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Laboratoire d’Annecy de Physique Théorique (CNRS/USMB), F-74940 Annecy, France
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Extracting the non-Gaussian information of the cosmic large-scale structure (LSS) is vital in unlocking the
full potential of the rich datasets from the upcoming stage-IV galaxy surveys. Galaxy skew spectra serve as
efficient beyond-two-point statistics, encapsulating essential bispectrum information with computational
efficiency akin to power spectrum analysis. This paper presents the first cosmological constraints from
analyzing the full set of redshift-space galaxy skew spectra of the data from the SDSS-III BOSS, accessing
cosmological information down to nonlinear scales. Employing the SIMBIG forward modeling framework
and simulation-based inference via normalizing flows, we analyze the CMASS-SGC subsample, which
constitute approximately 10% of the full BOSS data. Analyzing the scales up to kmax ¼ 0.5 h−1 Mpc,
we find that the skew spectra improve the constraints on Ωm;Ωb; h, and ns by 34%, 35%, 18%, 10%,
respectively, compared to constraints from previous SIMBIG power spectrum multipoles analysis, yielding
Ωm ¼ 0.288þ0.024

−0.034 , Ωb ¼ 0.043þ0.005
−0.007 , h ¼ 0.759þ0.104

−0.050 , ns ¼ 0.918þ0.041
−0.090 (at 68% confidence limit). On the

other hand, the constraints on σ8 are weaker than from the power spectrum. Including the big bang
nucleosynthesis (BBN) prior on baryon density reduces the uncertainty on the Hubble parameter further,
achieving h ¼ 0.750þ0.034

−0.032 , which is a 38% improvement over the constraint from the power spectrum with
the same prior. Compared to the SIMBIG bispectrum (monopole) analysis, skew spectra offer comparable
constraints on larger scales (kmax < 0.3 h−1 Mpc) for most parameters except for σ8.

DOI: 10.1103/PhysRevD.109.103528

I. INTRODUCTION

The LSS holds valuable clues about theUniverse’s origin,
composition, and evolution, making it a crucial arena for
testing fundamental physics. In the coming years, the next-
generation galaxy surveys including Dark Energy Spectro-
scopic Survey [DESI; [1]], Euclid [2], Nancy Roman Space
Telescope [Roman; [3]], SPHEREx [4], and Subaru Prime
Focus Spectrograph [PFS; [5]] will provide a detailed
spectroscopic view of the three-dimensional distribution
of galaxies across significantly larger cosmic volumes than
current surveys. This expanded scope promises a marked
reduction in statistical uncertainties in the measured cluster-
ing statistics of galaxies, yielding unparalleled constraints
on the standardΛCDMmodel and opening up exciting new
avenues for exploring new physics.
The nonlinear nature of the LSS implies that the com-

monly applied two-point correlation functions are insuffi-
cient in capturing the full cosmological information of
galaxy clustering. Therefore, to exploit the upcoming galaxy
surveys to their full potential, constructing summary sta-
tistics that capture the non-Gaussian clustering information
is crucial. This has spurred a significant amount of work in
the literature focusing on constructing optimal summary
statistics, including bispectrum [6–9], skew spectra [10–13],
marked 2-point functions [14–16], density split statistics
[17], and wavelet scattering transforms [18,19]. More
ambitious approaches to extract information at the field
level without relying on any summary statistics [20–24]
have also been a topic of growing interest. The potential of
these approaches has been extensively explored using Fisher
forecasts (e.g., Hou et al. [13], Eickenberg et al. [18],
Agarwal et al. [25], Hahn and Villaescusa-Navarro [26],
Valogiannis and Dvorkin [27], Massara et al. [28], Paillas
et al. [29]), and very recently, several of them (e.g.,

Paillas et al. [30], Hahn et al. [31], Régaldo-Saint
Blancard et al. [32], Lemos et al. [33], Valogiannis,
Yuan, and Dvorkin [34]) have been applied to the existing
data from Sloan Digital Sky Survey (SDSS)-III Baryon
Oscillation Spectroscopic Survey Data Release 12 [BOSS
DR12; [35,36]].
Among various proposed summary statistics, the galaxy

skew spectra [10–12,37,38] are optimal, yet computation-
ally efficient proxy statistics for the galaxy bispectrum.
They are constructed from the cross-correlations of the
observed galaxy density field with appropriately weighted
quadratic galaxy fields. For parameters such as galaxy
biases, the growth rate of structure, and the amplitude of
primordial non-Gaussianity (PNG), by construction, the
skew spectra fully capture the information of the bispec-
trum in the linear regime [11]. Despite these encouraging
results from Fisher forecasts [11,13], the applicability of
the full redshift space galaxy skew spectra to observational
data, in particular down to nonlinear scales, has not been
studied. This investigation is the focus of the current article.
The standard approach to cosmological inference from

the LSS is based on a Bayesian likelihood analysis and
requires: (1) a theoretical model of the observable, (2) an
explicit form of the likelihood, and (3) schemes for
correcting the observational systematics in the measure-
ments. These requirements can hinder the maximal exploi-
tation of upcoming LSS data.
First, if using perturbation theory (PT) to describe the

observables, the limited validity of the perturbative descrip-
tion restricts the theory-based analyses to relatively large
scales (kmax ≃ 0.25 Mpc−1 h) [39]. Despite the consider-
able recent developments in perturbative description of the
LSS [40–48], the PT-based analyses are intrinsically
limited to the weakly nonlinear regime. Moreover, apart
from the galaxy bispectrum, for some of the powerful
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recently proposed statistics such as wavelet scattering
transforms, a perturbative description is missing altogether.
The second limitation of the standard analysis lies in the

assumption of a Gaussian likelihood for the data vector.
This assumption, which leans on the central limit theorem,
does not hold on large scales with low signal-to-noise ratio
and on small scales where modes are highly correlated.
Thus an explicit assumption of the Gaussian likelihood, can
potentially bias the parameter constraints [49,50].
Lastly, the standard analysis accounts for observational

systematics such as targeting, imaging, and spectroscopic
incompleteness by applying weights designed to correct
their effects on measured observables [51–53]. However,
even at the precision level of current surveys, theweights are
insufficient at correcting for effects such as fiber collisions,
which can bias the clustering measurements on weakly non-
linear scales [54–56]. Moreover, it is important to note that
these correction techniques are currently optimized only for
two-point statistics and their validity for other summary
statistics has not been thoroughly tested.
To overcome these challenges, simulation-based infer-

ence [SBI; [57,58]] is emerging as a promising avenue [59].
Without a strong assumption for the form of the likelihood,
SBI enables estimation of the parameter posteriors (or the
likelihood function) by leveraging high-fidelity numerical
simulations to forward model the observables and employ-
ing deep generative models from machine learning for
efficient parameter inference. In the context of galaxy
clustering, several recent studies have explored the poten-
tial of SBI, employing either a set of summary statistics or
at the field-level (e.g., de Santi et al. [60,61], Tucci and
Schmidt [62], Modi et al. [63]). In terms of application of
the SBI to observational data, [64,65] introduced
Simulation-Based Inference of Galaxies (SIMBIG), a for-
ward-modeling framework that enables performing SBI on
a spectroscopic galaxy sample, employing either summary
statistics or at the field-level. The SIMBIG forward model
capitalizes on high-fidelity N-body simulations, coupled
with the state-of-the-art halo occupation distribution
(HOD) model to accurately simulate nonlinear galaxy
clustering. Notably, SIMBIG integrates pertinent observa-
tional effects such as survey masks and fiber collisions. In
contrast to the common approach of accounting for the
fiber collisions via correction weights, SIMBIG forward
models their effect. In a series of recent papers, SIMBIG

has been used to obtain cosmological constraints from
SDSS-III BOSS CMASS galaxies. By employing several
statistics (including the power spectrum [64,65], the bis-
pectrum [31], and the wavelet scattering transforms [32]),
and by performing field-level analysis using convolutions
neural networks [33], these works have highlighted the
substantial potential of SBI in obtaining constraints that
surpass the standard analysis of galaxy clustering [66].
This is the first paper using the SIMBIG framework to

obtain cosmological constraints from analyzing the full set

of redshift-space galaxy skew spectra, accessing informa-
tion down to nonlinear scales. As part of this analysis, we
also present a newestimator for the skew spectra that extends
the previously developed estimators for periodic-box sim-
ulations [12,13] to account for survey mask and angular
systematic weights so that it can be used on observations.
The structure of the paper is as follows: Sec. II provides

an overview of the galaxy skew spectra and the new
estimator for measuring the skew spectra on a realistic
galaxy sample. In Sec. III, we briefly describe the obser-
vational data used in our analysis, and in Sec. IV we
describe the SIMBIG pipeline (the forward modeling, the
simulation-based inference, and the validation tests). We
show the results in Sec. V, including the validation tests on
synthetic data and the inferred posterior distribution of
cosmological parameters from the BOSS-CMASS sample.
Finally, we draw our conclusions in Sec. VI.
We provide additional details and complementary results

in a series of appendices. In Appendix A, we provide
explicit forms of the skew spectra, in Appendix C, we
discuss the constraints on HOD parameters, and in
Appendix E we investigate the dependence of the inferred
constraints on several analysis choices including the outlier
removal scheme, the removal of shot noise, the scale cuts,
and the smoothing scale.

II. SUMMARY STATISTICS:
GALAXY SKEW SPECTRA

The galaxy skew spectra are efficient proxy statistics for
the bispectrum and offer several advantages over the
bispectrum; first, they are simple to interpret since they
are functions of a single wavenumber and not triangle
shapes. Second, the computational cost of measuring them
from the data is comparable to that of the power spectrum.
While accounting for all bispectrum triangles requires
OðN2Þ operations capturing the full information of the
bispectrum using the skew spectra requires OðN logNÞ
operations, where N ¼ ðkmax=ΔkÞ3 is the number of 3D
Fourier-space grid points at which the fields are evaluated.
Third, for standard Bayesian inference, if estimating the
covariance matrices from mocks, the skew spectra requires
a significantly smaller number of mocks given the signifi-
cantly smaller size of the data vector. Lastly, in comparison
to the bispectrum [67], accounting for the survey window
function is expected to be considerably simpler for the skew
spectra [68].

A. Theoretical construction

The skew spectra are constructed by cross-correlating the
observed galaxy density field, δg, with an appropriately
weighted square of it, Sn [10,12];

PSnδðkÞ ¼
Z

dk̂
4π

hδgð−kÞSnðkÞi: ð1Þ
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The quadratic field, Sn, is a product of two fields in
configuration space (evaluated at the same spacial posi-
tions), thus, a convolution in Fourier space [69];

SnðkÞ ¼
Z
q
Dnðq;k − qÞδRg ðqÞδRg ðk − qÞ; ð2Þ

with
R
q ≡

R
d3q=ð2πÞ3. The fields involved in the convolu-

tion are smoothed, δRg ðkÞ ¼ δgðkÞWRðkÞ, to limit the con-
tribution of small-scale fluctuations to skew spectra. While a
top-hat filter in Fourier space amounts to imposing a sharp k-
cut on contribution of small-scale modes to the convolution
integral, to avoid edge effects in the measurements of
the skew spectra, we use a Gaussian smoothing kernel
WRðkÞ ¼ expð−k2R2=2Þ. In perturbative analysis of the
skew spectra [10–12], smoothing the field (with relatively
large R) ensures that only the Fourier modes on the semi-
linear regime are included. For SBI performed in this paper,
the smoothing serves the purpose of limiting the analysis to
scales where the forward model is most trusted [70].
The weights, Dnðq;k − qÞ, are constructed such that for

a theoretical bispectrum that can be decomposed as a sum
of product-separable contributions (in terms of the three
Fourier modes forming a triangle), the skew spectra
correspond to the maximum likelihood estimators for
parameters appearing as overall amplitudes of individual
contributions in the sum. Explicit forms of the kernels
Dnðq;k − qÞ are given in Appendix A. This implies that,
by construction, considering full set of 14 galaxy skew
spectra in redshift space (3 in real space) fully capture the
information of the bispectrum on large scales for param-
eters such as galaxy biases, the amplitude of primordial
power spectrum and bispectrum, and the growth rate of
structure [10,11] [71]. For other cosmological parameters
(including ΛCDM parameters and the sum of neutrino
masses), by performing numerical Fisher forecasts on
QUIJOTE simulations [72,13] demonstrated that the skew
spectra can considerably improve the constraints from the
power spectrum, at the level comparable to the bispectrum.
In addition to the clustering component in Eq. (1), each

of the skew spectra receives a shot noise contribution,
which in the Poisson limit is given by

Pshot
Snδ

ðkÞ ¼ 1

2

Z
dμk

��
1

n̄2
þ PgðkÞ

n̄

�
JDn

ðkÞ þ 2

n̄
J̃Dn

ðkÞ
�
;

ð3Þ

where PgðkÞ is the full 3D galaxy power spectrum and the
kernels JDn

and J̃Dn
are given by

JDn
ðkÞ ¼

Z
q
WRðqÞWRðk − qÞDnðq;k − qÞ; ð4Þ

J̃Dn
ðkÞ ¼

Z
q
WRðqÞWRðk − qÞDnðq;k − qÞPR

g ðqÞ: ð5Þ

B. Estimators for Survey Data

Previous works have focused on the analysis of the skew
spectra on simulated dark matter distribution and halo
catalogs in N-body simulations with periodic boundary
conditions [12,13]. In order to analyze the data from BOSS
survey, we extend the previous estimators to measure the
skew spectra using on Fast Fourier Transforms (FFT)
[12,13] to incorporate the survey geometry and observa-
tional systematics. We thus construct an equivalent of
Feldman-Kaiser-Peacock [FKP; [73]] estimators for the
power spectrum and bispectrum, where the galaxy sample
is characterized by ng galaxies at positions x and a randoms
catalog with nr objects to incorporate the radial and angular
selection functions,

δgðxÞ ¼ I33−1=3wfkpðxÞ½n0gðxÞ − αn0rðxÞ�: ð6Þ

Here, n0gðxÞ ¼ wcðxÞngðxÞ and n0rðxÞ ¼ wc;rðxÞnrðxÞ are
the weighted number densities of the observed and random
galaxies, and αð≪ 1Þ is their ratio. As in previous SIMBIG

analyses, for each observed galaxy, we assign the com-
pleteness weight of wc ¼ wsyswnoz, where wsys is an angular
systematic weight based on stellar density and seeing
conditions, and wnoz is a redshift failure weight. Since
for the fiber collisions, the standard weighting scheme has
been shown to be inaccurate [74], we forward model them
in our pipeline instead of using weights as is commonly
done in other analyses of BOSS data (for further details, see
Hahn et al. [65]). We have also included the FKP weight
wfkpðxÞ ¼ ½1þ n̄ðgÞP0�−1 (assuming P0 ¼ 104 ½h−1Mpc�3)
to reduce the variance of the estimator [75].[76] The
normalization factor of I33 in Eq. (6) is defined in analogy
to that of the bispectrum [6] since both skew spectra and
bispectrum have three powers of galaxy density fields,

I33 ¼
Z

d3xn̄3gðxÞw3
cðxÞw3

fkpðxÞ

≡XNg

i¼1

n̄2gðxiÞw2
cðxiÞw3

fkpðxiÞ; ð7Þ

where n̄g is the mean number density per redshift bin for the
observed galaxy galaxies.
As a simplifying assumption, we consider a fixed line-

of-sight (LoS) direction when constructing the quadratic
fields. While in computing the cross-correlation between
the linear and the quadratic field the varying LoS is
accounted for as in the [77] estimator. The skew spectra
correspond to the monopole of the cross-correlation
between the input galaxy field and its square.
For implementation, we used the NBODYKIT [78] https://

github.com/bccp/nbodykit [79]. We apply the weights
Dnðq;k − qÞ [see Eq. (1)] to the first two linear density
fields to obtain the quadratic field. We then prepare both
the quadratic field and the third linear density field as
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FKPCATALOG objects, an NBODYKIT-based interface for
simultaneous modeling of a data and a random catalog.
These two FKPCATALOG objects are then passed to the
CONVOLVEDFFTPOWER module for cross-correlating the
quadratic field and the linear field.
In analogy to the power spectrum and the bispectrum

FKP estimators, we subtract the Poisson shot noise
from the measured skew spectra. The power-spectrum-
independent contribution to shot noise in Eq. (3) is
estimated by inserting two unity fields, whereas the kernels
that depend on the power spectrum are computed by
correlating a smoothed 3D power spectrum PR

g ðqÞ ¼
WRðqÞPgðqÞ and a unity field. Due to the survey geometry,
the full 3D power spectrum is non-Hermitian, whereas the
unity fields are real-valued Hermitian fields and the third
dimension of the field is halved after the FFT. In practice,
we concatenate two Hermitian unity fields to match the
dimensionality.
As in the previous SIMBIG analysis of the galaxy power

spectrum and bispectrum, in addition to the skew spectra,
we also include the average galaxy number density, n̄g.
Therefore, in total, the data vector that we pass to the SBI
pipeline has 1401 elements, with kmin ¼ 0.003 Mpc−1h
that corresponds to the fundamental frequency of the BOSS
SGC, and Δk ¼ 0.005 Mpc−1h [80]. We explore the
impact of using a different kmin and its implications on
our analysis.

III. OBSERVATIONAL DATA: BOSS CMASS
GALAXY SAMPLE

As in previous SIMBIG analyses [31–33,64–66], we
consider the CMASS galaxy sample (consisting mainly
of luminous red galaxies) of BOSS DR12 [81,82]. Since
the SIMBIG forward model employs QUIJOTE N-body
simulations with the box size of Lbox ¼ 1 Gpc−1h to model
the nonlinear clustering of dark matter, we only use the data
in the southern galactic cap (SGC) and further apply

angular cuts of DEC > −6° and −25° < RA < 28° and a
radial cut corresponding to redshift range of 0.45 <
z < 0.6. The resulting galaxy sample spans ∼10%
of the full BOSS data and about 50% of the CMASS-
SGC sample,with 109,636 galaxies and a number density
of ∼4.2 × 10−4 ½Mpc−1h�3.

IV. SIMBIG PIPELINE

SIMBIG is a framework for performing SBI to infer
cosmological constraints from galaxy clustering data,
leveraging high-fidelity simulations to forward model the
observations and deep generative models to perform
inference by estimating the posterior of model parameters.
Figure 1 shows a schematic sketch of the pipeline. In this
section, we describe in more detail the different compo-
nents of the pipeline, including the forward model, the SBI,
and the validation tests.

A. Forward model

The current implementation of the SIMBIG forward model
is specifically tailored to produce galaxy catalogs that
match the statistical properties of the BOSS-CMASS
sample. This involves four integral components: nonlinear
dark matter distributions from N-body simulations, a halo
finder to construct halo catalogs, an HOD model to
populate halos with galaxies, and survey realism (including
fiber collisions and survey geometry).

SIMBIG uses N-body simulations from QUIJOTE (high-
resolution) suite, featuring 2,000 ΛCDM cosmologies
run in a Latin-hypercube configuration for parameters
fΩm;Ωb; h; ns; σ8g [72]. The simulations are run with
Gadget-III TreePMþ SPH code [83], evolving 10243 dark
matter particles in a periodic box of Lbox ¼ 1 h−1 Gpc on
the side. The particles are evolved from redshift z ¼ 127 to
z ¼ 0, with the initial condition generated from the second-
order Lagrangian perturbation theory (2LPT). Then, we

FIG. 1. Schematic view of the SIMBIG pipeline; to generate synthetic data that is statistically indistinguishable from BOSS
observations, we utilize 2,000 N-body simulations from the QUIJOTE suite run at different cosmologies, apply Rockstar halo finder to
identify halos, populate halos with galaxies using an extended (9-parameter) HOD model, and finally apply the survey realism. The
resulting 20,000 synthetic mocks are then used to train normalizing flows as neural density estimators to obtain approximate posterior
distributions, qϕ, for cosmological and HOD parameters from given summary statistics x, which in this paper refer to the skew spectra).
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construct halo catalogs using the ROCKSTAR halo finder
[84], which identifies halos using phase space information
of the dark matter particles.
To populate halos with galaxies, SIMBIG employs the

HOD framework [85]. We consider a state-of-the-art HOD
model [86] that includes the standard parameters for
characteristic mass scale for halos to host a central galaxy,
logMmin, the scatter of halo mass at fixed galaxy lumi-
nosity, σlogM, the minimum halo mass for halos to host a
satellite galaxy, logM0, the characteristic mass scale for
halos to host a satellite galaxy, logM1, and power-law
index for the mass dependence of satellite occupation α. In
addition, it also incorporates assembly bias, Abias, concen-
tration bias of satellite, ηconc, velocity biases for central,
ηcen, and satellite, ηsat, galaxies. For each halo catalog, we
generate 10 galaxy catalog with different values of the
HOD parameters. In total, our training dataset consists of
20,000 galaxy mock catalogs.
The final step is to apply the survey realism. This

includes imposing the angular footprint of the survey
and the veto masks (including masking for bright stars,
centerpost, bad fields, and collision priority). We also
model the fiber collision effect for galaxy pairs within
an angular resolution< 6200 [87]. In the radial direction, we
apply the redshift cut 0.45 < z < 0.6.
In total, the forward model involves 5 cosmological

parameters and 9 HOD parameters. We chose uniform prior
on all parameters except for the assembly bias, where a
Gaussian prior centered at zero was implemented. The
exact prior range can be found in Table 1 in [65]. The wide
range of the HOD parameter priors results in a large
variation in the galaxy number density and clustering
amplitude.
While the SIMBIG pipeline offers a random catalog that is

40 times the size of the real BOSS data sample, to avoid
noise induced by the random catalog, we generated an
additional random catalog that is 35 times the size of the
training set with the highest total galaxy counts. We use the
MAKE SURVEY toolkit [88] to trim the angular footprint of
the random.
In order to improve the training and reduce the dynamic

range of the data vector, we preprocess the skew spectra of
the training catalogs, which exhibit substantial variation in
mean number density and clustering amplitude. We remove
outliers and normalize the skew spectra in order to ensure
that all features contribute meaningfully (Appendix E).

B. Simulation-based inference

The 20,000 forward modeled galaxy mocks are formally
samples drawn from the joint probability distribution
pðΘ;xÞ of the model parameters, Θ, and a summary
statistic, x, measured from observational data. Using this
training dataset, we estimate the full posterior distribution
over the parameters conditional on the observations,
pðΘjxÞ. In SIMBIG, the SBI is performed using neural

density estimation with normalizing flows (NFs) [89–91],
which enable efficient estimation of the posteriors with a
limited number of simulations.
NFs are powerful tools for constructing expressive

probability distributions describing the data using a simple
base probability distribution, πðzÞ, and a chain of trainable
smooth bijective transformations (diffeomorphisms), f, to
map the base distribution to the target one. The base
distribution is often chosen to be a multivariate Gaussian,
which is easy to sample from. The transformations f are
chosen to have a tractable Jacobian so that the target
distribution can be computed from the base distribution via
a change of variables. A neural network is trained to obtain
the flow (find the transformation f) that best approxi-
mate the posterior, qϕðΘ;xÞ ≈ pðΘ;xÞ, by minimizing the
Kullback–Leibler (KL) divergence between pðΘ;xÞ ¼
pðΘjxÞpðxÞ and qϕðΘjxÞpðxÞ. In practice, this is achieved
by maximizing the log-likelihood over the training set.
For the analysis of the skew spectra [92], we use a

masked autoregressive flow [MAF; [93]] architecture
implemented in the SBI PYTHON package [94].[95] MAF
uses masked autoencoder for distribution estimation
[MADE; [96]] as a building block and by stacking several
of them combines normalizing flows with an autoregressive
design, which is well-suited for estimating conditional
probabilities such as the posteriors. We split the data into
training and validation sets with a 90=10 split, and use only
the 90% for training, leaving the rest for validation test
presented in Sec. V B 1. For the split, we randomly select
from 20,000 simulations, irrespective of their cosmologies
and HOD parameters.
We perform the optimization using ADAM [97] and

tune the hyperparameters (number of blocks and hidden
layers, dropout probability, learning rate, batch size, and
number of transformations for the normalizing flows) via
experimentation using the OPTUNA hyperparameter opti-
mization framework [98] to obtain the best validation
score. The details of the configurations for the OPTUNA

search are provided in table I. We train 2,771 models for
our baseline configuration with R ¼ 5 h−1 Mpc and
kmax ¼ 0.5 Mpc−1h. For each additional configurations
that we use to study the dependence of our results on
various analysis choices, we train 2,000–3,000 models. To
ensure stability and robustness of our results against model
variations [99,100], we ensemble average (with equal
weights) the top 10 models in each configuration,
qϕðΘjxÞ ¼ P

10
i¼1 q

i
ϕðΘjxÞ=10. Overall, we do not observe

a large variability in the top selected models and they
provide consistent results.

C. SIMBIG mock challenge

As in the previous SIMBIG analyses, we perform a mock
challenge using additional 2,000 simulated galaxy catalogs
to validate the posterior estimates, qϕ. The test simulations
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are organized in three datasets as introduced in [65]. The
first two test sets (TESTO, TEST1) are constructed from
the QUIJOTE N-body suite, while the third set (TEST2) uses
ABACUSSUMMIT N-body simulations [101,102]. Below we
list a few important differences between the three test
simulations;

(i) TESTO: 500 galaxy mocks generated with the same
SIMBIG forward model as the training data, but using
a set of 100 QUIJOTE simulations at a fixed fiducial
cosmology [103], and the HOD model with para-
meters sampled from a narrower distribution com-
pared to the prior distribution. There are 5 galaxy
catalogs per cosmology with 9-parameter HOD
models.

(ii) TEST1: 500 galaxy mocks built from the same
QUIJOTE simulation as in TESTO but applying a
different halo finder and a simpler HOD model.
Halos are identified using friend-of-friend
[FoF; [104]] halo finder 5 galaxy catalogs are con-
structed per cosmology with 5-parameter HOD
models [105].

(iii) TEST2: 1,000 mocks built from the ABACUSSUMMIT

base simulations. The simulations evolve 6; 9123

particles in a periodic box of Lbox ¼ 2 h−1Gpc. We
use 25 realizations of base simulations, which have
the same cosmology and differ in their phase [106].
Each simulation is divided into 8 subvolumes to
obtain effectively 200 independent boxes. Halos are
identified using COMPASO halo finder [107]. For
each box, 5 galaxy catalogs are constructed using the
standard 5-parameter HOD models.

V. RESULTS

In this section, we begin by presenting the measured
skew spectra of the CMASS-SGC galaxy sample.
Subsequently, we detail the conducted validation tests
and finally present the first cosmological constraints from
the analysis of the full set of galaxy skew spectra on an
observational dataset including nonlinear scales. We com-
pare the cosmological and HOD constraints with the
previous SIMBIG power spectrum (monopole and quadru-
ple) and bispectrum (monopole) results, and describe the
impact of a number of analysis choices on the inferred
constraints.

A. Measured skew spectra
on BOSS-CMASS-SGC sample

Figure 2 shows the measured skew spectra (including the
clustering and shot noise components), applying smoothing
scales of R ¼ 5 h−1 Mpc in red, and R ¼ 10 h−1Mpc in
black. Figure 3 shows the Poisson shot-noise contribution,
consisting of three contributions in Eq. (3), which have not
been previously measured.
The shapes of the measured spectra are consistent with

those on synthetic halo and galaxy catalogs used in [13]. As
identified before, the skew spectra shapes fall into three
categories: (i) “constant type” involving square of galaxy
density field δ2, and characterized by a large-scale peak and
a sharp decline toward smaller scales. (ii) “displacement
type” involving the operator ∂i∂j∇2, and distinguished by a
positive bump and a zero-crossing feature on large scales
for LoS-dependent contributions. (iii) “tidal type,” involv-
ing the tidal operator S2, and marked by a negative dip and
anti-correlation with other skew spectra on smaller scales.
The skew spectra PSnδ with n > 3 optimally capture the
LoS dependence of the bispectrum (see Appendix A for
specific forms of the kernels Sn).
On small scales, the skew spectra all approach zero due to

smoothing, as shown in Fig. 2. Comparing Figs. 2 and 3 we
also notice that the clustering component is smaller than the
Poisson shot noise around k ¼ 0.4 h−1Mpc, coincide with
the averaged inter-particle separation Δs ∼ 15 h−1Mpc
for the BOSS galaxy sample.

B. Posterior validation

Before applying the estimated posterior, qϕ, on the skew
spectra of the observed CMASS galaxies, we perform two
validation tests to asses whether qϕ can robustly infer
unbiased posteriors of the cosmological parameters. We
describe these tests in this section.

1. Accuracy test: Simulation-based calibration

Our first test aims to assess the accuracy of the
approximate posterior, qϕ. Although, theoretically, a suffi-
ciently large number of simulations and optimally trained
normalizing flows would inherently guarantee this accu-
racy by design (as we minimized the KL divergence
between qϕ and the true posterior), SIMBIG employs a

TABLE I. Hyperparameter configuration used for OPTUNA optimization.

Hyperparameter Min Max Type Distribution Step

Number of transforms 5 11 int Uniform N/A
Number of hidden units 256 1024 int Log uniform N/A
Number of blocks 2 4 int Uniform N/A
Dropout probability 0.1 0.3 Float Uniform 0.1
Batch size 20 100 int Uniform 5
Learning rate 5 × 10−6 5 × 10−5 Float Log uniform 10−6
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relatively small number of simulations for the size of the
data vector and dimensionality of the parameter space.
Hence, assessing the accuracy of the estimated posterior is
pivotal. To conduct this evaluation, we employ simulation-
based calibration [SBC; [108]] on the validation dataset that
was excluded from the training of our posterior estimate
(see Sec. IV B).
For each test simulation with skew spectra, xtest;i,

we draw Nsample ¼ 10; 000 samples from qϕðΘjxtest;iÞ.
We then, calculate the fraction of the parameters that are
below the true cosmological parameter of the simulation:

rankðΘxÞ≡PNsample

i¼1 ½1jΘx;i<Θfid
x
�=Nsample.

Figure 4 shows the distribution of the rank statistics for
kmax ¼ 0.5 Mpc−1h and R ¼ 5 h−1Mpc. In the case of
independent samples from the true posterior, we should
expect uniformly distributed rank statistics. We see that the
rank statistics for all parameters are nearly flat. For Ωm, we
see a slight ∩-shape distributed, which is an indication that
the estimated posterior is broader than the true posteriors
(i.e., underconfident). Therefore, our constraint should be
considered conservative. In Appendix E we also show the

validation tests for a larger smoothing scale of R ¼
10 h−1Mpc and a smaller cutoff of kmax ¼ 0.25 Mpc−1h.

2. Robustness test: Mock challenge

Next, we perform the SIMBIG “mock challenge” using
the test simulations TEST0, TEST1, and TEST2
described in Sec. IV C. Among the three test simulations,
TEST0 is the closest to the training dataset as they share
the same N-body simulation, halo finder, and HOD model
parameters. In contrast, TEST1 used a different halo
finder (FoF, which does not resolve substructure as well
as the ROCKSTAR). It includes only standard HOD param-
eters and assumes that only the halo mass governs the
galaxy–halo connection. Lastly, TEST2 is the most
different one from the training dataset; It is built from
a different N-body simulation (ABACUS) with halos
identified with a different halo finder (COMPASO) and
populated with galaxies using a standard 5-parameter
HOD model.
To test the robustness of our trained model to changes in

the forward model, we compute the mean and the standard

FIG. 2. Measurements of the 14 skew spectra from the subsample of the BOSS DR12-SGC galaxies before the shot noise subtraction.
Different colors correspond to two smoothing scales of R ¼ 5 h−1 Mpc (in red) and R ¼ 10 h−1 Mpc (in black). Due to smoothing,
skew spectra approach zero at small scales.
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deviation of the parameter posteriors for each test simulation
and plot the distribution of the difference between the
posterior mean (θi) and the fiducial value, normalized by
the standard deviation σθi for each of the parameters and
show the three test sets in Fig. 5. If the analysis is robust to
variation of the forward model, we expect to obtain a

statistical consistency for the distributions across the three
test sets, while the posterior mean is not expected to be an
unbiased estimate of the true parameter. Given the good
consistency for the five cosmological parameters for the
three test sets,we conclude that our pipeline is robust and can
be applied to observational data.

FIG. 3. The three contributions to the Poisson shot noise of individual galaxy skew spectra given in Eq. (3). The smoothing scale is set
to R ¼ 5 h−1 Mpc. Grey curves denote the total shot noise contribution.

FIG. 4. Accuracy test: shown are the rank statistics of the validation dataset for the configuration R ¼ 5 h−1 Mpc and
kmax ¼ 0.5 Mpc−1h. For most of the parameters, the rank statistics are uniformly distributed. The slight ∩-shape in the Ωm plot is
an indication of an under-confident (conservative) error bar.
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C. Inferred posterior on BOSS CMASS-SGC data

Having validated the trained models on various test
simulations,wenowmove on to applyingqϕ to observational
data. To illustrate the importance of extracting non-Gaussian
information of theLSS beyondwhat is encoded on the power
spectrum, we first compare the cosmological constraints
from the skew spectra with those from previous SIMBIG

analysis of the power spectrum multipoles [64]. Next, we
compare the results from the skew spectra with those from
previous SIMBIG analysis of the bispectrum monopole [31]
to compare their information content. Lastly, we discuss the
dependence of the inferred constraints on several of the
analysis choices including the smoothing scale, the mini-
mum and maximum scale cuts, the shot noise subtraction.
Table I of Appendix C presents the 1σ uncertainties on
cosmological parameters for each of these studies.

1. Comparison with power spectrum multipoles

For this comparison, we select an optimal scale in both
the maximum wave number kmax ¼ 0.5 Mpc−1h and a
smoothing scale of R ¼ 5 h−1Mpc. This scale choice
should, in principle, allow us to extract information from
the galaxy field maximally. We notice that, the kmax cut for
the skew spectra and the power spectrum (or the bispec-
trum) is not strictly speaking equivalent. As we will allude
below, on the one hand, smoothing of the observed field
washes out small-scale information and on the other hand,
the convolution of two density fields, mixes small- and
large-scale information.
Figure 6 shows the inferred posteriors on cosmological

parameters from the skew spectra (blue) and the power
spectrum multipoles (gray). The full posterior distributions
including the HOD parameters are shown in Fig. 8 of
Appendix C. Without applying the BBN prior, we find the
posterior mean and the 68% CF to be Ωm ¼ 0.288þ0.024

−0.034 ,
Ωb ¼ 0.043þ0.005

−0.007 , h ¼ 0.759þ0.104
−0.050 , ns ¼ 0.918þ0.041

−0.090 , and
σ8 ¼ 0.778þ0.066

−0.093 . Compared to the power spectrum, the
skew spectra improve the constraints in terms of the
68% CL by 34%, 35%, and 18% in matter density Ωm,
baryon density Ωb, and h, respectively. However, the

constraint in σ8 are weaker than that from the power
spectrum. As mentioned earlier, the larger uncertainty on
σ8 can be associated with two facts. First, smoothing
the observed field in the skew spectra washes out some
information on small scales, which plays a role in con-
straints on σ8. Second, the convolutional nature of skew
spectra kernels causes a redistribution of information across
various scales. Consequently, the influence of σ8 is not
exclusively related to small scales. Imposing the BBN
prior on baryon density using importance sampling
with ωb ¼ Ωb=h2 ¼ 0.02268� 0.00038, the skew spectra
improve the constraints on matter density Ωm, baryon
density Ωb, and h, by 34%, 49%, and 38%, respectively.
Despite the reported improvements over the SIMBIG

power spectrum, it is crucial to recognize two points; first,

FIG. 5. Robustness test: the distribution of the difference between the inferred posterior mean θi and the fiducial value θifid normalized
by the standard deviation of the posterior σθi for each cosmological parameter on the three sets of test simulations.

FIG. 6. Posterior distribution of cosmological parameters from
the power spectrum multipoles (gray) and the skew spectra (blue)
setting kmax ¼ 0.5 h−1 Mpc for both. The smoothing scale for the
skew spectra is set to R ¼ 5 h−1 Mpc.
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the inferred posteriors from the power spectrum on most
parameters are underconfident, thus, the reported relative
improvement by the skew spectra can potentially change
with a better-trained model for the SIMBIG power spectrum.
Second, the skew spectra utilized in this study are not fully
optimized for constraining cosmological parameters.
Instead, they represent maximum-likelihood estimators
of amplitudelike parameters. Consequently, the reported
constraints could potentially be enhanced by strategically
weighting the quadratic field using either the Fisher
information matrix [109] or the score function [110].
The anticipated improvement arises from up-weighting
the Fourier modes that contribute the most to the constraints
on a given cosmological parameter. We defer further
investigation into this possibility to future work.

2. Comparison with bispectrum monopole

Given that the construction of skew spectra inevitably
mixes scales and washes out the information below the
smoothing scale, we compare the skew spectra and the
bispectrum using a more conservative choice of scales:
applying a smoothing scale of R ¼ 10 h−1Mpc and a lower
cutoff scale of kmax ¼ 0.25 Mpc−1h. The comparison of the
constraints from the three statistics at higher kmax is
presented in Appendix E.
Figure 7 shows the constraints from the skew spectra

(blue), the power spectrum multipoles (gray) [64], and the

bispectrummonopole (magenta) [31]. Here the BBNprior is
imposed for all analyses. The constraints from the bispec-
trum monopole are obtained using kmax ¼ 0.3 Mpc−1h,
while those from the power spectrum assume kmax ¼
0.25 Mpc−1h. The three summary statistics provide con-
sistent cosmological constraints. Thewidth of the posteriors
from PSn

and B0, except for σ8, are nearly identical. Again,
the reduced constraining ability of the skew spectra on σ8
can be attributed to its inherent smoothing and convolutional
structure, as previously discussed. Without BBN prior,
the constraints from the bispectrum monopole on most
of the parameters are tighter. We note that since for
R ¼ 10 h−1Mpc the inferred posteriors of all parameters
from skew spectra show under-confidence (see Fig. 9),
the reported comparison with the bispectrum monopole
may be altered with future improvements of SIMBIG

framework.
Although the above configuration offers a more mean-

ingful comparison between the skew spectra and the
bispectrum, we also compare the results of the two statistics
for a smaller value of the smoothing scale of R ¼
5 h−1Mpc and considering kmax ¼ f0.25; 0.5g Mpc−1h.
With the reduced smoothing scale, the constraints by the
skew spectra is weaker when contrasted with the bispec-
trum. Additionally, we observed a ∼1σ discrepancy in Ωb
between the skew spectra and the bispectrum monopole
under these scale cuts. A similar discrepancy in h emerges
when applying the BBN prior. The fact that skew spectra
and bispectrum results align only with conservative scale
cuts suggests model misspecification may be affecting each
statistic differently. This could be due to the skew spectra’s
sensitivity to redshift-space distortions, which are not
entirely accounted for in the bispectrum monopole. In
particular, the HOD model’s inaccuracies in characterizing
satellite galaxy kinematics might affect the results from the
skew spectra. A thorough understanding of this model
misspecification requires more detailed future research.

3. Constraints on HOD parameters

In addition to the cosmological parameters, we also show
the full posterior distribution including the HOD param-
eters with BBN priors, in Figs. 8 of Appendix C, respec-
tively. Our analysis reveals no significant enhancement in
HOD constraints using the skew spectra compared to the
power spectrum multipoles and bispectrum monopole. We
found that the posterior distribution of σlogM touches the
prior range from the right, indicating that we need to extend
the HOD simulations to a wider prior [111]. However, this
expansion is unlikely to substantially affect the posterior
of other parameters, considering the weak degeneracies
between σlogM and other parameters. Additionally, the
degeneracy directions in HOD parameters derived from
the skew spectra are similar to those from the power
spectrum multipoles, as predicted by [13]. This similarity
is likely attributable to both estimators accessing redshift-

FIG. 7. Posterior distribution of cosmological parameters from
the power spectrum (gray), the skew spectra (blue), and the
bispectrum monopole (red) imposing the BBN prior, and setting
kmax ¼ 0.25 h−1 Mpc for the first two and kmax ¼ 0.3Mpc−1h for
the third. The smoothing scale is set to R ¼ 10 h−1 Mpc for the
skew spectra.
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space information. It is worth noting that among cosmo-
logical parameters, σ8 is the one most degenerate with
HOD parameters. Given the limited constraints on HOD
parameters from skew spectra, this degeneracy can be
partially responsible for the rather weak constraints on σ8.
More discussion in the implication of posterior distribu-
tions of HODs can be found in Appendix C.

4. Assessment of alternative analysis configurations

To gain further insight into how alternative analysis
choices impact the inferred posteriors, we trained additional
sets of normalizing flow models for five additional con-
figurations. For each case, we trained 2,000–3,000 models
and considered the ensemble average of the top 10 models
with lowest validation loss. All analyses are performed
setting the smoothing scale of R ¼ 5 h−1 Mpc and includ-
ing scales up to kmax ¼ 0.5 Mpc−1h. We summarize our
observations here and refer the interested reader to
Appendix E for further details and visualizations of the
results. We also present the 1σ constraints for these
analyses in Table II

(i) Removal of the outliers in the training data: we
remove training galaxy catalogs with extreme num-
ber densities and skew spectra amplitudes before
conducting SBI. Removing these outliers changes
the constraining power of the inferred posteriors by
<15%. This consistency holds both with and with-
out the BBN prior (see Appendix B for further
details on different outlier removal schemes).

(ii) Subtraction of the Poisson shot noise: in the
standard analysis based on an explicit form of
the likelihood, the Poisson shot noise is subtracted
in the estimator of a given summary statistics to
reduce the covariance. With our SBI approach, the
inferred posteriors with or without shot noise
subtraction in the skew spectra estimator yields
similar constraints (see Fig. 11). This suggests that
the SBI method effectively distinguishes the shot
noise and clustering components of the skew
spectra. Further validation of this interpretation
for galaxy samples of varying number densities
is left for a future work.

(iii) Choice of the large-scale cutoff, kmin: given that the
systematic weights for BOSS data are not well tested
on large scales, we investigate the impact of ex-
cluding the scales close to the survey’s fundamental
modes kf from the analysis. We find that setting
kmin ¼ 0.01 ½Mpc−1h�, as done in the standard
BOSS analyses (e.g., [112]), has only a percent
level impact on the overall constraints on ΛCDM
parameters. This is somewhat expected since im-
posing this cutoff only excludes a single k-bin given
our binning scheme.

(iv) Choice of the small-scale cutoff, kmax: to
quantify the dependence of the results on the

small-scale cutoff, we experimented with kmax ¼
f0.15; 0.25; 0.5g ½Mpc−1h�. The most significant
degradation, especially in Ωm (30%), was observed
with a cutoff k < 0.15 Mpc−1h. Even with such an
aggressive cutoff, the overall constraints remained
comparable to those from the power spectrum with
kmax ¼ 0.5 Mpc−1h. This conclusion holds with or
without BBN priors (see Fig. 11).

(v) Choice of smoothing scale: we compared the results
with the posterior inferred from skew spectra with
smoothing scale R ¼ 10 h−1 Mpc. Larger smooth-
ing scales leads to expected degradation in con-
straints, most notably a 40% decrease in Ωb
precision. Other parameters were less affected
(see Fig. 12).

VI. DISCUSSIONS AND CONCLUSIONS

This paper presents the first cosmological constraints
from analysing the full set of galaxy skew spectra obtained
from the BOSS DR12 CMASS-SGC dataset. This work is
part of a series of articles by the SIMBIG collaboration, in
which several summary statistics of CMASS galaxy sample
were analyzed [66], including the power spectrum [64,65],
the bispectrum [31], the wavelet scattering transform [32],
and the field-level analysis using the CNN [33].
In order to apply the skew spectra to observational data

from spectroscopic galaxy surveys, we developed a new
FFT-based estimators for the skew spectra, akin to power
spectrum and bispectrum FKP estimators. This estimator
integrates essential components such as the survey mask,
systematic weights, and a subtraction of the Poisson
shot noise.
We use the SIMBIG framework to perform a simulation-

based inference using normalizing flows for neural density
estimation to obtain cosmological constraints. The SIMBIG

pipeline incorporates accurate forward modeling of the
observed galaxy distribution for the BOSS CMASS-SGC
sample, enabling SBI to infer posteriors for cosmological
and HOD parameters from summary statistics of choice.
Before applying the SIMBIG framework to CMASS data, as
in previous SIMBIG analyses, we perform two validation
tests to ensure that the inferred posteriors are robust and
unbiased. Our validation tests, which include simulation-
based calibration and the SIMBIG mock challenge, confirms
that the inferred posterior is robust and unbiased for both
parameters.
Setting kmax ¼ 0.5 Mpc−1h and R ¼ 5 h−1 Mpc, and

without introducing any informative priors, the skew
spectra enhance constraints on Ωm, Ωb, and h by 34%,
35%, and 18%, respectively, over constraints from the
power spectrum multipoles. Imposing the BBN prior, we
improve the constraint on h by a factor of 2.3, enabling us
to constrain h at 3% level with only 10% of the full BOSS
survey. These relative improvement can potentially be
modified given the current underconfident posterior
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distribution inferred from the SIMBIG power spectrum. The
inferred value of ns tends to be lower than that of
Planck2018 [113], while the mean of the posterior of h
tends to be higher. We attribute these tendencies to either
statistical fluctuation or potential model misspecification
on small scales. A more detailed investigation of this matter
is reserved for future work.
The skew spectra did not yield a reduction in uncer-

tainties on σ8 and HOD parameters compared to the power
spectrum. This lack of improvement can be attributed to the
smoothing and convolutional nature of the skew spectra.
The smoothing tends to diminish small-scale modes, and
the convolution mixes scales, transferring information from
small to larger scales. Consequently, the distinctive infor-
mation typically associated with σ8 and HOD parameters,
often tied to small scales, becomes dispersed across various
scales, complicating interpretation. To validate this intu-
ition, one could explore an alternative parameterization of
the galaxy-dark matter relation, such as using a perturbative
forward model [62]. Additionally, the skew spectra’s
limited constraining power may be influenced by the
low mean number density and volume of the CMASS-
SGC galaxy sample. Further investigation into these issues
is deferred to future research.
Our results confirm the expectation that on the semi-linear

scales (setting R ¼ 10 h−1Mpc and imposing kmax ¼
0.25 Mpc−1h), the skew spectra capture the majority of
the information of the bispectrum. The SIMBIG analyses of
the bispectrum monopole and the skew spectra yield com-
parable constraints on all parameters, except for σ8, which is
better constrained by the bispectrum monopole. Extending
the analysis to the smaller scales (setting R ¼ 5 h−1Mpc and
imposing kmax ¼ 0.5 Mpc−1h), we observe the inferred
constraints from the skew spectra are weaker relative to the
bispectrum. In addition, we report a ∼1σ discrepancy in the
mean of the posterior of Ωb and h from the bispectrum
monopole and skew spectra. This discrepancy can hint at a
potential model misspecification on small scales, possibly
due to inaccuracies in HOD descriptions.We leave a more in-
depth investigation of this issue to future works.
Beyond the main result, we performed a series of tests to

explore whether our cosmological constraints are impacted
by the removal of outliers from training data, the sub-
traction of the Poisson shot noise, the choice of large- and
small-scale cutoff scales, and the choice of the smoothing
scale. We found that removal of the outlier can affect the
constraints mildly, less than 15%. Regarding the shot noise
subtraction, we observe a marginal impact on the posterior
distributions. We found that applying a highly conservative
scale cut (kmax ¼ 0.15 Mpc−1 h) and using a larger smooth-
ing scale lead to degradation of the constraints on Ωm and
Ωb, respectively, leaving the uncertainties on other param-
eters largely unaffected.
This work can be extended in several directions. First,

there is room for improvement in the optimality of the skew

spectra. The current kernels defining the quadratic fields
were designed for optimal constraint on the amplitude
of the primordial power spectrum and bispectrum, the
growth rate of structure, and galaxy biases. However, they
may not fully capture all the shape information. A future
extension can refine the kernels to be “shape-sensitive” and
optimally capable of capturing cosmological information.
Additionally, the 14 galaxy skew spectra can be broadly
classified into three families (see Fig. 2). Consequently, the
size of the data vector may be potentially reduced by
constructing optimal combinations.
Given that the skew spectra are optimally designed for

constraining PNG, another natural direction for future work
is to analyze BOSS data to constrain the Gaussianity of
initial conditions using the full set of galaxy skew spectra.
Within SIMBIG framework, this analysis requires incorpo-
rating non-Gaussian initial conditions into the forward
model and investigating whether the HOD model is
affected by PNG.
Combining the power spectrum and the skew spectra

should improve the constraints from the two statistics
individually. Hence, an investigation of an optimal strategy
for effectively combining multiple summary statistics is left
for future work.
Lastly, considering the observed limited sensitivity of the

skew spectra to HOD parameters in our analysis, an
interesting avenue for exploration would be to investigate
the constraining power of skew spectra when performing
SBI using an alternative forward model, e.g., based on
perturbation theory [62].
While finalizing this draft, a related work, [114],

appeared on arXiv, in which an application of a subset
of the skew spectra considered here (neglecting the line-of-
sight-dependent quadratic kernels) to BOSS data was
presented. In contrast to this work, in which we focused
on constraining ΛCDM using SBI, [114] employed a
subset of three skew spectra to constrain primordial non-
Gaussianity of equilateral and orthogonal shape using
perturbation theory and assuming a Gaussian likelihood.
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APPENDIX A: EXPLICIT FORMS OF SKEW
SPECTRA KERNELS IN REDSHIFT SPACE

A set of 14 skew spectra, capture the clustering infor-
mation of the tree-level galaxy bispectrum in redshift space.
Each of the skew spectra corresponds to the maximum
likelihood estimator of a specific combination of bias
parameters and the growth rate f. The explicit forms of
the quadratic fields and the parameter combination they are
most sensitive to are given below [12],

b31∶ S1 ¼ F2½δ; δ�; ðA1Þ

b21b2∶ S2 ¼ δ2; ðA2Þ

b21bG2
∶ S3 ¼ S2½δ; δ�; ðA3Þ

b31f∶ S4 ¼ ẑiẑj∂i

�
δ
∂j

∇2
δ

�
; ðA4Þ

b21f∶ S5 ¼ 2F2½δk; δ� þGk
2½δ; δ�; ðA5Þ

b1b2f∶ S6 ¼ δδk; ðA6Þ

b1bG2
f∶ S7 ¼ S2½δ; δk�; ðA7Þ

b21f
2∶ S8 ¼ ẑiẑj∂i

�
δ
∂j

∇2
δk þ 2δk

∂j

∇2
δ

�
; ðA8Þ

b1f2∶ S9 ¼ F2½δk; δk� þ 2Gk
2½δk; δ�; ðA9Þ

b2f2∶ S10 ¼ ðδkÞ2; ðA10Þ

bG2
f2∶ S11 ¼ S2ðδk; δkÞ; ðA11Þ

b1f3∶ S12 ¼ ẑiẑj∂i

�
δkk

∂j

∇2
δþ 2δk

∂j

∇2
δk
�
; ðA12Þ

f3∶ S13 ¼ Gk
2½δk; δk�; ðA13Þ

f4∶ S14 ¼ ẑiẑj∂i

�
δkk

∂j

∇2
δk
�
: ðA14Þ

The F2 and G2 functions are the standard perturbation
theory kernels for matter density and velocity (see, e.g.,
Eq. (B.13) in [115]), while S2 is the Fourier transform of the
Galileon operator, capturing the effect of the tidal field,

S2ðk1;k2Þ≡
�
k1 · k2

k1k2

�
2

− 1: ðA15Þ

We defined the redshift-space operators as

Ok ¼ ẑiẑj
∂i∂j

∇2
O; ðA16Þ

Okk ¼ ẑiẑjẑmẑn
∂i∂j∂m∂n

∇4
O; ðA17Þ

and the operators O½a; b� that act on arbitrary fields
a and b as

O½a; b�ðkÞ≡
Z
q

1

2
½aðqÞbðk − qÞ þ bðqÞaðk − qÞ�

×Oðq;k − qÞ: ðA18Þ

APPENDIX B: PREPROCESSING OF THE
MEASUREMENTS TO REMOVE OUTLIERS

The SIMBIG forward-modeled galaxy mocks display
wide variations in the mean number density and the
clustering amplitude due to the broad HOD parameter
priors. To enhance the stability of our training process and
ensure that all features meaningfully contribute to the
neural networks, we preprocess the training dataset, by
removing “outlier” mock catalogs. Furthermore, we nor-
malize the measured skew spectra by dividing them by
square of the power spectrum to obtain features of order
unity. We compared several algorithms for removing the
outliers, which we describe below.
We remove the outliers based on the amplitude of the

skew spectra, and compare the performance of three
algorithms; (1) elimination based on the z-score: this is
a simple prescription to remove the data points that lie on
the tails of a (Gaussian) distribution. The data points with a
z-score (the number of standard deviations from the mean)
greater than a threshold are declared to be outliers.
(2) Local outlier factor [LOF [116]] is a machine-learn-
ing-based anomaly detection algorithm. It hinges on the
idea that anomalies will have a significantly lower density
of neighbors than on average, indicating that they are
relatively more isolated. It assesses the local density of data
points by comparing the density of a data point to its
neighbors. (3) Isolation forest [IF [117]] is also machine-
learning based; the IsoForest isolates anomalies by ran-
domly partitioning the data and creating isolation trees (a
decision tree for anomaly isolation). It exploits the fact that
anomalies are fewer and more isolated than normal
instances, making them easier to separate within the
isolation trees.
In the main analyses presented in this paper, we apply the

local outlier algorithms using its implementation in
SKLEARN package [118]. We also tested the impact of
not removing the outliers and found that it can change the
constraints on the 5 cosmological parameters less than
15%. The results are summarized in Table II.
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APPENDIX C: FULL POSTERIOR
DISTRIBUTION: CONSTRAINTS ON THE HOD

PARAMETERS

To illustrate the constraining power of different summary
statistics (Pl; B0;SR) and the degeneracies between the
nuisance and cosmological parameters, in Fig. 8, we show
the full posterior distributions on model parameters from
analyses of the BOSS CMASS-SGC sample. For all three
statistics, the BBN prior is imposed, and the small-scale
cutoff scale is set to kmax ¼ 0.5 Mpc−1h. For the skew
specra, the smoothing scale of R ¼ 5 h−1Mpc is imposed.
Generally, except for logM1 (the characteristic halo mass

scale to host satellite galaxies), the skew spectra do not
improve the constraints on any of the HOD parameters over
the power spectrum. The inferred posterior on σlogM (the
scatter in the halo mass–galaxy luminosity relation) hits the
prior range, indicating that additional mock catalogs sam-
pling a wider prior range are necessary. Similar to σ8, the

failure of the skew spectra in improving the constraints on
the HOD parameters can potentially be associated smooth-
ing of the input field and the convolutional nature of the skew
spectra. The formerwashes out small-scalemodes,while the
latter mixes different scales and transfers information from
small to larger scales. This interplay potentially disperses the
information usually linked to σ8 and the HOD parameters,
which are typically associated with small scales, thereby
complicating their interpretation.
The comparison between the skew spectra and the

bispectrum monopole reveals that their constraining power
on HOD parameters is quite similar. Notably, certain HOD
parameters, like logMmin and ηcent, even show enhance-
ments in constraint accuracy. This observation suggests that
the velocity information encapsulated by the RSD could be
crucial for more effectively constraining HOD parameters.
Worth noting that among cosmological parameters, σ8

shows the strongest degeneracy with several HOD

TABLE II. Table summarizes the posteriors of ΛCDM cosmological parameters inferred from the skew spectra, and the power
spectrum. We present the median and 68% uncertainties of the parameters.

No priors Scale cuts Ωm Ωb h ns σ8

PR¼5 k∈ ðkf ; 0.5Þ 0.288þ0.024
−0.034 0.043þ0.005

−0.007 0.756þ0.104
−0.050 0.918þ0.041

−0.090 0.778þ0.066
−0.093

k∈ ð0.01; 0.5Þ 0.297þ0.027
−0.040 0.042þ0.005

−0.009 0.735þ0.107
−0.072 0.924þ0.046

−0.087 0.794þ0.072
−0.098

k∈ ð0.01; 0.25Þ 0.292þ0.024
−0.037 0.044þ0.005

−0.008 0.761þ0.102
−0.051 0.936þ0.050

−0.085 0.798þ0.078
−0.086

k∈ ð0.01; 0.15Þ 0.322þ0.042
−0.055 0.043þ0.005

−0.009 0.729þ0.118
−0.076 0.930þ0.047

−0.091 0.837þ0.091
−0.066

PR¼10 k∈ ð0.01; 0.5Þ 0.309þ0.030
−0.037 0.047þ0.007

−0.011 0.716þ0.090
−0.079 0.902þ0.032

−0.083 0.848þ0.107
−0.068

k∈ ð0.01; 0.25Þ 0.308þ0.029
−0.036 0.052þ0.007

−0.007 0.753þ0.080
−0.063 0.909þ0.043

−0.079 0.846þ0.081
−0.079

PR¼5, shot noise incl. k∈ ð0.01; 0.5Þ 0.275þ0.026
−0.036 0.042þ0.005

−0.008 0.738þ0.101
−0.068 0.953þ0.056

−0.111 0.778þ0.065
−0.087

PR¼5, no outlier removal k∈ ð0.01; 0.5Þ 0.288þ0.027
−0.034 0.043þ0.005

−0.008 0.760þ0.103
−0.053 0.924þ0.041

−0.089 0.798þ0.080
−0.097

Pl¼0;2 [64] k∈ ðkf ; 0.5Þ 0.302þ0.032
−0.057 0.048þ0.008

−0.012 0.700þ0.093
−0.095 0.947þ0.063

−0.082 0.802þ0.067
−0.066

k∈ ðkf ; 0.25Þ 0.283þ0.034
−0.041 0.052þ0.008

−0.008 0.695þ0.105
−0.105 0.981þ0.082

−0.094 0.845þ0.098
−0.059

B0 [31] k∈ ðkf ; 0.5Þ 0.294þ0.027
−0.026 0.059þ0.005

−0.005 0.756þ0.040
−0.040 0.952þ0.039

−0.034 0.784þ0.037
−0.042

k∈ ðkf ; 0.3Þ 0.336þ0.034
−0.038 0.045þ0.004

−0.004 0.696þ0.041
−0.043 0.944þ0.043

−0.043 0.802þ0.051
−0.056

BBN prior scale cuts Ωm Ωb h ns σ8

PR¼5 k∈ ðkf ; 0.5Þ 0.285þ0.028
−0.033 0.041þ0.003

−0.004 0.750þ0.034
−0.032 0.915þ0.047

−0.082 0.781þ0.071
−0.095

k∈ ð0.01; 0.5Þ 0.291þ0.028
−0.034 0.041þ0.003

−0.004 0.744þ0.032
−0.033 0.920þ0.051

−0.081 0.798þ0.082
−0.093

k∈ ð0.01; 0.25Þ 0.289þ0.026
−0.034 0.041þ0.003

−0.004 0.747þ0.033
−0.035 0.940þ0.054

−0.083 0.803þ0.088
−0.085

k∈ ð0.01; 0.15Þ 0.316þ0.040
−0.053 0.042þ0.004

−0.007 0.741þ0.054
−0.044 0.926þ0.047

−0.079 0.834þ0.093
−0.072

PR¼10 k∈ ð0.01; 0.5Þ 0.306þ0.030
−0.038 0.045þ0.004

−0.006 0.712þ0.044
−0.042 0.898þ0.040

−0.070 0.853þ0.098
−0.072

k∈ ð0.01; 0.25Þ 0.320þ0.032
−0.036 0.048þ0.005

−0.005 0.692þ0.033
−0.036 0.921þ0.055

−0.072 0.839þ0.075
−0.078

PR¼5, shot noise incl. k∈ ð0.01; 0.5Þ 0.273þ0.025
−0.033 0.041þ0.003

−0.003 0.745þ0.028
−0.031 0.941þ0.060

−0.089 0.779þ0.070
−0.081

PR¼5, no outlier removal k∈ ð0.01; 0.5Þ 0.285þ0.026
−0.032 0.040þ0.003

−0.004 0.751þ0.033
−0.032 0.924þ0.050

−0.077 0.802þ0.098
−0.094

Pl¼0;2 [64] k∈ ðkf ; 0.5Þ 0.301þ0.034
−0.057 0.047þ0.005

−0.008 0.701þ0.055
−0.052 0.941þ0.062

−0.078 0.804þ0.062
−0.070

k∈ ðkf ; 0.25Þ 0.286þ0.037
−0.040 0.051þ0.007

−0.006 0.669þ0.032
−0.050 0.985þ0.086

−0.086 0.849þ0.092
−0.056

B0 [31] k∈ ðkf ; 0.5Þ 0.291þ0.032
−0.026 0.050þ0.002

−0.003 0.676þ0.020
−0.018 0.949þ0.046

−0.032 0.768þ0.029
−0.050

k∈ ðkf ; 0.3Þ 0.335þ0.032
−0.038 0.046þ0.003

−0.003 0.704þ0.024
−0.024 0.943þ0.043

−0.041 0.803þ0.051
−0.052
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parameters, especially, logMmin; ηcent; ηsat, which are
poorly constraints by the skew spectra. These degeneracies
play a part in the limited constraining power of the skew
spectra on σ8. Therefore, analysis of skew spectra using a
different model of dark matter–galaxy relation, e.g., the
perturbative biasing description, could potentially provide
better constraints on σ8.

APPENDIX D: VALIDATION TEST WITH
CONSERVATIVE SCALE CUTS

In Sec. V C 2, we presented a comparison of the skew
spectra, the power spectrum multipoles, and the bispectrum

monopole for a rather conservative choice of scale cuts
(kmax ¼ 0.25 Mpc−1h, R ¼ 10 h−1 Mpc). This section pro-
vides the two validation tests to assess the accuracy and
robustness of the estimated posteriors from the skew
spectra.
Figure 9 shows the distribution of the rank statistics,

which exhibits ∩-shaped distributions for all parameters.
This behavior indicates that the estimated posteriors are
broader than the true posteriors (i.e., underconfident) and
implies that the skew spectra constraints should be con-
sidered conservative. Figure 10 shows the distributions of
the difference between the estimated posterior means and
the fiducial values of cosmological parameters across the

FIG. 8. Posterior distribution of cosmological parameters inferred the skew spectra (blue) and power spectrum (gray) with a cutoff
scale kmax ¼ 0.5 h−1 Mpc including the BBN prior and smoothing scale R ¼ 5 h−1 Mpc.
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three test simulations. The statistical consistency of the
distributions across the three test sets demonstrates the
robustness of the trained models to details of the forward
modeling.

APPENDIX E: DEPENDENCE OF THE
CONSTRAINTS ON ANALYSIS CHOICES

As described in Sec. V C 4, we perform several addi-
tional SBI analyses to investigate the dependence on the
inferred cosmological constraints on various analysis
choices. For each configuration, we retrain 2,000–3,000
neural network models. We report the 1σ constraints on
cosmological parameters for these tests in Table II. We
provide further details on these tests here.
First, we study the impact of shot noise. For this test, we

opt for kmax ¼ 0.5 Mpc−1h and R ¼ 5 to enhance the
influence at small scales where shot noise effects are
non-negligible. The left panel of Fig. 11 shows the
comparison with and without shot noise subtraction. We
found that the constraints on Ωb and h are identical in the
two cases, while the widths of the σ8 and ns posteriors are
mildly affected. For Ωm, we observe a slight shift of the
peak of the posterior. Despite these marginal differences,
we conclude that the constraints are largely unaffected by
the subtraction of shot in the estimator. This implies that in

contrast to a conventional likelihood-based inference
approach, the SBI approach can effectively isolate the
influence of shot noise and extract the cosmological
response based on a given summary statistics. However,
we note that validating this interpretation requires perform-
ing further tests on samples with varying number density
and employing different summary statistics.
Second, we investigate the impact of the maximum scale

cuts by choosing kmax ¼ f0.15; 0.25; 0.5g ½Mpc−1h�. Here,
we set the smoothing scale to R ¼ 5 h−1 Mpc. Due to the
convolutional structure of the skew spectra and the smooth-
ing operation, small-scale information is partially trans-
ferred to larger scales. As previously shown in the
numerical Fisher forecast of [13], while skew spectra
can achieve better constraints at relatively large scales
compared to the power spectrum or the bispectrum mono-
pole, the constraining power also saturates faster as we
push the kmax cuts toward smaller scales. This saturation is
also apparent in the fast-dropping power in Fig. 2.
As expected, applying an aggressive small-scale cut at k <
0.15 Mpc−1 h degrades the constraints, particularly Ωm by
30%. Nevertheless, when imposing the BBN priors, even
for this cutoff, the constraints from skew spectra are still
comparable to those from the power spectrum multipoles
with a scale cut of kmax ¼ 0.5 Mpc−1 h.

FIG. 9. Rank statistics of the validation data for analysis of the skew spectra with R ¼ 10 h−1 Mpc and kmax ¼ 0.25 Mpc−1 h.

FIG. 10. Distribution of the difference between the inferred posterior mean θi and the fiducial value θifid normalized by the standard
deviation of the posterior σθi for each cosmological parameter on the three sets of test simulations.
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Third, we study the impact of the choice of the
smoothing scales by imposing R ¼ 5 h−1 Mpc and
R ¼ 10 h−1 Mpc. Figure 2 shows that the smoothing scale
can shift the featured peak of the skew spectra, which could
potentially be sensitive to information at different scales.

Furthermore, a larger smoothing scale washes out the
small-scale fluctuations more significantly. We find that,
as expected, the constraints degrade when using a larger
smoothing scale. The degradation is particularly visible in
Ωb by ∼40%. For other parameters, the effect is marginal.

FIG. 11. Left: posterior distribution of cosmological parameters with (purple) and without (green) subtracting the Poisson shot noise in
skew spectra estimators. Right: posterior distribution of cosmological parameters for three choices of small-scale cutoff: kmax ¼
0.15 Mpc−1h in red, kmax ¼ 0.25 Mpc−1h in orange, and kmax ¼ 0.5 Mpc−1h in green.

FIG. 12. Posterior distribution of cosmological parameters for two choices of the smoothing scale: R ¼ 5 h−1 Mpc in green and
R ¼ 10 h−1 Mpc in orange. The small-scale cutoff is set to kmax ¼ 0.5 Mpc−1h in both cases.
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Blancard, and B. Wandelt, arXiv:2309.15071.
[64] C. Hahn, M. Eickenberg, S. Ho, J. Hou, P. Lemos, E.

Massara, C. Modi, A. Moradinezhad Dizgah, B. R.-S.
Blancard, and M.M. Abidi, Proc. Natl. Acad. Sci.
U.S.A. 120, e2218810120 (2023).

[65] C. Hahn, M. Eickenberg, S. Ho, J. Hou, P. Lemos, E.
Massara, C. Modi, A. Moradinezhad Dizgah, B. R.-S.
Blancard, and M.M. Abidi, J. Cosmol. Astropart. Phys.
04 (2023) 010.

[66] C. Hahn et al., arXiv:2310.15246.
[67] K. Pardede, F. Rizzo, M. Biagetti, E. Castorina, E.

Sefusatti, and P. Monaco, J. Cosmol. Astropart. Phys.
10 (2022) 066.

[68] J. Hou and A. Moradinezhad Dizgah (to be published).
[69] In this derivation we have dropped out the linear term in

the overdensity field, which is only relevant for statistically
inhomogeneous fields [10,13].

[70] Similarly, in numerical Fisher forecasts [13] the smoothing
ensures that only modes on scales not affected by the
resolution of the simulations are included in the analysis.

[71] We define the full set of redshift-space galaxy skew spectra
by including the 14 kernels that encode the line-of-sight
velocity information, in contrast to a subset of skew spectra
that are constructed from the 3 real-space kernels.

[72] F. Villaescusa-Navarro et al., Astrophys. J. Suppl. Ser. 250,
2 (2020).

[73] H. A. Feldman, N. Kaiser, and J. A. Peacock, Astrophys. J.
426, 23 (1994).

[74] C. Hahn, R. Scoccimarro, M. R. Blanton, J. L. Tinker, and
S. A. Rodríguez-Torres, Mon. Not. R. Astron. Soc. 467,
1940 (2017).

[75] H. A. Feldman, N. Kaiser, and J. A. Peacock, Astrophys. J.
426, 23 (1994).

[76] We adopted the FKP weights minimizing the variance for
the power spectrum. This may not be optimal for skew
spectra. We leave the extension for future work.

[77] K. Yamamoto, M. Nakamichi, A. Kamino, B. A. Bassett,
and H. Nishioka, Publ. Astron. Soc. Jpn. 58, 93 (2006).

[78] N. Hand, Y. Feng, F. Beutler, Y. Li, C. Modi, U. Seljak, and
Z. Slepian, Astron. J. 156, 160 (2018).

[79] https://github.com/bccp/nbodykit.
[80] We note that the choice of the fundamental frequency

could be susceptible to systematic effects approaching the
survey boundary as we discuss in Appendix E.

[81] D. J. Eisenstein et al. (SDSS Collaboration), Astron. J.
142, 72 (2011).

[82] K. S. Dawson et al. (BOSS Collaboration), Astron. J. 145,
10 (2013).

[83] V. Springel, Mon. Not. R. Astron. Soc. 364, 1105 (2005).
[84] P. S. Behroozi, R. H. Wechsler, and H.-Y. Wu, Astrophys.

J. 762, 109 (2012).
[85] A. A. Berlind and D. H. Weinberg, Astrophys. J. 575, 587

(2002).
[86] Z. Zheng, A. L. Coil, and I. Zehavi, Astrophys. J. 667, 760

(2007).
[87] The overlapping tiling is approximated by randomly

downsampling the collided galaxies by 40%.
[88] https://github.com/mockFactory/make_survey.
[89] E. G. Tabak and E. Vanden-Eijnden, Commun. Math. Sci.

8, 217 (2010).
[90] E. G. Tabak and C. V. Turner, Commun. Pure Appl. Math.

66 (2013).
[91] D. Jimenez Rezende and S. Mohamed, arXiv:1505.05770.
[92] In SIMBIG analyses of the power spectrum, bispectrum and

wavelet scattering transforms MAF was used, while in the
field-level analysis using CNNs, Neural Spline Flows
[NSF;[121]] were utilized. For skew spectra, we found
that using the NSF has a significantly slower convergence
to stable results.

[93] G. Papamakarios, T. Pavlakou, and I. Murray, arXiv:1705.
07057.

[94] A. Tejero-Cantero, J. Boelts,M.Deistler, J.-M. Lueckmann,
C. Durkan, P. J. Gonçalves, D. S. Greenberg, and J. H.
Macke, J. Open Source Softwaare 5, 2505 (2020).

[95] https://github.com/mackelab/sbi.
[96] M. Germain, K. Gregor, I. Murray, and H. Larochelle,

Made: Masked autoencoder for distribution estimation,
Proceedings of the 32nd International Conference on
Machine Learning (2015); arXiv:1502.03509.

[97] D. P. Kingma and J. Ba, arXiv:1412.6980.
[98] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,

arXiv:1907.10902.
[99] B. Lakshminarayanan, A. Pritzel, and C. Blundell,

arXiv:1612.01474.
[100] J. Alsing, T. Charnock, S. Feeney, and B. Wandelt, Mon.

Not. R. Astron. Soc. 488, 4440 (2019).
[101] N. A. Maksimova, L. H. Garrison, D. J. Eisenstein, B.

Hadzhiyska, S. Bose, and T. P. Satterthwaite, Mon. Not.
R. Astron. Soc. 508, 4017 (2021).

[102] L. H. Garrison, D. J. Eisenstein, D. Ferrer, N. A.
Maksimova, and P. A. Pinto, Mon. Not. R. Astron. Soc.
508, 575 (2021).

[103] QUIJOTE fiducial cosmology is set to fΩm;Ωb; h; ns; σ8g ¼
f0.3175; 0.049; 0.6711; 0.9624; 0.834g.

[104] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. White,
Astrophys. J. 292, 371 (1985).

[105] The velocity bias of the central galaxies is fixed to ηcent ¼
0.2 in order to construct galaxy samples with reasonable
power spectrum quadrupole.

[106] The base simulations are run at Planck2018 [113]
cosmology corresponding to base_plikHM_TT-
TEEE_lowl_lowE_lensing data.

[107] B. Hadzhiyska, D. Eisenstein, S. Bose, L. H. Garrison, and
N. Maksimova, Mon. Not. R. Astron. Soc. 509, 501
(2022).

JIAMIN HOU et al. PHYS. REV. D 109, 103528 (2024)

103528-20

https://doi.org/10.1093/mnras/sty2377
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1073/pnas.1912789117
https://arXiv.org/abs/2101.04653
https://doi.org/10.3847/1538-4357/acd1e2
https://arXiv.org/abs/2310.15234
https://arXiv.org/abs/2310.03741
https://arXiv.org/abs/2309.15071
https://doi.org/10.1073/pnas.2218810120
https://doi.org/10.1073/pnas.2218810120
https://doi.org/10.1088/1475-7516/2023/04/010
https://doi.org/10.1088/1475-7516/2023/04/010
https://arXiv.org/abs/2310.15246
https://doi.org/10.1088/1475-7516/2022/10/066
https://doi.org/10.1088/1475-7516/2022/10/066
https://doi.org/10.3847/1538-4365/ab9d82
https://doi.org/10.3847/1538-4365/ab9d82
https://doi.org/10.1086/174036
https://doi.org/10.1086/174036
https://doi.org/10.1093/mnras/stx185
https://doi.org/10.1093/mnras/stx185
https://doi.org/10.1086/174036
https://doi.org/10.1086/174036
https://doi.org/10.1093/pasj/58.1.93
https://doi.org/10.3847/1538-3881/aadae0
https://github.com/bccp/nbodykit
https://github.com/bccp/nbodykit
https://doi.org/10.1088/0004-6256/142/3/72
https://doi.org/10.1088/0004-6256/142/3/72
https://doi.org/10.1088/0004-6256/145/1/10
https://doi.org/10.1088/0004-6256/145/1/10
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1088/0004-637X/762/2/109
https://doi.org/10.1088/0004-637X/762/2/109
https://doi.org/10.1086/341469
https://doi.org/10.1086/341469
https://doi.org/10.1086/521074
https://doi.org/10.1086/521074
https://github.com/mockFactory/make_survey
https://github.com/mockFactory/make_survey
https://doi.org/10.4310/CMS.2010.v8.n1.a11
https://doi.org/10.4310/CMS.2010.v8.n1.a11
https://doi.org/10.1002/cpa.21423
https://doi.org/10.1002/cpa.21423
https://arXiv.org/abs/1505.05770
https://arXiv.org/abs/1705.07057
https://arXiv.org/abs/1705.07057
https://doi.org/10.21105/joss.02505
https://github.com/mackelab/sbi
https://github.com/mackelab/sbi
https://arXiv.org/abs/1502.03509
https://arXiv.org/abs/1412.6980
https://arXiv.org/abs/1907.10902
https://arXiv.org/abs/1612.01474
https://doi.org/10.1093/mnras/stz1960
https://doi.org/10.1093/mnras/stz1960
https://doi.org/10.1093/mnras/stab2484
https://doi.org/10.1093/mnras/stab2484
https://doi.org/10.1093/mnras/stab2482
https://doi.org/10.1093/mnras/stab2482
https://doi.org/10.1086/163168
https://doi.org/10.1093/mnras/stab2980
https://doi.org/10.1093/mnras/stab2980


[108] S. Talts, M. Betancourt, D. Simpson, A. Vehtari, and A.
Gelman, arXiv:1804.06788.

[109] A. Heavens, R. Jimenez, and O. Lahav, Mon. Not. R.
Astron. Soc. 317, 965 (2000).

[110] J. Alsing and B. Wandelt, Mon. Not. R. Astron. Soc. 476,
L60 (2018).

[111] This is the case with or without the BBN prior.
[112] F. Beutler et al. (BOSS Collaboration), Mon. Not. R.

Astron. Soc. 466, 2242 (2017).
[113] N. Aghanim et al. (Planck Collaboration), Astron.

Astrophys. 641, A6 (2020); 652, C4(E) (2021).
[114] S.-F. Chen, P. Chakraborty, and C. Dvorkin, arXiv:2401.

13036.
[115] V. Desjacques, D. Jeong, and F. Schmidt, Phys. Rep. 733, 1

(2018).
[116] M.M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, in

Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’00
(Association for Computing Machinery, New York, NY,
USA, 2000), p. 93–104.

[117] F. T. Liu, K. M. Ting, and Z.-H. Zhou, Isolation Forest.
2008 8th IEEE International Conference on Data Mining,
Pisa, 2008, (2008), pp. 413–422, 10.1109/ICDM.2008.17.

[118] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay, J. Mach. Learn.
Res. 12, 2825 (2011).

[119] S. Yuan, L. H. Garrison, D. J. Eisenstein, and
R. H. Wechsler, Mon. Not. R. Astron. Soc. 515, 871
(2022).

[120] E. Paillas et al., arXiv:2309.16541.
[121] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios,

Adv. Neural Inf. Process. Syst. 32 (2019).

COSMOLOGICAL CONSTRAINTS FROM THE REDSHIFT-SPACE … PHYS. REV. D 109, 103528 (2024)

103528-21

https://arXiv.org/abs/1804.06788
https://doi.org/10.1046/j.1365-8711.2000.03692.x
https://doi.org/10.1046/j.1365-8711.2000.03692.x
https://doi.org/10.1093/mnrasl/sly029
https://doi.org/10.1093/mnrasl/sly029
https://doi.org/10.1093/mnras/stw3298
https://doi.org/10.1093/mnras/stw3298
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arXiv.org/abs/2401.13036
https://arXiv.org/abs/2401.13036
https://doi.org/10.1016/j.physrep.2017.12.002
https://doi.org/10.1016/j.physrep.2017.12.002
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1093/mnras/stac1830
https://doi.org/10.1093/mnras/stac1830
https://arXiv.org/abs/2309.16541

