ k − 6kl > 0 and for 8þ k − 6kl < 0,

aRH
aend

¼
�
6kl − k − 8

2k
M4l−1

P ρ
1
2
−l
endffiffiffi

3
p

γϕ

� kþ2
2k−8

: ðA10Þ

Note that Eq. (A10) is only true for k > 4. When k ≤ 4 and
8þ k − 6kl < 0, reheating never occurs.

Evaluating ρR at a ¼ aRH gives

TRH ¼
�
1

α

�1
4

�
2k

kþ 8 − 6kl

ffiffiffi
3

p
γϕ

M4l−1
P

� 1
2−4l

; ðA11Þ

for 8þ k − 6kl > 0, and

TRH ¼
�
1

α

�1
4

�
2k

6kl − k − 8

ffiffiffi
3

p
γϕ

M4l−1
P

ρ
6kl−k−8

6k
end

� 3k
4k−16

: ðA12Þ

for 8þ k − 6kl < 0 and k > 4
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