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Thomson scattering of cosmic microwave background (CMB) photons imprints various properties of the
baryons around galaxies on the CMB. One such imprint, called patchy screening, is a direct probe of the gas
density profile around galaxies. It usefully complements the information from the kinematic and thermal
Sunyaev-Zel’dovich effects and does not require individual redshifts. In this paper, we derive new
estimators of patchy screening called the “temperature inversion” (TI) and “signed” estimators, analogous
to the gradient inversion estimator of CMB lensing. Pedagogically, we clarify the relation between these
estimators and the standard patchy screening quadratic estimator (QE). The new estimators trade optimality
for robustness to biases caused by the dominant CMB lensing and foreground contaminants, allowing the
use of smaller angular scales. We perform a simulated analysis to realistically forecast the expected
precision of patchy screening measurements from four CMB experiments, ACT, SPT, Simons Observatory
(SO) and CMB-S4, cross-correlated with three galaxy samples from BOSS, unWISE and the simulated
Rubin LSST Data Challenge 2 catalog. Our results give further confidence in the first detection of this
effect from the ACT × unWISE data in the companion paper and show patchy screening will be a powerful
observable for future surveys like SO, CMB-S4 and LSST. Implementations of the patchy screening QE
and the TI and signed estimators are publicly available in our LensQuEst1 and ThumbStack

2 software packages,
respectively.
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I. INTRODUCTION

While the cosmic microwave background (CMB) is an
extremely powerful window onto the initial conditions of
our Universe, it also contains a wealth of information on its
late-time large-scale structure (LSS). Indeed, large-scale
structure properties including gas density, thermal and bulk
velocities, gravitational potential and more leave shadows
on the CMB called secondary anisotropies; see [1] for a
review. One important class of secondary anisotropies is
due to Thomson scattering of the CMB photons by free
electrons in the ionized plasma (gas) around galaxies and
clusters. This class includes the thermal and kinematic
Sunyaev-Zel’dovich (tSZ and kSZ) effects [2–4], which are
measured with high precision and have already yielded

crucial insights into cosmology [5–9] and the thermody-
namics of gaseous halos around galaxies and clusters
[e.g., [10–13] ].
Another effect in this class is the patchy screening effect

[14–18]. This effect is perhaps the simplest, most intuitive
one: a free electron along a given line of sight (LOS)
scatters CMB photons out of that LOS, and replaces them
with CMB photons from the average blackbody distribu-
tion, imprinting a shadow. However, patchy screening is
smaller in amplitude than the more complex tSZ and kSZ
effects since they scale as8>><>>:

δT tSZ ∝ τðvthermal=cÞ2; ðvthermal=cÞ2 ∼ 10−2;

δTkSZ ∝ τðvbulk=cÞ; vbulk=c ∼ 10−3;

δTscreening ∝ τðδT0=T0Þ; δT0=T0 ∼ 10−4;

ð1Þ

where τ ∼ 10−3 for galaxy group-sized halos.
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These scalings also highlight the complementarity of
these different effects. Like kSZ, patchy screening is
independent of the gas temperature. It thus scales linearly
with halo mass, unlike tSZ, and is thus ideally suited for
constraining baryonic effects in galaxy lensing by meas-
uring baryon density profiles around the group-sized halos
that dominate the matter power spectrum [12].
Like tSZ, patchy screening does not require any individual

redshift information to be detected.While the kSZ effect can
also be detected without redshift information [19–21], this
is done at the cost of squaring the kSZ, which destroys its
linear scaling with gas density and halo mass. Combining
screening, kSZ and tSZ allows us to form a complete picture
of the gas thermodynamics around halos (gas density,
temperature). Screening measurements also enables break-
ing of the kSZ degeneracy between galaxy gas content and
galaxy velocity. Thus, by combining them, one may extract
the amplitude of large-scale peculiar velocities in the
Universe to test the neutrino masses [22], the growth rate
of structure [23], general relativity [24], and measure
primordial non-Gaussianity [25]. Finally, while screening
and kSZ also probe the epoch of reionization [16,26–29], we
will not consider this in this paper, focusing instead on the
late-time signal from galaxies and clusters.
Observationally, the patchy screening effect is unique in

that it changes sign depending on the sign of the local large-
scale CMB temperature. This is unlike extragalactic fore-
grounds like the cosmic infrared background (CIB) or the
tSZ effect, whose sign are fixed at any given frequency.
This crucial feature is analogous to kSZ, whose signal
changes sign based on the sign of the local LOS peculiar
velocity. Like for kSZ, it allows us to cleanly distinguish
screening from these foregrounds. This property also
differentiates screening from CMB lensing, whose sign
changes based on the local large-scale temperature gra-
dient, rather than temperature value.
Leveraging this crucial feature of patchy screening, we

derive new estimators dubbed “temperature inversion” (TI)
and “signed” estimators, analogous to the gradient inver-
sion (GI) estimator of CMB lensing [30,31]. By making use
of the sign change of the screening effect, these estimators
are naturally robust to contamination from CIB, tSZ and
kSZ, as well as CMB lensing.
We carefully present the relation between these new

estimators and the standard quadratic estimator (QE) for
patchy screening [16,32,33]. We show how the new
estimators do not outperform the standard QE in terms
of raw statistical power when using same multipole
range. However, in its simplest form, the QE is biased
by foregrounds and CMB lensing. While CMB lensing
contamination to the QE can be removed via “bias hard-
ening”, the situation may be more complex for extragalactic
foregrounds.
While we focus on detecting screening from the CMB

temperature only, these estimators generalize trivially to

polarization by simply replacing temperature with StokesQ
and U.
The paper is organized as follows. In Sec. II, we review

the physical origin of patchy screening. Section III covers
the standard QE for patchy screening and its application to
reconstructing both large- and small-scale optical depth τ.
Section IV introduces the new TI and signed estimators and
clarifies their relationship to the small-scale QE. In Sec. V,
we study the biases to the QE due to lensing and
extragalactic foregrounds and explain the TI estimator’s
robustness to these biases. Section VI provides an overview
of our realistic forecast simulations and analysis and
presents the resulting patchy screening detection signal-
to-noise ratios (SNRs) for TI and QE for a set of current and
future CMB and LSS surveys. We conclude with Sec. VII.

II. PATCHY SCREENING OF CMB
TEMPERATURE AND POLARIZATION

Consider a line of sight where the CMB temperature T0

deviates from the sky averaged CMB temperature T̄0, by an
amount δT0 ¼ T0 − T̄0. If an electron cloud with optical
depth τ to Thomson scattering is present along that line of
sight, two things occur. First, a fraction 1 − e−τ of the CMB
photons with temperature T0 is deflected out of the line of
sight, leaving only a fraction e−τ of the incident photons at
temperature T0. Second, an equal fraction 1 − e−τ of CMB
photons from all other directions is scattered into the line of
sight. Because this effect averages over all directions, as
seen by the electron cloud, these photons have temperature
T̄0. Thus, the observed temperature T along the line of
sight, after Thomson screening, is

T ¼ T0e−τ þ T̄0ð1 − e−τÞ: ð2Þ

Considering temperature deviations with respect to the sky
average CMB temperature T̄0, we thus obtain,

δTðxÞ ¼ δT0ðxÞe−τðxÞ; ð3Þ

where x is the angular position on the sky. The screening
effect operates in the same way on temperature T, and Q
and U polarizations. For ease of notation, we will thus
focus on temperature here, but note that all our results apply
to polarization as well.
In polarization, an additional “scattering” effect adds to

this screening effect, where the local CMB temperature
quadrupole observed by the free electrons is converted to
linear polarization. This “scattering” occurs most notice-
ably at the last scattering surface and around the epoch of
reionization. It also occurs at later times due to the ionized
gas around galaxies and clusters, an efect which has been
called polarized Sunyaev-Ze’dovich (pSZ) effect [34–36].
Going further, we decompose the optical depth field τðxÞ

into a spatial average τ̄, well measured by Planck through
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the large-scale scattering effect (τ̄ ¼ 0.054� 0.007 [37]),
and a fluctuating part δτ, which traces the inhomogenous
projected distribution of free electrons on the sky.
Reabsorbing the mean τ̄ into the definition of δT0 and
assuming small fluctuations δτðxÞ ≪ 1, the screening effect
reduces to an additive term:

δTscreeningðxÞ ¼ −δT0ðxÞδτðxÞ: ð4Þ

This effect is illustrated in Fig. 1. Our goal in this paper is
to propose new “temperature inversion” and “signed”
estimators in order to reconstruct the optical depth fluc-
tuation field from the observed temperature map. Please
note that in the discussion that follows, we use notations τ
and δτ interchangeably, and they both represent the
fluctuations on top of the mean τ̄ field.

III. STANDARD QUADRATIC ESTIMATOR

A. Review: Derivation of the standard QE

The standard QE for τ [16,32,33] is generally derived
starting from

δTðxÞ ¼ δT0ðxÞ½1 − τðxÞ þOðτ2ðxÞÞ�: ð5Þ

In Fourier space with a flat-sky approximation, this
becomes

δTl ≃ δT0
l −

Z
l0
δT0

l0τl−l0 ; ð6Þ

where
R
l0 ≡ R

d2l0
ð2πÞ2 and l is the 2D Fourier wave vector,

which we will also refer to interchangeably as angular
multipole in what folllows, in analogy with curved sky
analyses. Thus, screening produces nonzero off-diagonal
covariances for the Fourier modes,

hδTlδTL−lifixed τ ¼ fτLðl;L − lÞτL; ð7Þ

where

fτLðl;L − lÞ ¼ −ðC0
l þ C0

jL−ljÞ: ð8Þ

An elementary QE for τL is thus simply −δTlδTL−l=
ðC0

l þ C0
jL−ljÞ, with variance Ctotal

l Ctotal
jL−lj=ðC0

l þ C0
jL−ljÞ.

The standard QE for τL is therefore obtained from the
inverse-variance linear combination of the elementary QEs,
giving

τ̂QEL ≡ NL

Z
l
FτLðl;L − lÞδTlδTL−l

¼ −

R
l

�
C0
lþC0

jL−lj

�
Ctotal
l Ctotal

jL−lj
δTlδTL−lR

l

�
C0
lþC0

jL−lj

�
2

Ctotal
l Ctotal

jL−lj

; ð9Þ

where

FτLðl;L − lÞ ¼ fτLðl;L − lÞ
Ctotal
l Ctotal

jL−lj
; ð10Þ

and

ðNLÞ−1 ¼
Z
l
FτLðl;L − lÞfτLðl;L − lÞ; ð11Þ

where the weights FτLðl;L − lÞ are determined such that
the variance of Eq. (9), N τ

L, given below, is minimized.

N τ
L ¼ 2ðNLÞ2

Z
l
ðFτLðl;L − lÞÞ2Ctotal

l Ctotal
jL−lj: ð12Þ

FIG. 1. Top: 1 deg2 simulated map of a CMB realization
unscreened (left) and screened by 5’ FWHM 2D Gaussian τ
profiles placed at CMASS galaxy positions (right). The τ
amplitude is greatly exaggerated for visual effect. Bottom: A
1D schematic illustrating the small angular scale temperature
deviations δTsmall induced by the patchy screening effect (green).
Unlike any other foreground, these deviations are (anti-)corre-
lated with the large-scale primary CMB anisotropies δT large

(black). The tSZ- and CIB-induced anisotropies always have
the same sign at a given frequency, lensing is correlated with
∇δT large, not δT large itself, and kSZ-induced anisotropies change
sign with the gas’s LOS velocity. Thus, stacking the observed
CMB temperature patches around galaxies weighted by the sign
of the large-scale temperature provides a means to detect screen-
ing. Moreover, the patchy screening effect has greater magnitude
where δT large is large, motivating weighting by δT large (and not
just its sign) when stacking.
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B. Intuition: Large-scale vs small-scale τ
reconstruction

The standard QE derived above [Eq. (9)] can be under-
stood more simply in two limiting cases, where large-scale
and small-scale Fourier modes are being reconstructed.
In the former limit, where large-scale τL Fourier modes

are reconstructed from small-scale temperature modes δTl,
with L ≪ l, the standard QE is effectively looking at the
local power spectrum and searching for a change of the
form

Cl ← Cle−2δτ; i:e:;
d lnCl

dτ
¼ −2: ð13Þ

This is illustrated in Fig. 2.
In the latter limit, where we reconstruct the optical depth

field τL on small scales, i.e., L ≫ l, we can approximate
the power spectra as smoothly varying functions; C0

jL−lj ≃
C0
L and Ctotal

jL−lj ≃ Ctotal
L to lowest order. Furthermore, the

CMB power spectrum is very red, such that C0
l ≫ C0

L. In
this limit, the standard QE takes the suggestive form,

τ̂QEL ≃ −

R
l

�
C0
l

Ctotal
l

δTl

�
δTL−lR

l
ðC0

lÞ2
Ctotal
l

; ð14Þ

or in configuration space:

1 − τ̂QEðxÞ ≃ δTðxÞ δT large-WFðxÞ
hðδT large-WFÞ2i : ð15Þ

In this limit, the standard QE is thus simply multiplying the
local small-scale temperature δTðxÞ by the Wiener-filtered
large-scale temperature δT large-WF, and normalizing it by the
expected variance of the Wiener filter. The significance of
this expression will become clear in Sec. IV, where we
connect it to the new TI and signed estimators.

IV. “TEMPERATURE-INVERSION” ESTIMATOR
& APPROXIMATE SMALL-SCALE QE

A. New “temperature-inversion” estimator

The optical depth fluctuation field possesses power on
very small scales since it traces galaxy halos, whereas the
primary CMB temperature has almost none due to Silk
damping. Denoting small and large scales with subscripts S
and L respectively, the screening effect on small scales
is thus almost exclusively sourced by the following
configurations:

δTscreening
S ðxÞ ¼ −δT0

LðxÞδτSðxÞ: ð16Þ

This separation of scales is crucial;thanks to it, both the
unscreened and screened temperature fluctuations can be
measured from the same temperature map [27].
Indeed, we can low- and high-pass filter the observed

temperature map to estimate the large- and small-scale
temperature fluctuations δT̂LðxÞ and ˆδTSðxÞ. A natural, if
somewhat singular, estimator for τ is then obtained by
simply taking the ratio:

τ̂TIðxÞ≡ −
δT̂SðxÞ
δT̂LðxÞ

: ð17Þ

We call this the TI estimator in analogy with the gradient
inversion (GI) estimator of CMB lensing [30,31]. A natural

FIG. 2. Schematic illustration of the effect of large-scale optical
depth fluctuations on the small-scale power spectrum: the locally
observed power spectrum is simply modulated in amplitude. Top:
A large-scale optical depth fluctuation δτ spanning 10° in RA.
Middle: A 10° × 5° simulated temperature map of a CMB
realization screened by the large-scale δτ fluctuation shown in
the top panel. The dotted (dashed) square corresponds to the area
with suppressed (enhanced) anisotropies with respect to the full-
sky average optical depth τ̄. Bottom: The power spectra corre-
sponding to the two regions where δτ > 0 (dotted) and δτ < 0
(dashed). The power spectrum for the CMB screened only by τ̄
(i.e. δτ ¼ 0, solid) is shown for comparison. The screening of the
CMB by a large-scale mode of the optical depth modulates the
locally measured power spectrum as Cl ← Cle−2δτ. The standard
QE for δτL is looking precisely for this effect when reconstructing
from temperature modes δTl with L ≪ l.
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choice of low-pass filter in this case would be a Wiener
filter, the linear estimator for δT0

LðxÞ that has the lowest
mean-squared error. A natural choice for the high-pass filter
would be an inverse-variance weighted average of the small
scales, the unbiased linear estimator of δT̂SðxÞ with the
lowest variance. In general, we can define linear filters WL
and WS such that,� ˆδTLðxÞ ¼

R
dx0WLðx − x0ÞδTðxÞ;

ˆδTSðxÞ ¼
R
dx0WSðx − x0ÞδTðxÞ:

ð18Þ

In practice, we apply low- and high-pass filters (see Sec. VI
A) to the temperature map to isolate δTL and δTS,
respectively. If the shape of the τ profile for the objects
of interest is known (e.g. from kSZ, which has higher
SNR), we can use a matched filter with this profile to
estimate the amplitude of the signal from the data.
However, our filters, with variable size, allow us to actually
measure the scale dependence of the electron density
profile. When jointly analyzed, including their covariance
matrix, they are as statistically optimal as the matched filter.
In Appendix A, we further derive the filter WL which

minimizes the mean-squared error in the presence of
foreground contamination with known profiles (a combi-
nation of matched filter and Wiener filter), but do not
implement it in what follows.

B. Comparison to the approximate small-scale QE

In the limit where we are reconstructing small-scale
optical depth fluctuations, we have shown that the QE takes
the approximate form,

1 − τ̂QEðxÞ ≃ δTðxÞ δT large-WFðxÞ
hðδT large-WFÞ2i ; ð19Þ

where δT large-WF is the Wiener filter estimator for the
unscreened CMB, given the map noise. This can be
contrasted with our TI estimator of the form,

1 − τ̂TIðxÞ ≃ δTðxÞ
δT large-WFðxÞ : ð20Þ

In other words, in the small-scale limit, the two estimators
are related via

1 − τ̂QEðxÞ ¼ ½1 − τ̂TIðxÞ� ðδT
large-WFðxÞÞ2

hðδT large-WFÞ2i : ð21Þ

Thus, even if the large-scale temperature fluctuation
δT large-WF is measured with infinite precision, the QE
suffers from an irreducible variance due to the ratio
between ðδT large-WFðxÞÞ2 and its mean. This is completely
analogous to the GI estimator of CMB lensing. In
Appendix B, we expand on this comparison, showing that

the SNR is higher for TI than the QE when the large-scale
temperature leg is measured at high SNR (already true for
Planck data) and the small-scale temperature leg is domi-
nated by the screening effect. This latter condition is likely
not satisfied; even in the absence of detector noise, and
assuming that all nonblackbody foregrounds have been
subtracted, kSZ and CMB lensing will likely dominate the
noise unless they can be largely subtracted.
If TI does not outperform the QE in terms of SNR when

considering the same set of temperature Fourier modes,
why consider it further? As we show in Secs. V B and VD,
TI is more robust to extragalactic foreground biases and
naturally robust to CMB lensing bias. This means that TI
can use more temperature Fourier modes (higher lT

max) and
thus potentially recover a higher total SNR while still being
as or more robust to biases.

C. Stacked TI estimator for cross-correlation
and comparison with small-scale QE

For a single galaxy, the naïve TI estimator [Eq. (17)] is
clearly singular for lines of sight where the unscreened
temperature fluctuation is zero. This issue is automatically
addressed when stacking around a set of galaxies, as we
now show. The large-scale temperature ˆδTLðxÞ can be
measured to high precision from the temperature map, such
that we ignore the noise on ˆδTLðxÞ for now. On the other
hand, the small-scale temperature ˆδTSðxÞ is typically
affected by a non-negligible noise nS (with variance σ2nS )
such that,

τ̂TIðxÞ ¼ τðxÞ þ nSðxÞ
ˆδTLðxÞ

: ð22Þ

In this case, the estimator is unbiased, and its noise is
smallest along lines of sight with the highest large-scale
temperature, as expected intuitively.
To extract the mean optical depth profile of a sample of

tracers (galaxies, galaxy groups or clusters), we look for the
unbiased linear combination of the τ̂TI around each cluster
that has the smallest noise variance. The answer is the
inverse-variance weighted average:

τ̂TI stack ≡
P

iτ̂
TI
i × ˆδTL

2
i =σ2nSP

i
ˆδTL

2
i =σ2nS

; ð23Þ

which can be rewritten as

τ̂TI stack ¼ −
P

iδ̂TSi
ˆδTLi=σ2nSP

j
ˆδTL

2
j=σ2nS

: ð24Þ

Conveniently, the inverse-variance weighting regularizes
the singularity of the naive estimator, such that lines of
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sight where the unscreened CMB temperature δT̂0 is
estimated to vanish are given zero weight in the sum.
Although the numerator of Eq. (24) is now quadratic

in the temperature map, the estimator as a whole is not since
the denominator also involves a quadratic combination of
the data. As derived in Appendix C, the stacked QE takes a
very similar form in the limit of small-scale screening:

τ̂QE stack ¼ −
P

iδ̂TSi
ˆδTLi=σ2nSP

jσ
2
TL
=σ2nS

: ð25Þ

The numerator is identical to that of the stacked TI, and the
denominator only differs by replacing ˆδTL

2
j with σ2TL

. Thus,
the ratio of the stacked QE to the stacked TI is simply

τ̂QE stack

τ̂TI stack
¼

P
j
ˆδTL

2
j=σ2nSP

jσ
2
TL
=σ2nS

: ð26Þ

This ratio has mean 1, but its variance is nonzero, equal to
2=Ngalaxies. Thus, in the limit of zero temperature noise, the
stacked QE retains an irreducible variance 2σ2τ=Ngalaxies,
whereas the stacked TI yields a noiseless reconstruction of
the true τ. While this variance vanishes as ∝ 1=Ngalaxies for
large galaxy samples, the other sources of variance (e.g.,
from detector noise) also share the same scaling, such that
this additional noise remains relevant for all sample sizes.

D. “Signed estimator”: Suboptimal to TI,
but potentially even more robust to foregrounds

The key intuition behind the derivation of the stacked TI
estimator [Eq. (24)] is shown in Fig. 1; unlike all other
imprints of galaxies on the CMB, the screening signal
changes sign and amplitude depending on those of the local
large-scale temperature δTL. Discarding the amplitude
information and weighting only by the sign of δTL leads
to a different screening estimator. We name it the “signed”
estimator:

τ̂sgn ≡
P

isgnðδTL;iÞδTS;iP
ijδTL;ij

; ð27Þ

where δTL;i (or δTS;i) is the large-scale (or small-scale)
temperature fluctuation at the position of galaxy i.
While the TI and signed estimators are both unbiased

estimators of τ, their variances differ such that,

varτ̂sgn

varτ̂TI
¼ hðδTL;iÞ2i

hjδTL;iji2
¼ π

2
; ð28Þ

for the Gaussian distributed large-scale temperatures δTL.
Thus, the signed estimator has lower SNR than TI by a
factor of

ffiffiffiffiffiffiffiffi
π=2

p ¼ 1.25.

On the other hand, this signed estimator enables two
interesting avenues for controlling potential foregrounds,
which may be worth the cost in SNR:

(i) Sign balancing. The number of galaxies coinciding
with either positive or negative CMB patches will
follow a binomial distribution, and thus will not
perfectly cancel for a finite galaxy sample. We can
discard a very small number of galaxies on CMB
patches with the excess sign to ensure thatP

i sgnðδTL;iÞ ¼ 0. Performing this “sign balanc-
ing” step exactly nulls any part of the foreground
emission (e.g., CIB, tSZ) that is constant across
galaxies. This does not lead to any bias in the
estimated screening since this selection depends on
the large-scale temperature only, statistically inde-
pendent from the screening signal. Furthermore, this
typically only requires discarding a fraction ∼1=Ngal

of the galaxy sample, completely negligible for the
large galaxy catalogs of interest here. This is
described in more detail in Appendix D.

(ii) Sign thresholding. After masking bright point
sources and clusters from the temperature map,
any residual foreground emission from our galaxies
will be small (∼μK) compared to the typical large-
scale temperature fluctuations (∼100 μK for the
CMB). Thus, we may select for the stack only the
objects for which jδTL;ij is larger than a few times
the typical foreground signal [e.g., (∼10 μK)]. This
ensures that residual foregrounds are not large
enough to affect the sign weighting used in the
signed estimator. This is in contrast with TI,
where residual foregrounds in δTL;i, however small,
remain present. This is described in more detail in
Appendix E.

Including tests on simulations for biases from extragalactic
sources, this estimator is presented in detail in [38], where
we test for foreground biases and validate these arguments
by applying the signed estimator to realistic, non-Gaussian
sky simulations.

V. BIASES TO QE AND TI FROM CMB LENSING
AND EXTRAGALACTIC FOREGROUNDS

A. CMB lensing bias to QE: Lens hardening needed

From Eq. (9), we can see that the QE for τ is of the form,

τ̂QEL ≡ −NL

Z
l

ðC0
l þ C0

jL−ljÞ
Ctotal
l Ctotal

jL−lj
δTlδTL−l: ð29Þ

This has a similar form as that of the QE for the
lensing potential; ϕ̂QE

L ∝
R
l Fðl;L − lÞδTlδTL−l, where

Fðl;L − lÞ are optimized weights for the pair of multi-
poles δTl and δTL−l, such that the variance of the estimator
is minimized. Thus, Eq. (9) can be interpreted as an
estimator for the CMB lensing potential reconstruction
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with nonoptimized weights, and as such, has a nonzero
response to lensing. We can rewrite Eq. (29) as

hτ̂QEL i ¼ τQEL þ NL

�Z
l
Fτðl;L − lÞfϕTTðl;L − lÞ

	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Response of QE to lensing

ϕðLÞ;

ð30Þ

where we have used hδTlδTL−li ¼ fϕTTðl;L − lÞϕðLÞ
with fϕTTðl;L−lÞ ¼ C0

lðL ·lÞ þC0
jL−ljðL · ðL−lÞÞ, and

Fτðl;L − lÞ is given by Eq. (10). In practice, the lensing
bias in Eq. (30) is nonzero and can be dominant even in
cross-correlations with other tracers, as shown in Table I
and Fig. 3 (see also Fig. 1 of [39]).
This large lensing bias to the QE is typically avoided via

“lens hardening” [40]. The idea behind the lens-hardened
QE is simple. Just as we can construct a τ̂ QE, we can also
construct a lensing convergence κ̂ QE, which can then be
used to subtract off the lensing bias in Eq. (30). Therefore,

the lens-hardened τ QE minimizes contamination from
lensing. However, this comes at an increased reconstruction
noise cost when compared with the standard QE variance
N τ

L given by Eq. (12). For a Planck-like experiment, this
noise cost is ∼0–40% depending on scales [39], whereas
the reconstruction noise from temperature-only (no polari-
zation) QE increases by a factor of ∼2–3 across all l values
for a CMB-S4-like experiment [41].
Intuitively, this lensing bias to QE can be understood

from Fig. 2 when reconstructing large-scale optical depth
fluctuations τL from small-scale temperature modes Tl
with L ≪ l. Both lensing and screening cause variations in
the local power spectrum from patch to patch. While these
variations are different, they have nonzero overlap.
The opposite regime, where we reconstruct small-scale

optical depth fluctuations τL from temperature modes Tl
and TL−l with L ≫ l, is different. In this limit, the lensing
term in Eq. (30) vanishes. Thus, the small-scale part of the
QE is unbiased with respect to lensing. This part of the QE
is very similar to the TI estimator, only with a slightly
different normalization [see Eqs. (19)–(21)], such that both
are unbiased by lensing. We explore the robustness of TI to
CMB lensing in more detail in the next subsection.

B. TI is robust to CMB lensing

The lensed temperature map can be written, to first
order, as

δT̃ðxÞ ≈ δTðxÞ þ∇ϕðxÞ∇δTðxÞ; ð31Þ

where T̃ is the lensed temperature field and ϕ is the lensing
potential. Thus, lensing by a galaxy of interest produces a
local small-scale dipole in the CMB map, whose direction
and amplitude matches those of the local large-scale
unlensed CMB gradient. The spatial symmetry of this
dipole effect means that lensing is nulled by our azimu-
thally symmetric small-scale temperature filter, typically a
disk or ring aperture around the galaxy, which only extracts
the local small-scale monopole. Thus, to first order, lensing
from the galaxies in our sample does not bias the TI or
signed estimators and does not even contribute noise.
The situation is different for the lensing caused by

objects not aligned with the aperture filter. For a single
galaxy, nearby objects (including other galaxies in the
sample) can contribute a lensing dipole to the aperture
photometry. Since these small-scale dipoles are no longer
aligned with our small-scale apertures (rings or disks),
lensing does enter the TI and signed estimators. This
lensing is not a bias, however, as it is correlated with
∇δTL, a random variable uncorrelated with δTL or δTS.
Since there is an equal number of galaxies on either side of
the gradient on average, lensing from objects not aligned
with the filter only contributes noise to the TI and signed
estimators. In fact, on small scales l≳ 5000, the CMB
power spectrum is dominated by lensing, meaning that

FIG. 3. The expected cross-correlation signal between BOSS
CMASS galaxies and the screening QE from Advanced ACT-like
temperature (black) is compared to the CMB lensing bias (red)
and the tSZ foreground bias (cyan area) for a range of tSZ
models. The importance of these biases highlight the need for
lens hardening and foreground hardening for the τ QE. The
corresponding biases to the overall amplitude of the signal are
shown in Table I. The simulations used to create these correlated
lensing and tSZ maps are described in detail in Appendix F.

TABLE I. The amplitude of the cross-correlation of galaxies
with the screening QE suffers large fractional biases from CMB
lensing and tSZ, using 30 < l < 3000. Appendix F 2 describes
the “low” and “high” tSZ modeling in detail.

Galaxy
sample

Fore-
ground SPT ACT SO CMB-S4

CMASS κ 410.9% 346.9% 394% 433.5%
tSZ low −2.7% −2.5% −2.7% −2.8%
tSZ high −39.7% −28.4% −36.5% −44.2%
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lensing may be the dominant source of noise (other than
kSZ, other foregrounds and detector noise potentially
present in the map).
In summary, TI and signed estimators null the lowest

order bias due to lensing ∼OðϕgÞ. At higher order in
lensing [Oðϕ2Þ], a bias to the TI and signed estimators may
be present if:

(i) Lensing is non-negligible in the large-scale temper-
ature map as well;

(ii) This lensing is not due to the galaxy we are centered
on, such that the corresponding dipole is not nulled
by our small-scale aperture filter;

(iii) The lensing is still caused by objects correlated with
the galaxy we are centered on, e.g., two-halo term or
other correlated galaxies in the sample.

We leave the exploration of these higher-order bias terms in
simulations to future work.

C. Extragalactic foregrounds bias QE

Similar to CMB lensing, foregrounds like tSZ, kSZ and
CIB cause mode coupling of temperature anisotropies. As a
result, they bias the QE for screening. Again, similar to
CMB lensing, this bias also affects cross-correlation of the
reconstructed τ field with other tracers. Figure 3 shows
the expected cross-correlation of the τ field reconstructed
from a QE using an Advanced ACT-like experiment with
CMASS galaxies. Here, “tSZ high” and “tSZ low” are
two tSZ maps we simulate which give an upper and lower
bound respectively on this bias (see Appendix F for
details). We can see that the bias from CMB lensing is
higher than the signal itself. The bias from tSZ emission is
not negligible either. While we only discuss the foreground
bias due to CMB lensing and tSZ here, foregrounds like
CIB could also have non-negligible bias to τ QE. Such
foreground biases have been extensively studied and shown
to be important in the context of CMB lensing QE [42,43].
Similar conclusions hold for the τ QE as well due to the
similarity between the two estimators. It should also be
noted that these biases are likely bigger for lower-noise
CMB experiments as they will have increased weights from
small scales where the foregrounds are dominant.
In order to quantify the bias from foregrounds like CMB

lensing and tSZ to the τ QE in cross-correlation with
galaxies, we define an amplitude parameter A for a given
power spectrum measurement ĈL such that,

ĈL ¼ ACtheory
L þ nL; ð32Þ

where Ctheory
L is the theory power spectrum and nL is noise.

The minimum-variance estimator for A, linear in the
measured power spectrum, is then

Â ¼
P

LĈLðCtheory
L Þ=σL2P

LðCtheory
L Þ2=σL2

: ð33Þ

The nominal value of Â is 1; however, due to biases from
foregrounds, the value differs from 1. Thus, bias from a
foreground X to cross-correlation of the QE reconstructed τ

field with galaxies δg (C
τ̂×δg
L ) can be calculated in the

continuum limit as

biasðCτ̂×δgÞ ¼
R

d2L
ð2πÞ2

bias
�
C
X×δg
L

�
C
τ̂×δg
L

�
C
τ̂×δg
L

�
2

σ2LR
d2L
ð2πÞ2

�
C
τ̂×δg
L

�
2

σ2L

; ð34Þ

where biasðCX×δg
L Þ is the bias introduced by the cross-

correlation between the galaxies and the foreground X
passed through a τ QE. Table I shows that these foreground
biases can be larger than the screening signal and highly
significant. Some form of foreground mitigation is there-
fore likely required for the QE. This may include multi-
frequency component separation, masking, template
deprojection, using shear only estimators, and bias hard-
ening with respect to point sources or specific profiles.
Such approaches and their challenges have been explored
in the context of CMB lensing and τ QE [39,40,44–46] and
similar results hold here too. We do not explore these
further in this paper.

D. TI is robust to extragalactic foregrounds

The TI and signed estimators are automatically robust to
extragalactic foreground biases, and this can be further
enhanced by sign balancing and sign thresholding for the
signed estimator. We summarize the reasons here and
present more detailed derivations in Appendixes D and E.
Unlike the patchy screening effect, foregrounds like

the CIB, tSZ and kSZ do not change sign depending on
the sign of the local large-scale temperature δTL. In the
absence of foreground contamination to the large-scale
leg, the weights in the TI and signed estimators, which
change sign and have zero mean value, automatically
average out these foregrounds. For a finite galaxy sample
size, this foreground reduction may leave a residual bias
∼fS=

ffiffiffiffiffiffiffiffiffiffiffiffi
Npatch

p
, where fS is the typical small scale fore-

ground emission, and Npatch is the number of patches with
independent large-scale CMB temperature δTL. Since the
CMB is coherent on degree scales, Npatch is roughly equal
to the area of the CMB map in square degrees.
For the signed estimator, this residual can be further

reduced by sign balancing the weights, as described in
Sec. IV D. If the foreground signal is identical for all
galaxies in the sample, sign balancing exactly nulls the
foreground bias. While foreground emissions actually vary
across galaxies, sign balancing is still effective in realistic
scenarios, as shown in Appendix D.
In practice, foreground contamination may be present

both in the large and small-scale temperature legs. In this
case, the TI and signed estimators may suffer a bispectrum
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bias ∼fLfSgS, where f is the foreground and g the galaxy
map. However, for the signed estimator, this bias can be
nulled exactly with the sign thresholding procedure pre-
sented in Sec. IV D. This procedure ensures that absolutely
no foreground signal leaks into sgnðδTLÞ, thus removing
any bispectrum foreground bias.

VI. SNR FORECASTS

We produce SNR forecasts for the TI and τ QE estimators
using realistic simulations for four CMB experiments,
South Pole Telescope (SPT) [47–49], Atacama Cosmology
Telescope (ACT) [50], SO [51] and CMB-S4 [52], cross-
correlated with three galaxy survey samples, the Baryonic
Oscillation Spectroscopic Survey (BOSS) CMASS
sample [53,54], the Wide-field Infrared Survey Explorer
(WISE) unWISE “blue” and “green” samples [55,56], and
the simulatedLegacySurvey ofSpace andTime (LSST)Data
Challenge 2 (DC2) extragalactic sample [57]. Details of the
sky fraction, galaxy number density and number of galaxies
overlapping the CMB survey footprints are listed in Table II.

A. Simulated analysis for TI and QE

Here we give an overview of the methods used to
generate the simulations for the TI and QE detection
forecast. See Appendix G for further details. We create
realistic simulated τ signal maps by placing identical,
isotropic Gaussian τ profiles at CMASS galaxy positions
as described in Appendix G 1. The parameters of the τ
profiles are matched to the best-fit values from the ACT ×
unWISE first measurement [38].
To calculate the covariance matrix, we simulate a set of

128 maps for each CMB experiment, using the power
spectra shown in Fig. 4. All of the spectra are beamed and
include noise contributions from the CMB, detector noise
and–with the exception of CMB-S4–extragalactic fore-
ground contamination (e.g. lensing, CIB, tSZ, kSZ, radio
sources). More details may be found in Appendix G 2.
To separate the large- and small-scale temperature

fluctuations δTL and δTS, we apply low- and high-pass
filters (see Eqs. (G1) and (G2) to generate two separate
maps. We have implemented the stacked TI and signed
estimators in the aperture photometry filtering and stacking
software, ThumbStack [11]. We use this code to generate

small postage stamps centered on each galaxy position for
both maps, apply annular (i.e. “ring”) aperture photometry
filters to measure the δTS radial profile for each stamp, and
stack the stamps according to Eq. (24), using each stamp’s
average δTL as weights.
We construct the covariance matrix taking into account

the clustering of galaxies and scaling by the proper
Hartlap correction factor [58]. Details are provided in
Appendix G 4.
We then measure the SNR for each CMB-galaxy sample

combination, scaling to each experiment’s full galaxy
sample and sky fraction, fsky, shown in Table II. The
resulting SNR values for the surveys are shown in Table IV.
For the QE of τ, details of the SNR estimation for the

cross-power spectrum of the τ map reconstructed using QE
and galaxy map g are presented in Appendix H. The SNR is
calculated analytically as given in Eq. (H1) where the noise
terms contain the total power spectrum of the reconstructed
τ map along with its reconstruction noise and the total
galaxy power spectrum, which includes both the clustering
and shot noise contributions. The shot noise levels for each
galaxy sample are calculated using the number density
values provided in Table II.

B. Galaxy clustering effects

As we go towards higher density galaxy samples, the shot
noise of the sample decreases by

ffiffiffiffiffiffiffiffi
Ngal

p
, but the clustering

power spectrum still adds noise to the covariance. Here we
assess the impact of clustering effects for the TI and QE
forecasts.

TABLE II. Number of galaxies assumed to overlap with each
CMB experiment used in the SNR forecasts. The shot noise, n̄,
for each galaxy sample and the sky fraction, fsky, for each CMB
experiment are also listed. ACT, SO, and CMB-S4 are assumed to
have equal fsky.

Galaxy
sample n̄ arcmin−2

SPT
(fsky ¼ 0.036)

ACT/SO/CMB-S4
(fsky ¼ 0.315)

CMASS 0.012 65,600 568,776
unWISE 1.24 6.8M 59M
LSST 34.1 187M 1.62B

FIG. 4. Power spectra used in the SNR forecasts for ACT (solid
orange), SPT (dashed green), SO (dash-dotted blue), and CMB-
S4 (dotted purple). Details for the spectra are given in Appen-
dix G. The shaded bands show the l ranges used by the TI
estimator; 30 < l ≲ 2075 (grey) and 2425 ≲ l < 5950 (green)
for large- and small-scale temperature measurements, respec-
tively. See Eqs. (G1) and (G2) for the exact l filtering used. The
QE uses 30 < l < 3000 (black dotted line) as it is sensitive to
foreground contamination at higher l. Since the TI estimator is
robust to foregrounds at high l, it can take advantage of future
experiments’ lower detector noise and smaller beam widths.
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For the QE, we complete the simulated analysis with and
without the galaxy clustering (gg) contribution at the power
spectrum level, where the total galaxy power spectrum is
calculated with and without the clustering power spectrum.
The results of this study are summarized in Table III.
For the TI estimator, we compare the SNR values

obtained with a covariance matrix estimated from boot-
strapping from a single map realization (thus neglecting
clustering effects) versus that estimated from the sample
variance over 128 map realizations.
As shown in Fig. 5, neglecting clustering effects results

in overestimation of the SNR for both the QE and TI. While

the CMASS sample is sparse enough to not show signifi-
cant differences, using unWISE results in a moderate
∼20% overestimated SNR. Ignoring clustering in the
LSST sample is a more dramatic oversight; ∼60% for TI
and ∼150% for QE. The marked differences in sensitivity
to clustering effects in TI and QE, especially for an LSST-
like experiment, is unclear. We leave an investigation of this
difference to future work. Despite these uncertainties, it is
clear clustering has a significant effect on noise estimation.
Thus, we include these effects in the present forecasts and
emphasize they must be properly accounted for in future
analyses.
We also study the effect of neglecting the cosmic

variance of the signal itself, i.e.,Cτg
l , and find it is negligible

for all the experiments considered.
Figure 6 shows the comparison of the stacked high-pass

filtered radial τ profile on the unWISE (orange) and
CMASS (red) locations in our simulations where the τ
profile has been reconstructed using the TI esimator with an
ACT-like experiment. The input profile used when painting
each galaxy in both maps is shown for comparison in black.
The average τ profile stacked on CMASS galaxy locations
matches the profile painted on an individual galaxy, i.e., the
CMASS sample is sparse enough for the two-halo term to
have negligible contribution. However, after stacking on

FIG. 5. Ratio of the SNRs when accounting for galaxy shot
noise only versus galaxy shot noise and clustering. For all three
galaxy samples, the difference in SNR ratio between CMB
experiments (same colors as Fig. 4) is relatively small. However,
the impact of clustering on SNR increases significantly for higher
density galaxy samples, especially LSST. When neglecting
clustering in the LSST sample, the SNR is overestimated by
∼60% for TI (solid lines) and ∼150% for QE (dashed lines).

FIG. 6. Comparison of the high-pass filtered radial hτi profile
when stacking on the unWISE (red) and CMASS (orange) τ maps
with the TI estimator. The input profile used when painting each
galaxy in both maps is shown for comparison (black). Note the
shape of the profiles dips below zero due to the high-pass filtering
applied. The τ profile stacked on CMASS galaxy locations
matches the profile painted on an individual galaxy, i.e., the
CMASS sample is sparse enough for the two-halo term to have
negligible contribution. However, after stacking on the unWISE
sample, the profile amplitude shows a slight excess, which
reflects the two-halo term contribution. The error bars on the
CMASS and unWISE profiles correspond to the expected noise
from ACT. A tentative detection of this two-halo term may be
possible with ACT × unWISE.

TABLE III. Summary of the detection SNRs for TI and QE
varying the noise contribution due to galaxy clustering, gg. The
first value in each pair corresponds to the case with no clustering
(gg ¼ 0) power spectrum contribution to the total galaxy power
spectrum; the second value includes it (gg ≠ 0). For QE, we use
60 < l < 6000. For TI, we use 30 < l ≲ 2075 for δTL weights
and 2425 ≲ l < 5950 for τ reconstruction. Ratios of the gg ¼ 0
and gg ≠ 0 SNR values are visualized in Fig. 5.

gg ¼ 0=gg ≠ 0

CMB Expt. Estimator CMASS unWISE LSST

SPT TI5950 0.34=0.37 3.4=3.0 18=11
QE6000 0.54=0.53 5.5=4.7 29=12

ACT TI5950 0.60=0.65 6.1=5.2 31=18
QE6000 1.1=1.1 11=9.3 58=22

SO TI5950 0.84=0.92 8.5=7.5 45=25
QE6000 1.4=1.4 14=12 73=29

CMB-S4 TI5950 1.5=1.7 16=13 82=49
QE6000 2.7=2.7 28=25 145=65
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the unWISE sample, there is a slight excess in the
amplitude of the profile, which reflects the two-halo term
contribution. This shows that the clustering term already
starts becoming important for the unWISE-like galaxy
sample and will be even more important for an LSST-like
sample. A tentative detection of this two-halo term might
be possible using ACT×unWISE data.

C. Results

The forecast SNRs for TI, QE, and lens-hardened QE
(LHQE), using realistic simulations and accounting for
clustering effects as described above, are summarized in
Table IV and visualized in Fig. 7. Unlike for the clustering
study, we limit lmax to 3000 for the QE and LHQE to
mitigate foreground contamination. As TI is robust to
foregrounds, we use scales up to lmax ¼ 5950.3 As
expected, we find that the LHQE degrades the SNR to
some extent (∼10–15%) when compared to the standard
QE as the noise in the reconstruction of τ for a LHQE goes
up. As this is the forecast SNR for cross-correlation of τ and
galaxies Cτg

l rather than auto-power spectrum of τCττ
l ,

effects of the noise penalty for hardening against lensing
are slightly less dramatic. Factors contributing to the noise
[denominator of Eq. (H1)] are total galaxy and τ power
spectra. As expected, we find that for a given galaxy
sample, as we go towards more sensitive CMB experi-
ments, effects of lens-hardening are felt slightly more as the
noise penalty is higher for more sensitive experiments [41].

As a result, SNR is affected more by lens-hardening for a
CMB-S4-like experiment than an ACT-like experiment. In
the following discussion, we limit our comparisons to TI
and QE.
For current experiments like ACT and SPT in combi-

nation with CMASS and unWISE galaxies, TI and QE give
similar results. Due to fairly high shot noise, the cross-
correlation with the CMASS-like sample does not yield a
significant SNR for any CMB experiment, whereas the
signal is detectable using an unWISE-like sample. We note
this result is consistent with [38], which uses ACT ×
unWISE data to make the first detection of this effect.
For future CMB experiments, the TI estimator can attain

higher SNR than the QE, most dramatically when using an
LSST-like galaxy sample (see Table IV and Fig. 7). This is
due to the use of smaller scales of the CMB. Future CMB
experiments, particularly CMB-S4, have exquisite pro-
jected sensitivity and beam size. With lower noise and a
smaller beam, the TI estimator can extract information from
the small scales that QE cannot reliably use due to fore-
ground biases. Thus, the SNR values across all cross-
correlations with LSST are improved for TI compared to
the QE.

VII. CONCLUSIONS

In this paper, we have derived and studied new estima-
tors for the patchy screening of the CMB, called TI and
signed estimators. These estimators are modifications of the
standard screening QE, analogous to the gradient inversion
estimators for CMB lensing.

FIG. 7. Visualization of the forecast SNR values given in
Table IV. The LHQE (dotted lines) results in a SNR reduction
compared to the standard QE (dashed lines). For current experi-
ments, the QE and TI (solid lines) give similar SNRs. Cross-
correlation with CMASS (orange circles) does not yield a
significant measurement for any CMB experiment, whereas
the signal is detectable using the unWISE sample (red diamonds).
For future experiments, TI can attain higher SNR than the QE,
most dramatically when using the LSST galaxy sample (blue
pluses), because it can use smaller CMB scales.

TABLE IV. Summary of the forecast detection SNRs for TI and
QE accounting for galaxy clustering and using realistic l ranges
for each estimator. We do not include cosmic variance on the τg
signal, which is negligible for all experiments considered. For the
standard QE and lens-hardened QE (LHQE), we use 60 < l <
3000 where these estimators have limited response to foreground
contamination. For TI, we use the same l range as in Table III. TI
can use higher lmodes as it is robust to foregrounds; the SNR for
TI can thus exceed QE because of this added information. All
SNR values are visualized in Fig. 7.

Galaxy sample Estimator SPT ACT SO CMB-S4

CMASS TI5950 0.37σ 0.65σ 0.92σ 1.7σ
QE3000 0.34σ 0.87σ 0.96σ 1.1σ

LHQE3000 0.30σ 0.78σ 0.84σ 0.94σ

unWISE TI5950 3.0σ 5.2σ 7.5σ 13σ
QE3000 2.9σ 7.3σ 8.1σ 9.2σ

LHQE3000 2.6σ 6.6σ 7.2σ 8.0σ

LSST TI5950 11σ 18σ 25σ 49σ
QE3000 6.6σ 16σ 18σ 21σ

LHQE3000 5.9σ 15σ 16σ 18σ

3This rather specific value corresponds to the most
conservative lmax of the input ILC power spectra used in the
simulations.
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The TI and signed estimators make use of a unique
feature of patchy screening: it is the only effect which
changes sign based on the local large-scale temperature.
This allows TI and signed estimators to be automatically
unbiased to extragalactic foregrounds like the CIB, tSZ and
kSZ, unlike the standard QE. This foreground robustness
can be further enhanced for the signed estimator via “sign
balancing” and “sign thresholding”, which further immu-
nize it against foregrounds at a negligible noise cost. For the
QE, the corresponding biases can be large and likely
require some form of hardening at some cost in SNR.
The TI and signed estimators are also robust to CMB

lensing bias, unlike the standard QE. Lens hardening
remedies this issue for QE, again, with higher noise penalty.
We also clarify the relationship between the TI estimator,

signed estimator and QE. We show that the QE reconstructs
both small- and large-scale screening information and
present simple intuition about these two regimes. We show
how TI is a subtle modification to the small-scale-only QE,
which in principle avoids the noise floor above. Finally, the
signed estimator is a modification to TI which allows even
more robustness to foregrounds (via sign balancing and
sign thresholding), at the cost of a factor of

ffiffiffiffiffiffiffiffi
π=2

p
≈ 1.25

reduction in SNR. Even in the absence of detector noise,
foregrounds, and lensing, the τ QE has an irreducible
source of variance and hits a noise floor, whereas the TI and
signed estimators could perform arbitrarily better under
such noiseless conditions. However, this noise floor is not
reached in practice. For a fixed set of Fourier scales
included in the analysis, the statistical SNR in the TI or
signed estimators are similar to the QE but do not outper-
form it. However, by being robust to lensing and fore-
grounds, TI and signed estimators can be applied to more
Fourier modes (pushing to smaller scales), thus potentially
increasing the overall SNR.
We perform realistic forecasts for current and upcoming

CMB and LSS experiments (see Table IV and Fig. 7). Our
results highlight the large noise enhancement due to the
clustering of galaxies once the galaxy number density
reaches LSST-like values. Further, our SNR forecast for
ACT×unWISE is consistent with the measurement found in
the companion paper [38], which is the first detection of
this signal.
We have focused on measuring the patchy screening

from the CMB temperature only. The TI and signed
estimators should work identically when substituting tem-
perature T with Stokes Q or U polarization maps. We leave
this exploration to future work.
In the future, patchy screening measurements around

galaxies will be a powerful probe of the gas density profile
around them, highly complementary with kSZ and tSZ
effects. Joint analyses of these signals around the same
galaxies will yield valuable insights into the thermody-
namical properties of baryons within these halos and shed
more light on the lesser understood properties of feedback

processes. This will have a direct impact on weak galaxy
lensing studies where baryonic effects are a major system-
atic. They will also help in breaking the velocity-optical
depth degeneracy in kSZ, thus expanding its power as a
probe of the large-scale velocities to constrain the growth
rate of structure, modifications to general relativity and
local primordial non-Gaussianity. In particular, as the
uncertainty on the kSZ (∝ τvLOS) measurements will be
negligible compared to that of patchy screening (∝ τ), the
SNR values presented here translate as the expected
measurement SNR on the growth rate of structure (∝ vLOS).

The LensQuEst and ThumbStack software packages
are publicly available under an open source license.
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APPENDIX A: OPTIMAL δTL ESTIMATOR
IN THE PRESENCE OF FOREGROUND BIAS

In this section, we derive estimators of the large-scale
CMB temperature around a given galaxy. To declutter the
derivation, we simplify our notation as

dl ¼ Tl þ nl þ Aul; ðA1Þ

where dl is the temperature data as a function of Fourier
multipole l, Tl is the true CMB (with known power
spectrum Cl) to be estimated, nl is the noise (with known
power spectrum Nl), and Aul is a foreground emission,
with a known profile ul (e.g., the beam for a point source)
and unknown amplitude A. We would like to build an
estimator T̂l of Tl, which minimizes the mean squared
error hðT̂l − TlÞ2i. We restrict ourselves to estimators
linear in the data, i.e. we wish to determine the weights
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WL for each l such that,

T̂l ¼
X
L

WLdl−L: ðA2Þ

In the absence of foregrounds, i.e., if A is known to be
zero, minimizing the mean-squared error leads to the well-
known Wiener filter:

T̂l ¼ Cl

Cl þ Nl
dl: ðA3Þ

The Wiener filter can also be derived as the maximum
a posteriori estimator for Tl, in the absence of foregrounds
(A ¼ 0), as well as in the presence of foregrounds for
which the prior on the amplitude A is flat. Such foregrounds
would have a random sign, which is typically not the case
in our problem.
We now consider the case of nonzero foreground and

impose the additional constraint that the estimator T̂l
should have zero response to the foreground amplitude:

dT̂l

dA
¼ 0: ðA4Þ

In what follows, we show that the linear estimator which
minimizes the mean squared error, while having zero
response to the foreground emission, is simply obtained
by Wiener-filtering the data, after having subtracted the
matched-filtered foreground template.
We introduce a Lagrange multiplier λ, to minimize the

mean-squared error under the constraint,

L ¼ hðT̂l − TlÞ2i − λ
dT̂l

dA
: ðA5Þ

In terms of the weights WL, this loss function becomes

L ¼ ðW0 − 1Þ2Cl þW2
0Nl þ

X
L≠0

W2
LðCl−L þ Nl−LÞ

þ A2
X
L;L0

WLWL0ul−Lul−L0 − λ
X
L

WLul−L: ðA6Þ

Setting ∂L=∂WL to zero gives,

WL ¼ Cl

Cl þ Nl
δKL;0 − ðαþ λÞ ul−L

Cl−L þ Nl−L
; ðA7Þ

where we have defined

α≡ A
X
L0

WL0ul−L0 : ðA8Þ

Setting ∂L=∂λ to zero gives
P

L WLul−L ¼ 0, which means
that α ¼ 0 and lets us solve for λ in Eq. (A6):

λ ¼ Cl

Cl þ Nl

ul

ðPL
u2L

CLþNL
Þ
: ðA9Þ

Plugging this into Eq. (A6) yields the expressions for the
weights:

WL ¼ Cl

Cl þ Nl

264δKL;0 − ul−L
Cl−LþNl−L�P
L0

u2
L0

CL0þNL0

� ul

375: ðA10Þ

In conclusion, the estimator for Tl, linear in the data dl,
which minimizes the mean squared error while having zero
response to the foreground emission is

T̂l ¼ Cl

Cl þ Nl
½dl − Âul�; ðA11Þ

where Â is the matched filter estimator for the foreground
amplitude A:

Â≡
�P

L
dLuL

CLþNL

�
�P

L0
u2
L0

CL0þNL0

� : ðA12Þ

As stated, this reduces to subtracting the foreground
template Âul from the data, where Â is the matched filter
for the profile ul, and then Wiener-filtering the result.

APPENDIX B: VARIANCE COMPARISON:
SMALL-SCALE QE VS TI

We wish to get intuition about the noise properties of the
QE and TI, in order to understand in which case one may be
a better estimator than the other.
We decompose the observed small- and large-scale

temperatures around a given galaxy into signal and noise:�
δT̂S ¼ −δTLτ þ nS
δT̂L ¼ δTL þ nL

ðB1Þ

Here, the noise nS includes everything in the small-scale
map other than our screening effect, i.e. detector noise,
foregrounds, lensing and the small, Silk-damped primary
CMB. The large-scale noise nL should be thought of as
very small, since the primary CMB is very well-measured
on degree scales.
To get a sense of the relevant noise regimes, we introduce

the variances σ2TL
; σ2τ ; σ2nL and σ

2
nS of δT̂L, the true τ, nL and

nS. In what follows, we assume σ2nL ≪ σ2TL
, realistic for

current and upcoming experiments, and that δTL; τ; nL and
nS are statistically independent.
We can now express the TI and QE estimators in real

space as
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�
τ̂TI ¼ −δT̂S=δT̂L

τ̂QE ¼ −δT̂SδT̂L=σ2TL

ðB2Þ

We then plug in the expressions for the observed
quantities Eq. (B1), in terms of the true ones, into the
QE and TI estimators. As expected, we obtain a linear
response in the true τ and a noise term:�

τ̂TI ¼ αTIτ þ nTI

τ̂QE ¼ αQEτ þ nQE
: ðB3Þ

1. Irreducible noise in the QE response

For the TI estimator,

αTI ¼ δTL

δTL þ nL
¼ 1 −

nL
δTL

þ
�

nL
δTL

	
2

þ � � � ; ðB4Þ

such that the mean response hαTIi differs from unity by a
bias Oðσ2nL=σ2TL

Þ. The variance of the response αTI is
similarly small, with

varðαTIÞ ¼ Oðσ2nL=σ2TL
Þ: ðB5Þ

Thus, in practice, the bias and the variance of the TI
response are negligibly small, i.e. αTI ≃ 1.
In contrast, the linear response of the QE estimator is

αQE ¼ δTLðδTL þ nLÞ
σ2TL

: ðB6Þ

This response is exactly unbiased, i.e. hαQEi ¼ 1. However,
its variance does not go to zero in the limit of low noise:

varðαTIÞ ¼ 2þ σ2nL=σ
2
TL
: ðB7Þ

Thus, if the noises nTI and nQE are negligible, the TI
estimator converges to a perfect reconstruction of the true τ,
whereas the QE estimator converges to αQEτ, where αQE is
a random number with variance 2.

2. Comparable estimator noises

The noise nTI of the TI and QE estimators are8<:
nTI ¼ nS

δTLþnL

nQE ¼ nSðδTLþnþLÞ
σ2TL

ðB8Þ

Since h1=δT2
Li≳ 1=σ2TL

by convexity of x → 1=x, we
obtain,

varðnTIÞ ≳ σ2nS
σ2TL

�
1þ σ2nL

σ2TL

	
¼ varðnQEÞ: ðB9Þ

Thus, while the TI noise is larger than the QE noise, they
are comparable.

3. Total variance: TI outperforms QE
in the low-noise regime

To decide in which regime one estimator might be
preferred over the other, we take into account all the
contributions to the estimator variance, including the true
signal τ, the noise nTI=QE and the response αTI=QE. This
leads to

varðτ̂TI=QEÞ ¼ varðαTI=QEÞσ2τ þ varðnTI=QEÞ; ðB10Þ

such that we find:8>>><>>>:
varðτ̂TIÞ ¼ σ2nL

σ2TL
σ2τ þO

�
σ2nS
σ2TL

	
varðτ̂QEÞ ¼

�
2þ σ2nL

σ2TL

	
σ2τ þ σ2nS

σ2TL
:

ðB11Þ

It thus appears that the TI is preferred over the QE when the
“2” term is relevant, i.e. when

σ2nL ≲ σ2TL
and σ2nS ≲ σ2TL

σ2τ : ðB12Þ

The first condition is easily satisfied, since the large scale
temperature is measured at high SNR in current experi-
ments. The second condition effectively requires that the nS
be smaller than the screening effect δTLτ in the measured
small-scale temperature. However, the noise nS includes
not only detector noise, which could in principle be made
arbitrarily small, but also foregrounds and lensing. Thus,
going beyond QE with TI requires significant foreground
cleaning. Lensing is much larger than screening in the
small-scale temperature power spectrum, which violates
σ2nS ≲ σ2TL

σ2τ . Thus, the TI SNR should only outperform the
QE’s if a large amount of delensing can be achieved. We
leave quantifying this required amount of delensing to
future work.

APPENDIX C: TWO VERSIONS
OF THE APPROXIMATE SMALL-SCALE QE;

SAME COMPARISON WITH TI

Here we give the expressions for the stacked TI and QE
estimators. These show that the key difference between TI
and QE remains true for the stacked estimators; the QE’s
response to the true τ has an irreducible variance, even in
the absence of any noise.
As we show in the main text, the individual TI estimator

for galaxy i is τTIi ≡ δT̂Si=δT̂Li, with variance σ2ns=δT̂
2
Li,
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such that the inverse-variance weighted average over all
galaxies is given by Eq. (24),

τ̂TI stack ¼
P

iδ̂TSi
ˆδTLi=σ2nSP

j
ˆδTL

2
j=σ2nS

: ðC1Þ

Ignoring the small large-scale noise nL, but taking into
account the small-scale noise nS, this can be rewritten as

τ̂TI stack ¼ 1|{z}
TI response

× τ þ
P

inSi ˆδTLi=σ2nSP
j
ˆδTL

2
j=σ2nS|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

TI noise

; ðC2Þ

i.e. the response to the true τ is unity (again, for small nL).
On the other hand, the small-scale QE estimator for a

given galaxy i takes the form τQEi ≡ δT̂SiδT̂Li=σ2TL
. When

quantifying the variance of τQEi , two options are possible. A
“local” variance estimate takes into account the local value
of δT̂Li, whereas a “global” variance estimate marginalizes
over δT̂Li, given its variance σ2TL

.
The global variance estimate σ2nS=σ

2
TL

is in the spirit
of the standard QE, as it preserves the quadratic nature
of the estimator, by not including the data itself in the
weighting. In this case, the stacked estimator is then

τ̂QE“global” stack ¼
P

iδT̂SiδT̂Li=σ2nSP
jσ

2
TL
=σ2nS

¼
P

iδT̂
2
Li=σ

2
nSP

jσ
2
TL
=σ2nS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

response;var≠0

× τþ
P

inSiδT̂Li=σ2nSP
jσ

2
TL
=σ2nS|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

noise

: ðC3Þ

If one were to instead weigh by the local variance
σ2nS=σ

4
TL
δT̂Li, one obtains the “local” stacked QE, no longer

quadratic in the data:

τ̂QE “local” stack ¼
P

i
δT̂Si

δT̂Li

σ2TL
σ2nSP

j
1

δT̂2
Lj

σ4TL
σ2nS

¼
P

iσ
2
TL
=σ2nSP

j
σ2TL
δT̂2

Lj

σ2TL
σ2nS|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

response;var≠0

× τ þ
P

i
nSi
δT̂Li

σ2TL
σ2nS

σ2TL
δT̂2

Lj

σ2TL
σ2nS|fflfflfflfflfflffl{zfflfflfflfflfflffl}

noise

: ðC4Þ

Thus, both for the “local” and “global” weightings, the
stacked QE estimator differs from the stacked TI estimator.
Furthermore, the response to the true τ of the stacked QE
estimators still has an irreducible variance, even as the
small-scale noise σ2nS goes to zero.

As discussed in the main text, the stacked global QE
and stacked TI appear very similar, differing only in their
denominator. The fractional difference between the
denominators scales as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngalaxies

p
, such that it becomes

smaller and smaller with larger galaxy samples. However,
this difference is not irrelevant, because the variance of
the estimators (stacked QE and TI) also decreases as
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ngalaxies

p
. Thus, this difference is actually significant.

APPENDIX D: τsgn ESTIMATOR: SIGN
BALANCING HELPS WITH IMPERFECT

FOREGROUND CANCELLATION

“Sign balancing” refers to requiring that the number of
positively and negatively weighted galaxies in the stack is
the same. Sign balancing is effective as long as the
contribution to the foreground emission comes from >
0.1% of the total number of galaxies. This appendix
presents the evidence for this statement. The signed
estimator τ̂sgn for the foreground emission becomes

τ̂sgn ≡
P

isgnðTL;iÞfiP
ijTL;ij

; ðD1Þ

where TL;i is the large-scale temperature at the position of
galaxy i, and fi is the small-scale temperature due to
foreground emission from galaxy i. Simplifying the nota-
tion we write,

τ̂sgn ¼
1
ngal

P
isgnðTL;iÞfi

1
ngal

P
ijTL;ij

≡ TN

TD ; ðD2Þ

where ngal is the number of galaxies in the stack, and TN

and TD are defined as the numerator and denominator of the
r.h.s., respectively. We have the following relations:

8>>><>>>:
sgnðTL;iÞ⫫ jTL;jj
sgnðTL;iÞ⫫fj
jTL;ij⫫fj
jTL;ij=⫫ jTL;jj;

∀ i; j; ðD3Þ

where ⫫ represents statistical independence of the lhs and
rhs. The last relation comes from the fact that galaxies may
be located in a region where the CMB temperature is highly
correlated (i.e. in ∼1 deg2 patches). Since we assume
sgnðTL;iÞ⫫fj, there is no mean bias from foregrounds,
i.e. hτ̂i ¼ 0. However, for a given realization we may find
hτ̂i ≠ 0 due to imperfect cancellation among the ngal
sources. Here we derive the typical value of τ̂bias, i.e. the
RMS error of τ̂bias, to estimate the bias due to imperfect
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cancellation. First, we simplify our expression for
varðτ̂biasÞ:

varðτ̂biasÞ ¼ var

�
1

TD TN

	
¼ var

�
1

TD

	
varðTNÞ þ

�
1

TD

�
2

varðTNÞ

þ hTNi2|fflffl{zfflffl}
¼0

var

�
1

TD

	

¼
�
var

�
1

TD

	
þ
�

1

TD

�
2
	
varðTNÞ

¼
�

1

ðTDÞ2
�
varðTNÞ: ðD4Þ

Since varðτ̂biasÞ ∝ varðTNÞ, we can simply use the
variance of the numerator TN ≡ 1

ngal

P
sgnðTL;iÞfi for the

remainder of the analysis. We first determine the typical
value of TN in the absence of fluctuations in foreground
contamination, i.e., fi ¼ hfii ¼ f ∀ i. Within a correlated
∼1 deg2 patch of the CMB, sgn(TL;i) are identical. For
npatch patches, we expect

ffiffiffiffiffiffiffiffiffiffiffinpatch
p excess patches of one sign

(positive or negative). Hence, the total excess number of
galaxies with positive or negative weight is

ngal;excess ¼ ffiffiffiffiffiffiffiffiffiffiffi
npatch

p �
ngal
npatch

	
¼ ngalffiffiffiffiffiffiffiffiffiffiffinpatch

p : ðD5Þ

Therefore, the typical value of TN is

TN
typical ¼

1

ngal
ðngal;excessfÞ

¼ 1

ngal

�
ngalfffiffiffiffiffiffiffiffiffiffiffinpatch
p

	
¼ fffiffiffiffiffiffiffiffiffiffiffinpatch

p : ðD6Þ

By “sign balancing,” i.e., ensuring ngal;excess ¼ 0 before
stacking the sources, the bias due to imperfect cancellation
of sources is completely negated in the regime where all
sources have equal foreground emission. We can relax this
assumption and allow fi to be distinct for all i. We define
σ2f ≡ varðfiÞ and assume the source weights are already
sign balanced such that

P
i sgnðTL;iÞ ¼ 0. In this case,

varðTNÞ ¼ 1

n2gal

X
i

sgnðTL;iÞ2σ2f

¼ σ2f
ngal

: ðD7Þ

Thus,

TN
typical ¼

σfffiffiffiffiffiffiffingal
p : ðD8Þ

We see sign balancing does not fully negate the imperfect
cancellation caused by foreground fluctuations. It is there-
fore only effective if the bias due to mismatched positive/
negative weights is much greater than the bias due to scatter
in foreground levels, i.e.,

fffiffiffiffiffiffiffiffiffiffiffinpatch
p ≫

σfffiffiffiffiffiffiffingal
p

⇒
σf
f

≪

ffiffiffiffiffiffiffiffiffiffiffi
ngal
npatch

s
≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρgalApatch

q
; ðD9Þ

where ρgal is the galaxy number density and Apatch is
the area of the correlated temperature patch. Apatch ∼
1 deg2, and ρgal ∼ 1000 deg−2 for current galaxy surveys.
Equation (D9) is not satisfied if a small fraction of the
galaxy sample dominates the foreground signal. We use the
following toy model to determine the minimum fraction of
foreground emitting galaxies required for sign balancing to
be effective. Consider the case where a fraction x of the
galaxy sample emits foregrounds, and 1 − x emits no
foregrounds. The population of emitting galaxies must
contribute a total of f=x foreground emission such that
hfii ¼ ðf=xÞ � xþ ð0Þ � ð1 − xÞ ¼ f. The variance of the
foreground emission is

varðfiÞ ¼ hf2i i − hfii2

¼

�

f
x

	
2

xþ 02ð1 − xÞ
�
− f2

¼ f2
�
1

x
− 1

	
: ðD10Þ

Thus,

σf
f

¼
ffiffiffiffiffiffiffiffiffiffiffi
1

x
− 1

r
: ðD11Þ

Substituting this result into Eq. (D9) and squaring both
sides, we determine

1

x
− 1 ≪ ρgalApatch

≪ 1000

⇒ x ≫ 10−3: ðD12Þ

Thus, sign balancing is effective as long as the foreground
emission comes from >0.1% of the total galaxies. To
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ensure this condition is satisfied, one can exclude clusters
or high-mass groups from the galaxy sample, which would
dominate the foreground contamination.

APPENDIX E: MEAN FOREGROUND
CONTAMINATION COMPARISON

FOR STACKED TI AND SIGNED ESTIMATORS

There are three regimes of foreground contamination
for the TI and signed estimators: (1) present small-scale
foreground fS but negligible large-scale foreground fL;
(2) present large-scale foreground fL but negligible small-
scale foreground fS; and (3) non-negligible correlated
foregrounds fS and fL. In the first two cases, fS (or fL)
is uncorrelated with the temperature fluctuation δTL (or
δTS) and thus introduces no bias to either the TI or signed
estimators. We study the third regime for both estima-
tors below.
The stacked TI estimator including both large- and

small-scale foreground contamination is

τ̂TI ¼ −
PðδTL þ fLÞðδTS þ fSÞPðδTL þ fLÞ2

: ðE1Þ

We assume fL ≪ σTL
(for the typical values of σTL

∼
100 μK and fL ∼ 1 μK this is quite accurate). For sim-
plicity, we also assume all objects have equal fL and fS.
The bias to the stacked TI estimator as a function of radial
distance r in the 1D stacked photometry profile to first
order in fL=σTL

is

τ̂TIbiasðrÞ ¼ −
�P

fSðrÞfLP
δT2

L

�
þO

��
fL
σTL

	
2
	

¼ −fSðrÞfL
�
NobjectP

δT2
L

�
þO

��
fL
σTL

	
2
	

≃ −fSðrÞfL
1

hδT2
Li

þO
��

fL
σTL

	
2
	

≃ −
fSðrÞfL
σ2TL

þO
��

fL
σTL

	
2
	
: ðE2Þ

Next, we evaluate the foreground bias for the signed
estimator. The stacked signed estimator including large-
and small-scale foregrounds is

τ̂Sgn ¼ −
P

sgnðδTL þ fLÞðδTS þ fSÞP jδTL þ fLj
: ðE3Þ

The bias to the stacked signed estimator to first order in
fL=σTL

is

τ̂sgnbiasðrÞ ¼ −
�P

sgnðδTL þ fLÞfSðrÞP jδTLj
�
þO

��
fL
σTL

	
2
	

≃ −fSðrÞ
hP sgnðδTL þ fLÞi

hP jδTLji
þO

��
fL
σTL

	
2
	
:

ðE4Þ

To determine the value of hP sgnðδTL þ fLÞi, consider
the case where δTL ∼N ð0; σTL

Þ and fL is a small, positive,
fixed value. In this case, the distribution of δTL þ fL is just
a translated Gaussian, i.e., δTL þ fL ∼N ðfL; σTL

Þ. Thus,
the average value of the signed estimator is�X

sgnðδTL þ fLÞ
�

¼ A
Z

∞

0

exp



−
ðx − fLÞ2
2σ2TL

�
dx

− A
Z

0

−∞
exp



−
ðx − fLÞ2
2σ2TL

�
dx

¼ A
Z

fL

−fL
exp



−

x2

2σ2TL

�
dx

¼
ffiffiffi
2

π

r
fL
σTL

þO
��

fL
σTL

	
2
	
; ðE5Þ

where A≡ 1ffiffiffiffi
2π

p
σTL

.

Substituting the result from Eq. (E5) into Eq. (E4) and
using the relation hjN ðμ; σÞji2 ¼ 2

π hN ðμ; σÞ2i, we find

τ̂SgnbiasðrÞ ≃ −
ffiffiffi
2

π

r
fL
σTL

fSðrÞ
hjδTLji

þO
��

fL
σTL

	
2
	

≃ −
fSðrÞfL
σ2TL

þO
��

fL
σTL

	
2
	
: ðE6Þ

Thus, to first order in fL=σTL
, the TI and signed estimators

have the same sensitivity to foreground contamination. For
the signed estimator, this bias is only caused by regions
where jδTLj < fL. As sources are weighted by δTL in the
TI estimator, these regions contribute very little to the
stacked TI profile. For the signed estimator, the mean bias
can be completely mitigated by enforcing a minimum δTL
cut such that jδTLj > jfLj for all sources.
The analysis in this appendix assumes no overlapping of

sources, which would contribute a nontrivial bias. A
detailed analysis of the effect of overlapping sources on
the stacked estimators is left to future work.

APPENDIX F: SIMULATIONS OF CORRELATED
EXTRAGALACTIC FOREGROUNDS

1. Simulating a lensing map correlated with τ map

The deflection angle α⃗ due to the gravitational lensing of
photons is given by
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α⃗ ¼
Z

d2θ⃗
π

κðθ⃗Þ θ̂
θ
; ðF1Þ

where

κðθ⃗Þ ¼ 4πGΣðθ⃗Þ
c2a

dLdLS
dS

: ðF2Þ

In the above equations, θ⃗ are the 2D angles in the plane
of the sky, κ is the convergence field, G is Newton’s
gravitational constant, c is the speed of light, a is the scale
factor, dL, dLS, and dS are the comoving distance from
observer to the lens, between the lens and the source, and to
the source plane respectively. Σðθ⃗Þ is the comoving angular
surface density. We therefore need Σðθ⃗Þ to get a lensing
map κðθ⃗Þ correlated with the τ map. For this, we first
assume a Gaussian projected profile for the angular surface
density which we apply to the pointlike galaxy maps. For
CMASS galaxies with typical mass M ¼ 2 × 1013M⊙ at
z ¼ 0.55, the virial radius is ≈1.60 [11]. If we assume
that the 3σ span of the Gaussian surface density profile
should cover most of the profile and that all the mass falls
within this then we have σ ¼ 1.60=3 i.e. angular surface
density profile is a Gaussian with σ ≈ 0.530. In order to
determine the normalization factor of this profile, we
use the fact that

R
d2r⃗Σðr⃗Þ ¼ NgalM where Ngal is the

total number of galaxies, M is their mass, and d2r⃗ ¼
pixel area ðin steradiansÞ × d2χ . Here the pixel area corre-
sponds to the area of a single pixel of the map and dχ is the
average comoving distance to the galaxy sample. After
getting this normalization, we have Σðθ⃗Þ which gives us
κðθ⃗Þ using Eq. (F2). Since the τ map is created using the
same galaxy map as described in Appendix G, the κ map
and τ map are correlated.

2. Simulating a tSZ map correlated with the τ map

We make some simple assumptions to simulate a tSZ
map correlated with the τ map. For example, we see from
Fig. 8 of [11] that the amplitude of the tSZ profile of
CMASS galaxies is around −10 μKarcmin2 at 150 GHz.
We then assume that the tSZ profile is Gaussian in nature
centered at each galaxy location. The profile from Fig. 8
of [11] extends out to 60 and is a beam convolved profile
where the beam full width half maximum (FWHM) is 1.40.
Therefore, debeamed FWHM for our simulated tSZ pro-
files is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 − 1.42

p
≈ 5.80. Similar to lensing, in order

to determine the correct normalization for the Gaussian
profile, we use the fact that

R
d2θ⃗T ¼ Ngal ×

−10 μKarcmin2 where T is the tSZ profile in μK andR
d2θ⃗T ¼ ðpixel area in arcmin2ÞPi Ti where

P
i Ti is

the temperature profile summed over all the pixels.

The normalization is therefore determined such that this
relation holds and we get our simulated tSZ map.
We then calculate the power spectrum of our tSZ map

and compare it with the expected power from galaxies
with halo mass 5 × 1012M⊙ < M < 1014M⊙ and redshift
0.4 < z < 0.7, i.e. mass and redshift range similar to that
of CMASS galaxies. We use the halo model predictions
from [59] for this purpose. This prediction provides an
upper limit on the expected power from the CMASS
galaxies. As expected, we find that the tSZ power from
our simulated map is below the halo model predictions and
it also falls down much quicker on small scales. We call this
map as ‘tSZ low’. In order to determine the upper limit for
the tSZ bias to the τ QE, we thus simulate another tSZ map
whose power spectrum roughly matches with the halo
model predictions. For this, we simply convolve our galaxy
map by a Gaussian beam with σ ¼ 0.880 instead of σ ¼
2.460 for our first tSZ map, such that the shape of its power
spectrum roughly matches with that of halo model pre-
dictions. Then we multiply it by a factor of 1.3 on map level
to match the amplitude of the power spectrum with
predictions. Please note that these two numbers, namely
the beam with σ ¼ 0.880 and extra normalization factor of
1.3 have been determined through trial and error to match
the halo model prediction. This gives us a second tSZ map
which we use to determine the highest expected bias from
the tSZ emission coming from CMASS galaxies to cross-
correlation of τ reconstructed with a QE with galaxies. We
call this map as ‘tSZ high’.

APPENDIX G: SIMULATION METHODS
FOR TI SNR FORECAST

1. Signal maps

First, we create a τ map correlated with CMASS galaxy
positions. We choose map dimensions of 10° × 10° as a
balance between sufficient statistics and computational
efficiency. To make the map, we create a plate carrée
(CAR) projection map of the 200° < RA < 210°, 10° <
Dec < 20° region with a pixel scale of 0.5’. We choose this
region to avoid any large masked regions in the CMASS
sample footprint. At each galaxy position, we draw a 2D
isotropic Gaussian with FWHM=5’ and amplitude of
0.000245. These values are chosen based on the fit to
the signed estimator stacked profile using ACT×unWISE
data [38].
As shown in Fig. 6, stacking on the unWISE (and

potentially LSST) positions causes an excess signal from
the two-halo term. To avoid artificially boosting the
signal for unWISE and LSST during stacking, we use
the measured τ signal from the CMASS map for all
forecasts.
Finally, we create a separate signal map for each of the

ACT, SPT, SO and CMB-S4 forecasts by convolving the
map with a Gaussian kernel with a FWHM of 1.6’, 1.6’,
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1.4’ and 1.0’, respectively, to match the beam of the
corresponding experiment’s noise map (see below).

2. Noise maps

The noise maps for the forecast consist of Gaussian
random field realizations with power spectra correspond-
ing to each CMB experiment: ACT, SPT, SO, and CMB-
S4. The spectra are plotted in Fig. 4. For ACT, we use
the total power spectrum measured on the Planckþ
ACT needlet internal linear combination (ILC) map,
which includes all the CMB anisotropies and is con-
volved with a 1.6’ Gaussian beam [60]. For SPT, we use
the 5-year projected ILC residual power spectrum curve
including the noise and foreground contributions [49,61].
For SO, we use forecast ILC power spectrum with the
“goal” sensitivity specifications from [51]. For CMB-S4,
we use detector noise-only (i.e. no foregrounds) spectrum
assuming 1 μK·arcmin sensitivity. We add an analytic
lensed CMB contribution to the SPT, SO and CMB-S4
power spectra before convolving with a Gaussian beam
of 1.6’, 1.4’ and 1.0’, respectively. The maps have the
same dimensions, pixel scale and CAR projection as the
signal maps.

3. Filtering and stacking

We give a basic overview of the filtering and stacking
algorithm here but refer the reader to [11] for further details.
To obtain unbiased TL and TS estimates, we apply scale-
dependent filtering to our maps. We find the compensated
aperture photometry filter used in [11] results in a signifi-
cant noise bias. Instead, we apply low- and high-pass
filtering to the maps to decorrelate the large- and small-
scale temperature estimates:

flow-passl ¼

8>><>>:
1 if l < 2000

cos
�
ðl−2000Þπ

300

�
otherwise

0 if l > 2150;

ðG1Þ

fhigh-passl ¼

8>><>>:
0 if l < 2350

sin
�
ðl−2350Þπ

300

�
otherwise

1 if l > 2500:

ðG2Þ

For the stacked analysis we need catalogs for each
galaxy sample. For the CMASS and unWISE samples,
the catalog consists of the galaxies that lie in the region
200° < RA < 210°, 10° < Dec < 20°. As the DC2 foot-
print does not cover this region, we simply take a 10 ×
10 deg2 patch from the DC2 footprint (specifically
55° < RA < 65°, −40° < Dec < −30°) and shift these
positions to the above region. Using real (or realistically
simulated) galaxy positions ensures the effects of clustering
are taken into account in our forecast. The CMASS,

unWISE, and DC2 samples have 7659, 515,095 and
11,904,577 galaxies in this region, respectively.
After applying the low- and high-pass filtering, we

use bilinear interpolation to make small ∼10’×10’
cutouts of the temperature maps centered on each galaxy
position. We estimate TL for a galaxy position by
measuring the mean temperature of the low-pass filtered
map in a ∼9’ disk centered on the galaxy. The TS radial
profile is estimated using nine annular ring aperture
photometry filters centered on the galaxy with outer
radii equally-spaced between 1’ and 6’. In each aperture
i, we measure the mean temperature of the high-pass
filtered map, TS;i. The estimated mean τ in each aperture
is calculated as

bτi ¼ −
TLTS;i

ðTLÞ2
: ðG3Þ

The optimal stacked estimator is inverse-variance
weighted, as shown in Sec. IV C. In the forecast, we use
uniform weighting for simplicity. Thus, the stacked τ
profile simplifies to

τ̂ ¼ −
PNgal

j¼1 TL;jTS;jPNgal

j¼1ðTL;jÞ2
: ðG4Þ

4. Covariance estimation and SNR calculation

To estimate the covariance matrix, we simulate 128
independent noise map realizations, filter and stack in the
same manner as above and measure a mean τ profile
for each realization. We calculate the covariance as the
sample covariance over the 128 mean τ profiles. The
Hartlap correction [58] to this covariance matrix is ðnsims −
nbins − 2Þ=ðnsims − 1Þ ¼ 1.08 for 128 simulations and nine
profile bins.
Using simulations to estimate the covariance matrix is

superior to bootstrap resampling as it accounts for the
covariance added by the clustering of the galaxies. We find
the difference between the covariance estimated from
simulations versus from 10,000 bootstrap samples is
negligible for the CMASS sample. However, bootstrap
resampling underestimates the covariance by ∼20% for the
unWISE sample and by more than 50% for the LSST
sample, as shown in Fig. 5.
For a given experiment with noise covariance matrix, C,

and mean τ profile, v, we measure the detection SNR of the
signal profile over the 10° × 10° map as�

S
N

	
2

map
¼ vTC−1v: ðG5Þ

We rescale this result to the full survey sky fraction and
galaxy number density as shown in Table II.
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APPENDIX H: SNR CALCULATION
FOR THE τ QUADRATIC ESTIMATOR

For the QE of τ, the SNR for the cross-power spectrum of
the τ map reconstructed using QE and galaxy map g is
calculated analytically as

�
S
N

	
2

¼ fsky
Xlbmax

lbmin

ð2lb þ 1ÞΔlðCτg
lb
Þ2

ðCτ̂g
lb
Þ2 þ Cτ̂ τ̂

lb
× Cgg

lb

; ðH1Þ

where

Clb ¼
1

Δl

X
l∈ ½l1;l2�

Cl; ðH2Þ

and Δl is the bin width. Here, Cτg
lb

is the cross-power
spectrum between input τ map and g map, Cτ̂ τ̂

lb
¼ Cττ

lb
þ

Nττ
lb

where Cτ̂ τ̂
lb

is the power spectrum of the input τ map
and Nττ

lb
is the reconstruction noise for QE given by

Eq. (12). Cτ̂ τ̂
lb

is therefore the power spectrum of the
reconstructed τmap. Cgg

lb
is the total galaxy power spectrum

including the clustering and shot noise components, and
fsky is the common sky fraction between the CMBmap and
galaxy survey. We start with the τ map and CMASS galaxy
map as described in Appendix G, and cross-correlate them
to calculate the signal Cτg

l . For the noise part, we take into
account different clustering and shot noise levels in the
CMASS, unWISE, and LSST galaxy samples. For CMASS
sample and LSST galaxies, we calculate the galaxy
clustering power spectrum using a halo model approach
where we make sure that our model matches with the
clustering power spectrum of the CMASS maps used in
cross-correlations. For unWISE galaxies, we use the
measured power spectra for the ‘blue’ sample [62,63].
The shot noise levels for each sample are calculated using
the number density values provided in Table II.
For different CMB experiments, the reconstruction

noise for the quadratic estimator for τ is different and is
calculated using Eq. (12).
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