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Peculiar velocities of galaxies and halos can be reconstructed from their spatial distribution alone.
This technique is analogous to the baryon acoustic oscillations reconstruction, using the continuity
equation to connect density and velocity fields. The resulting reconstructed velocities can be used to
measure imprints of galaxy velocities on the cosmic microwave background like the kinematic
Sunyaev-Zel’dovich effect or the moving lens effect. As the precision of these measurements increases,
characterizing the performance of the velocity reconstruction becomes crucial to allow unbiased and
statistically optimal inference. In this paper, we quantify the relevant performance metrics: the variance
of the reconstructed velocities and their correlation coefficient with the true velocities. We show that the
relevant velocities to reconstruct for kSZ and moving lens are actually the halo—rather than galaxy—
velocities. We quantify the impact of redshift-space distortions, photometric redshift errors, satellite
galaxy fraction, incorrect cosmological parameter assumptions and smoothing scale on the
reconstruction performance. We also investigate hybrid reconstruction methods, where velocities
inferred from spectroscopic samples are evaluated at the positions of denser photometric samples. We
find that using exclusively the photometric sample is better than performing a hybrid analysis. The
2 Gpc=h length simulations from AbacusSummit with realistic galaxy samples for DESI and Rubin LSST
allow us to perform this analysis in a controlled setting. In the companion paper [B. Hadzhiyska, S.
Ferraro, B. Ried Guachalla, and E. Schaan, companion paper, Phys. Rev. D 109, 103534 (2024).], we
further include the effects of evolution along the light cone and give realistic performance estimates for
DESI luminous red galaxies, emission line galaxies, and Rubin LSST-like samples.
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I. INTRODUCTION

Astronomical observations are not simply static snap-
shots of the Universe. While photometric and spectro-
scopic observations give us the instantaneous positions of
objects on the sky (2D) and sometimes their distances
(3D), their velocities contain invaluable clues to the
gravitational potentials that cause them. On the shortest
scales, solar neighborhood objects’ orbits [1,2] tell us
about the masses of their attractors. On galactic scales, the
proper motion of nearby and distant stars using parallaxes
[3,4] or intrinsic properties (e.g. Cepheids stars [5]) give
us the gravitational structure of the Milky Way. At larger

distances, the “Hubble flow” of the Universe’s expansion
appears to us as a cosmological redshift in galaxy
spectra [6–9].
Galaxy motions beyond the Hubble flow, the so-called

peculiar velocities [10–12], are key probes of the instanta-
neous growth rate of matter fluctuations, i.e. the dynamics
of the large-scale structure. Comparing them with static
probes like galaxy clustering or gravitational lensing
enables key tests of general relativity [13]. Peculiar
velocities can also be a powerful probe of the matter
density field on the largest scales, outperforming galaxy
clustering in some regimes. Indeed, measuring mass by
counting galaxies is limited by the finite number of galaxy
available, which translates into galaxy shot noise. On the
other hand, knowing the position and velocity of a single
galaxy perfectly can tell you exactly the mass of the object*bried@stanford.edu
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it is circling around [14–16].1 Thus peculiar velocities can
significantly improve measurements of local primordial
non-Gaussianity (flocalNL ), via sample variance cancellation
on the scale-dependent bias [14,15].
Peculiar velocities can be observed as Doppler shifts in

galaxy spectra. They can be distinguished from the cos-
mological redshifts for nearby galaxies whose distances are
known from Tully-Fisher [18], fundamental plane [19]
relations or supernovae type Ia [20]. In the more distant
Universe, peculiar velocities appear to us as redshift-
space distortions (RSD) in the 3D galaxy positions inferred
from their redshifts, and imprint key signatures on their
clustering.
However, galaxy and dark matter peculiar velocities also

leave observable imprints on the most distant source of our
observable Universe: the cosmic microwave background
(CMB). As moving electrons Thomson scatter off CMB
photons, they imprint their line-of-sight (LOS) velocity on
the CMB in the form of the kinematic Sunyaev-Zel’dovich
(kSZ) effect [21]. This effect also gives us fundamental
information about the smaller scales of the LSS, by
localizing the “missing” baryons [22–24]. Indeed, the
baryon abundance inferred from early-Universe observa-
tions (including the primary CMB) is higher than estimated
from the galaxy starlight [25–27]. The “missing” baryons,
in the form of the warm-hot intergalactic medium (WHIM)
[28] around galaxies, can be revealed in multiple ways
(e.g., x rays [29,30], fast radio bursts [31] and quasar
absorption lines [32]). Among these, kSZ stands out by
measuring baryon density directly (without needing to
model gas temperature) in the outskirts (beyond the virial
radius) of low-mass halos (group-sized) at high redshift.
Localizing the baryons in these environments can lift one of
the most limiting systematic in galaxy lensing studies from
the Rubin Observatory Legacy Survey of Space and Time
(LSST) [33], the Euclid space telescope [34] and the Nancy
Grace Roman Space Telescope [35].
Furthermore, dark and ordinary matter in moving halos

cause time-varying gravitational potentials. CMB photons
crossing these changing potentials will see a net energy
gain or loss, analogous to the integrated Sachs-Wolfe (ISW)
effect. This so-called moving lens effect [36–38] imprints
the halo transverse peculiar velocities on the CMB. This
effect may be the only viable probe of the transverse motion
of distant galaxies, and will be detectable with the upcom-
ing CMB ground-based experiments like the Simons
Observatory [39] and CMB-S4 [40] cross-correlated with
galaxy surveys such as the Dark Energy Spectroscopic
Instrument (DESI) [41] and LSST [33].

Thus CMB maps contain information about all three
components of galaxy and halo peculiar velocities.
To extract this information, external handles on the 3D
peculiar velocities help separate the kSZ and moving lens
signals from the primary CMB and other sources of noise
in CMB maps. In this paper, we use the velocity
reconstruction from the galaxy number density field,
highly analogous to the baryon acoustic oscillations
(BAO) reconstruction. This method adopts a first-order
(Zel’dovich) approximation [42] and solves the continuity
equation ofmatter in redshift space [43,44] to infer velocities
from the density field. However, understanding the
accuracy and precision of this method is crucial to provide
optimal and unbiased inference of the kSZ and moving lens
effects.
In this paper, we therefore assess the performance of the

velocity reconstruction by using realistic simulations of
galaxy samples resembling the DESI luminous red galaxies
as well as LSST galaxies. We focus on a simple periodic
cubic box, in order to deconstruct the impacts of redshift-
space distortions (RSD), the number density of galaxies in
the sample, their satellite fraction, and their potential
photometric redshift errors. We also assess the performance
of a hybrid spectro/photometric reconstruction, where the
3D velocity field is reconstructed from sparser spectro-
scopic galaxies, then evaluated at the positions of denser
photometric galaxies.
In the companion paper [45], we include further realism

by considering the effect of evolution along the light cone
in the analysis and realistic footprint masks, in order to
provide the most realistic performance estimate for the
velocity reconstruction, when applied to DESI-like and
LSST-like galaxies. These performance metrics will be a
direct input to upcoming kSZ stacking measurements
from DESI and the Atacama Cosmology Telescope
(ACT) [46–48].
This paper is organized as follows. In Sec. II, we present

our methodology, including the velocity reconstruction
mechanism, the simulated mocks, and the argumentation
on reconstructing halo velocities rather than galaxy veloc-
ities. In Sec. III, we explore the impact of changing
different variables, such as the effect of photo-z uncertain-
ties, the number density, the satellite fraction, a different
cosmology from the fiducial value and incorporating photo-
z galaxies in a spectroscopic sample. We present our
conclusions in Sec. IV.

II. SIMULATING VELOCITY RECONSTRUCTION
ON DESI LRGS

In this section, we present the simulations and galaxy
mocks used in this paper and the companion paper [45],
along with the 3D velocity reconstruction algorithm. We
present the key relevant performance metrics, and why the
goal for kSZ and moving lens should be to reconstruct halo
velocities, rather than galaxy velocities.

1As expressed in [16], because “we see that in the gravity
physics of the standard cosmology a mass concentration that is in
principle too far away to be observed can produce a flow that in
principle can be observed. Reference [17] may have been the first
to recognize this.”
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A. AbacusSummit box simulation

We use one of the simulated boxes from AbacusSummit

[49]. These are public high-accuracy N-body simulations
produced with the Abacus code [50,51] that consists of 150
simulation boxes, spanning 97 cosmological models and
different resolutions. The AbacusSummit suit of simulations
meet all the cosmological simulation requirements of the
DESI survey [41], including the volume needed to properly
sample the large-scale peculiar velocities, and the mass
resolution needed for DESI-like galaxies.
We focus on the simulated box AbacusSummit_

base_c000_ph000 [49], which follows the latest
Planck ΛCDM cosmology2 [27]. This box has a length of
2 Gpc=h, with a total of 69123 particles, each with a mass
of Mpart ¼ 2.1 × 109M⊙=h.
Specifically, we use the z ¼ 0.5 snapshot, with z being

the redshift, as one of the well-explored redshift epochs of
the Baryon Oscillation Spectroscopic Survey (BOSS)
[52,53], DESI and LSST surveys. Table I summarizes
the fiducial parameters assumed for cosmology, galaxies
and the reconstruction method.

B. Mock DESI LRG sample

The AbacusSummit N-body simulations used in this work
and in our companion paper were populated with galaxies
through the extended halo occupation distribution (HOD)
code, AbacusHOD [55,57]. The code is suitable for creating
mock catalogs of different tracers, including emission-line
galaxies (ELGs) and Luminous Red Galaxies (LRGs), and

more information on the modeling and fits to observations
can be found in [57,58]. In this work, we focus on a cubic
box populated exclusively with LRGs at a fixed redshift of
z ¼ 0.5, for which the mean number density corresponds to
n̄ðz ¼ 0.5Þ ¼ 2.14 × 10−4 Mpc−3 [54] and the bias to
bðz ¼ 0.5Þ ¼ 2.2 [56]. For example, see Fig. 1 from [45]
for the general response to redshift of n̄ðzÞ.
In this work, we use the standard HOD model presented

in [59], in which the main relevant property is the mass of
the central halo. This HOD model splits the galaxies into
centrals and satellites, and also dictates their positions and
velocities.
In particular, the velocity of the central galaxies is

approximated as the velocity of the halo center [55] with
a central velocity bias, while the satellites were randomly
assigned to the positions and velocities of halo particles
with uniform weights and also include a satellite velocity
bias. The inclusion of velocity bias on central or satellite
galaxies is motivated by observational results from spectro-
scopic surveys [60] and simulations [61]. For central
galaxies, there is a linear central velocity bias:

vcen ¼ vhalo þ αc · δvðσhaloÞ; ð1Þ

where vcen is the central biased velocity, vhalo is the central
subhalo velocity, αc is the central velocity bias parameter
and is restricted to be αc ≥ 0 and δvðσhaloÞ is a Gaussian
scatter. For satellite galaxies, the velocity distribution is
modulated as follows:

vsat ¼ vhalo þ αs · ðvparticle − vhaloÞ; ð2Þ

where vsat is the satellite biased velocity, vparticle denotes the
corresponding dark matter particle velocity and αs is the
satellite velocity bias parameter [57]. It is worth noting that
αc ¼ 0 and αs ¼ 1 mean no velocity bias for centrals and
satellites respectively. We adopt the values αc ¼ 0.308 and
αs ¼ 0.913 reported in Table 1 of [62], obtained fitting the
AbacusHOD on the DESI SV3 (Survey Validation 3)
LRGs data.
The second effect included in the HOD model corre-

sponds to redshift-space distortions along the LOS, which
in our case corresponds to the z direction of the simulation
box [55]. Based on those results, the AbacusHOD code
fits the satellite fraction of LRGs to fsat ¼ 12% [55].
For more details on how we obtained the HOD parameters
for the DESI-like LRG samples see our companion
paper [45].
The resulting distributions of 1D peculiar velocities for

halos and galaxies (centrals and satellites) are shown in
Fig. 1. It is compared with the expectation for peculiar
velocities of the matter field, estimated from the linear
matter power spectrum as

TABLE I. Cosmological, galaxy and reconstruction fiducial
values varied to explore the impact of the velocity reconstruction
method. Next, we present the photo-z uncertainties σz from
experiments like DESI and LSST (goal and requirement). The
mean number density n̄ is defined to follow the DESI require-
ments [54] and the satellite fraction fsat is derived from
implementing the AbacusHOD [55]. The smoothing radius rs
indicates the scale in the reconstruction algorithm that vanishes
small scales. Finally, the cosmological parameters h, Ωm and
linear bias b are fixed to [27,56] results, respectively.

Parameter Value

h 0.6736
Ωm 0.3111
b 2.2
σDESIz 0.00

σLSST goal
z 0.02 · ð1þ zÞ

σLSST requirement
z 0.05 · ð1þ zÞ

n̄ 2.14 × 10−4 Mpc−3

fsat 0.12
rs 14.8 Mpc

2Ωbh2¼0.02237,Ωch2 ¼ 0.12, h ¼ 0.6736, 109As ¼ 2.0830,
ns ¼ 0.9649, w0 ¼ −1, wa ¼ 0.
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σ2lin ≡ ðaHfÞ2 2
3

Z
dk

ð2πÞ2
PlinðkÞ
k2

; ð3Þ

where PlinðkÞ stand for the linear matter power spectrum
calculated using CLASS [63].3 In Sec. II D we comment on
the effects of assuming this for the purposes of estimating
the baryonic content of the universe through the kSZ effect.
For central galaxies, high-velocity tails appear due to the
linear central velocity bias.
For the purpose of velocity reconstruction, where exclu-

sively large-scale modes of the matter density field con-
tribute, the only relevant difference between centrals and
satellites is the amplitude of their random motions, leading
to fingers of God. Indeed, the positional offsets of galaxies
within a halo are a order of ∼Mpc, much smaller than the
relevant scales for velocity reconstruction (10–100 Mpc).
Therefore, we are not going to vary the velocity bias
parameters, as we will be varying the satellite fraction,
which has a similar effect.

C. Linear velocity reconstruction algorithm

The peculiar velocities of galaxies and their host halos
can be estimated from the galaxy number density field.
Using the linear bias approximation [65], the galaxy

number overdensity δg can be related to the underlying
matter overdensity δ via δ ¼ bδg. The continuity equation
then connects the matter overdensity field to the peculiar
velocity field v; for an overdensity of matter to be present at
some position, matter must have been flowing towards that
point. To linear order in perturbations, and including the
effect of redshift-space distortions (RSD), the continuity
equation takes the form:

∇ · v þ f
b
∇ · ½ðv · n̂Þn̂� ¼ −aHf

δg
b
; ð4Þ

where a is the scale factor, H is the Hubble parameter, n̂ is
the direction along the LOS, and f is the logarithmic
growth rate of structure f ¼ d lnDðaÞ=d ln a, with DðaÞ
the linear growth factor.
The standard method of BAO reconstruction [43,44]

solves the same equation in terms of the Lagrangian
displacement, which can then be simply converted to
velocity. We therefore adapt the MultiGrid implemen-
tation of [66] via the package PYRECON.4 Schematically,
one can obtain the reconstructed velocity field via the
following steps:
(1) Smoothed tracer number density field: the galaxies

are assigned to a 3D grid, and smoothed with a
Gaussian filter Wðk; rsÞ ¼ exp ½− 1

2
k2r2s �, where k is

the Fourier wave vector and rs the comoving
smoothing length, in order to downweight modes
dominated by shot noise.

(2) Reconstructed displacement field: In the plane
parallel approximation, where the LOS direction
is fixed throughout the box, an exact expression for
the 3D Lagrangian displacement ψ is then

ψðkÞ ¼ −i
k
k2

δgðkÞ
ðbþ fμ2ÞWðk; rsÞ: ð5Þ

This operation, performed in a 3D cubic box, solves
Eq. (4). The division by the sum of the linear bias b
and the linear redshift-space factor fμ2 converts the
tracer number overdensity to the matter over-
density, to linear order, and undoes the Kaiser effect
(linear RSD). As usual, μ is the LOS angle co-
sine μ≡ n̂ · k=k.

(3) Reconstructed velocities: We inverse-Fourier trans-
form the displacement field ψðkÞ and convert it to
the 3D velocity field via

vrecðxÞ ¼ aHfψðxÞ; ð6Þ

and evaluate it at the positions of each galaxy to
obtain individual reconstructed velocities.

FIG. 1. Histogram of the 1D velocities of the halos (teal) and
galaxies [central (purple) and satellite (blue)] from the mock. To
quantify deviations from a Gaussian due to nonlinear evolution,
normal distributions with the same standard deviations are shown
in dashed. The standard deviation σlin corresponds to the expected
cosmological standard deviation of the 1D velocity of matter
Eq. (3). The visible tails at large velocities are due to nonlinear
evolution, including the pronounced virial motions of satellite
galaxies.

3Integrating in the range of k∈ ½10−5; 3� Mpc−1, we obtain
a difference with respect to the nonlinear case (using the
halofit model [64]); σlin ¼ 303 km=s and σnon−lin ¼ 342 km=s,
respectively. 4https://github.com/cosmodesi/pyrecon.
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In the left panel of Fig. 2 we show the true velocity field on
the top and the reconstructed velocity field on the bottom
for an AbacusSummit box populated with DESI LRGs at
z ¼ 0.5. The velocity structure on the largest scales is
visibly well-reconstructed along and across the LOS.
However, the linear reconstruction underestimates the
magnitudes of galaxy velocities, since it misses the non-
linear Fourier modes. Furthermore, it does not account for
small scale RSD, like the Fingers of God (FoG) effect that
is present in satellite galaxies.
To assess the impact of RSD and potential photometric

errors, we study separately the velocity reconstruction
along and across the LOS as done in [67],

vrec ¼
�
v⊥rec
vkrec

�
; ð7Þ

and show vk and v⊥ respectively in the middle and right
panels of Fig. 2, where the z axis corresponds to the LOS
direction.

D. Relevant performance metrics
for kSZ and moving lens

Our goal is to use the velocity reconstruction in mea-
surements of the kSZ or moving lens effects. In particular,
the kSZ effect is a Doppler shift of the CMB photons due to
scattering with the surrounding gas of galaxies and clusters
moving along the LOS. This effect impact the temperature
of the CMB photons as follows:

δTkSZ

TCMB
∼ −

Z
dχ neσTðvpec · n̂Þ; ð8Þ

where χ is the comoving distance, ne is the electron number
density, σT is the Thomson cross section, vpec the peculiar
velocity and c the speed of light. For kSZ, a typical
estimator ϵ for stacking is of the form [68]:

ϵ ∝ hδTkSZvreci
∝ hnevgasvreci
¼ nerσgasσrec; ð9Þ

FIG. 2. Visualization of velocity fields in the AbacusSummit simulation box at redshift z ¼ 0.5. Top and bottom rows represent true
and reconstructed velocities. Line-of-sight (LOS) is defined as the z axis (i.e. from lower left pointing towards the paper). Left column:
speed, i.e. modulus of the velocity. Center column: LOS velocity component. Right column: one of the components across the LOS (x
component; the y-component is statistically identical). The reconstructed velocities have the same large-scale structure as the true ones,
though with a reduced modulus, as expected due to the linear approximation and smoothing scale. These visualizations also illustrate
how the speed field is isotropic, whereas the 1D components have preferred directions: the elongated red and blue blobs indicate that the
j-component of the velocity (j ¼ x, y, z) varies fastest along the j-direction. This is predicted by linear theory, where the velocity field is
the gradient of an isotropic field.
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Therefore, to convert a kSZ measurement into an electron
number density profile, we need to know:

(i) The RMS gas peculiar velocities σgas. This is not a
property of the reconstruction method, but of the
Universe. In our simulated analysis, we assume that
the gas bulk velocity is the same as that of the host
dark matter halo. We therefore simply identify vgas
as the velocity of the host halo’s center of mass.

(ii) The RMS reconstructed velocities σrec.
(iii) Their correlation coefficient object by object

r≡ hvgasvreci
σgasσrec

: ð10Þ

Thus, for an unbiased inference of gas properties from
kSZ, we need to quantify σrec and r. These will be our key
performance metrics throughout the paper.
For an unbiased inference of the gas profile from kSZ,

we also need to know σgas. We expect the bulk motion of
the gas to more closely match the bulk motion of the dark
matter halo, rather than that of individual galaxies within
it. We thus simply assume that σgas ≈ σhalos. As shown in
[69], σhalos would depend on the cosmology, the host halo
mass and the environment. However, we find that σlin is
actually a good approximation, as it only differs in 3.5%
with respect to σhalos as shown in Fig. 1. This translates to
an error of ∼3.5% on the distribution of the missing
baryons, which is an error of ∼0.5% on the total matter
distribution, since baryons are 16% of the total matter
density in the Universe [27]. This uncertainty of 0.5% on
the matter distribution is appropriate to model future
galaxy lensing measurements from e.g., Rubin LSST,
which are going to have percent precision. For an even
more accurate estimation, and for a consistent joint
analysis with lensing, one may wish to incorporate an
N-body simulation emulator to predict the cosmology
dependence of σhalos.
Furthermore, schematically, the noise on a kSZ

estimator ϵ is

nϵ ∝ δTnoisevrec=
ffiffiffiffiffiffiffiffi
Ngal

p
∝ σnoiseσrec=

ffiffiffiffiffiffiffiffi
Ngal

p
; ð11Þ

whereNgal is the total number of galaxies, σnoise is the noise
standard deviation in the temperature map (e.g. detector
noise, primary CMB, foregrounds, atmosphere, etc.), and
we have assumed the galaxy sample to be shot noise
limited.5

Thus the signal-to-noise ratio (SNR) is simply propor-
tional to the correlation coefficient, multiplied by the
square root of the number of galaxies,

SNR ∝ r
ffiffiffiffiffiffiffiffi
Ngal

p
: ð12Þ

As a result, the correlation coefficient r is the actual
figure of merit for the velocity reconstruction, which
we seek to maximize. Furthermore, a lower quality
velocity reconstruction (i.e., lower r), can visibly be
compensated by a larger sample size to yield the same
kSZ SNR.
For the fiducial values of our cosmological parameters,

DESI LRG galaxy sample and smoothing scale from
Table. I, we find,

�
σgal ¼ 369 km=s

σrec ¼ 201 km=s
; ð13Þ

for both across and along the LOS.
In agreement with Fig. 2, the linear approximation and

the smoothing scale result in reconstructed speeds lower
than the truth. Interestingly, the RMS reconstructed veloc-
ity is the same along and across the LOS, suggesting that
the Kaiser RSD is properly accounted for in our analysis,
and that the FoG RSD displacements are mostly below our
smoothing scale.

E. Reconstructing halo rather than
galaxy velocities

For kSZ measurements, the peculiar velocity we seek to
estimate is that of the gaseous halo; for moving lens, it is
the total halo velocity (dark matter plus gas). As a result, the
performance metrics above should really be applied to
compare the reconstructed velocities to the true halo
velocities, not the true galaxy velocities. This distinction
is significant, as shown in Figs. 3 and 4.
The orbital motion of satellite galaxies within halos lead

to large virial speeds. Indeed, Fig. 3 shows that the galaxy
velocities are much better reconstructed for the centrals
(middle panel, r ¼ 0.67) than the satellites (bottom panel,
r ¼ 0.12). This is expected due to the highly nonlinear virial
motion of satellites, which is not accounted for in our
linear reconstruction. In the satellite population, the LOS
reconstruction estimate has the wrong sign more often than
for centrals. We interpret this as galaxies whose virial LOS
velocity is high and therefore, in redshift space these may be
displaced to the opposite side where the central halo is.
Therefore, when using the velocity reconstruction method,
their estimated velocity along the LOS points to the original
position in real space. In Fig. 11 we show the case of
velocities across the LOS, and, as expected, we find a better
overall performance of the reconstruction method due to the
absence of RSD.

5The scaling of the noise as 1=
ffiffiffiffiffiffiffiffi
Ngal

p
breaks down once the

galaxy sample is dense enough that several galaxies appear inside
the same CMB map pixel, or more generally within patches with
correlated noise. While this will be the case for Rubin galaxies,
this toy example is still a valuable picture to have in mind.
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However, for the purpose of kSZ or moving lens, not
reconstructing the virial motion of satellites is actually an
advantage: these virial motions are not shared by the dark
matter or gaseous halos of interest. Indeed, the correlation
coefficient is higher with halo velocities (r ¼ 0.73, Fig. 4)
than for galaxy velocities (r ¼ 0.55, Fig. 3). See Fig. 12 for
the velocity component across the LOS. The performance
of the linear velocity reconstruction would thus be much
underestimated if we used galaxy velocities as the truth,
rather than halo velocities. Incidentally, the true 1D RMS
velocity of our halos is σhalos ¼ 314 km=s, lower than for
galaxy velocities (σgal ¼ 369 km=s), and roughly exceed-
ing the matter field (σlin ¼ 303 km=s).

III. PERFORMANCE IMPACT OF RSD, PHOTO-Z,
GALAXY PROPERTIES, COSMOLOGY AND

HYBRID SPECTRO/PHOTOMETRY

In this section we study the effect of various crucial
parameters on the performance of the linear reconstruction
method, using the correlation coefficient r between recon-
structed velocities and true halo velocities, and the standard
deviation of the reconstructed velocities.

A. Photo-z uncertainties: Compensated
by the increased sample size

While spectroscopic redshifts are substantially more
precise than photometric redshifts, photometric samples
from e.g., the Rubin Observatory LSST [33], Euclid [34],
or Roman [35] can be orders of magnitude larger in size
than the largest spectroscopic surveys, e.g., DESI [41] or
PFS [70]. As shown above, any degradation on the velocity
reconstruction correlation coefficient from photometric
redshift uncertainties will reduce the SNR of kSZ or
moving lens as SNR ∝ r (see [67] for a similar transverse
reconstruction, but for the BAO signal in the presence of
photo-z uncertainties). However, in the shot noise regime,
the SNR also grows as the square root of the total number
of galaxies, SNR ∝

ffiffiffiffiffiffiffiffi
Ngal

p
. As a result of this trade-off, a

photometric sample will lead to a larger kSZ or moving lens
SNR is it has a higher r

ffiffiffiffiffiffiffiffi
Ngal

p
. To simulate the effect of

photo-z errors, we add Gaussian noise to the individual
redshifts of the mock galaxies,

zphoto ¼ zþN ð0; σzÞ ð14Þ

with σz=ð1þ zÞ in the range ½0.00–0.14�. When these new
“photo-z” are converted to 3D positions as part of the

FIG. 4. For the purpose of kSZ or moving lens stacking, the
velocities we are actually trying to reconstruct are those of the
halos (this figure), rather than those of the individual galaxies
(Fig. 3). Fortunately, the reconstructed velocities are closer to the
halo velocities than the galaxy velocities, since they are less
affected by the nonlinear evolution of the matter density field and
the Finger-of-God effects. See Appendix A for the component
across the LOS.

FIG. 3. 2D histograms of reconstructed vs true galaxy velocities
along the LOS for the fiducial AbacusSummit box. The distri-
butions show a nearly Gaussian core with positive correlation
(center yellow ellipse), and tails at larger velocities where the
correlation is null or even negative. These tails are due to
nonlinear motion, including virial motion, which also cause
unmodeled redshift-space distortions (Fingers-of-God). As ex-
pected, this tail is more important for satellites (bottom) than
centrals (middle); the overall galaxy sample (top) being simply a
mixture of the two. See Appendix A for the velocity components
across the LOS.
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reconstruction algorithm, they thus introduce a shift in LOS
comoving positions as

δχ ¼ c
H
dz: ð15Þ

Figure 5 shows the degradation in r and reduction in σv
as the photo-z uncertainty increases. Unsurprisingly, photo-
z errors are more damaging to the component of the

velocity along the LOS, rather than across. Indeed,
photo-z errors smooth out the LOS Fourier modes on
scales smaller than σχ ¼ Hσz=c, thus reducing the infor-
mation available to the LOS velocity reconstruction.
As shown in Fig. 5, for typical LSST photo-z uncer-

tainties (σz=ð1þ zÞ ¼ 0.02 or 0.05 for “goal” and “require-
ment” [71]), the corresponding smoothing scale is
σχ ¼ 67 Mpc or 168 Mpc, which are comparable to the
typical coherence length of the true velocity field. As a
result, an order unity degradation in r occurs. For LSST
“goal” photo-z uncertainties, r is degraded by a factor 1.6
along and 2.5 across the LOS. Again, the corresponding
degradation in SNR can be easily compensated by the
increased number of galaxies.
Eventually, r goes to zero along the LOS for large

enough photo-z errors, as expected. Intriguingly, r asymp-
totes to a nonzero value at large photo-z errors. This would
be very helpful for measurements of the moving lens effect.
In a reasonable redshift range, we could still reconstruct
transverse velocities of 2D surveys. However, this result
may also be an artefact of our finite-sized box, 2 Gpc=h on
the side, and the periodic boundary conditions. We leave
this investigation for future work. Indeed, velocities across
the LOS are sourced by differences in density from side to
side in the box. While the photo-z error reshuffles the LOS
galaxy positions, it does not affect their positions across
the LOS.

B. Insensitivity to galaxy number density

The galaxy number density, i.e. the number of galaxies
per unit cosmic volume, depends on the survey depths, the
galaxy type, and the redshift of interest. Spectroscopic
surveys like DESI reach e.g., ∼10−3 ðh−1MpcÞ−3 for LRG
galaxies [55]. How does this parameter affect the velocity
reconstruction? We answer this question by randomly
downsampling our mock galaxy sample, to simulate
samples with lower number densities.
Interestingly, Fig. 6 shows that the correlation coef-

ficient and standard deviation of the reconstructed veloc-
ities are fairly constant over a substantial range of number
densities, down to ∼5 × 10−5 Mpc−3. This includes DESI
LRGs and QSOs, BOSS LRGs, and even marginally
SDSS LRGs. The performance for DESI QSOs is
degraded by a factor of 1.4 across the LOS. Thus, for
our purposes, current and future experiments already
saturate the performance in terms of number density.
Further increases in number density will not improve kSZ
and moving lens SNR using this reconstruction method.
However, increases in total number of galaxies, i.e. in
survey volume, will. This may be useful input for future
survey planning.
Intuitively, increasing the galaxy number density reduces

the galaxy shot noise, making smaller and smaller scales
accessible for the velocity reconstruction. In the upper
horizontal axis, we thus give the conversion between

FIG. 5. Effect of photo-z uncertainties on the velocity
reconstruction. Upper panel: as the photo-z uncertainty increases,

the correlation coefficient r ¼ hvhalosvreci
σvhalosσ

v
rec

decreases faster for the

velocity component along the LOS than across. The nonzero
correlation coefficient across the LOS in the limit of infinite
photo-z uncertainty (i.e. no redshift information) may be an
artefact of the finite size and periodicity of the simulation box.
The purple vertical bands corresponds to the LSST goal and
requirement of the photo-z root-mean-square scatter [71]. Bottom
panel: as expected, the standard deviation of vhalos does not get
affected by the photo-z errors. On the other hand, in the absence

of photo-z errors, vkrec and v⊥rec are the same despite redshift space
distortions. As the photo-z uncertainty increases, the variance of
the reconstructed density field is lower because photo-z errors
effectively smooth the observed galaxy number density field.

BERNARDITA RIED GUACHALLA et al. PHYS. REV. D 109, 103533 (2024)

103533-8



number density and kshot, the Fourier scale at which shot
noise starts to dominate over galaxy clustering, i.e.,

b2PmðkshotÞ ¼
1

n
; ð16Þ

where PmðkÞ is the linear power spectrum and b the
linear bias.
Thus, the value n̄ ∼ 5 × 10−5 Mpc−3 where the perfor-

mance saturates corresponds to scales of kshot ∼ 0.1=Mpc,
or ∼60 Mpc, larger than our smoothing scale of 14.8 Mpc.
This confirms that this saturation is not due to our
smoothing scale, but really a feature of the linear
reconstruction.

C. Robustness to satellite fraction variations

Different tracer samples, such as LRGs, ELGs, and
QSOs, inhabit different halos and in different ways. For
instance, the satellite fraction in ELGs is much higher than
in LRGs [55,74,75]. As described above, satellite galaxies
have larger virial motions, which are not relevant for kSZ
and moving lens. For example, satellite LRGs cause larger
FoG, thus smoothing out the observed number density in
redshift space and reducing the information available for
the velocity reconstruction. How much does this affect the
velocity reconstruction?
To study the response of the velocity reconstruction to a

change in the satellite fraction fsat, we randomly down-
sample the centrals or satellite galaxies. However, we want
to vary fsat at fixed number density, for a fair comparison.
Randomly downsampling the whole catalog to n̄ ¼ 8 ×
10−5 Mpc−3 allows us to keep the number density constant
while spanning values of fsat in ½0.0–1.0�. As shown in
Sec. III B, this reduction in the overall number density
should not substantially affect our analysis.
In Fig. 7 we show the performance of both the corre-

lation coefficient r and the standard deviations σv as we
change the satellite fraction. In this case, we find that
reconstructing the velocities with respect to vhalos rather
than vgal is determinant.
Indeed, when comparing reconstructed velocities to

galaxy velocities, an increased satellite fraction degrades
the correlation coefficient (top panel). The effect is more
dramatic along the LOS again, as expected due to the
increased FoG, leading to r ∼ 0when fsat ∼ 1. On the other
hand, when comparing vrec to vhalos, we find a better match.
The reconstruction correlation coefficient across (resp.
along) the LOS is unaffected (resp. only mildly reduced)
as the satellite fraction increases. Focusing on the lower
panel of Fig. 7, we find the rms halo velocities to be
independent of satellite fraction, whereas the galaxy veloc-
ities increase, as expected due to the large fraction of
objects with virial motions.
Intriguingly, the RMS reconstructed velocities do

increase with satellite fraction, in the same measure for
vk and v⊥. This is explained by the way the HOD is
constructed; when selecting a higher fraction of satellite
galaxies, we are selecting more massive halos. While these
more massive halos have roughly the same true velocities
(red curve in Fig. 7), they also have a larger clustering bias
beff . Since we do not account for this variation in clustering
bias in the reconstruction, the matter density field we infer
from the galaxy catalog is amplified by a multiplicative
factor beff=bfiducial. However, this factor boosts the standard
deviation equally across and along the LOS, and does not
affect the correlation coefficient. As a caveat, we state that
downsampling randomly is not quite the same as e.g. going
down to a higher apparent magnitude in a realistic scenario.
This simple exploration aims to gain intuition and does not

FIG. 6. Impact of the galaxy number density on the velocity
reconstruction performance. The vertical gray lines correspond to
the mean comoving number densities of relevant LRG and QSO
samples [55,72–74]. Upper panel: as the number density in-
creases the correlation coefficient saturates, despite the reduction
in shot noise. This indicates that our reconstruction algorithm
does not leverage small-scale information, in part due to the linear
approximation, and in part due to the fixed smoothing scale
(14.8 Mpc). The top abscissa indicates the effective smoothing
scale due to shot noise introduced in Eq. (16).
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reflective the true behaviour of real samples in the
Universe.

D. Optimal choice of smoothing scale

One arbitrary parameter in our linear velocity
reconstruction is the scale rs with which we smooth the
galaxy number density field. The goal of this smoothing is
to downweight the small-scale Fourier modes which are
shot noise dominated. On the other hand, the smoothing
effectively nulls Fourier modes which would otherwise
contain velocity information. The optimal value of rs is
thus a trade-off. In Fig. 8, we assess the performance of the

velocity reconstruction as a function of the smoothing scale
around the fiducial value rs ¼ 14.8 Mpc.
The correlation coefficients have a well-defined peak,

both with respect to vgal and vhalos. Across the LOS, the
peak happens at r⊥s ¼ 5.9 Mpc, while along the LOS, the

peak happens at our fiducial value rks ¼ 14.8 Mpc, as
proved in [45] in Table 1. For smoothing radii smaller
than the peak values, shot noise dominates and contami-
nates the signal. This is also visible in the large standard
deviation of the reconstructed velocities on the bottom
panel. In the other extreme case, larger smoothing radius

FIG. 8. Upper panel: for our fiducial galaxy number density,
the correlation coefficients between reconstructed and halo

velocities have an optimal smoothing radius r⊥s ¼ 5.9 Mpc

and rks ¼ 14.8 Mpc. We see a similar result in for vgal. Smaller
smoothing scales lead to the inclusion of nonlinear and shot noise
dominated modes, while larger smoothing scales remove some of
the useful linear modes. As the smoothing scale increases to
become larger than the linear Kaiser RSD, the reconstruction
performance becomes identical along and across the LOS.
Bottom panel: for a smaller smoothing radius, the shot noise
of galaxies contaminates the signal, and therefore, the recon-
structed standard deviation is larger than the one from the
simulations. For a larger smoothing radius, the standard deviation
of the reconstructed velocities decrease because we erase relevant
modes of the matter density field used in the reconstruction
method.

FIG. 7. Impact of the satellite fraction on the velocity
reconstruction. The vertical line corresponds to the fiducial value
fsat ¼ 0.12. Upper panel: changing the satellite fraction does not
affect significantly the correlation coefficient measured on v⊥halos,
but does impact vkhalos. For the galaxy sample, the satellite fraction

affects both v⊥gal (due to nonlinearities) and more drastically vkgal
(due to nonlinearities and RSD). Bottom panel: satellite galaxies,
as shown in Fig. 1, have a larger distribution of velocities due to
their nonlinear motions. When their fraction is increased and the
number density remains fixed to n̄ ¼ 8 × 10−5 Mpc−3, the

standard deviations of vk;⊥rec and vk;⊥gal grow substantially, while

the halo velocities vk;⊥halos are almost unchanged.
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smooth fundamental density modes, thus dramatically
reducing this standard deviation. Interestingly, the optimal
smoothing scale along and across the LOS is different.
Being unaffected by the small scale power from FoG, the
reconstruction across the LOS benefits from including
smaller scales.

E. Impact of incorrect cosmological parameters, or the
need to jointly fit for baryons and cosmology

When performing velocity reconstruction on a real
galaxy sample, the actual input is the catalog of angular
positions and redshifts for each galaxy. The reconstruction
algorithm therefore takes cosmological parameters as input,
in order to convert these angles and redshifts into 3D
comoving positions. This conversion requires assuming a
value for the Hubble parameter and the comoving angular
diameter distance. Values for the galaxy bias and loga-
rithmic growth rate f are then assumed, in order to convert
the galaxy number density field into the peculiar velocity
field. If these assumed values differ from the truth, the
inferred peculiar velocities will be biased. How large is this
bias, and how does it propagate to measurements of the kSZ
or moving lens effects? In this section, we study this bias
for the relevant parameters: H, Ω0

m and b on the velocity
reconstruction. The growth factor f is mostly a derived
parameter from Ω0

m, and thus does not need to be varied
separately. Notably, no assumptions on the amplitude of
scalar fluctuations AS, or its late time analog σ8, are
required in the linear velocity reconstruction, and these
parameters therefore do not need to be varied. As explained
in detail in Appendix B, we vary these parameters in the
reconstruction, away from the fiducial value that was used
to generate the “true” velocities in the mock. We show the
resulting biases in Fig. 9 and discuss them below. We find
that the impact of using the wrong parameters on the
correlation coefficient is sub percent for cosmological
parameters within the Planck 5σ uncertainty.
However, the velocity standard deviations can vary by

several percent. For the reconstructed velocities, this is no
issue: the corresponding standard deviations can be mea-
sured from the data itself. For the true velocity standard
deviation (black lines in Fig. 9), this can cause a ∼2% bias
within the Planck 3σ confidence region. This would then
potentially bias our inference of the gas profile by ∼2%.
If this bias is too large to be acceptable, one way to avoid

it is to include cosmology in a joint analysis by including in
the likelihood the kSZ model as follows:

lnLðkSZjcosmo; gasÞ ∝ ½kSZ − gasmodelðcosmo; gasÞ�2
σ2kSZ

;

ð17Þ

where the “cosmo” and “gas” parameters can now be
consistently sampled.

Similarly, if the intent is to use kSZ measurements to
constrain the baryonic effects in galaxy lensing, in order to
improve the cosmological inference from lensing, a safe
approach is to jointly vary cosmology and gas parameters
in a consistent joint analysis:

lnLðkSZ; lensingjcosmo;gasÞ¼ lnLðkSZjcosmo;gasÞ
þ lnLðlensingjcosmo;gasÞ;

ð18Þ

where LðkSZ; lensingjcosmo; gasÞ corresponds to the joint
likelihood of the kSZ and galaxy-galaxy lensing (ggl) given
a cosmology and a gas measurement. We also assumed that
the kSZ and ggl measurements are independent. The
likelihood of the galaxy lensing as

lnLðlensingjcosmo; gasÞ

∝
½lensing − gasmodelðcosmo; gasÞ − DMðcosmoÞ�2

σ2lensing
:

ð19Þ

Crucially, for the purpose of calibrating baryonic uncer-
tainties in galaxy weak lensing, we are helped by the fact
that the baryons only make up 16% of the total matter
density. Thus, a 2% bias on the gas profile from kSZ, due to
incorrect cosmological parameters, is only a 0.16 × 2% ¼
0.3% uncertainty on the matter density. This is most likely
acceptable for upcoming galaxy lensing experiments like
Rubin LSST, which aim to reach percent precision on the
scales of interest. In this case, marginalizing over cosmol-
ogy is not required.

1. Hubble parameter: Isotropic rescaling

At the top left panel from Fig. 9, we find that as we
increase the assumed h, even further than Planck’s 5σ
uncertainty from the fiducial value, the correlation coef-
ficient does not change by more than 2%. As derived in
Appendix B 2, changing h simply corresponds to an
isotropic rescaling of the simulation box. However, the
smoothing scale is kept fixed (in comoving size), such that
an increment/decrement in h is exactly equivalent of fixing
the box and smoothing larger/smaller scales. We check this
by predicting this effect based on the top panel from Fig. 8
(dashed lines), which match our measurements (points).
For h > hfid, both correlation coefficients calculated

using v⊥halos and v⊥gal decrease because their peak happens,

equivalently, at smaller smoothing radii. For vkhalos, the

correlation is already in the peak of vkhalos, and therefore,
there is no substantial variation when changing h on the

plotted range. For vkgal, the peak happens for larger
smoothing radius, so the correlation increases with h.
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This equivalence between changing h and changing the
smoothing scale is further confirmed in the bottom left
panel. Indeed, in this model, increasing the smoothing scale
erases more of the velocity Fourier modes, leading to a
reduced variance (dashed line), which matches the mea-
sured one (points).
Finally, in the lower panel we included σlin from Eq. (3).

We find that it is impacted by the value of h, and therefore,
reinforces the need of doing a joint-likelihood analysis and
a posterior marginalization over cosmology.

2. Matter density: Anisotropic rescaling and growth rate

Focusing on Ω0
m (top central panel), the behavior is more

complex. Indeed, an incorrect value of Ω0
m affects the

Hubble parameter and the comoving angular diameter
distance differently. This in turn causes an isotropic
rescaling of the simulation box (see Appendix B 3), though
both directions along and across the LOS are increased for
larger Ω0

m. We find the bias on r to be less than percent for
Planck-like uncertainties, and a couple percent bias on the
standard deviation.
We find,
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FIG. 9. Variations in correlation coefficient r=rfid and standard deviation σv=σfid when the reconstruction is performed assuming
incorrect cosmological parameters, i.e. not the fiducial h, Ωm and b assumed to generate the mocks. For h and Ωm, the yellow bands
indicate the�3σ and�5σ uncertainties from Planck [27] and the�1σ uncertainty on h from [76]. For b, the yellow band corresponds to
the �1σ uncertainty from DESI 1% percent survey [55]. The black solid line reports the corresponding standard deviation of the matter
density field from theory, refereed as σlin in Eq. (3). Upper panels: variations in cosmological parameters inside of Planck uncertainties
only change the correlation coefficient at percent level. Uncertainties on the galaxy bias have no impact on r. Lower panels: on the
contrary, the standard deviation of the reconstructed velocities is most affected by errors in the assumed galaxy bias. Another visible
feature is that errors in Ωm and b both introduce an anisotropic error in the reconstruction, leading to σvkrec

≠ σv⊥rec . For h, assuming an

incorrect value only leads to an isotropic re-scaling of the box. As derived in Appendix B 2, this is equivalent to a change in the
smoothing scale reffs ¼ hw

ht
rs shown as dashed line in the h plot. The result probes our algebraic expectations from Appendix B.
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with rfid the resulting correlation coefficient r for our
fiducial configuration. The best correlation coefficient in
most cases is when the correct value of Ω0

m is assumed.
Indeed, any other value effectively leads to a reweighting of
the modes along the LOS, which worsen the reconstruction
(see Appendix B 3).
An increased matter density parameter reduces the

standard deviations of the reconstructed velocity compo-
nents along and across the LOS (bottom central panel).
This is expected again from the increased effective smooth-
ing scale. The different behavior along and across the LOS
is a consequence of the differing multiplicative constants
introduced in Eq. (B14) and the different smoothing scales.
Ultimately, in the lower panel, we find that σlin has a

similar response as in the h case, also implying the
necessity of doing a joint-likelihood analysis including
cosmology in results for, e.g., kSZ.

3. Galaxy linear bias: Almost a pure amplitude

In the absence of RSD, the linear bias b would simply be
a multiplicative factor for the reconstructed velocity. It
would therefore have no impact on r, and the standard
deviation would simply scale as bfid=bw. This is the main
trend we see on the right panels of Fig. 9.
In the presence of RSD, an incorrect assumed b does lead

to a slight anisotropy in the weighting of Fourier modes in
the reconstruction, as shown in Appendix B 4. Indeed,

Eq. (B18) predicts that σv⊥rec > σvkrec
for bw < bfid, as seen in

the bottom right panel.

F. Photometric-only reconstruction outperforms the
hybrid spectrophotometric reconstruction

As shown in Sec. II D, the kSZ SNR scales as r
ffiffiffiffiffiffiffiffi
Ngal

p
.

Therefore, it is natural to consider photometric samples,
denser than the available spectroscopic ones, despite the
loss in r from their inaccurate redshifts. A tempting
approach is to use both, spectroscopic and photometric
data, in different steps of the velocity reconstruction;
first, to derive the 3D velocity density field from the
spectroscopic galaxies, thus without photo-z errors, and
second, to then evaluate it at the positions of the much more
numerous photometric galaxies. This approach has been
successfully implemented in, e.g. [77]. In this section, we
assess whether this hybrid photometric-spectroscopic
reconstruction is actually better than simply reconstructing
the velocities from the photometric sample directly.
For practical reasons, we choose n̄photo ¼ 2.14 ×

10−4 Mpc−3 (the same as the whole box) and n̄spectra ∼
4.28 × 10−5 Mpc−3, which is still in the regime that
the reconstruction method is unaffected by the decrement
of galaxies at fixed volume, as shown in Fig. 6. While
realistic photometric surveys are generally denser than this,
this only reinforces our final conclusion. In Fig. 10
we show the correlation coefficient of all possible

FIG. 10. Consider a dense photometric sample and a sparse spectroscopic sample overlapping in 3D. If we wish to reconstruct the
velocities of the photometric halos, several approaches are possible; each line labeled sample 1—sample 2 indicates a method where the
first step in the reconstruction (“’density estimation”) was performed with sample 1, and the second step (“evaluating the velocities”) is
done at the positions of sample 2 galaxies (see Sec. II C). Which one leads to the best correlation coefficient between reconstructed and
true halo velocities, for the photometric sample? Interestingly, the photometric—photometric reconstruction performs better than the
spectroscopic—photometric reconstruction, despite the larger redshift uncertainty in the first step (“density estimation”). This surprising
result can be understood intuitively, see Appendix C. Any difference between the velocity component across (left) and along (right) the
LOS is due to RSD.
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combinations of samples (labeled sample1 − sample2)
when introducing them into the density and positions
stages of the reconstruction method respectively.
Our key finding is that the photo.-photo. case leads to a

larger correlation coefficient r than the spect.-photo one.
Thus, the photo.-photo. case leads to a higher kSZ SNR.
One may have expected that using the spectroscopic data at
the density estimation step should help, since these galaxies
have more accurate LOS positions. This would lead to
preserving the small-scale information in the 3D density
field, which are otherwise erased in the photo.-photo. case.
However, both cases do the same velocity evaluation step
with the photometric galaxies, where photo-z errors place
them at the wrong positions. This leads to misevaluating the
small-scale velocity modes in both cases. So it is better to
null these small-scale modes at the density estimation step,
which the photo.-photo. case does, rather than keeping
these small scale modes like the spect.-photo. case does.
This lowers the variance of the reconstructed velocities,
while keeping the covariance with the true velocity
unchanged, thus improving the correlation coefficient.
This interpretation matches also what we find on the
covariance and standard deviation in Appendix C, where
we explain this result in more detail.
Finally, we have not explored modifications to the

reconstruction algorithm to take into account photo-z errors
more optimally, or to perform a more optimal joint
reconstruction using photometric and spectroscopic sam-
ples. We leave these to future work.

IV. CONCLUSIONS

In this paper, we have studied the peculiar velocities of
galaxies and their host halos, inferred from the Zel’dovich
approximation in an AbacusSummit simulation box. We
thoroughly studied the velocity reconstruction performance
through two metrics, the correlation coefficient and the
standard deviation, that are key inputs for the signal-to-
noise and the amplitude of stacked kSZ and moving lens
measurements. We study idealized cubic periodic 3D
boxes, with realistic galaxy selection for a DESI or
Rubin-like survey. Our study finds the following key
results:

(i) For kSZ and the moving lens effect, the halo
velocities, rather than the galaxy velocities, are what
we really seek to reconstruct. Not only are halo
velocities not affected by the virial motion of
satellite galaxies, but these virial motions are not
probed by standard kSZ or moving lens measured
(other than, e.g., rotating kSZ). This realization
shows that the correlation coefficient between re-
constructed and true halo velocities is actually
slightly larger (r ¼ 0.73) than the previously con-
sidered one between reconstructed and true galaxy
velocities (r ¼ 0.55) along the LOS. This difference

will matter for the upcoming high-SNR measure-
ments with ACT/SO and DESI/Rubin.

(ii) While photometric redshifts degrade the velocity
reconstruction by order unity, the increase in sample
size available with the next generation of photo-
metric surveys more than compensates for this.

(iii) The velocity reconstruction performance saturates
for galaxy number densities n̄gal ≳ 5 × 10−5, corre-
sponding to current spectroscopic surveys. Beyond
this value, an increment of galaxies in a fixed
volume cannot be utilized by the reconstruction
method we adopt; namely, the first-order Zel’dovich
approximation.

(iv) The satellite fraction is not a crucial parameter for
the performance of reconstructing halo velocities.
We find the correlation coefficient to be mostly
insensitive to varying satellite fraction at fixed
number density for a single HOD realization. This
would not be true if we compared the reconstructed
velocities with the galaxy (instead of halo) veloc-
ities; there, a higher satellite fraction reduces the
correlation coefficient r.

(v) We did not vary the amplitude of the random virial
motions for central (αc) and satellite (αs) galaxies.
However, for the purpose of velocity reconstruction,
increasing them should be identical to increasing the
satellite fraction, since both lead to a galaxy sample
with higher random motions. As discussed above,
this has a minimal effect on the reconstruction of
halo velocities.

(vi) There is an optimal smoothing scale of the galaxy
number density and it is different for the components
across and along the LOS (r⊥s ¼ 5.9 Mpc and

rks ¼ 14.8 Mpc). When the smoothing scale is
smaller than the optimal value, shot noise dominates,
while on larger smoothing scales, useful large-scale
density modes are erased and therefore the
reconstruction is worsened.

(vii) Assuming incorrect cosmological parameters in the
velocity reconstruction affects it at the ∼ percent
level. This may become relevant for upcoming kSZ
and moving lens measurements. We sketch how a
consistent joint analysis can be performed, in order
to propagate these uncertainties into gas profile
uncertainties, given a kSZ measurement. The Hub-
ble parameter (h) acts as an isotropic rescaling of the
simulated box, while the matter density (Ω0

m) in-
duces a more complex effect, which combines an
anisotropic rescaling and impacts the growth rate.
The linear bias (b) acts almost as a multiplicative
factor, but the presence of RSD induces an aniso-
tropic behavior across and along the LOS. While
some of these effects could be subpercent, there are
still cases in which their wrong inference could
impact subsequent results from kSZ measurement
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(specially b), and therefore, we suggest jointly
fitting for, e.g. galaxy formation and cosmology.

(viii) We find that the simplest hybrid spectroscopic-
photometric velocity reconstruction leads to a worse
result than doing an analysis only with photometric
data in terms of the correlation coefficient, and
therefore, the kSZ signal-to-noise. Additionally,
we identify and characterize the steps at which
the reconstruction is deteriorated when using either
spectroscopic and/or photometric data.

Our work focuses on idealized cubic periodic boxes at a
fixed redshift (with a realistic galaxy sample) in order to
isolate most easily the various effects above. However, for
realistic values of the correlation coefficient and standard
deviation of the reconstructed velocities, a realistic analysis
on a light cone is most desirable. This, along with a realistic
survey mask and survey selection function, are considered
in the companion paper [45], where we derive our most
realistic estimates of the velocity reconstruction perfor-
mance for DESI-like and Rubin-like galaxies.
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APPENDIX A: VELOCITY DISPERSION ACROSS
THE LINE-OF-SIGHT

As mentioned in Sec. II C, there are two components of
the velocity reconstructed field: across and along the LOS.
Figure 12 shows the 2D log-histogram distribution of v⊥true
and v⊥gal, similarly to Fig. 4, but for the across the LOS
component.
The complete sample of galaxies across the LOS have a

better performance than the case along the LOS (improves
from 0.55 to 0.69). When splitting between centrals and
satellites, we again find that the performance on centrals is
better due to the lower contribution of thermal velocities.
The overall correlation is higher because RSD is not as
relevant when studying the across the LOS contribution.
In Fig. 12 we show the corresponding 2D log-histogram

for the across the LOS velocity of the halos, similarly to

Fig. 4. The correlation coefficient reaches the best perfor-
mance of this work: r⊥halos ¼ 0.81. This improvement is
promising for detecting the moving lens effect in future
cosmological surveys.

FIG. 11. Similar to Fig. 3, but rather than along it, across the
line-of-sight projection. Reconstruction improves in all ranges
due to the absence of redshift space distortions. For all ranges,
v⊥rec is positively correlated with v⊥true, but larger velocities are
underestimated.

FIG. 12. The 2D histograms of the halo velocity reconstruction
across the line-of-sight.
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APPENDIX B: ALGEBRAIC DERIVATION OF
THE IMPACT OF INCORRECT

COSMOLOGICAL PARAMETERS

Previously, in Sec. III E, we present the effect on the
reconstruction of velocities when assuming cosmological
parameters different from the fiducial ones. In this section,
we derive the underlying algebra in order to get intuition
and a correct interpretation.
This appendix is structured as follows. In Appendix B 1

we present the general framework and notation, in addition
to the spatial conversion from positions in a cubic
box to positions in the sky. In the following sections
(Appendixes B 2–B 4) we derive the algebra for h, Ωm and
b, respectively.

1. Rescaling of spatial coordinates

On the cubic box we use 3D spatial coordinates to
describe the positions of galaxies. Translating this into a
real-scenario of a galaxy catalog, we instead have two
angles; right ascension (RA) and declination (DEC), and a
redshift z. Given RA, DEC and z for a galaxy, one could
infer the 3D Cartesian position as follows:

8>><
>>:

RA ≈ x
χ

DEC ≈ y
χ

Δz ≈ ΔχH
c

; ðB1Þ

where H is the Hubble parameter. In a flat matter-
dominated universe, this is

HðzÞ ¼ h · 100 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ð1 − ΩmÞ

q
; ðB2Þ

and χ is the comoving distance,

χðzÞ ¼
Z

z

0

c · dz0

Hðz0Þ ; ðB3Þ

with a fixed redshift Hðz ¼ 0.5Þ and χðz ¼ 0.5Þ.
A change on the cosmological parameters impacts the

3D Cartesian positions of galaxies when fixing the celestial
coordinates and redshifts as follows:

(
x⊥;w ¼ χw

χt
x⊥;t

xk;w ¼ Ht
Hw

xk;t
; ðB4Þ

where x⊥ and xk correspond to the coordinates across and
along the LOS, while the subscript w and t correspond to
wrong and true (i.e. fiducial) parameters. In Fourier space,
this translates to

8>>>>>>>>><
>>>>>>>>>:

k⊥;w ¼ χt
χw
k⊥;t

kk;w ¼ Hw
Ht

kk;t

kw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
χt
χw

�
2
k2⊥;t þ

�
Hw
Ht

�
2
k2k;t

r

μt;w ¼ kk;t;w
kt;w

:

ðB5Þ

Thus, for any scalar function gtðxtÞ ¼ gwðxwÞ in con-
figuration space, we have

gwðkwÞ ¼
�
χw
χt

�
2
�
Ht

Hw

�
gtðktÞ: ðB6Þ

Similarly, for any scalar function gtðktÞ ¼ gwðkwÞ in
configuration space, we get

gwðxwÞ ¼
�
χt
χw

�
2
�
Hw

Ht

�
gtðxtÞ: ðB7Þ

2. Changing h

The only effect of assuming an incorrect value of h is a
rescaling of the Cartesian coordinates as above, with
χw=χt ¼ Ht=Hw ¼ ht=hw. In the absence of a fixed
smoothing scale, this re-scaling turns out to cancel with
the additional amplitude factors in the velocity
reconstruction. However, given that our smoothing scale
is fixed in Cartesian space to 14.8 Mpc, it does not get
rescaled by ht=hw, thus breaking this cancellation. In other
words, in terms of impact on the reconstructed velocities,
changing h is equivalent to rescaling only the smooth-
ing scale.
Indeed, in Fourier space,

vwðkw; rsÞ ¼ vwðkwÞWðkw; rsÞ

¼ aHwf
ikw

k2w

δgwðkwÞ
ðbþ fμ2wÞ

Wðkw; rsÞ

¼
�
ht
hw

�
3

aHtf
ikt

k2t

δgt ðktÞ
ðbþ fμ2t Þ

e−
1
2
ðhwht ktÞ

2r2s

¼
�
ht
hw

�
3

vtðktÞe−
1
2
k2t ðhwht rsÞ

2

¼
�
ht
hw

�
3

vtðktÞW
�
kt;

hw
ht

rs

�

¼
�
ht
hw

�
3

vt

�
kt;

hw
ht

rs

�
: ðB8Þ

As a result, in configuration space:
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vwðxw; rsÞ ¼ vt

�
xt;

hw
ht

rs

�
; ðB9Þ

such that the effect on the reconstructed galaxy velocities
simply amounts to rescaling the smoothing scale
as reffs ≡ ht

hw
rs.

We confirm this numerically in the left panels of Fig. 9,
by comparing two approaches. The blue dots show the
effect of performing the reconstruction with hw, while the
dashed line is obtained by using ht, but only changing the
smoothing scale.

3. Changing Ωm

Assuming a wrong value on Ωm has more effects on the
reconstruction method. First, it rescales the simulation box
differently for the coordinates along and across the LOS,
introducing an anisotropy. Second, because of the
anisotropy, the RSD effects introduce an additional dis-
tortion, and therefore, the modes across and along the LOS
are weighted differently. Third, in the absence of a change
on the smoothing, it will rescale and also differently along
and across the LOS. Finally, it impacts the growth rate f as

f ≈ΩmðzÞ0.55; ðB10Þ

with

ΩmðzÞ ¼
Ωmð1þ zÞ3

Ωmð1þ zÞ3 þ ð1 −ΩmÞ
: ðB11Þ

The velocities could be described separately across and
along the LOS as

� v⊥w ðkwÞ
vkwðkwÞ

�
¼ aHwfw

1

k2w

δgwðkwÞ
ðbþ fwμ2wÞ

�
k⊥w
kkw

�
Wðkw; rsÞ;

ðB12Þ

reorganizing terms, and relating some factors with the
fiducial parameters, we can rewrite Eq. (B12) as

� v⊥w ðkwÞ
vkwðkwÞ

�
¼ FΩm

ðμtÞ
�A⊥v⊥t ðktÞ

Akvkt ðktÞ

�
Wðkt; r⊥s;eff ; rks;effÞ

ðB13Þ

with A⊥ and Ak constants defined as

A⊥ ¼ fw
ft

�
χw
χt

�
2 Hw

Ht

Ak ¼
fw
ft

�
χw
χt

�
; ðB14Þ

and FΩm
ðμÞ a function defined as

FΩm
ðμÞ ¼ bð1 − μ2Þ þ ðft þ bÞμ2

b χt
χw
ð1 − μ2Þ þ ðfw þ bÞ Hw

Ht
μ2

; ðB15Þ

and Wðkt; r⊥s;eff ; rks;effÞ the anisotropic smoothing kernel

with r⊥s;eff ¼ Ht
Hw

rs and rks;eff ¼ χw
χt
rs. We can analyze the

impact of each component independently:
(i) The constant parameters A⊥ and Ak do impact

differently across and along the LOS magnitude
of the reconstructed velocities, and therefore, σrec.
However, these constants do not impact the corre-

lation coefficients rðv⊥recÞ and rðvkrecÞ.
(ii) The function and smoothing kernel combined

FΩm
ðμtÞWðkt; r⊥s;eff ; rks;effÞ acts as a new effective

smoothing kernel. It is different from simply having

Wðkt; sÞ in two ways: First, Wðkt; r⊥s;eff ; rks;effÞ
weights kw differently due to the anisotropic
expansion of the box. This effect can either increase
of decrease r, based on Fig. 8 where we vary
the smoothing scale. Second, the combination

FΩm
ðμtÞWðkt; r⊥s;eff ; rks;effÞ reweights the along the

LOS contribution μt differently. This can only reduce
the overall correlation coefficient r in any case.

We confirm that these effects are combined in the central
panels from Fig. 9, and refer to Sec. III E for a detailed
explanation.

4. Changing b

Introducing a value of b different from the fiducial one
does not rescale the simulation box as it is done by the
previous parameters. We find that the impact on the
reconstruction method is directly linked to a reweighting
of the modes across and along the LOS,

vwðk; sÞ ¼ aHf
ik
k2

δgðkÞ
ðbw þ fμ2ÞWðk; sÞ: ðB16Þ

Similarly, as done in the case of assuming a wrong Ωm, we
can rewrite the velocity contribution in Fourier space as

vwðk; sÞ ¼ FbðμÞvtðk; sÞ; ðB17Þ

where

FbðμÞ ¼
ðbt þ fμ2Þ
ðbw þ fμ2Þ : ðB18Þ

We also find a difference on the performance across and
along the LOS due to RSD present when having μ as a
variable. On each mode, the result can be thought of as an
anisotropic constant, therefore, impacting the standard
deviation σrec but not the correlation coefficient r, as shown
in the right panels from Fig. 9.
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APPENDIX C: UNDERSTANDING THE HYBRID
PHOTOMETRIC-SPECTROSCOPIC RESULTS

Photo-z errors have a slightly different effect at the
density estimation stage (where one estimates the 3D
matter density from the coordinates of the galaxies) and
at the velocity estimation stage (where the inferred 3D
velocity field is evaluated at the coordinates of the
galaxies). To understand this, it helps to decompose the
velocity field as

v ¼ vL þ vS; ðC1Þ

where the subscript L and S stand for large and small scales.
The distinction between large and small is determined by
the typical scale of photo-z errors. This also implies that we
can split the covariance C≡ hvtruevreci as C ¼ CL þ CS,
with

CL ≡ hvtruevrecL i
CS ≡ hvtruevrecS i: ðC2Þ

Photometric uncertainties at the density estimation stage
cause the inferred 3D density field to be convolved with the
photo-z error kernel (typically a Gaussian plus tails). This
suppresses the Fourier modes on scales shorter than the
typical photo-z uncertainty. This effectively sets vrecS ¼ 0.
On the other hand, photo-z errors at the velocity

estimation stage do not suppress the short-scale Fourier
modes, they instead cause them to be evaluated at the
wrong positions for the galaxies. This is equivalent to
phase-shifting these Fourier modes vrecS is replaced
by vrec shifted

S .
In both cases, photo-z errors null the correlation between

vrecS and vtrueS , resulting in C ¼ CL. Indeed, Fig. 13 shows
that both cases (photo.-spect. and spect.-photo.) lead to the

FIG. 13. Similar to Fig. 10, we plot the covariance and standard deviation for two spectroscopic and photometric samples evaluated in
different steps of the reconstruction method transverse to the LOS. Upper panel: the cases photo.-spect. and spect.-photo. reduce the
covariance similarly, but because of different reasons. For photo.-spect., the density field is smoothed due to the photometric noise,
removing the small scales velocities. For spect.-photo., evaluating the galaxies in wrong positions randomizes the phases of the small
scale velocities, and thus reduce the total covariance. The photo.-photo. case combined the two effects and therefore, result in the worst
case. Bottom panel: evaluating the photometric sample at the density stage reduces the standard deviation of the velocities as their
amplitude is decreased due to a reduction on their spatial clustering. The standard deviation is the same for photo.-spectra. and photo.-
photo. as the positions in which we evaluate the displacements act as a random sample of the density field. The case spect.-photo. results
in a higher standard deviation as the density field is not smoothed.
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same value of C, i.e. the same covariance between true and
reconstructed velocities. And these covariances are almost
identical to the photo.-photo. case, as expected from this
discussion.
However, while both photo.-spect. and spect.-photo. lead

to the same covariance with the true velocities, they lead to
different standard deviations of vrec. Indeed, in the photo.-
spect. case, the suppression ofvrecS due to the convolutionwith
thephoto-z error kernel leads tovrec ≈ vrecL . The same is true in

the photo.-photo. case. On the other hand, as we discussed,
the spect.-photo. case does not null vrecS , it randomizes its
phase. This preserves its variance. The correspondingly larger
variance of vtrue in the spect.-photo. case thus leads to a lower
correlation coefficient, as found in Fig. 13.
All these results combined, lead to the main result find in

Sec. III F, which suggests that using exclusively that
photometric sample is better than doing an hybrid spectro-
scopic-photometric analysis.
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