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One of the most exciting targets of current and future gravitational-wave observations is the angular
power spectrum of the astrophysical GW background. This cumulative signal encodes information about
the large-scale structure of the Universe, as well as the formation and evolution of compact binaries
throughout cosmic time. However, the finite rate of compact binary mergers gives rise to temporal shot
noise, which introduces a significant bias in measurements of the angular power spectrum if not explicitly
accounted for. Previous work showed that this bias can be removed by cross-correlating GW sky maps
constructed from different observing times. However, this work considered an idealized measurement
scenario, ignoring detector specifics and in particular noise contributions. Here we extend this temporal
cross-correlation method to account for these difficulties, allowing us to implement the first unbiased
anisotropic search pipeline for LIGO-Virgo-KAGRA data. In doing so, we show that the existing pipeline is
biased even in the absence of shot noise, due to previously neglected subleading contributions to the noise
covariance. We apply our pipeline to mock LIGO data, and find that our improved analysis will be crucial

for stochastic searches from the current observing run (O4) onwards.

DOI: 10.1103/PhysRevD.109.103535

I. INTRODUCTION

During its first three observing runs, the LIGO-Virgo-
KAGRA Collaboration detected dozens of gravitational-
wave (GW) signals from binary black hole coalescences
[1-3], with the fourth run currently ongoing. This number
is expected to increase to several thousand by the end of the
fifth observing run [4]. As a result, interest is now shifting
to other, undetected observables, like the GW background
(GWB)—a persistent signal made up of numerous super-
imposed GW sources throughout the history of the
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Universe [5,6]. With the recent strong evidence for a
GWB in the nanohertz band provided by pulsar timing
arrays [7-9], we can expect exciting developments in the
field within the next few years.

While the GWB can originate from many different early-
universe cosmological mechanisms [10], the astrophysical
GW background (AGWB) [11] arising from the combined
emission of compact binary coalescenses (CBCs) is
expected to be the dominant component. In the past years,
significant research has been devoted to probing the anisot-
ropies in the AGWB, as these could provide us with valuable
information with regards to the large-scale structure (LSS) of
the Universe and, in particular, galaxy clustering [12-18].

Much like other cosmological observables such as the
cosmic microwave background (CMB), the anisotropies in
the AGWB are typically probed by means of their angular
power spectrum, C,. A significant challenge in the case of
the AGWB is that the finite rate of CBCs leads to temporal
shot noise, which can significantly bias inferences
of the angular power spectrum of the AGWB [19-21]. It
is essential that this bias be properly accounted for in
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order to calculate the true angular power spectrum.
Reference [22] introduced a technique to remove this shot
noise bias by performing a cross-correlation of GW sky
maps produced from nonoverlapping epochs within the full
dataset. However, this work did not consider limitations
related to GW detector noise and interferometer orientation.
In this paper, we show both in theory and in practice how
the optimal C, estimator first introduced in Ref. [22] does
indeed compute the correct angular power spectrum even
after one accounts for the aforementioned effects, unlike
the estimator currently used by both the LVK Collaboration
and other authors [23-26] to probe the angular power
spectrum of the AGWB [27].

As a byproduct of this analysis, we show that the existing
search pipeline is biased even in the absence of shot noise,
due to subleading contributions to the covariance matrix.
These contributions are sourced by the GWB signal itself,
which is much weaker than the noise power in the
detectors, and is thus usually neglected. However, as we
show explicitly below, these terms can be significantly
larger than the angular power spectrum one is searching for,
and therefore bias the C, estimator by more than 100%.
The method we describe here is robust to these errors, and
is thus the first unbiased search pipeline for GWB anisot-
ropies with LVK data.

The paper is organized as follows. In Sec. II, we show
how the current C, estimator is biased with contributions
from detector noise, shot noise and the signal itself,
while the optimal estimator is by construction unbiased.
Section IIT describes the anisotropic analysis we perform
on mock data to validate our theoretical predictions, for
detector noise sampled from O3 and LIGO A + sensitivity.
We also make predictions for the currently ongoing O4
observing run. We conclude in Sec. IV by discussing the
importance of our findings for current and increased
detector sensitivity, and providing possible future exten-
sions of our work.

I1. UNBIASED SEARCH METHOD

Our data vector P (referred to as the cross-spectral
density (CSD) in relevant literature [28]) is formed from
cross-correlations between the strain measured in the
different detectors in our network,

Py (f. 1) ==5,(f, 0)35(f. 1), (1)
with 1 # J labeling these detectors, and 7 the length of the
time segments used to measure this cross-power (typically
192 s in anisotropic LVK analyses, with 50% of the data
overlapping [26]). Each cross-correlation is formed from
data at a particular frequency f (which can be positive or
negative) and time segment . We assume that the strain
data, §, are Gaussian, so that the first and second moments

of P are
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where (---y) denotes an average over noise realizations,
N;(f, t) is the noise power spectral density PSD in detector
1, and 74"(f, t) are the spherical harmonic components of
the overlap reduction function (ORF) of detector baseline
1J. We have absorbed a frequency-dependent factor into the
definition of these compared to the definition usually found
in the literature, as this simplifies many of the expressions
below,
2
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where « is the assumed spectral index of the astrophysical/
cosmological signal and f,.; =25 Hz. This definition
factors out the frequency dependence of the signal, so that
the GWB spherical harmonics €,,, depend only on time,
due to different realizations of time-dependent shot noise.
(Here we assume for simplicity that the signal is a power
law in frequency, as expected for an astrophysical back-
ground from quasi-circular binary inspirals well before
merger; incorporating more detailed modeling of the
frequency dependence of the signal may allow for more
effective removal of the shot noise [29].)

We estimate the spherical harmonic components of the
GWB as [27]

Qo =S () g Kt (5)
'm’

where the dirty map X,,, and Fisher matrix Ty, p1,y are
defined as

Ffmf’m’ = (7fm|7ﬂm’)' (6)
Here we have introduced a noise-weighted inner product

over time-, frequency-, and baseline-dependent complex
functions,
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Note that there is a subtlety associated with the quantity we
are using to do the noise weighting, P,. To leading order
this is just the noise PSD Ny, but since it is measured from
the strain data, it will inevitably include some contribution
from the GWB signal. In principle, since this is a data-
dependent quantity, we should treat it as a random variable.
However, in practice it is estimated independently of the
data segment under consideration (e.g. using neighboring
segments), so that it can be effectively considered as a
deterministic quantity. It is still unclear exactly what value
this deterministic noise estimate will take, particularly
when we consider corrections of order Q,,,. As we show
below, this is a deficiency of the existing search method,
which can be rectified in a way that also minimizes the
impact of shot noise.
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A naive first guess for an appropriate C, estimator is to
compute the average power in the (24 1) spherical
harmonics corresponding to a given multipole 7,

Z|Qfm|2'

Using Eqgs. (6) and (10) we can show that the expected
value of this quantity is
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C = 11
‘ 2041 ()

(f.1)VArQ) (8,7 N, (f.1)+

(f.)VARQ) (8N (f.1) + 7% (f.1)V47Q) +Z7~’fjn’1

To see this, it is necessary first to write down a form of
Egs. (2) and (3) which averages over shot noise and
cosmological fluctuations, as well as detector noise. The
first and second moments of the GWB spherical harmonics
under these averages are [22]

<Qfm(t)>S,Q = 5f0 v 47[‘(2’ (8)
COV[Qfm(t)a Qf’m’(ﬂ)]S.ﬂ = 5f’f’5mm’(cf + 5tt’ WT)’ (9)

where C, is the true GWB angular power spectrum that we
are aiming to measure, and W_ > C, is the shot noise
power in a segment of length 7, which can be calculated for
a given model of the AGWB using expressions in Ref. [22].
We see that the shot noise gives an excess contribution to
the variance of GWB spherical harmonic measurements
made at the same time ¢ = ¢, and that this contribution is
spectrally white (i.e. independent of angular multipole 7).
Combining Egs. (2), (3), and (9), we find

~00

~‘m *
}’JJ

N7y

Q)+ T

(. r><cf+w,>]

yim*<f,z><cf+w,>] (10)

<é(;aW)>N,S,Q = Cy + 6,047Q% + N 4. (12)

The second term here is to be expected, and simply reflects
the fact that the monopole (£ = 0) is not zero-mean like the
other spherical harmonics. The third term is a noise-
induced bias, which is obtained by expanding out the
expressions in Eq. (6),
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This expression involves contributions from pure detec-
tor noise, shot noise, and from the signal itself. In the
limiting case where there is no signal and no shot noise, this
simplifies to

NSIm)

1
:Zf_’_lz(r_l)fm,fm’ (14)

which is the standard expression first derived in Ref. [27].
(We have assumed that P, = N, in this case.)

In existing LVK analyses [26], this leading-order con-
tribution to the bias is explicitly subtracted from the angular
power spectrum estimates, so that the corresponding
estimator is given by

~(curr) 2y(raw lim)
S

- 2f1+ 1 ijnﬁmp — (T ppim)- (15)

However, it is clearly not possible to set the GWB signal
and shot noise to zero in real data, so Eq. (13) tells us that,

even if we subtract the usual bias term (14), the current

estimator C(Cm) is still biased by an amount much larger

than the signal we are searching for, since N;Q > C, and
W.> C,. The exact size of this bias depends on the
properties of the noise estimates P;(f, t), which themselves
include further contributions from the GWB. It is possible
in principle that one could define a procedure for generating
the noise estimates such that the bias is on average given by
Eq. (14); however, it is not at all clear how to do this in
practice.

A better alternative is to notice that all of the contribu-
tions to the bias (13) can be traced back to terms propor-
tional to §,, in Eq. (10). In other words, the bias comes from
autocorrelations of each data segment with itself. One can
thus remove the bias exactly, by explicitly excluding such
autocorrelations when constructing the C, estimate. This is
the same method that was first suggested in Ref. [22] for
removing the bias induced by shot noise; however, we see
here that the same procedure removes all contributions to
the bias, including those from detector noise.

Practlcally, one proceeds by constructing multiple dirty
maps Xfm, i=1,...,n, corresponding to disjoint subsets

(or epochs) of the total dataset, each with its own Fisher
(i)

‘m'm'”
summing over all nonequal pairs of maps,

A(opt) Ko}
C‘a 2z,”+1nn—1 ZZQ’" (16)

mi£j

matrix I" The optimal C, estimate is then formed by

One can then explicitly show, by a very similar calculation
to those above, that this is unbiased,

(ESPY 50 = Cr + Spdn2. (17)

We can calculate the variance of this estimator, using the
fact that the spherical harmonic estimates fl;’,)n are Gaussian
by the central limit theorem (since they are each formed by
summing over many independent data segments). The
general expressmn is very lengthy, but in the weak-signal

regime where I'"! > C,, Q> W, it simplifies to give

2 1
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Let us consider the simplest case, where the Fisher matrices
for each of the subsets of the data are equal to one another,
and are thus given by 1/n times the total Fisher matrix,

i 1
F(’)

emem =
’ n

Ffmf’m’- (19)

We can then simplify Eq. (18) to give

oSNl

This is equal to the variance found in Ref. [27] for the
current estimator, times a factor of n/(n — 1). We therefore
see that our unbiased estimator is equally efficient in the
limit of large n, just as in Ref. [22].

Var[@z(”opt)] (2f + fmfm’ ‘2' (20)

III. VALIDATION ON MOCK DATA
A. O3 sensitivity

1. Pipeline and settings

To run our anisotropic analysis, we make use of the
publicly available code PyStoch [30,31]. This pipeline has
been designed and tested on O3 folded data [32] (CSD and
PSD), for which it computes the dirty map and Fisher
matrix either in pixel space or spherical harmonic space.
The user specifies an assumed spectral index, a, a fre-
quency range (the whole GWB frequency range in the
standard LVK analysis corresponds to [20, 1726] Hz), a
detector baseline, and the number of pixels or maximum
multipole they want to probe, & ..

In our case, we adopt a =2/3 to consider an astro-
physical background [33] and run PyStoch in spherical
harmonic space assuming the LIGO Hanford-Livingston
(HL) baseline. We produce mock CSDs' made up of the
following components:

'In this exercise, only the CSDs are drawn randomly to
represent individual data realizations. The PSD for each realiza-
tion is kept fixed, essentially reducing the Fisher matrix to a
known weight in order to model the ideal scenario of equal-length
datasets. This approach simplified computations.
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(1) Detector noise. This is generated as random Gaus-
sian realizations (different at every element in our
time-frequency CSD array) of the folded data [34] at
O3 sensitivity. For increased LIGO sensitivity (see
Sec. III B), we use the expected amplitude spectral
densities (ASDs) from Ref. [35].

(i1) Shot noise. We generate shot-noise sky maps (differ-
ent at every time segment in our data) with Healpy
[36,37] as random realizations of the same flat C,
spectrum (corresponding to white noise). We then
multiply each map with the ORF [given by Eq. (4)]
to produce a shot-noise CSD.

(iii) Mock AGWB signal. We simulate a sky map that
represents the AGWB signal. Again, this is done
with Healpy, using a model of the cosmological C,
spectrum from Ref. [19] (see Sec. Il A3). We
subsequently multiply this map with the ORF
[Eq. (4)] to produce a CSD for the GWB.

We produce dirty maps, Fisher matrices and clean maps
from our simulated CSDs by means of Egs. (5) and (6). In
the results that follow, we have not applied any regulari-
zation schemes to the Fisher matrix inversion. See
Appendix B for a discussion on the impact of regularization
in our study. Given that we are working in the weak-signal
regime, we expect the associated statistical uncertainty in
the C, calculation to be large compared to the injected
values for the short-duration (~1 yr) datasets simu-
lated here.

Our Pystoch-based analysis is sufficiently fast that we can
simulate many independent realizations of shot noise and
detector noise. We achieve this by choosing appropriate
values for the maximum spherical multipole (7, = 8) and
the analyzed frequency range ([20, 520] Hz), which allow
us to perform our simulations relatively cheaply while still
capturing the key features of the problem. We stress
however that our methods are general, and can be applied
to a broader range of multipoles and frequencies in a full
analysis.

2. Validation with existing estimator

First we confirm that the existing estimator (C‘Efu”))

performs as expected in the weak-signal regime by running
PyStoch on simulated detector noise, without injecting shot
noise or an underlying cosmological signal. In Fig. 1, we
plot the clean-map angular power spectra of 1,000 random
detector noise realizations (blue curves), along with their
mean (black curve). As expected, this mean curve exhibits
excellent agreement with the weak-signal limit of the bias,
N thm), as given by Eq. (14) (dashed yellow curve). In Fig. 2

we plot the estimator (A?(;u“) , which corresponds to the same

spectra but with the weak-signal limit of the bias subtracted.
At O3 sensitivity, the shot-noise and GWB contributions to
the bias in the current estimator are much smaller than the
uncertainty of the estimate, so that the resulting curve is

mean CA’I(‘““')
expected bias (1 month, O3)
10797
,(lg N
=
=~
= 107%
g
5
O 1079
10710[)
1 2 3 4 5 6 7 8
l
FIG. 1. The angular power spectra of 1,000 clean maps (blue

curves), as recovered from simulations with detector noise only at
03 sensitivity (mock 1-month data sets). The mean C‘gﬂw)

spectrum (black curve) matches the expected bias in the weak-
signal limit, A/ Z(fhm) (dashed yellow curve).

consistent with zero for pure detector noise. In the same
figure, we plot the expected variance of this current
estimator from our calculations [Eq. (20) in the n — oo
limit], as well as the sample variance observed in our
ensemble of 1,000 noise realizations. The excellent agree-
ment between these is a useful consistency check for our
simulation pipeline.

3. Modeling shot noise and large-scale structure

We now turn to the full problem, in which the simulated
data contain a GWB signal with intrinsic angular correla-
tions due to cosmic large-scale structure, as well as
spurious correlations due to temporal shot noise. We
simulate the maps that we inject in random detector noise
realizations using realistic values for the shot noise and LSS
(monopole and anisotropies) cited in Ref. [19]. The
reported values in that work for the angular power spectrum
are in units of Q% at a frequency of f,; = 65 Hz. We
consider the shot noise and LSS values estimated for a
subtracted foreground of r, = 250 Mpc (some degree of
foreground subtraction must be assumed in order to avoid a
divergence in the expected shot noise power at short
distances). See Appendix A for a detailed conversion
of these results into the right units and f.; for our
analysis.

In Fig. 3, we plot the predicted bias for the existing
estimator C‘;urr in the weak-signal limit, as given by
Eq. (14), along with the expected angular power spectra
for the shot noise and underlying AGWB. Everything
has been normalized with respect to the monopole,
C, — C,/(47Q?). We note that for the detector noise
and the shot noise, the assumed amount of time over which
each data set has been collected is one year. For O3
sensitivity, the detector noise is orders of magnitude above
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10798
sample error
4 —— mean C’}”“"
N 2
jam)
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g
= 0 }-\
=
2.2
Q
—4
1 2 3 4 5 6 7 8

14

FIG. 2. The mean C‘Ef"") estimator of 1,000 simulations with
detector noise only, at O3 sensitivity. We plot the predicted
variance of the estimator with error bars, and the sample variance
in our ensemble of simulations as a shaded region.

1 03
107
10

100

Cy

1071
1072

1073

1074

-~ AGWB — shot noise (1 year) expected bias (1 year, O3)

FIG. 3. Expected angular power spectrum of the temporal shot
noise (black curve) and the AGWB (dashed gray curve). The
dashed yellow curve denotes the expected bias in the weak-signal
limit, given by the O3 (HL) detector noise. Both the detector
noise and the shot noise correspond to 1 year of data. All curves
have been normalized with respect to the AGWB monopole.

the shot noise and AGWB signal, so that we are unambig-
uously in the weak-signal regime. It is also clear that for O3
sensitivity, we cannot expect to probe the angular power
spectrum of the AGWB. This is consistent with the non-
detection of such a signal in O3 data [26].

4. Injected map simulations and angular power spectra

We generate detector noise and shot noise assuming one-
month datasets, such that both vary randomly at every time

10*

< 10°
10°
mean C’émw)
expected bias (1 month, O3)
10!

1 2 3 4 5 6 7 8
4

FIG. 4. The angular power spectra of 1,200 clean maps (blue
curves), normalized to the monopole, as recovered from simu-
lations with O3 detector noise, shot noise and the AGWB (mock
1-month datasets). The mean C'fraw spectrum (black curve)
matches the expected (O3) bias in the weak-signal regime

(dashed yellow curve).

segment in our datasets. We then inject the same, fixed
underlying LSS signal to each dataset.

In total, we produce 1,200 clean maps corresponding
to one month of data each. In Fig. 4, we plot the
angular power spectra for these clean maps, along
with the ensemble mean. This once again matches
the bias in Eq. (14), as expected in the weak-signal
regime.

We subsequently distribute the clean maps in 100 sets of
12 maps each to construct one-year datasets.” For each set,

we calculate the ¢ and C°PY estimators. The results are
plotted in Fig. 5, along with the predicted variance [given
by Eq. (20) for C‘(;pt), and the same expression in the

n — oo limit for é‘;curr) ] and sample variance for both

estimators, which are in good agreement in both cases. Due
to the weak signal and short time span (relative to O3
sensitivity), both estimators have large uncertainties, and
are both equally consistent with the injected signal. (The
variance of the unbiased estimator is larger by a factor of
12/11, as expected; this factor can be reduced by dividing
the data into a larger number of subsets.) This confirms that
the effects of shot noise and the bias in the existing analysis
method are both negligibly small at O3 sensitivity. In the
section below, we show that this will no longer be true at
design sensitivity.

*The corresponding dirty map aAu%d Fisher matrix for each one-
year dataset that are used in the C"" estimator calculation are
obtained by adding up the 12 different dirty maps and Fisher

matrices, respectively.
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2000
-------- AGWB
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Eo ] 1]
£ =" P
Q500
—1000
—1500
—2000
1 2 3 4 5 6 7 8
l

FIG. 5. Comparison of the performance of the C‘Ef"”) (orange)

and C ;,Opt) (blue) estimators in a realistic O3-like scenario. We plot
the expected variances as error bars and the sample variances as
error bands. Everything has been normalized with respect to the
AGWB monopole. For 1 year of O3 data, the AGWB (dashed
gray curve) is very small compared to the uncertainties in the
angular power spectrum estimate.

B. O5 sensitivity

Advanced LIGO is expected to reach design sensitivity,
A+, during the O5 observing run. We run simulations for
this detector sensitivity to see how the two C, estimators
perform in this setting. We follow the procedure that
is outlined in section III A, with the sole difference that
the detector noise is generated for A + instead of O3
sensitivity.

Again, we produce 1,200 clean maps corresponding to
one month of data each. We plot the angular power spectra
of all clean maps in Fig. 6. This time, their mean clearly lies
above the weak-signal expression for the bias, A/ ;hm). This
is unsurprising, as the monopole and shot noise terms in
Eq. (13) are significantly larger compared to the detector
noise at A + sensitivity than at O3 sensitivity. As a result,
the limiting-case expression for the expected bias is no

longer sufficient to describe the actual bias in the analysis.

Therefore, the estimator C‘ifm) we obtain after subtracting

the detector bias will still be biased by the subleading
contributions, which are no longer negligible. In contrast,
the optimal estimator introduced in this work is always
unbiased; hence, we expect the corresponding curves
to lie below those of the current estimator for these
simulations.

As before, we distribute the clean maps in 100 sets of 12
maps each and plot the current and optimal estimators in
Fig. 7, along with their expected and sample variances. This
time, there is a lack of agreement between the sample
variance for each estimator and the theoretical prediction
given by Eq. (20), with the latter being consistently smaller.
This can be understood as being due to the breakdown of
the weak-signal approximation; one now needs to account

10*

1 03

10

raw)

mean Cf

expected bias (1 month, O5)

1 2 3 4 5 6 7 8
l

FIG. 6. The angular power spectrum of 1,200 clean maps (blue
curves), normalized to the monopole, as recovered from simu-
lations with OS5 detector noise, shot noise and the AGWB (mock
1-month datasets). The mean C’E,faw) spectrum (black curve) and
the expected (O5) bias in the weak-signal regime (dashed yellow
curve) are also plotted. The discrepancy between the black and
yellow curves indicates the presence of bias due to beyond-weak-
signal-limit effects.

A (curr/opt)

) /
0
———————— AGWB

= P ~

—50 opt
—F— mean C,

-7 —+— mean op

1 2 3 4 5 6 7 8
l

FIG. 7. Comparison of the performance of the C‘;C”rr) (orange
curve) and (Afg)pt) (blue) estimators. We plot the expected
variances as error bars and the sample variances as error bands.
Everything has been normalized with respect to the AGWB
monopole. For 1 year of O5 data, the AGWB spectrum (dashed
gray curve) is still small compared to the uncertainties in the
angular power spectrum calculation.

for additional contributions to the variance coming from the
shot noise and the AGWB. We also see that the optimal
estimator Cz(fpt) returns a spectrum that is, on average,

significantly below that of the current estimator C‘Efurr) , and

is thus closer to the injected C, signal. This reflects the bias
inherent to the current estimator beyond the weak-signal
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FIG. 8. Summary of the (AJE,CU”) (left panel) and (A,’;Opt) (right panel) estimator performance for the O3, O4 and O3 sensitivities. The
sample variances are plotted as error bands. The dashed gray curve denotes the AGWB. It is clear that increasing the detector sensitivity
results in the optimal estimator recovering the true AGWB spectrum more precisely, and the bias in the current estimator becoming more
evident. Note: because of the symlog scale for the y-axis, error bands with the same physical size but at different vertical positions in the

plot span different ranges of values.

regime, and illustrates that it will be crucial to use the

(opt)

unbiased estimator C'L,, once A -+ sensitivity is reached.

C. Discussion

We close this section with a comparison of our mock
simulations for O3, O4, and OS5 sensitivity. We repeat our
analysis for the projected O4 sensitivity as well to include a
forecast of the effect on present-day data. Much like for the
case of A+, we notice that the mean C, curve for the 1,200
produced clean maps lies above the detector bias. However,
the discrepancy is not so clear for O4, starting as negligible
at lower multipoles, and only becoming measurable at
higher multipoles. Looking at the performance of the
two estimators, we therefore find that the optimal estimator
performs visibly better than the current one only for
£z5.

In Fig. 8, we summarise our results for the current (left
panel) and optimal (right panel) estimators, for the three
different detector sensitivities that we assumed during our

TABLEL The difference between the mean of the
of the sample standard deviation (STD).

(curr)

analysis. The different C, estimators are plotted as dotted
curves of different colors (summarized in the figure
legend). Again, the error bands denote the sample
variances, while the AGWB (dashed gray curve) is also
plotted.

For both estimators, increasing the detector sensitivity
results in narrower error bands, as expected. In the case of
the optimal estimator, these bands are always centered on
the injected AGWB signal; however, for the current
estimator, they deviate away from the AGWB, towards
positive values (particularly for higher multipoles). Hence,
while the optimal estimator yields more precise and
accurate C, measurements for increased detector sensitiv-
ity, the bias in the current estimator becomes increasingly
evident.

We quantify the deviation of the mean of the C‘Efum
estimator from the AGWB signal in terms of the sample
standard deviations difference between them, which is
summarized in Table L.

estimator and the AGWB signal at each £ mode in units

Sample STD difference

¢ mode
Detector sensitivity 1 2 3 4 5 6 7 8
03 -0.015 —0.109 0.037 -0.116  —0.071 -0.25 0.088 0.039
04 0.352 -0.11 0.552 —0.131 1.204 0.484 1.12 0.791
05 0.612 0.492 0.838 1.078 1.318 1.85 1.556 1.612
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IV. SUMMARY AND OUTLOOK

In this study, we have investigated methods for meas-
uring GW background anisotropies in the presense of both
detector noise and temporal shot noise. We started by
describing the C, estimator currently used in LIGO-Virgo-
KAGRA analyses, and demonstrated that this estimator is
biased due to contributions from the shot noise and from
the target GW signal itself. We then presented a new
estimator which avoids this bias by only cross-correlating
between data segments at unequal times, validating our
predictions on simulations using mock data. The two
estimators produce similar results for O3 sensitivity, where
we confidently lie in the weak-signal regime. However, we
find that for LIGO A + sensitivity it is crucial to use our
new estimator to obtain accurate inferences of the GWB
angular power spectrum, with some improvement over the
current estimator already visible at O4 sensitivity.

In the future, we plan to extend this work by testing both
estimators on real O4 data. Without the computational cost
of running the analysis on thousands of simulated datasets,
it will be possible to probe higher spherical harmonic ¢
modes, in the whole GWB frequency range ([20,
1726] Hz). It will also be straightforward to include more
detectors in the analysis—such as Virgo and KAGRA—
and perform the analysis on multiple detector baselines.
This will improve the conditioning of the Fisher matrices
involved in the angular power spectrum estimation,
allowing access to higher angular resolution.

In addition, it will be interesting to test the capabilities of
planned ‘third-generation’ detectors in probing GW anisot-
ropies. It is already clear that the large bias in the angular
power spectrum for future detectors will render the current
search method unsuitable. On the other hand, the optimal
estimator will be able to measure the LSS anisotropies with
precision orders of magnitude better than for current
detectors.
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APPENDIX A: UNIT CONVERSION

The GW energy density is related to the GW strain power
by [38]

272

Qaw(f.0) = 3—Hgf3P(f, 0). (A1)

where H, = 67.4 kms™' Mpc™' [39]. The GW energy
density and power can then be factored into spectral and
angular terms,

Qoutr0) =@ L) )
P(f,0) = P(O)H(f), (A3)

where H(f) = (f/fref)*>. This leads to
P(0) = AQgw(9), (A4)

where A = 3H3 /(22 £3,;) (this should be further reduced by
a factor of 2 to account for taking the one-sided spectrum).

This expression allows us to convert a sky map from
units of Qg to units of P. Finally, we convert the results in
Ref. [19] (which correspond to a frequency of 65 Hz) to the

appropriate reference frequency by means of Eq. (A2).

APPENDIX B: IMPACT OF REGULARIZATION

In this paper, we have chosen not to employ a regulari-
zation scheme when inverting the Fisher matrix, as the
choice for regularization is not obvious and the community
has yet to reach a consensus on the appropriate way to
regularise the matrix for present-day detector networks (see
e.g. studies presented in [40-43]). As shown in [41], the
choice of regularization scheme depends on whether the
search prioritizes signal detection versus characterization;
this goes beyond the scope of our work, and we do not
expect this to qualitatively change the results of this case
study. Nevertheless, for completeness, we assess the
impact that regularizing the Fisher matrix has on our
results in this appendix. We consider two different regu-
larization schemes on the Fisher matrix inversion:
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(i) acondition number cutoff (CNC) of 10~ (as done in
[23,24,44,45]);

(ii) a reassignment of 1/3 of the Fisher matrix eigen-
values (RE) to infinity (as customarily done in LVK
Collaboration efforts [25,26,46]).

This CNC approach is generally less aggressive than the
RE, as it allows for no eigenvalues to be discarded during
matrix inversion, while the RE approach blindly discards
1/3 of the eigenvalues, no matter their actual amplitude.
The latter can lead to an earlier detection but can also
underestimate the measurement errors, while the former
can lead to a large amount of noise leaking into the
measurement. When employing a regularization scheme,
formally the inverse of I', I'"!, should be replaced by the
regularized inverse (I')~!. Specifically, this should be done
in Egs. (5), (13)-(15), (18), (20).

We find that the ability of the current estimator to recover
the AGWB signal (first shown in Fig. 2) is not affected by
our regularization schemes. Similarly, the performance of
the current estimator in the presence of detector noise, shot
noise, and the AGWB is not affected significantly in the

10°

case of O3 sensitivity (first tested in Fig. 5). However, the
result changes significantly for O4 and OS5 sensitivity. In
Fig. 9, we plot the current (top) and optimal (bottom)
estimator, for O4 (left) and OS5 (right) sensitivity and the
CNC and RE regularization schemes. The CNC scheme has
an almost negligible impact on the Fisher matrix inversion
and the current and optimal estimators (same for O3),
giving almost the same results as reported in Sec. III. This is
because the chosen CNC is very close to the Fisher matrix’s
condition number in this case. On the other hand, imposing
the RE scheme significantly affects the Fisher matrix
inversion and results in an enhancement of the bias in
the current estimator. As for the optimal estimator, this
performs equally well for both regularization schemes.
Furthermore, the discrepancy among the theoretical uncer-
tainties and sample variances for O4 and OS5 sensitivity
appears greater for the RE scheme. We conclude that when
using a more aggressive regularization scheme, error
estimates are reduced and hence the noise bias becomes
more evident in the current estimator, and the weak-signal
approximation loses validity.

10° 10°
i \ ] e————
g S E ,1 [
_] | } / ‘ o ‘ 1 ™1
-10° -10°
3 3
-1 2 4 6 8 -1 2 4 6 8
14 14
-------- AGWB —F— mean CS(RE) —F— mean C{*'(CNC) —F— mean C}"'(RE)

—F— mean (:V}‘“"( CNC)

FIG.9. Performance of the @Sfm) (top) and C‘ffpt) (bottom) estimators, for O4 (left) and OS5 (right) detector sensitivity and the CNC and
RE regularization schemes. We plot the expected variances as error bars and the sample variances as error bands. Everything has been

normalized with respect to the AGWB monopole. Imposing a more aggressive regularization scheme results in the bias in the

estimator becoming more evident.

C.(fcurr)
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