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Primordial black holes (PBHs) generated in the early Universe are considered as one of the candidates
for dark matter. To produce PBHs with sufficient abundance, the primordial scalar power spectrum needs to
be enhanced to the order of 0.01. Considering the third-order polynomial potential with polynomial
attractors, we show that PBHs with a mass of about 1017 g can be produced while satisfying the constraints
from the cosmic microwave background observations at the 2σ confidence level. The mass of PBHs
produced in the polynomial attractors can be much bigger than that in the exponential α attractors. By
adding a negative power-law term to the polynomials, abundant PBHs with different masses and the
accompanying scalar-induced gravitational waves (SIGWs) with different peak frequencies are easily
generated. The PBHs with masses around 10−15–10−12M⊙ can account for almost all dark matter. The
SIGWs generated in the nanohertz band can explain the recent detection of stochastic gravitational-wave
background by the pulsar timing array observations. The non-Gaussianities of the primordial curvature
perturbations in the squeezed and equilateral limits are calculated numerically. We find that the non-
Gaussianity correction enhances the PBH abundance which makes the production of PBHs much easier,
but the effect of non-Gaussianity on the generation of SIGWs is negligible.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) by the
Laser Interferometer Gravitational-Wave Observatory
(LIGO) and Virgo Collaborations opened a new window
to test gravity and understand the Universe [1–6]. In
particular, some of the binary black holes observed may
consist of primordial black holes (PBHs) [7–12], and the
detections of stochastic GW background by pulsar timing
arrays (PTAs) also hint at the existence of PBHs [13–25].
Furthermore, PBHs can be regarded as one of the candi-
dates for dark matter (DM) and their abundance and mass
ranges are tightly constrained by observations [26–31].
If overdense inhomogeneities seeded from the primor-

dial curvature perturbations at the horizon reentry exceed
the threshold value δc during radiation domination, then
PBHs could form in the overdense regions through gravi-
tational collapse [32–34]. Accompanied by the generation
of PBHs, the large curvature perturbation also produces
scalar-induced GWs (SIGWs) that contribute to the sto-
chastic gravitational-wave background (SGWB) [35–45].

To generate a significant abundance of PBHs, the
amplitude of the power spectrum Pζ of the primordial
curvature perturbation ζ should be As ∼Oð0.01Þ at small
scales [46–70]. Compared with the constraint on the
amplitude of the power spectrum at the cosmic micro-
wave background (CMB) scales As ≈ 2.1 × 10−9 [71], the
power spectrum at small scales has to be enhanced by at
least 7 orders of magnitude.
To amplify the power spectrum at small scales, a straight-

forward way is to construct a flat plateau, i.e., an inflection
point in the canonical inflation potential [62–70,72–80],
leading to the so-called ultraslow-roll (USR) [81,82] stage
during inflation. From the fact that an m-order polynomial
has m − 2 inflection points, the potential with m ¼ 3 can
have one inflection point in the inflaton potential. Thus, there
are some attempts to combine the exponential α attractor
models [83–92] with the third-order polynomial VðψÞ ¼
V0½1þ c1fðψÞ þ c2f2ðψÞ þ c3f3ðψÞ�2 to amplify the
power spectrum and generate abundant PBHs [80,93–95].
However, the masses of PBHs produced from these models
are too small. Adding a negative power-law term f−2ðψÞ can
solve this problem [95].
Apart from the exponential α attractors, there are also

polynomial α attractors [92,96–99]. Extending the poly-
nomial α attractors to a hybrid polynomial attractor model,
the possibility of PBH production and SGWB generation
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was studied with a two-stage inflation [100]. In this paper,
we replace the exponential α attractors with the polynomial
α attractors in the third-order polynomial potential with and
without the additional negative power-law term.
Near the inflection point, the slow-roll (SR) conditions

are violated [74] and there may exist a non-negligible non-
Gaussianity. The abundance of PBHs and the energy
density of accompany SIGWs can be affected by large
non-Gaussianity of the primordial curvature perturbations
[101–110]. The impacts of non-Gaussianity of the primor-
dial curvature perturbation ζ on the formation of PBHs
were discussed in the literature [111–117]. There are some
methods to calculate the PBH fractional energy density β in
the presence of non-Gaussianity, such as changing the
variables in the Gaussian probability density function [118]
and adopting the path-integral formulation [101,102]. In
this paper, we use the latter method to calculate β.
This paper is organized as follows. In Sec. II, we show

the models in detail and present the power spectra of the
models. In Sec. III, we discuss the PBH abundance
produced from the models. In Sec. IV, we compute the
generation of SIGWs during radiation domination. We also
compare the SIGWs produced in the models with the recent
detection of nanohertz stochastic GW background by the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav) [119] and the European Pulsar
Timing Array (EPTA) [120]. In Sec. V, we calculate the
non-Gaussianities of one model in the squeezed and equi-
lateral limits and discuss the effects of non-Gaussianity on
the production of PBHs and SIGWs.We conclude the paper
in Sec. VI.

II. THE MODELS

For the enhancement of the primordial scalar power
spectrum at small scales with α attractors, third-order
polynomial potentials with an inflection point

VðψÞ ¼ V0½1þ c1fðψÞ þ c2f2ðψÞ þ c3f3ðψÞ�2 ð1Þ

were usually discussed [80,93–95]. For T models, f ¼
ftðψÞ ¼ tanh ðψ= ffiffiffiffiffiffi

6α
p Þ [80,93]; for E models, f ¼

feðψÞ ¼ exp ð− ffiffiffiffiffiffiffiffiffiffi
2=3α

p
ψÞ [94], this also belongs to expo-

nential α attractors [92]. The masses of PBHs produced by
T models with the potential (1) are smaller than 108 g [93],
and the PBHs produced by E models with the potential (1)
are asteroid-sized black holes [94]. To obtain PBHs with
larger masses, one must decrease the spectral tilt ns [95].
Because of the observational constraint by Planck obser-
vations, ns¼ 0.9649�0.0042 (68% confidence level) [71],
the spectral tilt ns cannot decrease too much. To overcome
this problem, a negative power-law term f−2ðψÞ was added
to the potential for E models with extreme fine-tuning of
the parameters [95].

On the other hand, the polynomial potential with inverse
powers

VðψÞ ¼ V0

�
1 −

μk

ψk þ � � �
�

ð2Þ

gives the polynomial α attractors [92]

ns ¼ 1 −
2

N
kþ 1

kþ 2
; r ¼ ð4kÞ 2

kþ2ð3αÞ k
kþ2

½ðk=2þ 1ÞN�2− 2
kþ2

; ð3Þ

where N is the total number of e-folds before the end of
inflation when the pivotal scale k� exits the horizon, and r is
the tensor-to-scalar ratio, α ¼ 2μ2=3.
In this paper, we use the polynomial attractor [92] to

discuss the enhancement of the primordial scalar power
spectrum at small scales from the polynomial potential (1)
with the addition of one negative power-law term,

VðψÞ ¼ V0½1þ c4f−1n ðψÞ þ c1fnðψÞ
þ c2f2nðψÞ þ c3f3nðψÞ�2; ð4Þ

where the function fnðψÞ ¼ ψ−n and we choose n ¼ 3 for
the discussion of PBH production and SGWB generation.
The factor ðkþ 1Þ=ðkþ 2Þ in Eq. (3) helps to increase the
value of ns, so the usual SR stage can be shorter and it is
possible to get larger mass PBHs with the polynomial α
attractors than with T and E models. To understand why the
model works and how to choose the model parameters, we
divide the total number of e-folds N into two parts, the first
part is the SR stage with the number of e-folds Nsr, the
second part is the USR stage until the end of inflation with
the number of e-folds N − Nsr. Since the polynomial
attractors (3) are obtained for SR inflation, in the discussion
of observational constraints by Planck, we should use Nsr
in Eq. (3); then we use the result to guide us to choose
model parameters. Note that the division into SR and USR
stages is not exact and is just a rough approximation, so the
attractors (3) determined by the SR stage are not the exact
predictions of the model, and the results for ns and r are
actually obtained by numerical calculation.
For the potential (1), the inflection point (IP) is

fðψ IPÞ ¼ −
c2
3c3

; ð5Þ

and the derivative of the potential VðfðψÞÞ at the inflection
point is

V 0ðfðψ IPÞÞ ¼ c1 −
c22
3c3

: ð6Þ

If we choose the value of c1 so that the derivative of the
potential at the inflection point ψ IP is exactly zero, then
usually we will get a very large number of e-folds. To avoid
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a big number of e-foldsN, we add a small number δ to c1 so
that the derivative of the potential at the inflection point ψ IP

is close to zero, but not exactly zero, i.e., we introduce δ to
adjust the value of N,

c1 ¼
c22
3c3

þ δ; δ ≪ 1: ð7Þ

To compare the enhancement of the power spectrum
between exponential α attractors and polynomial α attrac-
tors, we first discuss the difference between the results for
the potential (1) with f ¼ fe and f ¼ fn, then we will
discuss the power spectrum of the polynomial α attractor
with the potential (4).

A. Exponential and polynomial attractors

There are three parameters in the polynomial potential
(1). The condition (6) for the inflection point reduces one
parameter, so there are two free parameters left. At large ψ ,
the potential (1) is dominated by the linear term c1fðψÞ and
the results depend on the parameter c1 only because of the
existence of attractors. The value of V0 is determined by the
amplitude of the scalar power spectrum.
To show how to determine the model parameters, we

take the model fðψÞ ¼ f2 ¼ ψ−2 as an example. Even
though the attractors (3) are independent of c1, the value of
the scalar field ψ� at the pivot scale k� ¼ 0.05 Mpc−1 is
ψ� ≈ ð−16c1NsrÞ1=4, so ψ� is determined by c1 and the e-
folds Nsr for the SR stage. Because of the attractors (3) and
the CMB constraints on ns and r, Nsr cannot be too small.
In order to enhance the power spectrum at small scales, Nsr
cannot be too large either. For the convenience of dis-
cussion on the choices of parameters and the rough
estimation of the observables at large scales, we take a
fiducial Nsr ¼ 40. Note that the actual value of Nsr is
obtained by numerical calculation and is different for
different models and model parameters. For fixed Nsr,
ψ� is determined by c1. The value of ψ� is larger if jc1j is
larger. Once we take a value of c1, then c2 and ψ IP can be
determined from c1 and c3. Combining Eqs. (5) and (7), we
get ψ IP ¼ ð3c3=c1Þ1=4 ¼ 2ð−3c3NsrÞ1=4=ψ�, so ψ IP is
smaller if jc1j is larger. Now we fix c3 ¼ −1.2 and Nsr ¼
40 to get ψ� by choosing c1 ¼ −1.7, −1.9, −2.1, respec-
tively, then we adjust the value of δ and numerically solve
the background and perturbed cosmological equations to

obtain the scalar power spectrum Pζ of the primordial
curvature perturbation ζ, the scalar spectral tilt ns, and the
tensor-to-scalar ratio r at the pivot scale k�. The results
show that, as jc1j becomes larger, ψ� and r are bigger, butN
and kpeak become smaller. For bigger jc1j, the power
spectrum can be enhanced to the order of 0.01 with a
smaller number of e-folds, so the scale at the end of
inflation is also smaller, which leads to a smaller peak scale
kpeak even though ψ IP is smaller. Therefore, to get massive
PBHs, we should take the bigger value of jc1j. However, if
jc1j is too large, then inflation ends before the inflection
point and the enhancement cannot happen. On the other
hand, if jc1j is too small, then the inflaton stays at the
inflection point for a much longer time, leading to a large
number of N. Since N becomes smaller for larger jc1j, we
can increase Nsr to get bigger ns. Even though we get
bigger ns and smaller r, the peak scale kpeak becomes larger
and the mass of generated PBHs becomes smaller, so we
still use smaller Nsr.
Now we fix c1 ¼ −2.1 and ψ� ¼ 6.055, then vary the

value of c3. The results tell us that N, ns, and kpeak are
smaller with smaller jc3j. Again, if we increase ψ� to get
larger ns for the same c3, kpeak becomes bigger. The above
discussion tells us that we need to choose larger jc1j and
smaller jc3j to get smaller kpeak.
To make a comparison for the models fe and fn with

different n, we fix ns ¼ 0.9565, which is consistent with the
Planck constraint at the 2σ confidence level. Following the
procedure discussed above, we can find the appropriate
parameters for each model, then we calculate the power
spectra, and the results are shown in Table I. Even thoughwe
take the lower limit of the 2σ confidence level of the Planck
results, kpeak can only be as small as 1014–1015 Mpc−1 for the
models fn, and kpeak is about 1018 Mpc−1 for the model fe.
Furthermore, for the polynomial attractors fn, N is smaller
than 40. If we increase ψ�, N and ns can be bigger, but then
kpeak becomes bigger too. On the other hand, the results in
Table I show that kpeak in the model fn can be smaller than
that in the model fe, so we only consider the polynomial
attractor f3 in the following discussions.

B. Modified polynomial attractors

As discussed above, it is very difficult to produce bigger
PBHs with the third-order polynomial potentials (1), so we
consider the modified polynomial potential (4). We choose

TABLE I. The parameters and results of different models. The unit of kpeak is Mpc−1.

Models V0 c1 c3 δ ψ� N r Ppeak
ζ kpeak

f1 3.3 × 10−9 −2.9 −1.16 2.84193 × 10−2 8.787 39.4 0.0503 0.011 2.8 × 1014

f2 5.5 × 10−10 −2.5 −1.16 8.48823 × 10−2 6.113 37.8 0.0147 0.01 4.3 × 1014

f3 1.8 × 10−10 −2.2 −1.17 1.284273 × 10−1 4.729 38.8 0.0053 0.014 1.6 × 1015

fe 1.25 × 10−10 −2.6 −1.15 3.74916 × 10−2 5.461 51.1 0.0037 0.010 7.2 × 1018
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three sets of parameters for the model f3 and denote them
as A1, A2, and A3, respectively.
We take c3 ¼ −1.2 for the models A1, A2, and A3, and

the values of the other parameters are shown in Table II.
Note that the c4 term will affect the inflection point (5) and
the relation (7), but its effect is very small near the
inflection point, so we still use Eq. (7) to determine c2
and absorb the effect of c4 term into δ. We plot the
potentials of the models and the evolution of the scalar
field ψ in terms of the number of e-folds Ñ since the pivotal
scale k� exits the horizon in Fig. 1. From Fig. 1, we see that
the inflaton stays at the inflection point for about 15–40
e-folds. The scalar power spectra are shown in Fig. 2. From
Fig. 2, we see that the power spectrum for model A1 is
broad and the power spectra for models A2 and A3 are
narrow. The results for the total number of e-folds N, the

scalar spectral tilt ns, the running of the scalar spectral tilt αs,
the tensor-to-scalar ratio r, the peak value of the power
spectra Ppeak

ζ , and the peak scale kpeak are also shown in
Table II. FromTable II, we see thatns, r, andαs are consistent
with the recent CMB constraints [71], and the peak scales
kpeak are much smaller compared with those in Table I. In the
model A1, we even get kpeak ¼ 3 × 108 Mpc−1. As the peak
scale kpeak becomes smaller, the tensor-to-scalar ratio r
becomes larger, and r reaches 0.025 in the model A1, so
the peak scale kpeak cannot be very small while satisfying
the CMB constraints. As tighter constraints on r and αs
are expected in the future CMB observations such as
CMB-S4 [121] and LiteBIRD [122], the allowed lower
value of the peak scale kpeak will be limited by future data.

III. PBH FORMATION

The overdense region generated by large primordial
curvature perturbations at small scales may form PBHs
through gravitational collapse after the horizon reentry
during radiation domination. The mass M of generated
PBHs is of the same order as the horizon mass
MH ¼ð2GHÞ−1, M¼ γMH, where we choose γ¼ 0.2 [32].
Given a scale k, the PBH mass M is [30,54]

TABLE II. The parameters and results of modified polynomial attractors. The unit of kpeak is Mpc−1.

Models V0 δ c1 c4 ψ� N ns αs r Ppeak
ζ kpeak

A1 8.33 × 10−10 1.1007 × 10−3 −1.07 3.2 × 10−4 3.75 63.2 0.9658 −0.0041 0.025 0.0338 3.0 × 108

A2 3.53 × 10−10 6.3843 × 10−4 −1.1 1.3 × 10−4 4.0 54.8 0.9652 −0.0015 0.011 0.029 1.7 × 1012

A3 2.75 × 10−10 7.574 × 10−4 −1.12 9.5 × 10−5 4.08 52.4 0.9655 −0.0017 0.008 0.0269 3.6 × 1013

FIG. 1. Upper: potentials of the models A1, A2, and A3.
Lower: evolution of the scalar field ψ in terms of the number of e-
folds Ñ since the pivotal scale k� exits the horizon in these
models. Blue solid line, model A1; red dotted line, model A2;
black dashed line, model A3.

FIG. 2. The results of the power spectra for the models A1, A2,
and A3. Black solid line, model A1; black dotted line, model A2;
black dashed line, model A3. The light green shaded region
is excluded by the CMB observations [71]. The light purple,
cyan, and gray regions show the constraints from the PTA
observations [123], the effect on the ratio between neutron and
proton during the big bang nucleosynthesis (BBN) [124], and
μ-distortion of CMB [125], respectively.
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MðkÞ¼ 3.68

�
γ

0.2

��
g�

10.75

�
−1=6

�
k

106 Mpc−1

�
−2
M⊙; ð8Þ

where M⊙ is the solar mass, g� is the effective degrees of
freedom at the PBH formation, and we do not distinguish
the effective degrees of freedom in the entropy and energy
density. The current fractional energy density of PBHs with
mass M to DM is [62]

fpbhðMÞ ¼ βðMÞ
3.94 × 10−9

�
γ

0.2

�
1=2

�
g�

10.75

�
−1=4

×

�
0.12

ΩDMh2

��
M
M⊙

�
−1=2

; ð9Þ

where ΩDM is the current energy density of DM, and the
Hubble constant H0 ¼ 100h km=s=Mpc. The PBH frac-
tional energy density βðMÞ at the formation for Gaussian
curvature perturbation ζ is [126]

βGðMÞ ≈
ffiffiffi
2

π

r
σRðMÞ
δc

exp

�
−

δ2c
2σ2RðMÞ

�
; ð10Þ

where δc is the critical density perturbation for the PBH
formation. The mass variance σRðkÞ on the comoving scale
k ¼ aH ¼ R−1 is [126]

σ2RðkÞ ¼
�
4

9

�
2
Z

dq
q
W2ðq=kÞðq=kÞ4PζðqÞ; ð11Þ

and the Gaussian window functionWðxÞ ¼ expð−x2=2Þ. In
this paper, we choose the parameters as δc ¼ 0.4 [127–131],
g� ¼ 106.75, and ΩDMh2 ¼ 0.12. Using the power spectra

given in Fig. 2, we numerically compute the abundance of
PBHs with the above formulas and the results for the
models A1, A2, and A3 are shown in Fig. 3. The results
show that all the produced PBHs satisfy the observational
constraints. The peak values of the mass and the abundance
of PBH produced at the peak scale kpeak are shown in
Table III. As seen from Table III, in the models A1, A2, and
A3, the PBH masses are around 10−5M⊙, 10−12M⊙, and
10−15M⊙, respectively. PBHs with masses around 10−12M⊙
and 10−15M⊙ can account for most of DM.

IV. SCALAR-INDUCED GRAVITATIONALWAVES

Accompanied by the production of PBHs, the large
primordial curvature perturbations at small scales can
source the tensor perturbation at the second order after
the horizon reentry to generate SIGWs. In this section, we
calculate the energy density of SIGWs generated in the
models A1, A2, and A3.
The second-order tensor perturbation expressed in terms

of the Fourier components is

hijðx;ηÞ¼
Z

d3k

ð2πÞ3=2e
ik·x½hkðηÞeijðkÞþ h̄kðηÞēijðkÞ�; ð12Þ

where eijðkÞ and ēijðkÞ are the plus and cross polarization
tensors. The power spectrum of the SIGWs is

hhkðηÞhqðηÞi ¼
2π2

k3
δð3Þðkþ qÞPhðk; ηÞ: ð13Þ

The fractional energy density of SIGWs is [39]

ΩGWðkÞ ¼
1

24

�
k
H

�
2

Phðk; ηÞ: ð14Þ

Since GWs behave like radiation, the current fractional
energy density of SIGWs is

ΩGW0ðkÞ ¼ ΩGWðkÞ
Ωr0

ΩrðηÞ
; ð15Þ

where ΩrðηÞ is the fraction energy density of radiation and
Ωr0 is its current value.
Using the power spectra given in Fig. 2, we calculate

ΩGW0 for the models A1, A2, and A3 and the results are

FIG. 3. The abundance of PBHs produced by the models A1,
A2, and A3. Black solid line, model A1; black dotted line, model
A2; black dashed line, model A3. The shaded regions are the
observational constraints on PBH abundance: the light purple
region from extragalactic γ rays by PBH evaporation (EGγ) [132],
the green region from the Galactic Center 511 keV γ-ray line
(INTEGRAL) [133], the cyan region from microlensing events
with Subaru HSC [134], the deep blue region from the Kepler
satellite [135], the gray region from the EROS/MACHO [136],
and the khaki region from accretion constraints by CMB [137].

TABLE III. The results for the abundance and peak mass of
PBHs and the peak frequency of SIGWs for the models A1, A2,
and A3.

Models Mpeak=M⊙ fpbh fc/Hz

A1 2.51 × 10−5 0.04 5.56 × 10−7

A2 9.99 × 10−13 0.765 3.13 × 10−3

A3 2.29 × 10−15 0.669 6.44 × 10−2
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shown in Fig. 4. The value of the peak frequency fc where
ΩGW0 takes the maximum value is shown in Table III. For
the model A1, even though the peak frequency of the
SIGWs is around 10−7 Hz, the SIGWs have a broad
spectrum and they can be detected in both the nano- and
millihertz frequency bands. The infrared parts of the
SIGWs in the model A1 are consistent with the stochastic
GW background detected by NANOGrav and EPTA. For
the models A2 and A3, the spectra of the SIGWs are
relatively narrow. The peak frequency of SIGWs for the
model A2 is around 10−3 Hz and the peak frequency of
SIGWs for the model A3 is around 10−2 Hz. The SIGWs
for the models A2 and A3 can be tested by future space-
borne GW detectors such as TianQin, Taiji, and LISA.

V. PRIMORDIAL NON-GAUSSIANITY

In this section, we calculate the non-Gaussianity of the
primordial curvature perturbation ζ̂ by taking the model A1
as an example. From the definition of the bispectrum Bζ

[142,143]

hζ̂k1 ζ̂k2 ζ̂k3i ¼ ð2πÞ3δð3Þðk1 þ k2 þ k3ÞBζðk1; k2; k3Þ; ð16Þ

we get the non-Gaussianity parameter fNL [142]

fNLðk1; k2; k3Þ

¼ 5

6

Bζðk1; k2; k3Þ
Pζðk1ÞPζðk2Þ þ Pζðk1ÞPζðk3Þ þ Pζðk2ÞPζðk3Þ

;

ð17Þ
where PζðkÞ ¼ 2π2PζðkÞ=k3, and the explicit form of the
bispectrum Bζðk1; k2; k3Þ can be found in [107,144]. In the

squeezed limit k3 → 0, there is a consistency relationship
between the non-Gaussianity parameter fNL and the scalar
spectral tilt ns [145]

lim
k3→0

fNLðk1; k2; k3Þ ¼
5

12
ð1 − nsÞ: ð18Þ

Although the consistency relation was originally derived in
the canonical single-field inflation with slow-roll condi-
tions, it was then proved to be true for any inflation in
which the inflaton is the only dynamical field during
inflation [146].
For the model A1, we numerically calculate fNL in the

squeezed and the equilateral limits and the results are
shown in Fig. 5. As shown in the upper panel of Fig. 5, the
consistency relation holds in the squeezed limit. In this
model, the value of fNL is small when the power spectrum
reaches the peak and is pretty large at scales around
k ∼ 106 Mpc−1. The large values of fNL are due to the
plunge of the power spectrum by several orders of
magnitude. The change of the scalar spectral tilt near the
peak is small, so the squeezed limit fNL is almost constant
when the power spectrum climbs up and rolls down
the peak.

FIG. 4. The SIGWs generated from the models A1, A2, and A3.
Black solid line, model A1; black dotted line, model A2; black
dashed line, model A3. The blue and gray violins represent the
NANOGrav 15-yr and EPTA DR2 data, respectively [119,120].
The green dashed curve denotes the SKA limit [138]. The purple
dashed curve denotes the TianQin limit [139], the orange dotted
curve denotes the LISA limit [140], and the cyan dot-dashed
curve denotes the Taiji limit [141]. The limits set by SKA,
TianQin, LISA, and Taiji are the expected sensitivities when they
are in operation in the future.

FIG. 5. The primordial scalar power spectrum Pζ and the non-
Gaussianity parameter fNL formodel A1.Upper: the purple dashed
line represents the power spectrumPζ , the blue solid line represents
− 12

5
fNL in the squeezed limit with k1 ¼ k2 ¼ 106k3 ¼ k, and the

orange dashed line represents the scalar spectral tilt ns − 1. Lower:
12
5
fNL in the equilateral limit with k1 ¼ k2 ¼ k3 ¼ k.
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Considering the non-Gaussianity of the primordial cur-
vature perturbation ζ, the PBH fractional energy density
becomes [102,104–106]

β ¼ eΔ3βG: ð19Þ

Since the mass of PBHs is almost monochromatic in the
model A1, we can consider the correction on the peak
scales only, so the third cumulant Δ3 can be approximated
as [108]

Δ3 ≈
23δ3c

PζðkpeakÞ
fNLðkpeak; kpeak; kpeakÞ: ð20Þ

In the model A1, we have δc ¼ 0.4, PζðkpeakÞ ¼ 0.0338,
and fNLðkpeak; kpeak; kpeakÞ ¼ 0.0754, so the third cumulant
Δ3 ¼ 3.28 > 1. Therefore the non-Gaussianity correction
enhances the PBH abundance and this correction makes the
production of PBHs easier.
In terms of the local-type non-Gaussianity parameter

fNL, the primordial curvature perturbation can be para-
metrized as

ζðxÞ ¼ ζGðxÞ þ 3

5
fNLðζGðxÞ2 − hζGðxÞ2iÞ; ð21Þ

where ζGðxÞ is the Gaussian part of the curvature pertur-
bation. The power spectrum of the curvature perturbation is

PζðkÞ ¼ PG
ζ ðkÞ þ PNG

ζ ðkÞ; ð22Þ

where the non-Gaussianity correction to the power spec-
trum is [103,108]

PNG
ζ ðkÞ ¼

�
3

5

�
2 k3

2π
f2NL

Z
d3p

PG
ζ ðpÞ
p3

PG
ζ ðjk − pjÞ
jk − pj3 : ð23Þ

From Eq. (23), we expect that the non-Gaussianity cor-
rection to the power spectrum mainly comes from the value
of PG

ζ around the vicinity of kpeak. Therefore, we use fNL in
the equilateral limit at kpeak as an estimator for the
amplitude of the local-type non-Gaussianity parameter.
Using the results for the scalar power spectrum, we get
PNG

ζ ðkpeakÞ ¼ 3.19 × 10−6. Since the non-Gaussianity cor-
rection PNG

ζ ðkÞ is negligible, the effect of non-Gaussianity
on the generation of SIGWs can be neglected.

VI. CONCLUSION

Taking advantage of the existence of one inflection point
in the third-order polynomial potential and inflationary
attractors, it was shown that the primordial scalar power
spectrum in the models with the combination of the third-
order polynomial and exponential α attractors can satisfy
the CMB constraints at large scales and get enhancement at
small scales to produce abundant PBHs and generate
detectable SIGWs [94]. For the exponential α attractors,
the peak scale of the power spectrum kpeak is about
1018 Mpc−1, and the PBHs produced from these models
can reach asteroid size only. To produce PBHs with bigger
mass, we combine the third-order polynomial and the
polynomial attractor models to amplify the power spectrum
at small scales. For the polynomial attractors, kpeak can be
as small as 1014–1015 Mpc−1, and PBHs with the mass
about 1017 g can be produced. However, the mass of PBHs
produced in these models is still too small. By adding a
negative power-law term to the polynomials, abundant
PBHs with different masses and the accompanying
SIGWs with different peak frequencies are generated.
For the three models considered in this paper, the peak
scales kpeak are 3 × 108, 1.7 × 1012, and 3.6 × 1013 Mpc−1,
respectively; the peak mass of PBHs are 2.51 × 10−5M⊙,
9.99 × 10−13M⊙, and 2.29 × 10−15M⊙, respectively; the
peak frequency of SIGWs are 5.56 × 10−7, 3.13 × 10−3,
and 6.44 × 10−2 Hz, respectively. The PBHs with masses
around 10−15 − 10−12M⊙ can account for almost all DM.
The power spectrum of primordial curvature perturbations
for the model A1 is broad and the power spectra for the
models A2 and A3 are narrow, so the SIGWs produced
have both broad and narrow spectra. The infrared parts of
the SIGWs in the model A1 can explain the stochastic GW
background detected by NANOGrav and EPTA. The non-
Gaussianities of the primordial curvature perturbations in
the squeezed and equilateral limits are calculated. We find
that the non-Gaussianity correction enhances the PBH
abundance, which makes the production of PBHs much
easier, but the effect of non-Gaussianity on the generation
of SIGWs is negligible.
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