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Weak magnetic fields must have existed in the early Universe, as they were sourced by the cross product of
electron density and temperature gradients through the Biermann-battery mechanism. In this paper we
calculate the magnetic fields generated at cosmic dawn by a variety of small-scale primordial perturbations,
carefully computing the evolution of electron density and temperature fluctuations, and consistently
accounting for relative velocities between baryons and dark matter. We first compute the magnetic field
resulting from standard, nearly scale-invariant primordial adiabatic perturbations, making significant
improvements to previous calculations. This “standard” primordial field has a root mean square (rms) of
a few times 10−15 nG at 20≲ z≲ 100, with fluctuations on ∼kpc comoving scales, and could serve as the
seed of present-day magnetic fields observed in galaxies and galaxy clusters. In addition, we consider early
Universe magnetic fields as a possible probe of nonstandard initial conditions of the Universe on small scales
k ∼ 1 − 103 Mpc−1. To this end, we compute the maximally allowed magnetic fields within current upper
limits on small-scale adiabatic and isocurvature perturbations. Enhanced small-scale adiabatic fluctuations
below current cosmic microwave background spectral-distortion constraints could produce magnetic fields as
large as ∼5 × 10−11 nG at z ¼ 20. Uncorrelated small-scale isocurvature perturbations within current big
bang nucleosynthesis bounds could potentially enhance the rms magnetic field to ∼10−14 − 10−10 nG at
z ¼ 20, depending on the specific isocurvature mode considered. While these very weak fields remain well
below current observational capabilities, our work points out that magnetic fields could potentially provide an
interesting window into the poorly constrained small-scale initial conditions of the Universe.
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I. INTRODUCTION

While magnetic fields are ubiquitous in the Universe
[1–4], their origin remains unknown. A possible explan-
ation could be the dynamo amplification of “primordial”
magnetic fields, generated in the early Universe prior to
nonlinear structure formation [4]. Indeed, even seed mag-
netic fields as weak as 10−21 nG at the time of galaxy
formation could be sufficient to source the magnetic fields
observed today in galaxies and galaxy clusters [5].
In 1950, Biermann showed that magnetic fields can be

generated starting from vanishing initial conditions in an
ionized plasma if the electron density and temperature
gradients are misaligned [6], a process now known as the
Biermann-battery mechanism. About a decade ago, Naoz
and Narayan [7] (hereafter NN13), considered this mecha-
nism within a cosmological context for the first time. They
computed the magnetic field sourced by linear fluctuations
originating from adiabatic initial conditions, assuming the
latter have a nearly scale-invariant power spectrum with
amplitude and slope consistent with large-scale cosmic

microwave background (CMB) anisotropy data. They
found that these “standard” adiabatic initial conditions
could lead to a magnetic field with root-mean-square
(rms) ∼10−16 − 10−15 nG at redshift z ∼ 10 − 100, fluctu-
ating on comoving scales of order 10 kpc. NN13 accounted
approximately for the effect of supersonic relative motions
between baryons and cold dark matter (CDM) [8], which
they showed to significantly affect the resulting magnetic
field power spectrum.
A by-product of NN13’s work is the understanding that

the cosmological Biermann-battery mechanism is most
efficient on ∼1–10 kpc comoving scales. This implies that
the resulting magnetic field could, in principle, offer a
window into initial conditions on these scales, much
smaller and much more poorly constrained than the
∼1 − 103 Mpc scales directly probed by CMB-anisotropy
and large-scale structure data. Not only could kpc-scale
initial conditions have a significantly larger amplitude than
their Mpc–Gpc scale counterparts, they may also depart
significantly from adiabaticity, since isocurvature (i.e.
nonadiabatic) initial conditions are especially weakly con-
strained on such scales. The purpose of the present paper
is to compute the magnetic field generated by non-
standard initial conditions through the Biermann-battery
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mechanism, in the hopes that this observable may
eventually serve as a probe of the small-scale primordial
Universe.
A related endeavor was recently undertaken by Flitter

et al. [9] (hereafter Fþ 23), whose work inspired ours.
Specifically, Fþ 23 computed the magnetic field sourced
by small-scale compensated isocurvature perturbations
(CIPs), in which initial baryon and CDM perturbations
compensate each other to produce an exactly vanishing
total matter fluctuation. In this work, we significantly
expand on Fþ 23’s calculation in multiple aspects. First
and foremost, we consider a variety of isocurvature initial
conditions in addition to CIPs, as well as amplified small-
scale adiabatic initial conditions. Second, we numerically
evolve linear electron density and temperature fluctuations,
rather than using simple analytic approximations which can
be inaccurate by up to one order of magnitude. Last but not
least, we incorporate exactly the effect of large-scale relative
motions between baryons and CDM, which significantly
affect the growth of small-scale perturbations, be they
originated from adiabatic or isocurvature initial conditions.
Along the way, we also make some significant improve-
ments to NN13’s original work. We update their prediction
for the magnetic field sourced by standard adiabatic initial
conditions, which we find can reach root-mean-square (rms)
of ∼4−5×10−15 nG at 20≲z≲100, peaking at z ∼ 60,
assuming small-scale initial conditions consistent with the
Planck 2018 best-fit cosmology [10].
Our main result is to predict the magnetic field produced

by nonstandard small-scale perturbations, and can be
summarized as follows. We find that enhanced small-scale
adiabatic initial conditions can lead to magnetic fields as
large as ∼10−11 nG without violating CMB spectral-
distortion constraints [11]. We also show that, within
current constraints, small-scale isocurvature perturbations
may source magnetic fields reaching ∼10−10 nG at z ¼ 20,
depending on the specific type of isocurvature mode. We
note that our more accurate treatment leads to a prediction
for the magnetic field sourced by CIPs up to one order of
magnitude larger than that of Fþ 23. Although to our
knowledge no observational method currently exists to
probe such weak small-scale magnetic fields at cosmic
dawn (but see Refs. [12,13] for a probe of large-scale
magnetic fields of comparable magnitude), these field
amplitudes are in principle large enough to seed magnetic
fields observed in today’s galaxies and galaxy clusters, and
can be significantly larger than the expectation from
standard adiabatic initial conditions.
The rest of this paper is organized as follows. In Sec. II,

we describe how we calculate perturbations in electron
density and baryonic gas temperature, which are the
principal ingredients of the Biermann-battery mechanism,
including the effect of relative velocity between CDM and
baryons. In Sec. III we derive the power spectrum of the
magnetic field sourced by general electron and temperature

fluctuations through the Biermann-battery mechanism, and
present our results with standard primordial adiabatic
perturbations. In Sec. IV we consider nonstandard adiabatic
and isocurvature initial conditions saturating current con-
straints, and compute the resulting magnetic field power
spectrum. We conclude in Sec. V. We give a pedagogical
derivation of the Biermann-battery mechanism in a cos-
mological context in Appendix A, provide details of our
numerical implementation in Appendix B, and give a
detailed comparison of our work with that of Fþ 23 in
Appendix C.

II. EVOLUTION OF PERTURBATIONS

A. Implementation

In this section we describe how we compute the linear
evolution of perturbations in CDM, baryons, free electron
fraction xe, and gas temperature Tgas, the latter two being
relevant to the computation of magnetic fields. We separate
perturbations into “large scales” and “small scales,”
depending on whether their comoving wave number k is
less or greater than 1 Mpc−1, respectively.
On large scales, perturbations are insensitive to relative

velocities between baryons and CDM (their effect is only
relevant at k≳ 40 Mpc−1 [8]). Moreover, baryon pressure
is negligible, and as a consequence free-electron and gas
temperature fluctuations do not affect the evolution of
large-scale perturbations at linear level (even though the
converse is true). We may therefore obtain the evolution of
baryon density and velocity perturbations ðδb; θbÞ from the
Boltzmann code CLASS [14], and compute the linear
response of the free-electron fraction and gas temperature
to these perturbations using the modified recombination
code HYREC-2 [15–17], with the method described in
Ref. [18]. This allows us to extract the relative perturbations
δxe ≡ δxe=xe and δTgas

≡ δTgas=Tgas as a function of time
(or redshift) and wave number, for any given initial
conditions.
The same is approximately true for the evolution of

small-scale perturbations prior to kinematic decoupling of
baryons from photons, at z ≈ 1060, since at that epoch the
dynamics of baryons is dominated by their coupling to
photons. Therefore, we also use CLASS combined with the
modified HYREC-2 linear-response solution for δxe ; δTgas

for
small-scale perturbations1 until z ¼ 1060. After photon-
baryon kinematic decoupling, baryon pressure becomes

1While perturbed recombination calculations [19–21] are
available in CLASS, in its default setting the code works only
for relatively large-scale modes. Moreover, the perturbed recom-
bination equation implemented in CLASS are only valid in the
limit when photoionizations are negligible, and after transitions
from the excited to the ground state are no longer bottlenecked,
i.e. for z ≲ 900. Except for our neglect of photon perturbations in
the gas temperature evolution, our implementation with the
modified HYREC-2 is therefore more accurate.
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relevant, and as consequence the evolution of baryon fluid
variables becomes coupled to gas temperature fluctuations,
which are themselves coupled to free-electron fraction
fluctuations. Moreover, relative velocities between baryons
and CDM affect the growth of small-scale perturbations,
as they advect baryon and CDM perturbations relative to
one another [8]. Since the effect of baryon-CDM relative
velocities is nonlinear and not included into CLASS, we
implement our own differential equation solver, initialized
with our CLASS + modified HYREC-2 solution at z ¼ 1060.
We follow the treatment of Refs. [8,22]. Given that scales
k ≥ 1 Mpc−1 are well within the horizon scale at z ≤ 1060,
we may solve the fluid equations in the subhorizon limit.
We may also neglect photon perturbations, due to their
rapid free-streaming. Moreover, given that relative veloc-
ities fluctuate on scales k ∼ 0.01–0.1 Mpc−1, and only
affect perturbations on scales k≳ 40 Mpc−1, we may
use moving-background perturbation theory [8], by solving
for the evolution of small-scale perturbations on a local
patch of uniform relative velocity vbc ∝ 1=a, in the
baryon’s rest-frame. Explicitly, we solve the following
system of coupled differential equations for the baryon
and CDM density perturbations (δb, δc) and velocity
divergences with respect to proper space (θb; θc), as well
gas temperature and ionization fraction perturbations
ðδTgas

; δxeÞ, where overdots denote derivatives with respect
to coordinate time:

δ̇c ¼
i
a
ðvbc · kÞδc − θc;

θ̇c ¼
i
a
ðvbc · kÞθc − 2Hθc −

3H2

2
ðΩcδc þΩbδbÞ;

δ̇b ¼ −θb;

θ̇b ¼ −2Hθb −
3H2

2
ðΩcδc þ ΩbδbÞ þ

c2sk2

a2
ðδb þ δTgas

Þ

−
4ργ
3ρb

neσTθb;

δ̇Tgas
¼ −

2

3
θb þ Γc

�
Tγ − Tgas

Tgas
δxe −

Tγ

Tgas
δTgas

�
;

δ̇xe ¼
ẋe
xe

�
δxe þ δb þ

∂ lnAB

∂ lnTgas
δTgas

þ ∂ lnC
∂ lnRLyα

�
θb
3H

− δb

��
: ð1Þ

In these equations, all quantities except for the perturbation
variables ðδb;δc;θb;θc;δTgas

;δxeÞ are by default background
(i.e. homogeneous) quantities, H is the Hubble rate, and
Ωb;c are the contributions of baryons and CDM to the total
critical energy density. We calculate the background gas
temperature Tgas and free electron fraction xe using the
recombination code HYREC-2 [15–17] implemented in
CLASS [14]. The last term in the baryon momentum

equation, proportional to the background electron density
ne and the Thomson scattering cross section σT , accounts
for residual photon drag after z ¼ 1060, and is required to
obtain accurate results, especially for nonadiabatic initial
conditions. The baryon’s isothermal sound speed squared is
given by c2s ≡ Tgas=μmH, where μ≡ ½1þ ðmHe=mHÞxHe�=
ð1þ xHe þ xeÞ is the mean molecular weight which
depends on the background free-electron fraction xe and
the constant ratio of helium to hydrogen by number xHe.
Note that we do not include fluctuations of the molecular
weight since xe ≪ 1 and free-electron fraction fluctuations
remain very small at the redshifts of interest [22]. The
evolution of gas temperature perturbations is governed by
the Compton heating rate

Γc ≡ 8σTarT4
γ

3ð1þ xHe þ xeÞme
xe; ð2Þ

and the evolution of ionization perturbations depends on
the effective case-B recombination coefficientABðTγ; TgasÞ
[15], as well as on the corresponding effective photoioni-
zation rate BBðTγÞ through Peebles’ C-factor [23]

C≡ 3RLyα þ Λ2s;1s

3RLyα þ Λ2s;1s þ 4BB
; ð3Þ

where Λ2s;1s is the two-photon decay rate, and RLyα is the
Lyman-α net decay rate defined as

RLyα ≡ 8πH
3λ3Lyαð1 − xeÞnH

; ð4Þ

where nH is the number density of hydrogen.
Note that the equation for ionization fraction perturba-

tions is only valid for scales larger than the typical distance
traveled by Lyman-α photons between emission and
absorption events, i.e. for scales k≲103Mpc−1 [24]. We
will extrapolate our results to scales k ≤ 104 Mpc−1, but
the reader should keep in mind that they can only be fully
trusted for k≲ 103 Mpc−1.

B. Initial conditions and results

We consider five types of primordial perturbations
(defined at z ≫ 103, prior to horizon entry): adiabatic
(AD), baryon isocurvature (BI), CDM isocurvature (CI),
joint baryon and CDM isocurvature (BCI), and compen-
sated isocurvature perturbations (CIPs). For BCI, baryons
and CDM perturbations are initially equal, while for CIPs,
δc ¼ −ðΩb=ΩcÞδb initially, such that baryons and CDM
produce no net gravitational potential. Let us note that, in
principle, all primordial perturbations may contribute to
large-scale relative velocities. However, we checked that
the dominant contribution is always coming from adiabatic
perturbations under current constraints on the amplitude of
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large-scale primordial perturbations. Hence, regardless of
the type of small-scale initial conditions considered when
solving Eq. (1), the relative velocity of CDM and baryon is
always assumed to be determined by that of adiabatic
perturbations.
Each type of initial condition i is characterized

by a single scalar variable ΔiðkÞ, which is the primordial
curvature perturbation for adiabatic initial conditions, the
initial baryon density for BI, BCI and CIP, and the initial
CDM density for CI. The output of our code are the transfer
functions T i

α of each variable δα, for each type i of initial
conditions, defined through

δiαðz; k;vini
bc Þ ¼ T i

αðz; k;vini
bc · k̂ÞΔiðkÞ; ð5Þ

where vini
bc (which we will simply denote by vbc in what

follows) is the local baryon-CDM relative velocity at
zini ¼ 1060, which affects perturbations of wave-vector k
only through its projection along k̂. As a cross check of our
code, we have explicitly computed the matter power
spectrum for adiabatic initial conditions, averaged it over
the Gaussian distribution of relative velocities, and con-
firmed it agrees with the results of Ref. [8].
In the context of magnetic fields, we are especially

interested in the transfer functions of the gas temperature
perturbation δTgas

and of the free-electron density pertur-
bation δne ¼ δxe þ δb, since these are the relevant fields for
the Biermann-battery mechanism. We show some of these
transfer functions in Fig. 1 for AD and CIP modes.

III. MAGNETIC FIELD FROM THE
BIERMANN-BATTERY MECHANISM

A. General expressions

The Biermann-battery mechanism sources a magnetic
field at a rate proportional to the cross product of the free-
electron density and temperature gradients. In the expand-
ing Universe, this rate is [7,9,25]

d
dt

ða2BÞ ¼ −
Tgas

e
∇δne × ∇δTgas

; ð6Þ

where e is the electron charge (see Appendix A for a
pedagogical derivation). We may easily integrate this
equation, and write its explicit solution in Fourier space,
for a given initial value of the local relative velocity
vbc ≡ vbcðzini ¼ 1060Þ:

Bðt; k;vbcÞ ¼
1

½aðtÞ�2e
Z

t

0

dt0Tgasðt0Þ

×
Z

d3k1
ð2πÞ3 ½k1 × k�δneðt0; k1;vbcÞ

× δTgas
ðt0; k − k1;vbcÞ: ð7Þ

Recalling the definition of the transfer functions in Eq. (5),
and accounting for a possible superposition of multiple
types of initial conditions, we get

Bðt;k;vbcÞ ¼
1

½aðtÞ�2e
Z

d3k1
ð2πÞ3 ½k1× k�

×
X
i;j

Xij
eTðt;k1;k− k1;vbcÞΔiðk1ÞΔjðk− k1Þ;

ð8Þ

where i; j ¼ AD, BI, CI, BCI, CIP, and we have defined

Xij
eTðt; k1; k2;vbcÞ

≡
Z

t

0

dt0Tgasðt0ÞT i
neðt0; k1;vbc · k̂1ÞT j

Tgas
ðt0; k2;vbc · k̂2Þ:

ð9Þ

We see that, for a given realization of the initial conditions,
BðkÞ depends on the full vector vbc, in contrast with the
linear fields δneðkÞ, which only depend on vbc · k̂.
We now compute the small-scale power spectrum

PBðt; k;vbcÞ of the magnetic field, for a given local value
vbc. It is defined as

hBðkÞ · B�ðk0Þi ¼ ð2πÞ3δDðk0 − kÞPBðkÞ; ð10Þ

under the assumption of Gaussian initial conditions,
uncorrelated between different types:

hΔiðkÞΔj�ðk0Þi ¼ δijð2πÞ3δDðk0 − kÞPiðkÞ: ð11Þ

Note that our calculation could easily be generalized to
correlated initial conditions. Using the properties of
Gaussian random fields, we arrive at

PBðt;k;vbcÞ¼
1

2

1

a4e2

Z
d3k1
ð2πÞ3 jk1×kj2

×
X
i;j

Piðk1ÞPjðjk−k1jÞF ij
eTðt;k1;k−k1;vbcÞ;

ð12Þ

where we have defined

F ij
eTðt; k1; k2;vbcÞ
≡ jXij

eTðt; k1; k2;vbcÞ − Xji
eTðt; k2; k1;vbcÞj2: ð13Þ

The local small-scale power spectrum PBðk;vbcÞ defined
in Eq. (12) is not statistically isotropic, as it depends on
the direction k̂ through vbc · k̂. Note that, unlike the
matter power spectrum, which depends on relative velocity
only through its projection vbc · k̂ along k̂ [8], the local
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FIG. 1. Transfer functions for δne (left column) and δTgas
(right column), for adiabatic initial conditions (top panels) and CIPs (bottom

panels). The upper (lower) plot of each panel is for k ¼ 100 Mpc−1 (k ¼ 1000 Mpc−1). For vbc · k̂ ¼ 0, transfer functions are real,
shown in black dashed. For vbc · k̂ ≠ 0, transfer functions are complex functions, hence we show both their real (in red) and imaginary
(in blue) parts for vbc · k̂ ¼ σ1d, where σ1d ≈ 17 km=s is the rms relative velocity per axis.
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small-scale power spectrum of the magnetic field depends
on the relative magnitude vbc and on its angle with k̂
separately, i.e. PBðk;vbcÞ ¼ PBðk; vbc; v̂bc · k̂Þ.
A more physically meaningful quantity is the direction-

averaged power spectrum, which by slight abuse of
notation we denote Pðk; vbcÞ, defined as

PBðk; vbcÞ≡
Z

d2k̂
4π

PBðk;vbcÞ

¼ 1

2

Z
1

−1
dðv̂bc · k̂ÞPBðk; vbc; v̂bc · k̂Þ: ð14Þ

The isotropic magnetic field power spectrum only depends
on the magnitude of the local relative velocity. Lastly, the
global magnetic field power spectrum PBðkÞ is obtained by
averaging PBðk; vbcÞ over the Gaussian distribution of
relative velocities at z ¼ 1060, with variance per axis [8]
σ21d ¼ hv2bci=3 ≈ ð17 km=sÞ2, explicitly,

PBðkÞ ¼
ffiffiffiffiffiffiffiffiffi
2

πσ31d

s Z
∞

0

dvbc v2bce
−v2bc=2σ

2
1dPBðk; vbcÞ: ð15Þ

From the magnetic field power spectrum, one may obtain
the overall variance of the magnetic field,

hB2i ¼
Z

d3k
ð2πÞ3 PBðkÞ ¼

Z
d ln k

k3

2π2
PBðkÞ: ð16Þ

Whenever we quote our results for hB2i, we take an upper
cutoff kmax ¼ 104 Mpc−1 in this integral.
We see that obtaining the magnetic field power spectrum

at a given redshift and wave number requires computing a
5-dimensional integral: three angular integrals (correspond-
ing to the relative angles between k̂; k̂1 and v̂bc), one
integral over the magnitude of k1, and one over the
distribution of vbc. Moreover, the integrand in Eq. (12)
itself depends on time (or redshift) integrals of products of
transfer functions. This therefore represents a very signifi-
cant computational challenge, which requires careful opti-
mization to remain tractable. We provide the details of our
numerical implementation in Appendix B.

B. Application to nearly scale-invariant
adiabatic initial conditions

In this section, we show the power spectrum of magnetic
field produced by perturbations in electron density and
gas temperature seeded by “standard” primordial adiabatic
perturbations, with a nearly scale-invariant primordial
power spectrum

k3

2π2
PAD;stdðkÞ ¼ Asðk=kpÞns−1; ð17Þ

where the pivot scale is kp ¼ 0.05 Mpc−1, the amplitude is
As ¼ 2.1 × 10−9, and the spectral index is ns ¼ 0.9665,
which are the Planck CMB-anisotropy best-fit values.
We present our result in Fig. 2, where we show the rms

magnetic field per logarithmic scale,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PBðkÞ=2π2

p
,

at z ¼ 20. We see that it peaks around comoving
wave number k ∼ 103 Mpc−1, with an overall rms hB2i1=2≃
4 × 10−15 nG. Accounting for relative velocities does
not significantly shift the peak of PB, but significantly
enhances power on scales k≲ 103 Mpc−1. In particular,
nonvanishing relative velocities change the large-scale
(small-k) asymptotic scaling of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PBðkÞ

p
from ∝ k7=2

to ∝ k5=2.
These asymptotic behaviors can be understood as follows.

First, let us note that the reality condition of real-space
perturbations implies that T αðk;−vbc · k̂Þ ¼ T �

αðk;vbc · k̂Þ
for any perturbation α. Therefore, FAD;AD

eT ðk1;−k1Þ ¼
j2 ImðXAD;AD

eT ðk1;−k1ÞÞj2.
For vbc ¼ 0, all transfer functions are real, and as a

consequence, FAD;AD
eT ðk1;−k1;vbc¼0Þ¼0, implying that,

at lowest order in k, FAD;AD
eT ðk1; k − k1;vbc ¼ 0Þ ∝ k2 for

k ≪ k1. From Eq. (12), we thus find PBðkÞ ∝ k4 for kmuch
smaller than the peak of the integrand (which is around the

FIG. 2. Power spectrum of the magnetic field produced by the
Biermann-battery mechanism with primordial adiabatic pertur-
bations, extrapolating the Planck CMB best-fit cosmology [10] to
small scales, at z ¼ 20. The gradually colored blue curves
correspond to the local isotropic power spectra PBðk; vbcÞ defined
in Eq. (14), for relative velocities vbc ∈ ½0; 4σ1d�, where
σ1d ≈ 17 km=s. The color of PBðk; vbcÞ with vbc ¼ 0 starts with
light blue and gets darker as vbc increases being dark blue with
vbc ¼ 4σ1d. Overall, the amplitude of PBðk; vbcÞ increases rapidly
at first with small vbc’s, and after it peaks with vbc ≈ 4 km=s at
k ∼ 103 Mpc−1 the amplitude decreases with vbc. The solid
orange line show the vbc-averaged result PBðkÞ defined in
Eq. (15). For reference, the dashed orange line shows
PBðk; vbc ¼ 0Þ, the power spectrum one would obtain if neglect-
ing relative velocities.
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Jeans scale kJ for adiabatic initial conditions), explaining
the observed scaling

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PBðkÞ

p
∝ k7=2. For vbc ≠ 0, trans-

fer functions acquire a nonvanishing imaginary part (see
Fig. 1). This implies thatFAD;AD

eT ðk1;−k1;vbc ≠ 0Þ ≠ 0. As
a consequence, Eq. (12) gives PBðkÞ ∝ k2 for k ≪ kJ,
implying

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PBðkÞ

p
∝ k5=2, as observed in Fig. 2.

Let us recall that our results should only be trusted
for k≲ 103 Mpc−1, since for smaller scales finite photon
propagation effects may significantly alter the evolution of
perturbed recombination [24].
The redshift evolution of the rms magnetic field is

determined by a competition between the Biermann-battery
production rate and dilution by cosmological expansion.
We show this evolution in Fig. 3, where we see that the rms
magnetic field increases until z ≈ 60, after which it starts
decreasing. This interesting result could not easily be
predicted analytically.
Our results are significantly different from those

obtained in the pioneering work of NN13. Specifically,
we obtain an overall magnetic field rms larger than theirs
by at least one order of magnitude, and significantly
different large-scale asymptotic behaviors for PBðkÞ. We
were able to identify some assumptions that may explain
part of these differences. First, NN13 assume that the
perturbations in free electron density are equal to the
perturbations in free-electron fraction, i.e. that δne ¼ δxe ,
instead of δne ¼ δxe þ δb. However, we find that, for
adiabatic perturbations, jδxe j≲0.2jδbj at z≲50 on all scales
k ≥ 1 Mpc−1. Hence, NN13’s assumption significantly

underestimates the free-electron density perturbation,
which may explain why they obtain a lower magnetic
field amplitude than we do. Second, NN13 estimate the
angle-average power spectrum PBðk; vbcÞ by substituting2

T αðk;vbcÞ → hjT αðk;vbcÞj2i1=2 in Eq. (9), where the
average is over the angle between k and vbc. This does
not account for correlations between transfer functions at
different wave numbers for a given relative velocity, as is
correctly accounted for when we average PB itself (which is
quartic in transfer functions) over angles. This assumption
of NN13 explains why they obtain the same large-scale
asymptotic scaling for PBðkÞ regardless of the value of vbc:
their averaging procedure spuriously eliminates the
imaginary part of XAD;AD

eT , which, as we show above, is
responsible for the different asymptotic scaling of
PBðk; vbc ≠ 0Þ. Neither one of these assumptions (nor
the minor differences in our evolution equations for xe)
explain the asymptotic behavior of PBðkÞ found by NN13,
however: their Fig. 2 shows

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3PBðkÞ

p
∝ k1.7 on large

scales, implying PBðkÞ ∝ k0.4, independently of vbc. This
result is inconsistent with the fact that PBðkÞ should scale at
least quadratically in k on large scales, as can be seen e.g.
from Eq. (12). Our new results should thus be seen as
updating and superseding those of NN13.

IV. MAGNETIC FIELD AS A PROBE
OF SMALL-SCALE INITIAL CONDITIONS

A. Setup

We now compute the magnetic field generated by the
superposition of the “standard” (CMB-extrapolated) adia-
batic initial conditions with power spectrum given in
Eq. (17), with a nonstandard power spectrum for a single
type of primordial perturbation i (possibly adiabatic as
well) with a Dirac-delta peak at scale k0:

PiðkÞ ¼ 2π2

k20
Δ2ðk0ÞδDðk − k0Þ: ð18Þ

The resulting magnetic field power spectrum is then

PBðk;vbcÞ ¼ Pstd
B ðk;vbcÞ þ Pi×std

B ðk;vbcÞ þ Pi;i
B ðk;vbcÞ;

ð19Þ

which includes the cross term, linear in Δ2ðk0Þ,

Pi×std
B ðk;vbcÞ≡ c2

a4e2
k20Δ2ðk0Þ

Z
d2k̂1
4π

jk̂1 × kj2

× PAD;stdðjk − k0k̂1jÞ
× F i;AD

eT ðk0k̂1; k − k0k̂1;vbcÞ; ð20Þ

FIG. 3. The rms of velocity-averaged magnetic field produced
by the Biermann-battery mechanism with primordial adiabatic
perturbations, extrapolating the Planck CMB best-fit cosmology
[10] to small scales, as a function of redshift. The rms at z ¼ 20 is
that of the velocity-averaged magnetic field shown as an orange
line in Fig. 2. Note that the redshift-evolution of the rms is
determined by both the production rate of magnetic field and the
dilution of the existing field due to the expansion of the Universe.

2Private communication from S. Naoz.
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and a term quadratic in Δ2ðk0Þ, given by

Pi;i
B ðk;vbcÞ≡ π

4

�
c
a2e

Δ2ðk0Þ
�
2

k½1− ðk=2k0Þ2�

×
Z

2π

0

dϕ1F
i;i
eTðk0k̂1;k− k0k̂1;vbcÞjk̂1·k̂¼k=2k0

;

ð21Þ

for k < 2k0, and vanishing otherwise, where ϕ1 is the
azimuthal angle of k̂1 in the spherical polar coordinate
system where k̂ is the zenith, and the plane spanned by
ðk̂; v̂bcÞ has ϕ1 ¼ 0. The term Pi;i

B ðkÞ peaks near k ∼ k0.
In what follows we apply these results to spikes in the

small-scale adiabatic or isocurvature perturbations, satu-
rating existing upper limits, to show the maximum mag-
netic field they might generate.

B. Application to enhanced small-scale
adiabatic perturbations

CMB anisotropy data only probes relatively large-scale
(k≲ 0.3 Mpc−1) adiabatic modes. On smaller scales, the
most stringent constraints to date can be derived from upper
bounds to CMB spectra distortions. Reference [26] provide
simple analytic expressions for the chemical potential μ
and Compton-y distortion sourced by small-scale adiabatic
perturbations with a Dirac-delta spike as in Eq. (18),
accurate to 20% for k≳ 5 Mpc−1:

μ ≈ 2.2ðe−k0=kμ − e−ðk0=kyÞ2ÞΔ2ðk0Þ; ð22Þ

y ≈ 0.4e−ðk0=kyÞ2Δ2ðk0Þ; ð23Þ

kμ ¼ 5400 Mpc−1; ky ¼ 31.6 Mpc−1: ð24Þ

COBE-FIRAS [27] constrains jμj ≤ 9 × 10−5 and jyj ≤
1.5 × 10−5 at the 95% confidence interval. This implies
that, the bound on Δ2ðk0Þ is approximately

Δ2
ADðk0Þ≲ 4 × 10−5ek0=kμ : ð25Þ

This expression recovers the bounds from either μ or y
limits in the region where either one dominates.
Figure 4 shows the velocity-averaged B-field power

spectrum at z ¼ 20 produced by adiabatic primordial
perturbations with a Dirac-delta spike saturating spectral
distortion upper limits (in addition to the “standard” nearly
scale-invariant power spectrum), for varying spike posi-
tions k0. We find that magnetic fields can be as large as
∼5 × 10−11 nG, four orders of magnitude larger than that
generated by standard adiabatic initial conditions, without
violating CMB spectral-distortion constraints. This maxi-
mum rms is attained for k0 ∼ 103 Mpc−1.

C. Application to small-scale isocurvature
perturbations

We now compute the magnetic field power spectrum
generated by various small-scale isocurvature perturbations
saturating current limits. For BI, BCI and CIPs, the most
stringent upper limits come from big bang nucleosynthesis
(BBN) constraints, first derived in Ref. [28] and revised
in Ref. [18], which limit the primordial baryon variance
on scales larger than the neutron diffusion scale,
k≲ 4 × 108 Mpc−1, implying

Δ2
i ðk0Þ<0.019; i¼BI; BCI; CIP ð95%C:L:Þ ð26Þ

For pure CDM isocurvature (CI), the BBN bound does not
apply. Instead, the strongest constraint is the one we
obtained in Ref. [18] based on the perturbation of
the average recombination history, which is of order
Δ2

CIðk0Þ≲ 0.7 for k0 ≲ 500 Mpc−1, and rapidly degrades
for smaller scales. Given that linear perturbation theory
should not apply for such large amplitudes, the precise
value of the bound is not robust. Therefore, for illustration
purposes, we simply compute the magnetic field generated
with Δ2

CIðk0Þ ¼ 1.
We show in Fig. 5 the rms magnetic field hB2i1=2

generated by small-scale isocurvature perturbations satu-
rating the limits described above, as a function of the peak
scale k0. We find that, under current constraints, primordial
isocurvature perturbations have the potential to enhance
hB2i1=2 up to ∼3 × 10−12 nG for BCI, ∼10−13 nG for BI,
and ∼10−14 nG for CIP. Since CI are not well constrained
on these scales, they may source a magnetic field with rms

FIG. 4. Velocity-averaged magnetic field power spectrum at
z ¼ 20 produced by adiabatic primordial perturbations with a
Dirac-delta spike at k ¼ k0 ∈ ½10; 104� Mpc−1 whose amplitude
saturates CMB spectral distortion upper limits, Eq. (25). The
color of the curves starts with light red at k0 ¼ 10 Mpc−1 and gets
darker as k0 increases. Each curve peaks near k ∼ k0.
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up to ∼3 × 10−10 nG. Note that as Pi;i
B is the dominant

contribution for {BI, BCI, CI}, the rms magnetic field
scales as Δ2

i ðk0Þ while hB2i1=2 ≫ hB2
stdi1=2, where Bstd is

the magnetic field produced with “standard” adiabatic
initial conditions.
One would naively think that the magnetic field from

isocurvature perturbations should be roughly a factor of
Δ2ðk0Þ=As larger than that sourced by standard adiabatic
perturbations. However, this is not the case as the growth
rate of perturbations is in general much slower for iso-
curvature perturbations than for adiabatic perturbations (see
Fig. 1), since CDM perturbations are not boosted by the
gravitational potential sourced by photon perturbations in
the radiation-dominated era.
Let us note that CIPs were first considered as a source of

magnetic fields through the Biermann-battery mechanism
in Ref. [9], whose authors considered CIPs with power-law
primordial power spectra. Our treatment is much more
detailed in several respects, leading to up to one order of
magnitude difference with the results of Ref. [9] with equal
assumptions for the CIP primordial power spectrum. We
discuss the differences between our work and theirs in
Appendix. C.

V. CONCLUSION

In this paper we make the most accurate calculation to
date of the magnetic field produced by a variety of
primordial perturbations through the Biermann-battery
mechanism. To do so, we consistently solve for the

evolution of small-scale perturbations in electron density
and baryon gas temperature, including the effect of large-
scale relative velocity between CDM and baryon.
We first calculate the magnetic field produced solely

from standard, nearly scale invariant primordial adiabatic
perturbations. Our results update and supersede those of the
pioneering work NN13 [7], as we correctly compute the
electron density perturbation, and account for the full
angular dependence of the magnetic field power spectrum
on relative velocities. We show that the resulting “standard”
magnetic field can reach an rms of a few times 10−15 nG at
z ¼ 20–100, with maximal fluctuations on comoving
scales k ∼ 103 Mpc−1. This magnetic field can serve as a
seed field to be later amplified by dynamo processes,
possibly explaining the magnetic fields present in galaxies
and galaxy clusters today [4].
In addition, using the fact that the main contribution to

magnetic field comes from perturbations on very small
scales k ∼ 102–103 Mpc−1, we argue that measuring
magnetic fields can be a useful probe for initial conditions
of the Universe on such small scales. We first consider
enhanced small-scale primordial adiabatic perturbations,
and show that they can source magnetic fields as large as
∼5 × 10−11 nG without violating current CMB spectral
distortion constraints. We similarly compute the magnetic
field sourced by a variety of small-scale isocurvature
perturbations (baryon, CDM, joint baryon and CDM,
and compensated baryon-CDM isocurvature perturba-
tions). We find that such nonstandard perturbations could
generate magnetic fields as large as ∼10−14–10−10 nG at
cosmic dawn, depending on the specific type of isocurva-
ture mode, without violating current BBN and perturbed
recombination constraints. While these are extremely weak
magnetic fields, below current detection capabilities, they
may still be a useful observable to consider in the future, as
they could provide a new window into the poorly con-
strained small-scale initial conditions of the Universe.
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FIG. 5. The rms magnetic field at z ¼ 20 produced by the
Biermann-battery mechanism with a Dirac-delta primordial
isocurvature power spectrum peaked at k ¼ k0 [Eq. (18)]. Note
that while BCI, BI, and CIP are under BBN bound [18,28]
[Eq. (26)] as there is no robust constraint on the amplitude of CI,
we set Δ2ðk0Þ ¼ 1 for CI. Dashed lines only include contribution
purely from isocurvature perturbations, and solid lines include the
contribution from “standard” adiabatic perturbations. Note that
the rms of Bstd is ∼4 × 10−15 nG.
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APPENDIX A: DERIVATION OF THE
BIERMANN-BATTERY MECHANISM

In this appendix we provide a pedagogical derivation
of the Biermann-battery mechanism, in the cosmological
context. For simplicity we do not account for cosmic
expansion in this derivation (alternatively, it can be thought
of as a derivation in a locally inertial coordinate system),
and restore dependence on scale factors in the final result.
We work in units where c ¼ 1.

1. Electron-proton slip and current density

We consider free electrons and free protons as two
distinct ideal fluids (a more rigorous approach would use
kinetic theory and follow their distribution functions).
For each fluid i ¼ e; p, we denote by ni its number density,
ρi ¼ mini its mass density, vi its velocity, Ti its temper-
ature and Pi ¼ niTi its pressure. Assuming helium is
fully neutral, all of these fields are nearly identical for
electrons and protons, except for their mass densities,
ρp ≈ ðmp=meÞρe ≫ ρe.
In the presence of an electric and magnetic field, the

momentum equations satisfied by each fluid are

dve

dt
¼ −∇ϕ −

∇Pe

ρe
−

e
me

ðEþ ve × BÞ

þ Γepðvp − veÞ; ðA1Þ

dvp

dt
¼ −∇ϕ −

∇Pp

ρp
þ e
mp

ðEþ vp × BÞ

−
ρe
ρp

Γepðvp − veÞ; ðA2Þ

where e is the elementary charge, and we neglected photon
drag. Aside from the obvious gravitational, pressure and
electromagnetic forces, the last term, proportional to the
relative velocity between electrons and protons, represents
the drag force arising from frequent Coulomb interactions
between the two species—it is this term which, in practice,
forces electrons and protons to be behave very nearly
as a single fluid. Subtracting the two equations, and only
keeping terms at lowest order in me=mp ≪ 1, we obtain an
equation for the “slip,” i.e. the velocity difference between
the two species:

d
dt

ðvp − veÞ þ Γepðvp − veÞ

¼ ∇Pe

ρe
þ e
me

ðEþ ve × BÞ: ðA3Þ

Let us now estimate Γep: it is of the order of the rate of
interactions between electrons and protons, namely
Γep ∼ nehσCðvrelÞvreli, where σC is the Coulomb interaction
cross section and vrel is the microscopic (in contrast with

the macroscopic averages vp, ve) relative velocity of
electrons and protons—for completeness, exact expres-
sions for the momentum-exchange rate can be found in
Refs. [29,30]. The Coulomb scattering cross section is
approximately σCðvÞ ∼ ðe2=ðmev2ÞÞ2 ∼ σT=v4, where σT is
the Thomson cross section. Since microscopic relative
velocities between electrons and protons are dominated
by the electrons’ thermal velocities, we find

Γep ∼ neσTðme=TeÞ3=2: ðA4Þ

We may estimate the ratio of this rate relative to the Hubble
rate by noting that the Thomson scattering rate neσT
becomes comparable to the Hubble rate around redshift
z ∼ 103, at which point xe ∼ 0.1. Hence, we find (assuming
HðzÞ ∝ z3=2 during matter domination, and with ne ∝ xez3),

Γep

H
∼

xe
0.1

ðz=103Þ3=2ðme=TeÞ3=2: ðA5Þ

The electron temperature is approximately

Te ≃
�
0.25 eV × ðz=103Þ; z≳ 120;

0.03 eV × ðz=120Þ2; z≲ 120;
ðA6Þ

where the transition at z ≈ 120 corresponds to thermal
decoupling from photons. Therefore, we find, at z≲ 120,

Γep

H
∼ 107

xe
3 × 10−4

ðz=100Þ−3=2; ðA7Þ

where we have normalized xe to its freeze-out abundance.
We thus see that, at all relevant times, Γep ≫ H, implying
that electrons and protons are tightly coupled. This allows us
to estimate the slip relative velocity by solving Eq. (A3) in
the quasisteady-state approximation:

vp − ve ≈
1

Γep

�
∇Pe

ρe
þ e
me

ðEþ ve × BÞ
�
: ðA8Þ

This slip is an important quantity as it allows us to deter-
mine the electric current density j ¼ eðnpvp − neveÞ≈
eneðvp − veÞ. We thus have found

Eþ ve × Bþ ∇Pe

ene
≈ Γep

me

e2ne
j: ðA9Þ

2. Combining with Maxwell’s equations

We now combine Eq. (A9) with Maxwell’s equations.
Given a current density j, the magnetic field satisfies the
forced wave equation

∇ × j ¼ 1

4π
½∂2tB −∇2B�: ðA10Þ
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When considering scales much smaller than the Hubble
radius, one may neglect the first term relative to the second
one in the right-hand side of Eq. (A10). Taking the curl
of Eq. (A9) and using Maxwell-Faraday equation (and
neglecting small fluctuations of the prefactor in front
of j), we obtain

− ∂tBþ ∇ × ðve × BÞ þ 1

e
∇ × ð∇Pe=neÞ

≈ −Γep
me

e2ne

1

4π
∇2B≡ −λep∇2B; ðA11Þ

where we have defined a characteristic lengthscale

λep ≡ Γep
me

4πe2ne
∼ ðe2=meÞðme=TeÞ3=2; ðA12Þ

where we used Eq. (A4) and σT ¼ ð8π=3Þðe2=meÞ2.
Inserting Eq. (A6), we thus obtain, for z≲ 120

λep ∼ 0.03 cmðz=100Þ−3: ðA13Þ

For fluctuations on a comoving scale k, the ratio of the term
proportional to∇2B to the first term in Eq. (A10) is of order

λepj∇2Bj
j∂tBj

∼
λepk2

a2H

∼
�

k
3 × 1013 Mpc−1

�
2

ðz=100Þ−5=2: ðA14Þ

Therefore, we see that, for any cosmological scales of
interest, the term proportional to ∇2B may be safely
neglected in Eq. (A11). If we restrict ourselves to small
perturbations in the electron density, we may moreover
neglect the term ∇ × ðve × BÞ. We have thus found

∂tB ≈
1

e
∇ × ð∇Pe=neÞ ¼ −

1

e
∇ne
n2e

× ∇Pe: ðA15Þ

With Pe¼neTe, and ne¼ n̄eð1þδneÞ, Te¼ T̄gasð1þδTgas
Þ,

we find

∂tB ≈ −
T̄gas

e
∇δe × ∇δTgas

: ðA16Þ

Re-expressing proper gradients in terms of comoving
gradients, and accounting for the dilution of magnetic
fields by 1=a2 due to cosmological expansion, we re-
cover Eq. (6).

APPENDIX B: NUMERICAL IMPLEMENTATION
DETAILS

In this appendix we detail our numerical implementation
of the magnetic field power spectrum.

(i) We first store the transfer functions of electron
density perturbations δne and baryon gas temperature
perturbations δTgas

in tables. We note that, for large
relative velocities or small scales, all perturbations
are proportional to the rapidly oscillating component
eiϕðz;k·vini

bc Þ, with phase

ϕðz; k · vini
bc Þ≡

Z
t

tini

dt0

a0
k · vbcðt0Þ

¼ ðk · vini
bc Þ

Z
zini

z

dz0

Hðz0Þ
1þ z0

1þ zini
; ðB1Þ

where zini ≡ 1060. Instead of tabulating the rapidly
oscillating small-scale transfer functions themselves,
we thus tabulate their slow-varying parts

T̃ i
αðz;k;vinit

bc · k̂Þ≡e−iϕðz;k·v
init
bc ÞT i

αðz;k;vinit
bc · k̂Þ: ðB2Þ

This allows us to get accurate interpolation
results with a coarser table. For small-scale modes,
we store the slow-varying parts T̃ for 1,300 wave
numbers k∈ ½1; 2 × 104� Mpc−1, 200 values of
vbc · k̂∈ ½0; 4σ1d�, and 300 redshift points in
z∈ ½20; zini� logarithmically spaced in scale factor
(or equivalently in 1þ z). For large-scale modes, we
store transfer functions only with vbc ¼ 0 for 450
wavenumbers k∈ ½3 × 10−4; 1� Mpc−1 and 1,000
redshifts z∈ ½20; zini�. When needed, we interpolate
these tables using Python SciPy cubic spline inter-
polator.

(ii) We compute the time integral in Xij
eT [Eq. (9)], using

the trapezoidal rule with the 300 logarithmically
spaced redshifts in z∈ ½20; zini� at which we store the
transfer functions at high k’s. This avoids having to
do 3-dimensional interpolation: we only interpolate
over k and vbc · k̂ for each given redshift grid-point.
In principle, this time integral should be extended
to t → 0 (or z → ∞), but we checked that it is in
fact already well converged when only including
z < zini ¼ 1060, since the integral is dominated by
late times.

(iii) For given values of vbc and v̂bc · k̂, we compute the
3-dimensional k1-integral of Eq. (12) as follows. We
define the z-axis to be aligned with the vector k, and
let vbc be on x − z plane without loss of generality.
We then perform the integral in spherical polar
coordinates k1; θ;ϕ, noting that the symmetry of
the problem implies

R
2π
0 dϕ ¼ 2

R
π
0 dϕ. We then

perform 21-point Gaussian-quadrature integration
for ϕ∈ ½0; π�. We rewrite the polar angle integral

as
R
1
−1 d cos θ ¼ −

R ffiffi
2

p
0 2xdx, where we define

x≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ

p
, and then perform 21-point Gaus-

sian quadrature integration for x∈ ½0; ffiffiffi
2

p �. This is to
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better handle a divergence which happens because
the integrand scales as ð1 − cos θÞ−1=2 when k1 ¼ k.
Given a set of two angular variables, we integrate
over k1 from kmin ¼ 3 × 10−4 Mpc−1 to kmax ¼
104 Mpc−1 using the 1-dimensional integrator in
Python SciPy package (scipy.integration.-
quad). Finally, we compute the 2-dimensional
angular integral by trapezoidal rule over sampled
points of cos θ and ϕ.

(iv) Finally, we compute the 2-dimensional integral over
vbc and v̂bc · k̂, given in Eqs. (14) and (15), by doing
11-point Gaussian quadrature integration for each
1-dimensional integration.

APPENDIX C: COMPARISON WITH FLITTER
ET AL. [9]

In this appendix, we review the assumptions taken in
Ref. [9] (hereafter Fþ 23) to compute the magnetic field
generated by CIPs, and contrast them with our detailed
calculation.
On scales much larger than the baryon Jeans scale, baryon

and CDM perturbations are known to remain constant in
time for CIP initial conditions. Motivated by this result,
Fþ 23 assume a strictly constant baryon perturbation
δCIPb ¼ Δ for all scales k ≤ 400 Mpc−1, and compute the
resulting late-time free-electron density perturbation, finding
δCIPe ≈ −0.06Δ. In contrast, we compute the full time
evolution of the free-electron density perturbation, as a
function of scale, and find that it significantly differs from
(and can be significantly larger than) this constant value even
at scales k ≪ 400 Mpc−1, as can be seen in Fig. 1.
In addition, Fþ 23 neglect the gas temperature fluctua-

tions sourced by CIP initial conditions, hence only account
for the cross term δCIPe δADTgas

in the magnetic field source.
This assumption is self-consistent with their assumption of
constant δCIPb , implying θCIPb ¼ 0, which thus cancels the
main source of gas temperature fluctuations in Eq. (1). In
contrast, we self-consistently account for CIP-sourced gas
temperature fluctuations, which are in fact comparable to
free-electron density perturbations even for scales signifi-
cantly larger than the Jeans scale (see Fig. 1). We thus
effectively account for two more terms in the magnetic field
source: δADe δCIPTgas

and δCIPe δCIPTgas
.

Moreover, Fþ 23 assume that the AD-sourced gas
temperature fluctuations strictly follow the baryon density
fluctuations, δADTgas

¼ 2
3
δADb . In turn, baryon density fluctua-

tions are assumed to precisely match the total matter
density fluctuation up to a constant Jeans scale kJ ¼
200 Mpc−1, and to be suppressed by a factor ðkJ=kÞ2 for
smaller scales [19,31], i.e. modeled as δADb ðkÞ ¼
min½1; ðkJ=kÞ2� × δADm ðkÞ. F þ 23 then model the
matter power spectrum using CLASS at large scales,
extended to small scales (k > 100 Mpc−1) by the

Bardeen-Bond-Kaiser-Szalay fitting function [32] with
baryon corrections of Ref. [33]. In contrast, we self-
consistently compute the electron density and gas temper-
ature perturbations for AD initial conditions, without
imposing a constant bias with respect to density fluctua-
tions nor any approximate cutoff at the Jeans scale.
Last but not least, Fþ 23 do not account for relative

velocities between CDM and baryons. Interestingly, these
supersonic relative motions break the exact cancellation of
the gravitational potential, thus allowing density perturba-
tions to grow on scales larger than the baryon Jeans scale.
This effect is thus qualitatively the opposite from what
happens for adiabatic perturbations [8]. However, it does
not necessarily lead to an overall increase of the magnetic
field power, since it pushes gas temperature fluctuations
closer to the adiabatic limit δTgas

→ 2
3
δb, and makes the ratio

δTgas
=δe closer to being scale-invariant, i.e. “aligns” more

the gradients of gas temperature and electron density
fluctuations.
As a concrete example, we consider a scale-invariant

primordial power spectrum for CIPs, PCIPðkÞ ¼ 2π2

k3 ACIP,
corresponding to the spectral index α ¼ −3 case in Fþ 23.
In that case the upper limit on ACIP is dominated by
large-scale CMB-anisotropy constraint, which with our
convention3 is ACIP ≤ 0.88 × 10−3 [34].
We see in Fig. 6 that the magnetic field from our

calculations without any approximations is an order of

FIG. 6. Comparison of our results with those of Fþ 23,
assuming a scale-invariant primordial power spectrum for CIPs
(the case of α ¼ −3 in their definition). The green dashed line is
the reproduction of calculation done in Fþ 23, and navy curves
are from our calculations, only including the contributions from
CIPs (and not the contribution from standard adiabatic fluctua-
tions alone).

3Reference [34] define PCIPðkÞ ¼ ACIP=k3 instead of our
2π2ACIP=k3.
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magnitude larger than the result of Fþ 23 at z ¼ 20. Note
that the difference would have even been larger had we not
included relative velocities, which lower the rms magnetic
field by a factor of ∼2 − 3. Also note that, while the
observable magnetic field also includes contributions from

standard adiabatic modes alone [shown to be Oð10−15 nGÞ
in Fig. 2], for a fair comparison, in Fig. 6 we only include
contributions from CIPs, sourced by δADe δCIPTgas

, δCIPe δADTgas
,

and δCIPe δCIPTgas
.
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