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In some extensions of the standard model of particle physics, the values of the fundamental coupling
constants vary in space and time. Some observations of quasars hint at time and spatial variation of the fine
structure constant α. Here, the Bekenstein-Sandvik-Barrow-Magueijo (BSBM) model (which posits the
existence of a scalar field driving evolution in the fundamental electric charge e) is tested against quasar and
Planck satellite cosmic microwave background (CMB) data. In this model, variations in e are coupled to
the matter density through a factor ζmM2

pl=ω̄, where ζm is the fractional electromagnetic contribution to

nucleon rest masses, ω̄ is the energy-scale squared of new (BSBM) physics, and Mpl is the Planck energy
scale. Simulations conducted here do not support claims that the electrostatic contribution to ζm is
completely shielded. Other common approximations used in BSBM modeling are found to be adequate.
Principal components of the CMB data with respect to variations in α are used to obtain constraints of
ζmM2

pl=ω̄≲ 9.3 × 10−9 for a massless field. A forecast anticipating the promise of the Simons Observatory

CMB experiment shows that SO will be sensitive to values of ζmM2
pl=ω ≥ 2.2 × 10−9, significantly

improving on the uncertainty in e-variation from quasar spectra alone.

DOI: 10.1103/PhysRevD.109.103529

I. INTRODUCTION

Thanks to measurements of cosmic microwave back-
ground (CMB) anisotropies by the Planck satellite and
ground-based efforts like the South-Pole Telescope (SPT)
and Atacama Cosmology Telescope (ACT), cosmic accel-
eration as probed by type Ia supernovae, and clustering/
lensing of galaxies, there is a standard cosmological model.
This concordance model has relic-density parameters of
Ωbh2 ¼ 0.0224� 0.0001, Ωch2 ¼ 0.1200� 0.0012, and
ΩDE ¼ 0.68.547� 0.0073 (where b denotes baryons, c
denotes cold dark matter, or CDM, and DE represents dark
energy) [1–4].
Using Planck data and future results from nearly cosmic-

variance-limited CMB polarization experiments (e.g.
CMB-S4 and the Simons Observatory or SO), the CMB
can also be used to test models of dark-sector contents and
interactions. Existing data could even provide evidence for
an early dark-energy component [5–10], which could

reconcile tension between late-time supernovae and
CMB inferences of the Hubble constant [11,12]. The
evolution of cosmological perturbations probed by the
CMB is influenced by the photon diffusion length (see
Refs. [13,14] and citations therein), the redshift of the last
scattering surface, and the detailed physics of recombina-
tion [15–18]. The CMB is thus also sensitive to the
possibility that the fundamental “constants” are in fact
dynamical rather than constant.
The possibility that fundamental parameters like e, me,

mp, G, ℏ, and even the speed-of-light c vary in time (or
space) was raised by Dirac and others, who noticed that
certain combinations of these parameters with units of
time were numerically comparable to the age of the
Universe [19–22]. They posited that these ratios were
equal to the age of the Universe at all times, implying a
specific time evolution for the fundamental parameters.
Although the simplest realizations of this idea are readily
ruled out on anthropic grounds, more general scalar-tensor
theories of gravitation [23] and electromagnetism [24]
were then developed, as well as some UV completions of
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the standard model that predicted evolution of fundamental
constants [25–28]
The simplest extension of Maxwell electromagnetism

that supports variation in e [and thus the fine-structure
constant α ¼ e2=ðℏcÞ� while recovering the predictions
of standard electromagnetism was put forward by
Bekenstein [24]. This theory relies on a new scalar ψ,
which modulates the Maxwell Lagrangian for electrody-
namics and has a Brans-Dicke kinetic term with coupling
ω. This model was extended to include the gravitational
interactions of ψ in Refs. [29,30]. Subsequent work (see
Ref. [31] for a review) generalized the scalar field to a
massive one with non-trivial field dependence in ω [32,33],
included spatial perturbations [34,35], and developed more
extensive modeling of the theory’s dynamics [30,36–38].
Broadly, varying fundamental parameters occur in

standard-model extensions with extra dimensions (begin-
ning with Kaluza-Klein theory [39] and continuing with
string-inspired ideas like the runaway dilaton [40–48]).
Other cases include disformal theories, in which radiation
and matter geodesics are given by different metrics [49,50].
These scalars could constitute DE [51–54] or DM [55–58]
with novel astronomical and lab phenomenology resulting,
such as evolution in the cosmic equation of state, laser
interferometry signals, and violations of the weak equiv-
alence principle [31,59,60].
There have been hints of variation in α from high-

resolution spectra of redshift z ∼ 3–7 quasistellar objects
(QSOs) [61–66], with disputes about the interpretation of
these results [67–72]. Current/future observations promise
unprecedented sensitivity to α variations with the potential
to resolve these disputes [73,74] (e.g. results from the
ESPRESSO spectrograph, which impose the constraint
Δα=α ∼ 10−6 [75]).
Any theory of varying α will also make a prediction at

z ≃ 1100, the epoch of CMB decoupling. The Thomson
scattering rate scales as α2, while the hydrogen 2s → 1s
transition rate (the bottleneck for recombination) scales as
∝ α8. The redshift and width of the last-scattering surface
are influenced by model parameters [13,76–78]. CMB
temperature/polarization measurements can be used to
probe variations in α, as shown by the BOOMERanG/
WMAP/Planck/SPT/ACT upper limits of Refs. [79–87]
and forecasts of Refs. [88–90]. Correlations with other
fundamental constants (e.g., G) were considered in
Refs. [83–87]. All these analyses assumed a single non-
standard α value at early times. Evolution of G was con-
strained in Refs. [91–95].
Simply parametrized time evolution in α and connections

to the Hubble tension were explored in Refs. [96,97]. Given
the range of theoretical possibilities and observational
controversy, we use principal component analysis (PCA),
a model-independent technique in which the eigenvectors
of the information matrix are found. PCA may be used to
test data for novel physics, even without a compelling

model, and has been applied to explore dark matter
annihilation, nonstandard recombination, and late-time
cosmic acceleration [98–105].
Models with large projections onto these eigenvectors

will be best constrained by the data. Any model can be
constrained through projection onto principal components
(PCs), without the need to rerun a full Monte Carlo Markov
chain (MCMC). PCs can elucidate the epochs driving the
constraint. Techniques for probing cosmic recombination
with PCA were developed and applied in Refs. [106,107].
In Ref. [108], PCA was applied to to obtain the constraint
of Δα=α ¼ 0.0010� 0.0024.
Causality requires that α variation occur in space if it

occurs in time. The resulting non-Gaussian statistics [109]
were used to impose ∼10−2 level constraints to spatial α
variation [110,111]. Secondary CMB sight lines to
galaxy clusters constrain variation in α [112] because of
the Sunyaez-Zel'dovich (SZ) effect [113,114], although
these inferences remain challenging due to relativistic
corrections [115]. Large volumes will be mapped by
upcoming observations of neutral hydrogen at high redshift
[116], probing varying-α theories [117,118].
Here, we model the evolution of ψ and α dynamically in

the Bekenstein-Sandvik-Barrow-Magueijo (BSBM) model.
We allow for ψ to have a massm, motivated by recent work
finding that light scalars and pseudoscalars are numerous in
string-theory realizations and possibly cosmologically
important [119–124].
We use the PCA decomposition for α variation and

constraints from Planck data in Ref. [108] to test the BSBM
model, determining the allowed values for the coupling
ζm=ω (where ζm is the ratio of nuclear electromagnetic to
total rest-mass energy) andm. Our constraint (at 95% C.L.)
is ζm=ω ≤ 9.3 × 10−9 for m ¼ 0, with constraints relaxing
for mc2 ≳ 1.4 × 10−32 eV.
We thus obtain some of the first constraints to the BSBM

model that include the full time dependence of the model,
going back to the recombination era.1 The next decade of
CMB measurements will bring an order of magnitude
improvement in precision, and the possibility of testing
many novel physical scenarios for the dark sector, neutrinos
[127,128], and varying α. We conduct a forecast of the
sensitivity of the ground-based SO [128] to test the
BSBM model. We obtain a ζm=ω ≤ 2.2 × 10−9 sensitivity
forecast. Results for m ≠ 0 are presented in the body of
the paper.
In the BSBM model, ψ couples to the trace of the

radiation stress-energy tensor (∝ E2 − B2), where E and B

1In the preparation of this work, we became aware of other
recent work that applies CMB data to the BSBM model
[125,126]. These results are complementary, as we allow for
the possibility that ψ is massive, use PCA methods, and obtain
forecasts for future CMB experiments. We also obtain QSO prior-
free results in our CMB-only analysis.
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are electric and magnetic field amplitudes. This trace is
nontrivial to calculate [129–135]. Observational probes of
BSBM typically assume E2 − B2 ∝ ρm, the total cosmo-
logical matter density, with a proportionality constant
ζm. Estimates of ζm vary in sign and in magnitude by
2–3 decades [129–135], depending on whether it is
dominated by electric or magnetic contributions [135],
classical vs quantum approaches, and our ignorance of the
dark-sector contribution [129–135].
We ran a simulation to test recent claims [135] that

magnetic contributions to ζm dominate over electrostatic
terms. Our results indicate that they do not. We then put
constraints on ζm=ω. Most comparisons of the BSBM
model to data rely on a non-energy-conserving approxi-
mation in the equations of motion. We find that our
constraints are insensitive to this approximation.
We begin with a discussion of scalar field dynamics and

numerical methods for their evolution in Sec. II. We review
principal component methods and explain our use of
them in Sec. III. We summarize our MCMC modeling
techniques and results in Sec. IV, and conclude in Sec. V. In
Appendix A, we test the cancellation of electrostatic
contributions to ζm. In Appendix B, we explore the impact
of an energy nonconserving approximation made through-
out the literature to solve the BSBM equations of motion,
and find it to be negligible.

II. BSBM THEORY

In Bekenstein’s original formulation of this α variation
theory [24], the scalar field ψ was coupled to the standard
Maxwell Lagrangian, but the coupling to gravity was not
included. Later work by Sandvik, Barrow, and Magueijo
included this inevitable coupling [29]. In the resulting
BSBM theory [29,135], the electric charge e evolves, while
Planck’s constant h and the speed of light c are constant.
A real scalar field modulates the Maxwell Lagrangian,
causing variations in α: e0 → e ¼ e0ϵðxμÞ. Here ϵ is a
dimensionless scalar field. Then ϵ couples to the electro-
magnetic gauge field Aμ in the Lagrangian. Under the usual
local gauge transformation UðxÞ ¼ eiθðxÞ, the electromag-
netic action is still invariant with a modified gauge-field
transformation, ϵAμ → ϵAμ þ ∂μθðxÞ.
Recasting the equations in terms of a more standard

scalar field ψ defined by ψ ≡ lnðϵÞ, the equation of motion
for the scalar field is [135]

□ψ ¼ 2

ω̄
e−2ψLem; ð1Þ

where ω̄ ¼ ℏc=l2 is a coupling constant and l is some new
length scale below which Coulomb’s law breaks down. In
Planck units, ω̄ has units ½energy�2, and so we employ the
reparametrization ω̄ ¼ M2

plω in terms of the reduced Planck

mass Mpl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
and a dimensionless parameter ω

that quantifies the amplitude of evolution in α.
The standard Maxwell Lagrangian, Lem ¼ FμνFμν=4,

vanishes for pure radiation (as Lem ∝ E2 − B2 ¼ 0, where
E and B are the electric and magnetic-field vector ampli-
tudes, respectively). It would, however, be excited by
plasma-sourced electrostatic and magnetic fields E and
B in the early Universe. The approximation L ≃ ζmρm is
used throughout the literature, where ζm is a dimensionless
constant quantifying the electromagnetic self-energy of
nonrelativistic matter. This replacement warrants justifica-
tion and requires a numerical estimate of ζm.

A. Values of ζm
We summarize past results and quantitatively assess

claims [135] that prior calculations of ζm were in severe
error, using a numerical plasma simulation in Appendix A.
The simplest possibility is that the dark sector does not
source scalar-field evolution. Straightforward estimates of
the baryonic contribution to ζm may be obtained by
extrapolating a semi-empirical mass formula for nuclear
electromagnetic self-energy to the case of a primordial
(hydrogenþ helium) plasma [136,137]:

ECoulomb ¼ −aC
Z2

A1=3 : ð2Þ

In this equation, aC is an empirically determined con-
stant, Z is the atomic number of the nucleus, and A is
the mass number of the nucleus. This term represents the
decrease in nuclear binding energy that is caused by the
electrostatic repulsion between the positively charged
protons in the nucleus.
Using the fact that aC ≈ 0.7 MeV [24], the estimate

ζm ∼ 1.3 × 10−2 was obtained through classical approxi-
mations to the nucleus. Late-time nucleosynthesis could
lead to additional time dependence [24,130]. These esti-
mates are dominated by E2 (rather than B2). Subsequent
estimates modeled quark electromagnetic fields within the
nucleus [29], applying the Born term in the Cottingham
formula and following the methods of Ref. [129] to
obtain ζm ≈ 10−4.
As ρm is dominated by dark matter (whose nature is

unknown), ζm could be dominated by nonbaryonic con-
tributions [29]. One can then have −1 < ζm < 1 [with the
bounds saturated for dark matter composed of supercon-
ducting strings]. A negative value or ζm is appealing
because it can explain QSO results hinting at a decrease
of α with time.
Subsequently [135], the author of Ref. [24] solved the

modified Maxwell equations of BSBM theory and the static
limit of Eq. (1), claiming that (under some approximations)
the ψ field configuration shields out the electrostatic
contribution to Eq. (1), leaving only the B2 term.
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This cancellation is also claimed to allow the BSBM
theory to evade terrestrial, Solar System constraints to
weak-equivalence principle (WEP) violation [135], although
the magnetic term might also lead to detectable WEP
violation [131]. More generally, WEP bounds may be
satisfied for jζmj > 10−3 for the ζm=ω values that saturate
the CMB constraints of Sec. IV, motivating us to continue
testing this theory empirically.
If this cancellation occurs, then the magnetic contribu-

tions from baryons dominate, and one can have negative ζm
without exotic dark sector contributions of the type dis-
cussed in Refs. [29,55]. Reference [135] provides estimates
of ζm, integrating the classical solution for B2=8π outside
of the Compton radius of a proton, weighting quantities by
the abundances of hydrogen and helium in the Universe,
and obtaining the estimate ζm ≈ −1.98 × 10−5. This esti-
mate does not apply the effective field theory methods of
Ref. [129].
Accounting more accurately for the composite and

quantum mechanical nature of the nucleus, Ref. [131]
applies methods introduced in Refs. [134,138] to compute
ζm in terms of expectation values of nuclear electromag-
netic density and current operators. Quantum mechanical
identities (e.g. the Thomas-Reich-Kuhn rule) can be used to
rewrite these quantities in terms of the photoabsorption
cross section and other empirically measurable properties
of nuclei. An estimate of

ζmðAÞ ≈ −
8.60465 × 10−6

A1=3 ð3Þ

is obtained [132], although this calculation does not yet
apply the fully relativistic field-theory techniques of
Ref. [129].
Seeking to test the analytic approximations of Ref. [135],

we conducted a simulation of the early Universe plasma to
assess if the electrostatic contribution to ζm is shielded. Our
methods and results are presented in Appendix A. We find
that the term of opposite sign potentially driving cancella-
tion in ζm is orders of magnitude smaller than other terms,
and thus that electrostatic cancellation does not occur.
Further investigation is needed, but we recommend the use
of ζm ≈ 10−4 as a “standard” value for the BSBM variant in
which ψ is not coupled to the dark sector.
Broadly, there are two logical possibilities. In one case, α

variation is sourced by a coupling of ψ to baryonic matter.
In the other case, α variation is sourced by a coupling of ψ
to the dark sector. In the case that ζm is sourced only by
standard electromagnetism, it is important to compute ζm
accurately, so that measurements of or limits to α variation
can be turned into allowed ranges for

ffiffiffiffi
ω̄

p
, the energy scale

of new physics. Put another way, an accurate value of ζm is
essential to go from the limits obtained in Sec. IV to an
empirically allowed range for l ¼ ℏc=

ffiffiffiffi
ω̄

p
, the length scale

at which Coulomb’s law breaks down due to interactions of
standard model fields with the BSBM scalar field.
In the case that α variation is sourced by dark-sector

interactions of ψ , ζmM2
pl=ω̄ is a single effective (unknown)

dimensionless coupling constant (e.g. g in a dilaton warp
factor of the form e−gψ in a nonminimal coupling term of a
Lagrangian) to be determined empirically or predicted in an
effective dark sector theory, as discussed extensively in
Ref. [55]. There, values of ζmM2

pl=ω̄ ¼ −
ffiffiffi
2

p
=4, 1=2, 0.05,

and −1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16Ωþ 24

p
are obtained, for the string dilaton,

supersymmetric Bekenstein-Magueijo model, gaugino-
driven modulus, and Brans-Dicke electromagnetism model
variants, respectively. Here Ω is the usual Brans-Dicke
coupling parameter. For the remainder of this paper, we
treat ζmM2

pl=ω̄ as a parameter to be empirically determined
from cosmological data.

B. Scalar field dynamics

The evolution of the scalar field from Eq. (1) can then be
written

ψ̈ þ 3Hψ̇ ¼ −
2

ω̄
e−2ψζmρm: ð4Þ

Assuming a spatially flat, homogeneous, and isotropic
universe, we write Eq. (4) as a function of redshift z using
the standard Hubble parameter definition H ≡ ȧ=a, where
H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ Ωrð1þ zÞ4 þΩΛ

p
and standard

relation between scale factor a and z, a ¼ 1=ð1þ zÞ:

d2ψ
dz2

−
dψ
dz

�
2

ð1þ zÞ −
d lnEðzÞ

dz

�

þ m̃2ψ

ð1þ zÞ2½Ωmð1þ zÞ3 þΩrð1þ zÞ4 þΩΛ�

¼ −
6ζm
ω

Ωmð1þ zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ Ωrð1þ zÞ4 þ ΩΛ

p e−2ψ ; ð5Þ

where EðzÞ≡HðzÞ=H0.
Here we also allow a mass m for the scalar field to allow

a more general set of dynamical variation models for α. In
the Klein-Gordon equation with meters-kilograms-seconds
(MKS) units, one has a term¼ ðmc2=ℏÞ2ψ . After rewriting
the Klein-Gordon equation through the preceding series
of transformations, it is straightforward to see that m̃ ¼
mc2=ðℏH0Þ ¼ mc2=ð2.13 × 10−33 h eVÞ, where h here is
the usual dimensionless Hubble constant. For the analysis
in the main body of this paper, we have assumed the
standard ρm ∝ a−3 scaling. As discussed in Appendix B,
this does not self-consistently allow for energy conserva-
tion under the Lem → ζmρm approximation. We assess this
issue quantitatively in Appendix B, and find that the
resulting correction to our field evolution, observables,
and constraints is negligible.

HURUM MAKSORA TOHFA et al. PHYS. REV. D 109, 103529 (2024)

103529-4



The coefficient on the rhs of Eq. (5) is defined relative to
the reduced Planck mass and thus appears different from
that shown in some other work (e.g. Ref. [125]) on this
topic. We treat the scalar-field coupling ζm=ω and m̃ as free
parameters to be empirically constrained. The scalar field,
ψ is related to α by α ¼ e2ψe20=hc, implying that Δα=α ≃
2ψ for small ψ .
We solved Eq. (5) going from z ¼ 0 to higher values,

using an eighth-order Runge-Kutta (RK) method [139] with
80000 linear steps in z. The number of steps was increased
until the relative fractional numerical error in Δα=α was
smaller than ∼10−7, the fractional α variation implied
(∼10−5) by some QSO measurements [29]. Note that this
calculation itself does not depend on the QSOmeasurement.
All the high-z behavior is determined by Eq. (5), along with
the chosen values of ζm=ω, ψðz ¼ 0Þ and ψ 0ðz ¼ 0Þ. Here
the 0 denotes a derivative with respect to z.
To verify the stability and accuracy of this method, we ran

a test in which we evolved our numerical solver backward in
time to high z and used ψðzhighÞ and ψ 0ðzhighÞ as the initial
conditions for a forward integration in time (decreasing z),
comparing z ¼ 0 and intermediate values of ψ and ψ 0 with
the results obtained from the high-to-low z evolution. We
recovered the desired fractional ∼10−7 precision in Δα=α.
Assuming that ψ ¼ 0 and ψ 0 ¼ 0 at z ¼ 0 (needed for
consistency with present-day lab constraints), we show the
resulting cosmological α variation as a function of z in Fig. 1
for a variety of ζm and m̃ values.
Reference [31] summarizes Keck HIRES QSO obser-

vations hinting at α variation. There, a slightly different
convention for BSBM constants is used. Effectively,
they constrain ζ̃ ¼ 8πζm=ω, obtaining ζ̃ ≤ 3.7 × 10−6 at
95% C.L. and ζm=ω ∼ 10−7. In Fig. 1, we see that if these
constraints are saturated, one expects Δα=α ∼ 10−2 at the
recombination epoch, well within reach of the CMB’s
sensitivity to α variation [79–87,97]. For values
log10m̃≳ 1.5, the oscillations in ψ are fast enough that
many (tens or more) have occurred in a period comparable
to the Hubble timescale today.

In this regime, we use an adaptive version of the eighth-
order Runge-Kutta solver (step size is set by comparing
the value for the nonadaptive regime with ∼1=10 of a
Hubble time, and choosing the minimum). We verify that
field evolution agrees between fixed and adaptive step size
solvers at the ∼5% level for m̃ ¼ 1.0. We have verified that
constraints to ζm=ω are insensitive to an increase of time
resolution (by a factor of ∼2) at the ∼1–5% level depending
on the precise value of m̃.

III. PRINCIPAL COMPONENT ANALYSIS

One powerful approach for probing nonstandard physics
is PCA, which eschews a specific model, and instead
determines a nonparametric family of template functions.
These PCs are data-driven models that capture the variance
between observations and a fiducial (or best-fit) model.
PCA has already been used to great effect to test models

of dark energy [as parametrized by its equation-of-state
parameter wðzÞ] [99,104,105], the cosmic reionization his-
tory [100,101], nonstandard cosmic recombination [106],
as well as more exotic physics like dark-matter decay and
annihilation [103]. In this work, we use the α variation in PCs
already determined in prior work by some of us [97,107] to
probe time-varyingα, setting the stage for thework described
here, aswell as future analysis of a broad family of theoretical
models. Full details of the techniques used to apply and
constrain the PCs can be found in Refs. [97,107], but we
briefly review the technique below.
PCs are obtained by diagonalizing the Fisher information

matrix [140,141]:

Fij ¼
�

∂
2L

∂θi∂θj

�
; ð6Þ

where L is the log-likelihood function of a data set or
simulation givenvalues of all model parameters θi evaluated
at their fiducial values. Schematically, the parameter vector
θ ¼ fp;qg, where p denotes fiducial model parameters
and q denotes the expansion coefficients of non-standard

FIG. 1. Evolution of α variation as a function of z for a range of BSBM model parameters.
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deviations from the fiducial model for quantities (e.g. α)
usually treated as constant.
For our case, this means that

ΔαðzÞ
α0

¼
X
i

qifiðzÞ; ð7Þ

where the basis functions fi are some (complete, but not
necessarily orthogonal) set of smooth basis functions centered
at some set of redshifts zi and qi are expansion coefficients.
The vector p ¼ fAs; ns;Ωbh2;Ωch2; τreion; H0g contains
the standard cosmological parameters of the dimensionless
amplitude of the primordial perturbation power spectrum, its
spectral index, the relic baryon density, CDM density, optical
depth to reionization, and Hubble constant, respectively.
For a Gaussian likelihood, the CMB Fisher matrix is

given by

Fij ¼
X
l

fsky

�
2lþ 1

2

�
∂Cl

∂θi
Σ−1
l

∂Cl

∂θj
; ð8Þ

where Cl ¼ fCTT
l ; CEE

l ; CTE
l g is the theoretically predicted

set of CMB (temperature/polarization auto and cross)
power spectra, Σl is the covariance matrix of observatio-
nally estimated CMB power spectra at multipole index l,
including the effect of instrumental noise and cosmic
variance, and fsky is the fraction of sky covered by an
experiment.
Using a set of Gaussian basis functions, a modified

version of the CAMB [142] code interfaced with the
COSMOREC recombination code [143], the Planck 2018
likelihood function, and the usual analytic approximations
for the instrumental properties of the SO (an ongoing
ground-based CMB experiment), a set of PCs for time-
varying α was obtained in Ref. [108]. CAMB was run
including the impact of gravitational lensing [144], which
smooths the high-l anisotropies. We apply these PCs here
to test the BSBM model.
Several PCs are shown for the SO case in Fig. 2. These

PCs peak in the range 800≲ z≲ 1200. As described in
Refs. [96,97,107,108] (and references therein), evolution in
α affects the CMB by modulating the Lyman-α absorption
cross section, the hydrogen two-photon 2s → 1s transition
rage (both of which impact the free electron fraction),
and the Thomson scattering cross section. All these rates
in turn affect the median redshift and width of the last-
scattering surface, the rate of diffusion damping, and the
efficiency with which CMB polarization is generated. All
these processes occur primarily during the peak z range of
the PCs.
We see that at low m̃, the BSBM model is relatively

featureless compared to the PCs in the z range of interest.
Models with higher m̃ values show an overlap of large
amplitude α variation and oscillation, increasing the
importance of higher-index PCs. Perhaps more complicated

potential energy functions (which likely begin coherent
oscillation earlier) would show an overlap of large ampli-
tude α variation and oscillation, leading to more interesting
interaction with the PCs. We will explore this possibility
more in further work.
In terms of the PCs EiðzÞ, any model may be expressed

ΔαðzÞ
α0

¼
X
i

ρM;iEiðzÞ; ð9Þ

where the PCs can be expressed as linear combinations of
the original basis functions

EiðzÞ ¼
X
j

eijfjðzÞ; ð10Þ

where eij denotes the jth basis component of the ith Fisher-
matrix eigenvector ei. For sufficiently dense basis sets,
the PCs should themselves be numerically convergent
(checked for the α-variation case in Ref. [107]) and
basis-independent (checked for variations in the cosmic
recombination history in Ref. [106]).
The projection amplitudes for any specific model reali-

zation are given by

ρM;i ¼
Z

ΔαðzÞ
α0

× EiðzÞdz ð11Þ

and may be used to accurately reexpress the variation
around the fiducial model as long as it is small.
These can be used to construct a χ2 diagnostic with the

best-fit (from the data) values for the model-expansion
coefficients in the PC basis, ρD;i:

χ2 ¼
X
i

ðρM;i − ρD;iÞðF Þ−1ij ðρM;i − ρD;iÞ: ð12Þ

Here the sum is over PC indices.

FIG. 2. Evolution of α variation as a function of z assuming
m̃ ¼ 0, ζm=ω ¼ 1 × 10−8 and first three SO eigenmodes.
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One advantage of this method is that even if the
likelihood with respect to model (e.g. BSBM) parameters
is non-Gaussian, the likelihood with respect to PC ampli-
tudes is still very close to Gaussian. Here the covariance is
given by

σρM;i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

q
≃

1ffiffiffi
λ

p
i

; ð13Þ

where F is the (nearly diagonal) α-variation Fisher matrix.
The quantity λi is the ith eigenvalue of the α-variation
Fisher matrix. As discussed in Ref. [106], two types of PCs
are possible for new physics. In one, standard cosmologi-
cal parameters are held fixed, and F only includes
variations in α. In the other, the Fisher matrix includes
cosmological parameter variations and α variation (and
thus their full degeneracy structure). The former are
marginalized over to obtain a Fisher matrix for α variation,
which was then diagonalized to obtain the PCs.
Applying the results of Ref. [108], we use these post-

marginalization PCs, whose best-fit values and allowed
ranges were originally found through a full MCMC in
which cosmological parameters were simultaneously var-
ied with PC amplitudes [108]. At Fisher level, expanding
around the fiducial model, parameter changes (from
ρ → ζm=ω) commute with cosmological parameter mar-
ginalization, and so we do not expect our constraints to
get less stringent due to any neglected covariances.
Nonetheless, in future work, we will more fully account
for these covariances by using the original samples from the
MCMC to construct a kernel-density likelihood in which
PC amplitudes and cosmological parameters can be simul-
taneously varied, as in e.g. Ref. [145].
To construct our Planck posterior probability for BSBM

model coefficients, we use Eqs. (11) and (12) and the usual
L ∝ e−χ

2=2 × π. To efficiently explore a broad parameter
space, we use log-flat and flat priors π for m̃ and ζm=ω,
respectively, and the parameter ranges −8 ≤ log10ðm̃Þ ≤ 1

and −10−2 ≤ ζm=ω ≤ 10−2. In Sec. IV, we will explain a
number of tests done to make sure our constraints are robust
and not driven by our choice of prior.
We use the best-fit PC amplitudes and errors (obtained

from MCMC runs) from Ref. [97]. We computed ΔαðzÞ=α
using the method discussed in Sec. II. To conduct forecasts
for SO, we built a mock likelihood, assuming that the
fiducial model is true (e.g. that ρD;i ¼ 0), and used Fisher-
forecast errors on the PC amplitudes. For our Planck
analysis, three PCs were used, while 10 PCs were included
for SO, to allow for its higher information content. It can
be helpful to assess the relative information content and
utility of different PCs, and to determine how many are
truly needed to properly capture a data set. One useful tool
is the signal-to-noise (SNR) contribution from each mode,
which is

ðS=NÞi ¼
ffiffiffiffiffiffiffiffi
λiρ

2
i

q
: ð14Þ

Another interesting quantity in PCA is the risk
factor [98,99,102], defined via

σ2½αðzjÞ� ¼
 XNPC

i

e2i ðzjÞ
λi

!
; ð15Þ

bðzjÞ ¼
ΔαðzjÞ

α
−
XNPC

i

½ρiEiðzjÞ�; ð16Þ

Risk½NPC� ¼
X
j

fb2ðzjÞ þ σ2½αðzjÞ�g; ð17Þ

where NPC is the number of PCs used to test a model. Here
bðzjÞ is defined to be the bias in ΔαðzÞ=α induced by using
an incomplete set of PCs, which competes with the variance
(which decreases when PCs are filtered out to reduce the
error in the data if the fiducial model is actually true). This
quantity is model dependent and minimized when an
optimal number of PCs is chosen to test a specific model.
In Sec. IV, we compute this quantity to assess the impact of
different PCs on our BSBM model constraints.

IV. DATA ANALYSIS AND RESULTS

Using the Planck 2018 α-variation likelihood described
in Sec. III and our scalar-field integrator, we found best fit
values of ζm=ω for the m ¼ 0 case. We then set a broad
parameter range of −0.01 ≤ ζm=ω ≤ 0.01 and −8 ≤
log10ðm̃Þ ≤ 1 and ran an MCMC simulation to determine
the allowed ζm=ω and log10ðm̃Þ parameter space.
We used the EMCEE package, which applies Goodman

and Weare’s affine invariant sampler to run MCMCs and
checked for convergence using the autocorrelation time
[146]. For the CMB analysis, we established two-dimen-
sional MCMC convergence as follows: For the Planck
analysis, we ran 32 chains for 12000 samples. We obtained
a correlation length of ∼150 for ζm=ω and ∼60 samples for
log10ðm̃Þ, less than 12000=50 ¼ 240. For the SO analysis,
we ran 32 chains for 10000 samples. We obtained an auto-
correlation length of ∼10 samples ζm=ω and 58 in log10ðm̃Þ.
Both are less than 10000=50 ¼ 200, and so all these CMB
chains are converged. For our analysis, we used a burn-in
fraction of 0.3 throughout. Visualizations and confidence
intervals were generated with the GetDist package [147].
The results are shown in Fig. 3. As we can see, the

constraint becomes less stringent near log10ðm̃Þ ≃ 0. The
predicted decoupling-era α variation of parameter sets
beyond this threshold is smaller than for lower values of
log10ðm̃Þ. To be sure that our allowed parameter space
[which is highly non-Gaussian in log10ðm̃Þ] is robust, we did
a series of one-dimensional MCMC runs at a discrete grid
of m values near and beyond the transition point, as also
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done to obtain constraints to ultra-light axions in Ref. [122].
These are presented in Table I.
Wemade sure that the range used for log10ðm̃Þ overlapped

with that used in the two-dimensional MCMCs, finding
agreement that validates both sets of constraints (the con-
straints from overlapping one-dimensional simulations
are superimposed with stars in Fig. 3). This confirms that
our two-dimensional constraints are not dominated by our
choice of prior for log10ðm̃Þ. Additionally, we computed the
data-theory χ2 on a coarse grid and obtained preliminary

limits that validate our ultimate results (from both one and
two-dimensional MCMCs).
For log10ðm̃Þ ≥ 1, we used the adaptive solver described

above. Chains (24 for every mass) for log10ðm̃Þ ≤ 2 were
3000 samples long, while those with log10ðm̃Þ > 2 were
4500 samples long. The autocorrelation length was ≤ 77
samples for the high log10ðm̃Þ cases, and ≤ 30 for the low
log10ðm̃Þ cases, and are thus all converged. The consoli-
dated results (constraints and forecasts) at high values of
log10ðm̃Þ are shown in Figs. 4 and 5.

FIG. 3. 68.5% (dark) and 95% C.L. (light) contours for ζm=ω and m̃ using Planck 2018 data. Overlaid are forecasts for upcoming SO
data, assuming forecast SO error bars on principal component amplitudes and a fiducial value ζm=ω ¼ 0. Five-sided red (blue) stars
show Planck (SO) results from the one-dimensional MCMCs described in Sec. IV.
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Summarizing our two-dimensional results, we see that at
95% C.L., Planck data impose the constraint ζm=ω ≤
9.3 × 10−9, with future SO data offering an order-magnitude
improvement in sensitivity. This constraint relaxes nearly
completely for log10ðm̃Þ ≥ 1. For SO, we find that at the
lowest m̃ values, SO would be sensitive to values of ζm=ω ≃
2.2 × 10−9 and higher, as can be seen separately in Fig. 6.
These results are also shown in Table II.
It is interesting to examine the change induced in CMB

observables for parameter values saturating our constraints
in order to understand what features drive our sensitivity to
the BSBM model. We have ΔCXY

l;j for each of the PCs
obtained via

dCXY
l;j

dρj
¼
X
i

dCXY
l

dqi

dqi
dρj

;

¼
X
i

dCXY
l

dqi

Z
dzEjðzÞfiðzÞ; ð18Þ

where X; Y ∈ fTT;EE;TEg. We then use these expressions
to calculate the BSBM-induced change to observables,
applying the fact that

ΔCXY
l;BSBM ¼

XNpc

j¼1

ρBSBM;j

dCXY
l;j

dρj
: ð19Þ

The changes to Cl for Planck best-fit values of ζm=ω, as
well as 68.5% and 95% C.L. constraint-saturating values,
are shown in Fig. 7, along with the same quantities for SO.
For this plot we used log10ðm̃Þ ¼ −3.0. The changes are
normalized to the cosmic variance per multipole

σCXX
l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2lþ 1

r
CXX
l ð20Þ

TABLE I. Constraints on ζm=ω at different masses from Planck
2018 analysis using one-dimensional EMCEE runs and a fixed set
of m̃ values.

log10 m̃ ðζm=ωÞ (Planck 2018)

0.3 ð−4.3� 6.7Þ × 10−9

0.5 ð−6.3� 9.1Þ × 10−9

0.6 ð−0.8� 1.1Þ × 10−8

0.8 ð−1.4� 2.3Þ × 10−8

1 ð−2.2� 3.2Þ × 10−8

1.5 ð−0.8� 1.1Þ × 10−7

2 ð−2.4� 3.5Þ × 10−7

2.5 ð−0.8� 1.1Þ × 10−6

3 ð−2.6� 3.8Þ × 10−6

3.5 ð−0.96� 1.3Þ × 10−5

4 ð−3.7� 5.5Þ × 10−5

FIG. 5. 95% C.L. (light) contours for ζm=ω and m̃ using our SO
forecast and Planck data, obtained with the adaptive solver and
one-dimensional EMCEE runs.

FIG. 4. 68.5% (dark) and 95% C.L. (light) contours for ζm=ω and m̃ using our SO forecast and Planck data, obtained with the adaptive
solver and one-dimensional EMCEE runs.
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of the fiducial model. To avoid spikes near zero crossing of
TE, we use the usual convention that

σCTE
l
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2lþ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCTE

l Þ2 þ CTT
l CEE

l

q
: ð21Þ

We see that in temperature, the dominant effect is a
decrease in high-l anisotropies. This corresponds to a shift
of the diffusion damping tail to lower-l (larger angular
scales). Larger positive values of ζm=ω correspond to larger

values of α in the past, more efficient scattering, later
decoupling, and a surface of last-scattering closer to the
observer, driving features to lower l. In temperature, this
geometric effect dominates over higher scattering rates
yielding lower diffusion-damping lengths (which would
enhance rather than depress low-l anisotropies).
Higher values of ζm=ω mean larger values of α in the

past. This means that Thomson scattering rates were higher,
and E-mode polarization anisotropies were generated more
efficiently at scales at l below the Silk damping scale.

FIG. 6. 68.5% (dark) and 95% C.L. (light) contours for ζm=ω and m̃ using our SO forecast. Overlaid are forecasts for upcoming SO
data, assuming forecast SO error bars on principal component amplitudes and a fiducial value ζm=ω ¼ 0. Five-sided stars show SO
forecasts from the one-dimensional MCMCs described in Sec. IV.
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As a check, we also used EMCEE with a QSO data set
and error bars shown in Fig. 8 to probe the BSBM
parameter space. We used the χ2 between the model
BSBM variation ΔαMðzÞ (for any given values for m
and ζm=ω) and the reported variation inferred from QSO
data ΔαDðzÞ:

χ2 ¼
X
i

½ΔαMðziÞ − ΔαDðziÞ�2
σ2i

: ð22Þ

The QSO redshifts are denoted zi and the measurement
errors in ΔαDðzÞ are denoted σi. For the QSO analysis, we
used 32 one-dimensional MCMC chains of 2000 samples

TABLE II. Forecast sensitivity levels on ζm=ω at different
masses from the SO forecast, using one-dimensional EMCEE runs
and a fixed set of m̃ values.

log10 m̃ ðζm=ωÞ (SO)
−5 ð0.0� 1.2Þ × 10−9

0.6 ð0.2� 2.1Þ × 10−9

0.8 ð0.0� 4.9Þ × 10−9

1 ð0.1� 6.9Þ × 10−9

1.5 ð0.0� 2.3Þ × 10−8

2 ð0.1� 7.4Þ × 10−8

2.5 ð0.0� 2.4Þ × 10−7

3 ð−0.2� 7.9Þ × 10−7

3.5 ð−0.1� 2.9Þ × 10−6

4 ð−0.0� 1.1Þ × 10−5

FIG. 7. Top row: fractional change ΔCl=σCl
for Planck 2018 best fit values, and for values saturating 68.5% C.L. and 95% C.L.

constraints to ζm=ω, all for log10ðm̃Þ ¼ −3.0. Here σCl
is the cosmic variance per multipole. Bottom row: same quantity, now assuming

assuming models that saturate SO error bars (themselves determined using the fiducial model).

FIG. 8. Compilation of possible α variation as a function of
time, inferred from analysis of QSO spectra, from Ref. [31].
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each for each m̃ value. The autocorrelation length was ∼17
samples, far less than 2000=50 ¼ 40, and so the chains are
converged.
Our reanalysis of the QSO data summarized in Ref. [31]

(mostly from the Keck HIRES spectrograph) yields a
95% C.L. limit ζm=ω≤ 2.8×10−7 when log10ðm̃Þ ¼ −5.
Translating into the different normalization of BSBM cou-
plings used there (ζ̃¼ 8πζm=ω), this implies ζ̃≤ 7×10−6,
consistent with the limits given in Ref. [31]. QSO results for
higher m̃ aregiven inTable III. ThePlanck limits presented in
this work (alone, without a QSO prior) to BSBM parameters
are thus tighter than those imposed by the HIRES data.
Recently, extremely precise constraints to α variation

have been obtained with the ESPRESSO spectrograph at
the European Southern Observatory and applied to test the
BSBM and related models [125,126]. That work includes
an external constraint imposed from the CMB, but features
QSO (and other more local) results. A 95% C.L. limit of
ζ̃ ≤ 1.5 × 10−6 is given there (obtained from QSO data),
equivalent to ζm=ω ≤ 6.0 × 10−8. This limit folds in a
significant nonzero centroid for the PDF of ζm=ω in their
analysis, however, and the sensitivity of that work (with
QSO data set) has a 95% error bar on ζm=ω of ∼3.3 × 10−7,
less stringent than our Planck analysis.
Our SO forecasts predict a sensitivity level better than

this, and so it stands to reason that future CMB exper-
imental efforts (e.g. S4, HD) will outpace some lower-z
probes of α variation in testing the BSBMmodel and related
ideas. More broadly, this is an independent technique,
depending on different physics, with different systematics,
and evidence for the model at high-redshift could be
reconciled with low-redshift upper limits in the context of
a theory with different time evolution than initially assumed
(the same could be said for a high-redshift upper limit in
conflict with potential low-redshift evidence).
In future work, we will investigate the power of

combining QSO and CMB data sets. We have developed

a version of the Boltzmann code CLASS which evolves the
spatial fluctuations in the scalar field of the Bekenstein
model. Our code includes both gravitational effects and
nonminimal coupling of ψ to DM.
While we are exploring the possible impact of this spatial

fluctuation onCMBobservables, we have already found that
the predicted angular spectrum of α variations at decoupling
is blue. The observable impact of these fluctuations is
currently only computable within a separate universe limit
(see Ref. [148] for a discussion) and produces a spatial
variation (on scales that are super-horizon at recombination)
in α with a root mean-squared value at the ∼10−5 fractional
level for values ζm=ω ¼ 1. This signal is small, but the
correlation with the underlying dark-matter density field
(and possible early Universe quantum contributions to ψ
fluctuations), could still induce an observable signal through
non-Gaussian signatures in the CMB along the lines
described/sought in Refs. [109,110,149].
A more detailed discussion of the results and methods of

those efforts is beyond the scope of this work and will be
presented in a future manuscript [150]. The small ampli-
tude of the signal (due to the causal growth of ψ fluctua-
tions and the smallness of primordial fluctuations) is
consistent with predictions of Ref. [37].
To understand which PCs are driving constraints, it is

interesting to examine the SNR of each mode for parameter
values saturating the 95% C.L. BSBM model constraints
for m̃ ¼ 0 with Planck data, applying Eq. (14). These
quantities are shown in Fig. 9. We see that the first two
PCs have significant constraining power for Planck, while
three PCs of SO data will be constraining. Unsurprisingly,
SO will generally have a much higher SNR for the
BSBM model.

TABLE III. Constraints on ζm=ω at different masses from QSO
data, using one-dimensional EMCEE runs and a fixed set of m̃
values.

log10 m̃ ðζm=ωÞ (QSO)
−5 ð−1.1� 1.0Þ × 10−7

0 ð−1.4� 1.1Þ × 10−7

1 ð−1.4� 1.2Þ × 10−6

1.5 ð−1.24� 0.89Þ × 10−5

2 ð−7.4� 0.83Þ × 10−5

2.5 ð7.8� 0.82Þ × 10−4

3 ð−0.1� 0.0084Þ
3.5 ð−0.085� 0.08Þ
4 ð−0.01� 0.008Þ

FIG. 9. Signal-to-noise ratio as a function of PC index,
assuming true ζm=ω that saturate Planck 95% C.L. constraints
with m̃ ¼ 0. PC eigenvalues for higher indices in Planck are
extrapolated to estimate SNR (as the eigenvalues appear to follow
a clear power law) and are shown in red for clarity (red).
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We also compute the risk [Eq. (17)] as a function of NPC,
the number of PCs used in the analysis, assuming SO noise
levels and a signal saturating the Planck 95% constraint
level for m̃ ¼ 0. The results are shown in Fig. 10 for SO,
indicating that three PCs should suffice to test the BSBM
model adequately while minimizing risk.

V. CONCLUSIONS

We have used Planck 2018 data and its principal
components for variations in α to constrain the BSBM
theory of varying α, obtaining a 95% C.L. constraint of
ζm=ω ≤ 9.3 × 10−9. Assuming the null hypothesis holds,
we have found that the Simons Observatory will have
sensitivity to values as low as ζm=ω ¼ 2.2 × 10−9. These
results apply not only to the BSBM theory, but also to a
related family of theoretical ideas, such as the string
dilaton, the supersymmetric BSBM, the gaugino-driven
modulus, and Brans-Dicke electromagnetism [55].
Looking forward, it will be interesting to extend our

results to further theoretical models for α variation [includ-
ing, for example, a scalar-field potential and coupling
function ωðψÞ [32,33] ], or models where other coupling
constants (e.g. me [151], G [91–95], or even c [152–154])
are dynamical.
Using kernel-density estimates of the full-PCAþΛCDM

likelihood, we will more fully probe the covariance of
BSBM model parameters with standard cosmological
parameters. Causality dictates that variations of α (or other
fundamental parameters) in time require variations of α.
While these variations are likely to bevery small, theywould
induce non-Gaussian signatures in the CMB [109–111],
and it would be useful to explore if this signal could be
better extracted by applyingCMBdelensing, and harnessing
the cross-correlation of α with the underlying density
field [155]. The induced CMB bi- and trispectra by these

models have, in principle, a distinct shape from more
standard effects like CMB lensing [148,155]. In future
work, we will assess if this can be used to better extract
spatial variations in α from the CMB.
Thinking towards future measurements of CMB anisot-

ropies, it will be interesting to explore the power of the
planned CMB-S4 experiment [127,156], as well as more
futuristic concepts like CMB-HD [157], which could probe
the CMB at much smaller angular scales than ever before,
promising much improved leverage on varying fundamen-
tal constants.
In coming years, new cosmological frontiers will open,

with likely measurements of the neutral 21-cm signature of
cosmic reionization and the cosmic dark ages [116]. The
global 21-cm signal and anisotropies should be strongly
sensitive to α [117,118]. Furthermore, CMB spectral
distortions from the Silk damping and recombination eras
would have spatial and frequency dependence that is
strongly dependent on α [158]. In future work, we will
assess the sensitivity of these powerful measurements to the
full family of theories enumerated here. The era of
precision cosmology is here, and we should look forward
to harnessing its data products, not only to characterize the
energy budget of the Universe but also to test the constancy
of the fundamental parameters.
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APPENDIX A: ELECTROMAGNETIC
SOURCING OF α VARIATION

1. Argument for shielding of electrostatic energy

Here we recapitulate Ref. [135]’s argument that electro-
static contributions to ζm are shielded. We follow the
discussion there but provide additional details as needed.
We begin with the static contributions to the Poisson
equation:

∇2ψ ¼ 4πκ2
	X

i

∂mic2

∂ψ
δ3ðx−ziÞþ

1

4π
e−2ψE2



: ðA1Þ

The sum here is over all source particles and the constant
κ ¼ l=

ffiffiffiffiffiffiffiffiffiffiffi
4πℏc

p
is a renormalized Brans-Dicke (kinetic)

coupling for ψ.
Bekenstein integrates the total contributions from each

particle in a volume V in the first term of the rhs of Eq. (A1)
and then replaces ð∂mic2Þ=∂ψ with κ−1e0i tan½κΦðziÞ�
[Eq (43) of Ref. [35] ].
The first term [on the rhs of Eq. (A1)] then becomes

X
i

∂mic2

∂ψ
δ3ðx − ziÞ

→ −
1

V

Z
V
d3x
X
i∈V

κ−1e0i tan½κΦðziÞ�δ3ðx − ziÞ

¼ −
1

V

X
i∈V

e0i tan½κΦðziÞ�:

Taylor expanding tan½κΦðziÞ� about ΦðziÞ and discarding
terms of Oðκ3Φ3Þ, the expression

−
1

V

X
i∈V

e0iΦðziÞ: ðA2Þ

is then obtained for the first term.
The second term is somewhat more complicated.

Modified Maxwell equations of the BSBM theory imply
that E with E ¼ −e2ψ∇Φ [Eq. (41) of Ref. [135] ], and
since e2ψ ¼ sec2 κΦ [Eq. (45) of Ref. [35] ], linearization
yields

e2ψ ¼ sec2ðκΦÞ ≈ 1þ κ2Φ2 þOðκ4Φ4Þ: ðA3Þ

Discarding terms of Oðκ4Φ4Þ, the spatial average of the
second term is

1

4π
e−2ψE2 →

1

4πV

Z
V
d3x½ð∇ΦÞ2 þ κ2Φ2E2�: ðA4Þ

Integrating the first term of this integral using the
divergence theorem and applying Eq. (A5), one finds

∇2Φ ¼ −4π
X
i

e0iδ3ðx − ziÞ: ðA5Þ

The final approximation (applying the immediately pre-
ceding result) for the second term on the rhs of Eq. (A1) is

1

V

X
i∈V

e0iΦðziÞ−
1

4πV

	I
∂V
ΦE ·ds−κ2

Z
V
d3xΦ2E2



: ðA6Þ

Summing Eqs. (A2) and (A6), it is immediately clear that
the only terms remaining are the two integrals in Eq. (A6),
and Ref. [135] argues they both are negligible—the argu-
ment goes as follows. One can approximate the surface
integral as V−1hΦiPi∈V e0i, using Gauss’s law where hΦi
is the surface average of Φ. This quantity is much less than
V−1P

i∈V e0iΦðziÞ, so it is negligible.
The only remaining quantity is the second integral in

Eq. (A6). An upper bound on jΦj for a unit charge is
obtained divided by the smallest length scale Φ varies over,
which is at most 10−17 cm, if quarks are the smallest
particles of interest. Then, κ2Φ2E2=4π has an upper bound
of roughly 10−34ðl=lpÞ2E2=4π, where l is the characteristic
length of Bekenstein’s theory. This implies that using
E2=4π vastly overestimates electrostatic energy as a source
for α variation in the BSBM model.

2. Testing electrostatic cancellation

In order to the claim that ψ arranges itself to self-shield
the electrostatic contribution to its equation of motion, we
conduct a particle-in-cell (PIC) plasma simulation of the
early Universe (proton and neutron) plasma in PYTHON.
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These particles interact and cluster in ways that produce
electric and magnetic fields.
We compute these and use them to estimate ζm ¼

hE2 − B2i=ρm. We determined field quantities by solving
the modified Maxwell’s equations using a Fourier spectral
method. The equations we solved were the following, given
in both real and k space:

E ¼ ∇Φ ⇒ Ẽ ¼ iΦ̃k; ðA7Þ

∇2Φ − −4πρ ⇒ Φ̃ ¼ −4πρ̃K2; ðA8Þ

∇2A ¼ 4π

c
J ⇒ Ã ¼ 4π

c
J̃K2; ðA9Þ

where ∇ ×A ¼ B, k ¼ fdx−1 sinðkxdxÞ; dy−1 sinðkydyÞ;
dz−1 sinðkzdzÞg, and K ¼ K2

x þ K2
y þ K2

z with Kx ¼
2dx−1 sinðkxdx=2Þ and analogous definitions for Ky and
Kz [161]. These definitions for k andKx,Ky,Kz come from
taking the Fourier transform of the finite difference forms
of ∇ and ∇2, respectively.
We use these algebraic equations to solve for the fields of

interest in the simulation. At each time step, we interpolate
the particles onto a spatially uniform grid using a linear
spline and periodic boundary conditions. Then, we use the
node locations and appropriate weighting to determine the
particle number density and current density at each node.We
then take the discrete Fourier transform of these quantities
and solve for Ẽ and Ã usingEq. (A7) through (A9).Next, we
take the inverse Fourier transformof Ẽ and Ã to getE andA.
Finally, we calculate ∇ ×A ¼ B. E and B are then
reinterpolated onto particle positions. These are the quan-
tities used to push the particles using the relativistic Boris
method [162]. In order to calculate the discrete Fourier
transforms, we used a built-in Fourier transform package
from the NUMPY module for PYTHON [159].
The simulation uses 4096 particles on a 128 × 128 × 128

grid at z ¼ 1100. The particles are arranged uniformly
on the grid initially and their initial velocities are drawn
from a Maxwell-Boltzmann distribution. The domain of the
simulation was a box where each side was Nn−1=30 long,
where N is the number of particles along one side and n0 is
the number density of protons in the Universe at z ¼ 1100.
Also, dt ¼ 0.1dx=v0, where v0 is the mode of the initial
velocity distribution for electrons. This was set to ensure that
no particle traverses more than one grid cell in a time step.
We tested the code using several methods. First, we tested

the particle-pushing method by placing a single electron
under the influence of a uniform electric and uniform
magnetic field. In both cases, the error of our particle pusher
method is of order machine precision (e.g. Fig. 11).
Next, we tested our Fourier equation solving method by

attempting to reproduce the analytical results for known
functions. For example, instead of using the actual current

density from the simulation, we used a known function
[fðx; yÞ ¼ sin xþ sin y, for example] and applied the same
field solver to it. This test confirmed that the Fourier
solving method accurately calculates ∇f and ∇2f. For an
additional test of the Fourier solving method, we tested it
alongside a more traditional grid-based solver in a 1D
plasma simulation and another 1D simulation using the
same initial conditions as our final 3D simulation [163]. We
did the calculations separately from start to finish in both
MKS and Gaussian units. The simulation produced iden-
tical results for all quantities in each context. Additionally,
we used a classic 1D two-stream instability test with two
streams of particles each with q=m ¼ −1 with opposite
velocities. This test showed the characteristic swirls in
phase space [161]. As a final test, we confined two identical
particles to a line and verified that they exhibited simple
harmonic motion, as is expected given the periodic boun-
dary conditions of the simulation.
We tested for numerical convergence. For a fixed number

of particles along one axis N, E, and B converge as the
number of cells along one axis Nx increases. Increasing Nx
increases the grid resolution, and so we would expect both
E and B to converge to some value. This is indeed what we
observe. As an important note, one would not expect E
and B to converge as N increases. This is because n0 is
physically set by the physics of the Universe at a given z.
Therefore, increasing N simply increases the domain size
of the simulation without altering the electrodynamics of
the plasma. This means that for a fixed ratio N=Nx, the
simulation should produce identical results, which we also
observed. Of course, N should be set high enough to allow

FIG. 11. The fractional error in the difference between the
calculated Lorentz factor γ and the analytic Lorentz factor γan ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v20y
q

of a particle with m ¼ 1, q ¼ 1, and c ¼ 1 in a

constantB field. The time step was dt ¼ 2π=ð108Þ and proceeded
for 106 time steps. Initial v0 ¼ ð0; 1 − 5 × 10−13; 0Þ and
B ¼ ð0; 0; 106Þ. These quantities follow the recommendations
in Ref. [162].

COSMIC MICROWAVE BACKGROUND SEARCH FOR FINE- … PHYS. REV. D 109, 103529 (2024)

103529-15



for sufficient interactions between particles, but once
N ≈ 16, any additional increase is not necessary.
Increasing N higher than necessary also means that a

higher Nx is needed to increase the accuracy of the results.
Finally, it takes about 100 time steps for the simulation to
properly equilibrate, so results to this point should be
discarded. After this point however, the values of E and B
converge as Nx increases.
We used the uninterpolated E and B to calculate

ζm ¼ hE2 − B2i=ρm. The averaging was calculated by
taking the arithmetic average of the values of E2 and B2

at each point on the grid. Using this simulation, we estimate
ζm ≈ 10−13 which is eight orders of magnitude lower in
absolute than other estimates—this is not surprising, our
calculation is obtained for a diffuse plasma on scales well
above nuclear length scales—our simulation is not appro-
priate to test the absolute scale of ζm from nuclei in the
early Universe.
It does give us the tools to test the claim that the

electrostatic contribution to ζm cancels out in a specific
environment that we can directly simulate. Our conclusions
may need to be revised to properly account for nuclear
scales, but offer an interesting first test of the (analytic)
claims of electrostatic shielding made in Ref. [135].
In contrast to that approach, we calculated all the electric

and magnetic fields generated through inhomogeneities in a
neutral plasma like the early universe. We did not consider
nucleons or macroscopic objects as sources for fields.
We calculated E and B directly in the simulation using
Eqs. (A7)–(A9). However, this simulation differed from
that used to estimate ζm because we introduced ψ as a scalar
field responsible for α variation. This required us to alter
our equation for E:

E ¼ −e2ψ∇Φ: ðA10Þ

Because eψ ¼ secðκΦÞ, we were also able to calculate the
newE directly in the simulation.B is unchanged according
to Ref. [135]. Additionally, because κ is a free parameter,
we estimate it as 8.11 × 10−26 cm1=2 erg−1=2 [135]. While
this has an effect on the precise values of the terms in
Eq. (A1), it does not affect cancellation.
We thus calculated all field quantities in Eq. (A1)

directly. The only approximation made was in the delta
function in Eq. (A1):

δ3ðx − ziÞ ≈
1

a
ffiffiffi
π

p exp

�
−
ðx − ziÞ2

a2

�
ðA11Þ

in order to properly account for finite grid resolution. The
other parameters of the simulation were the same as in our
simulation to estimate ζm.
Fig. 12 shows our results for our test of Bekenstein’s

Cancellation Theorem. The combined rhs is only margin-
ally different from the E2 term. On average, the E2 term is

about 1 × 10−63 erg cm−3, as is the combined rhs. However
the ∂mi=∂ψ term is about −2 × 10−67 erg cm−3, about four
orders of magnitude less than the E2 term. Because this
term is so much smaller, it is not plotted in Fig. 12. Because
of the large difference between the E2 term and the ∂mi=∂ψ
term, our results do not support cancellation.
In order to further test the cancellation theorem, we

further simulated a neutral plasma at a nuclear density
n0 ¼ 1.2 × 1038 protons=cm3. Here, our simulation still
does not support cancellation. In this case, the two terms
in Eq. (A1) are 24 orders of magnitude apart. The E2 term
is about 10−16 erg cm−3 and the dm=dψ term is about
10−40 erg cm−3.
Finally, we repeated these calculations for a proton-only

plasma at the same density as the recombination-density
neutral plasma. Bekenstein’s arguments center on the
properties of charged macroscopic objects, so it is possible
that for a plasma with a net charge, the cancellation theorem
holds. First, we recalculate ζm. For the positive plasma
with a 128 × 128 × 128 grid, ζm ≈ 10−14, which is slightly
lower than for a neutral plasma. The results for cancellation
are in Fig. 13. Here, the two terms from Eq. (A1) still differ
significantly. The dm=dψ term is about −10−66 erg cm−3

and the E2 term is about 10−63 erg cm−3. While the two
terms still differ greatly, Fig. 13 demonstrates that cancel-
lation is more plausible in this case, as there is some
difference between each histogram, as we would expect if
cancellation is occurring.
One possible reason for our observed lack of cancellation

is Bekenstein’s reliance on approximations to convert be-
tween microscopic and macroscopic scales. We considered

FIG. 12. The values of the E2 term and combined rhs in the
equation of motion for ψ for a recombination density neutral
plasma. The ∂mi=∂ψ term is not plotted because it is four orders
of magnitude less than the other terms. Simulation used 4096
particles on a 128 × 128 × 128 grid over 1000 time steps. The
first 100 time steps are not plotted.
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instead fields calculated directly in the simulation. Some
of Bekenstein’s approximations to perform this conver-
sion are robust. We tested the approximation of the second
term of Eq. (A1), which is given by Eq. (A6). In the
recombination-density and nuclear density simulations,
the approximation is off by at most an order of magnitude,
indicating the approximation is reasonably robust. In turn,
this suggests that the problem lies with the dm=dψ term in
Eq. (A1). This approximation relies more on the analytic
specifics of Bekenstein’s theory and is therefore more
difficult to test computationally. Further work should be
aimed at testing the robustness of the analytic derivations
of this term.

APPENDIX B: ENERGY CONSERVATION

The equations of motion used earlier (and throughout the
BSBM literature) do not conserve energy. In particular,
using the fact that the field energy density is ω̄ψ̇2=2 and
the field equation of motion [Eq. (4)], we see that
ρ̇ψ ¼ −3ω̄ψ̇2H − 2e−2ψζmψ̇ . Given that a field with no
potential has equation-of-state parameter wψ ¼ 1, this can
be rewritten as

ρ̇ψ þ 3ð1þ wψÞρψ ¼ −2
ffiffiffiffi
2

ω̄

r
e−2ψζmρm

ffiffiffi
ρ

p
ψ : ðB1Þ

The left-hand side of Eq. (B1) is of course the standard
term for energy flow out a fixed physical volume in an
expanding universe. The right-hand side is an energy flow
term from the scalar field into matter.

The usual ΛCDM continuity equation for matter density,

ρ̇m þ 3Hρm ¼ 0; ðB2Þ
must acquire an additional term if energy conservation is to
hold, and so we have that

ρ̇m þ 3Hρm − 2

ffiffiffiffi
2

ω̄

r
e−2ψζmρm

ffiffiffiffiffi
ρψ

p ¼ 0: ðB3Þ

There is nothing ad hoc about using Eq. (B3). The
additional term on the right-hand side of Eq. (B1) comes
from the substitution Lem → ζρm—this amounts to saying
that the electrostatic influence of charged particles con-
tributing to Lem leads to an additional interaction between
ψ and matter, in some sense, integrating out the relevant
electromagnetic fields. These fields should backreact on the
plasma that sources them, and if we are to take this
Lagrangian substitution at face value, the Bianchi identity
implies the ∇μðe−2ψTμν;matterÞ ¼ 0. This can be readily
applied in a Freedman-Robertson-Walker (FRW) cosmol-
ogy to obtain Eq. (B3).
This modified equation for matter density and the

second-order differential equation for the scalar field can
then be written as a system of three first-order ordinary
differential equations as follows:

df
dz

¼ 3

1þ z
f þ 2

gð1þ zÞ e
−2ψζmfu; ðB4Þ

dψ
dz

¼ −
u

gð1þ zÞ ; ðB5Þ

du
dz

¼ 3

1þ z
uþ 6Ωm;0

gð1þ zÞ
1

ω
e−2ψζmf; ðB6Þ

where fðzÞ ¼ ΩmðzÞ=Ωm;0, uðzÞ ¼ −ψ̇=½H0gð1þ zÞ� is a
dimensionless velocity for the scalar field and

g2 ¼Ωm;0fð1þjζmje−2ψ ÞþΩr;0ð1þ zÞ4e−2ψ þω

6
u2þΩΛ;0

ðB7Þ

represents the modified dimensionless Hubble parameter.
This system of differential equations was then solved

numerically over a range of redshifts and compared to the
non energy-conserving implementation with ζm ¼ 10−8

and ω ¼ 1. The left panel of Fig. 14 shows the fractional
difference in the evolution of Δα=α over z for these two
models. Agreement is sufficient for our purposes (a ∼10%
correction to our constraints). We also compared Δα=α
values at recombination for a range of ζm values from
−10−8 to 10−8 (roughly the constraint from Planck), with ω
still set to 1. The results are displayed in the right panel of
Fig. 14, which shows that the two calculations agree well

FIG. 13. The values of the E2 term and combined rhs in the
equation of motion for ψ in a recombination density positive
plasma. The ∂mi=∂ψ term is not plotted because it is two orders of
magnitude less than the other terms. Simulation used 4,096
particles on a 128 × 128 × 128 grid over 1000 time steps. The
first 100 time steps are not plotted.
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over this range of ζm, and vanish when ζm → 0. The
agreement improves with even higher jζmj.
It is worth pausing to consider the interpretation of these

corrections. In particular, we can state the matter continuity
equation as

ρ̇m þ 3Hρm ¼ −2e−2ψζmψ̇ρm: ðB8Þ

With the ansatz ρ≡ a−3fðaÞ, we find (applying sepa-
ration of variables) that

ρm ¼ C
a3

eζme
−2ψ

: ðB9Þ

This scaling suggests the definition ρ̃m ≡ ρme−ζme
−2ψ

as a
physical matter density with the right redshift dependence.
The matter-dependent term in the Friedmann equation (in
the BSBM model) is [29,30]

H2
m ¼ 8πG

3
fρm þ ζme2ψρmg; ðB10Þ

¼ 8πG
3

eζme
−2ψ ½1þ ζme2ψ �ρ̃m; ðB11Þ

¼ 8πGρ̃m
3

mmðψÞ
mmðψ ¼ 0Þ ; ðB12Þ

where m̃m can be interpreted as the ψ -modulated mass
of nonrelativistic particles (e.g. baryons, dark matter). If
ρm is treated (erroneously) as a substance that redshifts as
a−3, then this amounts to the approximation mmðψÞ ¼
mmðψ ¼ 0Þ. The analysis above shows that the error in α

evolution induced by this approximation in the BSBM is
negligible.
This effective modulation of the mass of nonrelativistic

particles is a well-known feature of theories with non-
minimally coupled scalar fields, in which the relevantmatter
fields travel on geodesics of a different metric than the one
satisfying Einstein’s equations (see e.g. Refs. [164,165] for
recent applications to early dark energy phenomenology and
Refs. [166–169] for earlier applications).
In Sec. II B, the contribution of ψ to the Hubble

expansion itself was not included. The dynamics modeled

FIG. 14. Left panel: fractional error as a function of z between energy-conserving and nonconserving BSBM model implementations
with overall level of fine-structure constant variation, Δα=α. The parameter ζm ¼ 10−8, while ω ¼ 1, consistent with the Planck
constraint. Right panel: comparison of error at recombination between energy-conserving and nonconserving BSBM model
implementations with overall level of fine-structure constant variation, Δα=α. The parameter ζm is varied in the range −10−8 to
10−8, while ω ¼ 1.

FIG. 15. Fractional difference in jΔα=αj between BSBMmodel
implementation with and without contribution of ψ to the
Friedmann equation, as a function of redshift z. Here ζm ¼
10−8 and ω ¼ 1.
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above do include this contribution, and we have verified
that the overall correction to Δα=α does not affect the
remaining results of this paper. It is instructive to consider
the contribution of ψ to the Hubble expansion (separate and
apart from the energy nonconservation or modulated scalar
mass effect discussed above). The results are shown in
Fig. 15. We see that this effect (taken alone) is even smaller
than the energy conservation correction.
Additionally, Eq. (B7) is only valid for massless neu-

trinos, whereas the fiducial cosmology used in Planck data

analysis assumes a single neutrino with mν ¼ 0.06 eV.
Using the equations in Ref. [170], which correct the Hubble
factor analytically for the contribution of massive neutrinos
(through their full relativistic to nonrelativistic transition),
we assess if neutrinos induce any change to the values of α
determined in the preceding portions of this section. We
find a fractional error in Δα=α at z ¼ 1100 of ∼10−3,
meaning that this effect does not alter any of the con-
clusions of this paper.
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