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Largo San Marcellino 10, I-80138 Napoli, Italy
3Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Via Cinthia 9, I-80126 Napoli, Italy

4Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS,
The University of Tokyo, Chiba 277-8583, Japan

5Instituto de Física, Universidade de São Paulo, C.P. 66318, CEP: 05315-970, São Paulo, Brazil
6Center for Data-Driven Discovery, Kavli IPMU (WPI), UTIAS, The University of Tokyo,

Kashiwa, 277-8583, Japan
7Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching, Germany

8Department of Physics and Astronomy, Johns Hopkins University,
3400 North Charles Street, Baltimore, Maryland 21218, USA

(Received 1 December 2023; accepted 18 April 2024; published 14 May 2024)

Beyond-ΛCDM models have been proposed to address various shortcomings of the standard
cosmological model, such as the “Hubble tension.” These models often have an impact on the discrepancy
in the amplitude of matter clustering, the “σ8 tension.” To explore the interplay between the two tensions,
we suggest a simple method to visualize the relation between the two parameters: H0 and σ8. For a given
extension of the ΛCDMmodel and dataset, we plot the relation betweenH0 and σ8 for different amplitudes
of the beyond-ΛCDM physics. In this work, we use this visualization method to illustrate the trend of
selected cosmological models, including nonminimal Higgs-like inflation, early dark energy, a varying
effective electron mass, an extra number of relativistic species and modified dark energy models. Although
already studied in the literature, some of these models have not been analyzed in view of the two joint
tensions. We stress that the method used here could be a useful diagnostic tool to illustrate the behavior of
complex cosmological models with many parameters in the context of the H0 and σ8 tensions.

DOI: 10.1103/PhysRevD.109.103525

I. INTRODUCTION

With the improvement of both theoretical modeling and
observations of our Universe, our understanding of cos-
mology has undergone a revolution in the past decades. The
standard cosmological model (ΛCDM) is a parametrization
which is capable of explaining a large part of the evolution
of the Universe, its composition, and the structures we see
today. This model is extremely successful in describing
observations [1–9], while having most of its six para-
meters measured with subpercent precision. However, with
the increase in measurement precision, parameter discrep-
ancies have appeared, which have become statistically
significant with the latest data analyses. The most sig-
nificant of these discrepancies is the “Hubble tension” or

“H0 tension.” Measurements of the present-day expansion
rate of the Universe, the Hubble constant, H0, obtained via
indirect measurements, which depend on the assumption of
a cosmological model, yield systematically lower values of
H0 than direct measurements, which do not or weakly
depend on the assumption of a cosmological model. The
most significant tension is seen between the (indirect)
inference of H0 from cosmic microwave background
(CMB) data of the Planck mission assuming the ΛCDM
model [2], H0 ¼ 67.4� 0.5 km=s=Mpc, and the (direct)
local inference from Cepheid-calibrated type Ia supernovae
of the SH0ES project [7], H0 ¼ 73.0� 1.0 km=s=Mpc.
Considering these measurements, the statistical signifi-
cance of the tension is currently at 5σ. A consistently
higher value of H0 is also present in other local measure-
ments of H0 and the tension can vary from 4σ–6σ [10],
although studies using the tip of the red-giant branch as
calibrators instead of Cepheids [11–15], found a value of
H0 between the direct and indirect measurements.
Another discrepancy has been found in current mea-

surements sensitive to the amount of matter clustering in
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our Universe, represented by the clustering parameter σ8 or
the related parameter S8, where S8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
σ8 with Ωm

being the matter energy density. This “σ8 tension” (see [16]
for a recent review) describes the discrepancy between the
higher inferred value of σ8 or S8 from CMB data from
Planck (σ8 ¼ 0.8111� 0.0060 and S8 ¼ 0.832� 0.013
for TT, TE, EEþ lowEþ lensing [2]) assuming the
ΛCDM model, and the lower values obtained in low-
redshift probes such as weak gravitational lensing and
galaxy clustering. Depending on the data considered this
tension ranges from 2–4σ, with galaxy shear presenting
the largest discrepancy with CMB. For the Kilo-Degree
Survey (KiDS-1000), this discrepancy is at the level of
∼2.4–2.7σ1 where cosmic shear yields σ8 ¼ 0.838þ0.140

−0.141
(S8 ¼ 0.759þ0.024

−0.021 ) [17], and the 3 × 2 pt analysis that
combines shear-shear, galaxy-galaxy lensing, and galaxy-
galaxy two-point statistics, yields σ8 ¼ 0.7600þ0.025

−0.020
(S8 ¼ 0.766þ0.020

−0.014 ) [18]. For the Dark Energy Survey
(DES) Year 3 (Y3), the discrepancy is on the ∼2.3–2.6σ
level [19,20]. The Hyper Suprime-Cam (HSC) collabora-
tion reports a compatible statistical significance with
CMB to the previous clustering probes (∼2σ) in its year
3 analysis [21,22], and the 3 × 2 pt analysis indicates
no significant tension with Planck’s S8 value [23–25].
Recently, a combined analysis of DES and KiDS-1000
cosmic-shear data [26] obtained σ8 ¼ 0.825þ0.067

−0.073 (S8 ¼
0.790þ0.018

−0.014 ), which is consistent with the Planck measure-
ments at 1.7σ, and with other clustering probes, like
HSC-Y3. Besides its low significance, the σ8 tension has
been consistently present in the results from independent
photometric surveys like KiDS, DES, and HSCwith similar
levels of significance, leading to a persistent interest in
the σ8 tension [27,28]. On the other hand, the Baryon
Oscillation Spectroscopic Survey (BOSS) and extended
BOSS surveys using spectroscopic data find values of σ8
consistent with both Planck and the other clustering
surveys.
The origin of these tensions is still unknown. While they

could be a result of unknown measurement systematics,
they could also hint at new physics beyond the ΛCDM
model [29–34]. Many models were proposed in the
literature with the goal of solving one or even both of
these tensions. For the Hubble tension, these models can be
classified as early time solutions when the new physics is
added prerecombination, and late-time solutions for post-
recombination extensions. The early time solutions aim to
decrease the physical size of the sound horizon at last
scattering, which leads to an increase in H0. This can be
done in different ways, for example, by increasing HðzÞ
before recombination with additional components, by
changing the redshift of last scattering or the redshift of

matter-radiation equality by adding new physics in the
prerecombination era [35–40], or by changing the sound
speed of the baryon/photon plasma (for a review see
[41,42]). One can also consider even earlier modifications
of the physics during the inflationary era that could lead to a
higherH0 [43–45]. Moreover, late-time solutions to the H0

tension aim to increase the current rate of expansion
directly [10,16,38,46–49]. On the other hand, most of
the models proposed to solve the σ8 tension are either based
on decreasing the predicted value of Ωm or on a late-time
suppression of the linear matter power spectrum [50].2

However, the majority of models proposed to solve one
of the tensions exhibit a positive correlation between H0

and σ8, where an increase in H0 leads to an increase in σ8,
and vice versa [10,56,57], leading to a relaxation of one of
the tensions while the other one is worsened. Furthermore,
many works do not analyze both tensions simultaneously,
possibly relaxing one without giving information about the
other. There are, nevertheless, some classes of models that
attempt to alleviate both tensions. Among them, we can
mention some classes of late interacting dark-energy-dark-
matter (IDE) models [35–38], some new early dark energy
models [58], modification in the standard model at early
times [43–45], models with a late-time change to the
equation-of-state parameter of dark matter ωcdm [59],
among other proposals (see also the model of Ref. [60]
for instance). However, such models still deserve further
investigation in order to be confirmed as viable solutions to
the tensions.
Given the large number of models in the literature

proposed to address the tensions, in this article, we suggest
a simple method to visualize proposed tension-resolving
models in the H0-σ8 plane to assess the tendency of the
models regarding theH0, σ8, or both tensions. Although the
relation between H0 and σ8 is complicated and depends on
all parameters of the model and the chosen dataset, one can
find an empirical relation between the resulting value ofH0

and σ8 from parameter inference runs where one or more of
the parameters that represent the ΛCDM extension are
fixed. By fixing these extra parameters to different values,
we can plot the resulting values of H0 and σ8. The result is
an approximate line in the H0-σ8 plane. This method was
inspired by the work in Ref. [61] and was also presented in
[56]. Taking at face value both tensions, one can use this
representation as a diagnostic tool to assess the possibility
of beyond ΛCDM models to solve both the H0 and the S8
tensions. We use this representation to test the correlation
of interesting prospective tension-solving models. In the
results section we show the tendency of these models in
solving one or both tensions. Among the models chosen,
for the HLI and varying electron mass (and curvature), this

1The level of significance depends on the details of the analysis
and reaches 3.1σ in some cases.

2For recent late-time analysis in the context of both tensions,
see, for instance, Refs. [51–55].
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tendency is shown explicitly for the first time here, showing
the usefulness of this method.
The goal of this paper is not to give a definite answer as

to which models solve the tensions, as there are many
comprehensive analyses that test various models in the
context of the H0, σ8, or both tensions, including some of
the models chosen here [41,42]. Given the complexity of
these models and the dependence of H0 and σ8 on each
other and on other cosmological parameters, this method
has the goal to provide an intuitive illustration of how the
values of H0 and σ8 vary with the extra beyond-ΛCDM
parameters and diagnose the tendency of these models with
respect to theH0 and σ8 tensions. The paper is organized as
follows: In Sec. II, we describe the methodology of the
analysis, presenting the construction of the H0-σ8 plane. In
Sec. III, we introduce the models we selected to test the
method. We present the results in Sec. IV and conclude
in Sec. V.

II. METHODOLOGY

In this section, we introduce the methodology for
constructing the H0-σ8 plane and give details about the
analysis choices and datasets used in the statistical analysis.

A. Constructing the H0-σ8 plane

The parameters H0 and σ8 have a significant degeneracy
with the cosmological parameters and each other, respec-
tively. This degeneracy depends both on the dataset and on
the cosmological model that is considered. Therefore, it is
nontrivial to understand how introducing new physics
beyond the ΛCDM model will affect the relationship
between H0 and σ8. In this work, we suggest a method
to visualize the relation between these parameters in order
to explore the prediction of beyond-ΛCDM models with
respect to the H0 and σ8 tensions.
To construct the H0-σ8 relation, we perform a stat-

istical analysis (detailed in Sec. II B) under the selected
datasets while keeping the extra parameter(s) of the
chosen beyond-ΛCDM model fixed to different values.
The fixed parameter is chosen such that it characterizes
the extension of ΛCDM, and its values are quoted for
each model in Sec. III. For each value of the fixed
parameter, we infer the best fit or mean values of H0 and
σ8, which gives a point in the H0-σ8 plane. Repeating the
inference for different values of the fixed parameter
yields a H0-σ8 line in the plane. The H0-σ8 line provides
an intuitive illustration of the behavior of the given
beyond-ΛCDM model with respect to the two tensions
and can be used to compare to the measured values of,
e.g., H0 from the SH0ES collaboration [7], σ8 from
KiDS-1000 3 × 2 pt analysis [18], and to H0 and σ8 from
the Planck collaboration [62]. Equivalently, one could
construct the H0-S8 plane, using the S8 parameter
obtained in the statistical analysis, which contains similar

information about the behavior of the beyond-ΛCDM
model with respect to the tensions.3

It is important for this method to choose the fixed extra
parameter from a large range of values. This allows us to
detect parts of the parameter space that might have a
different correlation than other parts of the parameter space
(as seen in [63] for example). One could for example
imagine an island, where the values ofH0 and σ8 do not fall
into the line constructed with the other points. These
regions in parameter space might be interesting to study
but might represent parts of the parameter space that do not
fit the data well.

B. Statistical inference and datasets

We perform our analyses using the Boltzmann-
solver codes Code for Anisotropies in the Microwave
Background [64] and Cosmic Linear Anisotropy Solving
System [65]. We vary the six free parameters of the ΛCDM
model, i.e. the baryon density (Ωbh2), the cold dark matter
density (Ωcdmh2), the ratio between the sound horizon and
the angular diameter distance at decoupling (θ), the optical
depth (τ), the primordial scalar amplitude (As), and the
primordial spectral index (ns). We follow the convention of
the Planck collaboration [2] and assume two massless and
one massive neutrino with mν ¼ 0.06 eV (except for the
models with varying neutrino masses). In addition, the
beyond-ΛCDM model introduces a number of extra
parameter(s). To construct the H0-σ8 plane, we fix one
(or two) of these extra parameters at several values of
interest and perform a statistical inference.
We infer the posterior mean values of H0 and σ8 by

conducting a Markov chain Monte Carlo (MCMC) analy-
sis, using CosmoMC [66] and MontePython [67,68]. To test the
chain convergence, we use the Gelman-Rubin convergence
criterion, requiring R − 1 < 0.05. For all models intro-
duced in Sec. III, we perform an MCMC analysis keeping
the extra parameter fixed to different values. The only
exceptions are the early dark energy (EDE) and EDEþ ν
models, where we infer the maximum-likelihood (or best
fit) values of H0 and σ8 using a minimization algorithm
keeping the extra parameter fixed to different values
(similar to a frequentist profile likelihood analysis). We
use the minimization for these models since we want to
avoid an influence of prior volume effects4 [69–74]. In the
statistical inference, we use combinations of the following
datasets:

3In our case, the H0-S8 plane was slightly noisier than using
σ8, so we opted for the latter.

4Prior volume effects, also known as marginalization effects,
are a consequence of the marginalization in an MCMC analysis,
which can appear if the data do not constrain all parameters of the
model well. This can lead to an up-weighting of regions with
larger prior volume regardless of the goodness of fit in the
respective region.
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(1) Planck: the CMB data from Planck 2018 [62]
considering both temperature and temperature-
polarization cross-correlation likelihoods with tem-
perature and polarization EE likelihood at l ≤ 29, as
well as the CMB lensing reconstruction power
spectrum [62,75], referred to as “Planck.”

(2) BAO: postreconstruction baryon acoustic oscillation
(BAO) data from the BOSS Data Release 12 [76],
from 6dF Galaxy Survey (6dFGS) [77], and from
SDSS DR7 Main Galaxy Sample (SDSS-MGS)
galaxies [78], referred to as “reconstructed BAO.”
We also use the full shape of the galaxy power-
spectrum multipoles based on the effective field
theory of large scale structure [79–83] with the same
settings as in [84], referred to as “full-shape BOSS.”

(3) Pantheon: the Pantheon sample of Supernovae
(SNe) Type Ia [85], which includes 1048 SNe in
the redshift range z ¼ 0.01–2.26, referred to as
“Pantheon.”

We use the joint datasets of Planck, reconstructed BAO
and Pantheon data for our analysis. The only exception
are the EDE and EDEþ ν models, where we use Planck
and full-shape BOSS data to ensure consistency with the
analysis performed in the previous work [72,73]. We tested
that including the postreconstruction BAO data from
BOSS did not significantly change the results. We do
not expect that this slight change in the dataset impacts our
conclusions.

III. SELECTED MODELS

For our analysis, we select several extensions of the
ΛCDM model that have been proposed as possible sol-
utions to the H0 tension or of both H0 and σ8 tensions.
These models can be broadly classified into two classes:
early time and late-time solutions, relating to models that
modify the ΛCDM model at the early Universe and large
scale, respectively. Among the early time solutions there
are models that modify the inflationary physics like the
nonminimal Higgs-like inflation in the strong coupling
regime model [43,44]; or models that change prerecombi-
nation physics like the early dark energy model [86–91]; a
model that varies the fundamental constant of the electron
mass [41,92–94]; or models that have extra numbers of
relativistic species [10,30,56,61,63,95–109]. Alternatively,
there are late-time solutions, likemodified dark energy,which
have an equation of state w ≠ −1 [30,56,61,95,110–121].
There is extensive discussion in the literature about whether
early or late-time solutions are more effective in resolving the
Hubble tension, with most of these works concluding that
early time solutions perform better in increasing the value of
H0 [41,42], and others conclude that a combination of early
and late-time solutions is necessary [34].
The models adopted here were chosen to provide a

heterogeneous sample of different behaviors with respect to
the tensions but are by no means complete. This allows us

to illustrate the method and diagnose the models’ tendency
to alleviate both tensions. The inferred values of H0 within
the models present different levels of agreement or tension
with the SH0ES measurement as is presented in the
respective literature of these models. Below we describe
the models under consideration and the mechanisms that
allow them to address the tensions. We highlight the extra
parameters of these models beyond the six ΛCDM ones
fωb;ωcdm; θs; ns; As; τg, and which of them are fixed in the
analysis.
(1) Nonminimal Higgs-like inflation (HLI): We exam-

ine an inflationary model where a nonminimal
coupling, ξ, between the inflaton field and the Ricci
scalar is considered as well as radiative corrections at
one loop order [43–45]. Those inflationary models
incorporate a generic seesaw extension (types I
and II) of the Standard Model of particle physics.
When assuming a strong coupling regime, it has
been noted that the usualH0-σ8 correlation is broken
if considering an inflationary phase with duration
Ne-folds ¼ N > 54.5 [43].
Here, we consider the strong coupling regime

and fix ξ ¼ 100, while fixing the duration to dif-
ferent values N ¼ f55; 56; 58; 60g. This is a five-
dimension model since the free parameters of the
theory are the ΛCDM parameters fωb;ωcdm; θs; τg,
while the primordial spectrum is not expressed in
terms of As, ns but directly related to the inflationary
potential, whose free parameter is the deviation from
the tree level potential, a0. In the plots and where it is
convenient, we call this model “HLI” for simplicity.
In Table I, we report the values obtained in Ref. [43]
for the relevant parameters, which are going to be
used in our analysis.

(2) EDE: The EDE models [86–91,122–124] are a class
of models that consider a new component for the
energy density of the Universe. This component
behaves like a cosmological constant before recom-
bination but then decays away faster than matter,
leading to an increase in the expansion rate just prior
to recombination. This reduces the physical size of
the sound horizon at last scattering, allowing for a
higher H0 from CMB data without conflicting late-
time constraints from BAO and Hubble-flow SNe Ia.
In this work, we will consider the model discussed

in [89,91], which assumes a pseudoscalar field with
a potential that describes the above characteristics.
This model has three extra parameters ffEDE; zc; θig,
where fEDE is the maximum fraction of EDE at a
critical redshift zc, and θi ¼ ϕi=f is the initial value
of the dimensionless field. For this analysis, we set
fEDE to fEDE ¼ f0.00; 0.05; 0.10; 0.15g. In the fol-
lowing, we refer to this model as “EDE.” In Table II,
we report the values of the relevant parameters
obtained in Refs. [72,84], which are going to be
used in the analysis performed here.

IGOR DE O. C. PEDREIRA et al. PHYS. REV. D 109, 103525 (2024)

103525-4



(3) EDEþmassive neutrinos: We consider also an
extension of the EDE model, where the total
neutrino mass mν is a free parameter. Allowing
mν to be a free parameter in the statistical analysis
was proposed as a possible solution to the larger
clustering amplitude present in EDE models
[73,125]. Due to their free-streaming nature, massive
neutrinos suppress small-scale power, lowering the
σ8 parameter [126].
This model has four extra parameters ffEDE;

zc; θi; mνg, where mν is fixed to different values
in the analysis: mν ¼ f0.06; 0.09; 0.15; 0.24g. We
call this model “EDEþ ν” for simplicity. In Table II,
we report the values for the relevant parameters
obtained in Ref. [73], which are going to be used in
the analysis performed here.

(4) Varying effective electron mass: A variation of the
fundamental properties of the hydrogen/helium atom,
such as the electron mass, is one effective way to shift
the time of recombination in the early Universe.
Shifting the energy gap between successive excitation
levels implies changing the temperature at which the
photodissociation of hydrogen/helium becomes in-
efficient. Therefore, there is a strong degeneracy
between variations of these fundamental parameters
and the redshift of recombination [94].
Here, we follow the approach of [41] and [92] in

allowing for a spatially uniform time-independent
variation in the electron mass. In these models, the
characteristic parameter describes the variation in the
electron mass. It is defined by

δme ≡me;early

me;late
; ð1Þ

whereme;early andme;late are the values ofme inferred,
respectively, from early and late times (observed
locally). We consider the variation of me;earlyðzÞ as
being redshift independent over recombination.
This model has one extra parameter fδmeg,
which we fix to different values in the analysis:
δme ¼ f0.96; 1.00; 1.06g.
We call this model “Varying me” for simplicity. In

Table IV, we report the values for the parameters that
are going to be used in the analysis performed here.

(5) Extra number of effective relativistic species:
These models consider extra contributions to the
relativistic components of the Universe. This extra
contribution could come from extra relativistic
neutrinos from particle physics, from a significant
stochastic background of gravitational waves, or
from the decay products of other components in
our Universe [10,30,56,61,63,95–109].
This model has one extra parameter fNeffg,

which we fix to different values in the analysis:

Neff ¼ f3.046; 3.15; 3.55; 3.95g. We refer to this
model as “Varying Neff .” In Table III, we report
the values obtained in Ref. [56] for the relevant
parameters, which are going to be used in the
analysis performed here.

(6) Varying effective electron mass and curvature: The
presence of nonzero curvature, Ωk, in combination
with a varying electron mass seems to succeed in
reducing the Hubble tension [41,94]. This can be
understood since, in the original model, in addition
to shifting the contribution to rs, it also simulta-
neously shifts the corresponding angular diameter
distance, DA, for the CMB, but not for the BAO and
other late-time probes. Both these changes can be
absorbed with the usual ΛCDM parameters, how-
ever, it is impossible to absorb both simultaneously.
Nevertheless, the angular diameter distances to the
BAO and CMB are impacted in distinct ways by an
increase in Ωk. Therefore, in this two-parameter
extension fδme þΩkg of ΛCDM, it is possible to
preserve both angular scales of the BAO and the
CMB under a variation of the redshift of recombi-
nation. This model and the previous one are inter-
esting since they were considered to be the most
successful models to relax the tension in H0 accord-
ing to the criteria adopted in the work of Ref. [41].
We refer to this model as “Varying δme þ Ωk”

and, in our analysis, we consider only the case with
its two extra parameters fixed, δme ¼ 1.06,
Ωk ¼ 0.01. This allows us to test whether adding
a positive Ωk changes the direction of the flat
“varying me” model in the H0-σ8 plane. The results
are reported in Table IV.

(7) Modified dark energy (phantom and quintessence):
This class of models considers the possibility of a
dark energy component with an energy density
evolving in time, in contrast to the cosmological
constant behavior. In these scenarios, the equation-
of-state parameter, w, of the dark energy can
assume values different from the canonical
w ¼ −1. There are models in the literature that
can describe this behavior in a phenomenological
way and in concordance with several observations
[110,116–121].
This model has one extra parameter fwg, which

we will fix to different values: w ¼ f−0.7;−0.8;
−0.9;−1.0;−1.1;−1.2;−1.3g. In the plots and
where it is convenient, we call this model “phan-
tom DE” when w < −1, and “quintessence” when
w > −1. In Table V, we report the values of the
parameters that are going to be used in our
analysis. Those include the values obtained in
Ref. [56] for the phantom regime, in addition to
the values obtained here with w > −1 for the
quintessence regime.
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IV. RESULTS AND DISCUSSIONS

In Sec. IVA, we present the H0-σ8 plane for the models
introduced above, and in Sec. IV B, we describe how the
goodness of fit to the data can be included as an additional
layer of information.

A. Visualizing models in the H0-σ8 plane

Figure 1 shows the constructed H0-σ8 plane for the
proposed models. The numerical results can be seen in
the Appendix. Figure 1 allows us to readily visualize the
tendency of the models to address the H0 and σ8
tensions. To help guide the eye, we add the 68% and
95% credible intervals of H0 from SH0ES [7] as the
blue shaded region, and of σ8 from KiDS-1000 3 × 2 pt
analysis [18] as the red shaded region. The blue contour
shows the two-dimensional marginalized 68% and 95%
credible intervals obtained by the Planck collaboration
[62] assuming the ΛCDM model.
Taking both the H0 and σ8 tensions at face value,

models that could potentially address both tensions
should have their empirical line passing through the
overlap region between the blue and red shaded regions.
Most of the models considered here have indeed a
different direction. The EDE model, varying Neff or me,
and modified DE show a higher σ8 for higher values

of H0, i.e. a positive correlation between σ8 and H0.
These models were invoked with the intention of
solving the Hubble tension, however, the increase in
H0 comes at the cost of an increase in σ8. The
correlation between H0 and σ8 is already known for
some of the models but is presented here—to the best of
our knowledge—for the first time for other models,
like the varying me and HLI models. Another interes-
ting detail that can be read from this plot is that for
the varying-me and quintessence models, there is a
region in parameter space where these models can
exhibit lower values of σ8 than the Planck value
(assuming ΛCDM), i.e. relaxing the σ8 tension. But
this comes at the cost of lowering the value of H0, i.e.
worsening the H0 tension.
Two models that we considered, the EDEþ neutrinos

and the HLI models, present a different correlation between
H0 and σ8. In the case of EDEþ neutrinos the value of H0

is almost constant at a value around H0 ∼ 70 km=s=Mpc
while σ8 decreases, relaxing the σ8 tension. The HLI model,
in turn, shows a negative correlation between H0 and σ8,
i.e. as we vary Nefold the value of H0 increases while σ8
decreases. We will discuss the detailed behavior of the
models below.
In order to understand the interplay between the new

physics and the parameters H0 and σ8, one must remember

FIG. 1. Relation between H0 and σ8 for different extensions of ΛCDM. The blue horizontal region represents the 1σ and 2σ contour
from SH0ES [7] and the vertical pink region represents the 1σ and 2σ contour from KiDS-1000 3 × 2 pt analysis [18]. The star
represents the mean value of the constraints from SH0ES and DES. In blue, we show the marginalized 68% and 95% confidence interval
obtained by the Planck collaboration [62].
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that the H0 tension can also be thought of as a discrepancy
in the sound horizon,

rsðz⋆Þ ¼
Z

∞

z⋆

csðzÞ
HðzÞ dz; ð2Þ

which should be reduced by ≈5% in order to solve the
tension. Above, csðzÞ is the sound speed of the photon-
baryon fluid and z⋆ is the redshift of the last scattering. As
it is well known, a change in the sound horizon can affect
the angular size of the sound horizon according to the
relation: θsðz⋆Þ ¼ rsðz⋆Þ=DAðz⋆Þ, where

DAðz⋆Þ ¼
1

1þ z⋆

Z
z⋆

0

1

HðzÞ dz: ð3Þ

The quantity θsðz⋆Þ is very well measured from the CMB
power spectra (in particular the position of the first acoustic
peak). Therefore, any viable modification to the standard
cosmological model, while changing the values of rsðz⋆Þ
and DAðz⋆Þ (and consequently changing H0), should not
alter the standard prediction for θsðz⋆Þ.
In the following, we discuss the physics behind the

observed H0-σ8 correlation model by model.
(1) HLI: The HLI model shows a negative correlation

between H0 and σ8, i.e. as we vary Ne-fold the
value of H0 increases while σ8 decreases. More-
over, when extrapolating the H0-σ8 line of the HLI
model until the SH0ES H0 value, the correspond-
ing σ8 value would be below the KiDS σ8 value.
While larger values of Ne-fold are allowed by
theory, they are not enough to reach sufficiently
high values of H0 with a reasonable inflation
duration. Nevertheless, the pattern of this model
is very interesting because it sheds light on the
role that a primordial term modification, such as
inflationary theory, can play in the tension under
analysis. Modulating the duration of inflation
minimally impacts the current expansion rate of
the Universe, as the primordial spectrum does not
directly factor into the background equation. In-
stead, the spectrum of primordial scalar perturba-
tions enters the σ8 equation, as these are the seeds
that determine the clustering of matter during the
Universe’s evolution. Now, the longer the duration
of inflation, the greater the k mode corresponding
to the entry into the horizon at the time of the
CMB, and thus the smaller the amplitude of the
inflationary potential [127], since we assume a
primordial spectrum with a spectral index lower
than unity. This means that the greater N the
lower the value of σ8, i.e. the lower the amplitude
aggregation of structures.

(2) EDE: The behavior of the EDE model with respect
to the H0 and σ8 tensions has been well studied in
the literature [16,123,128,129]. The positive cor-
relation between the two parameters can be under-
stood as a consequence of preserving the model’s
fit to the CMB data, in particular, the amplitude of
the early integrated Sachs-Wolfe (eISW) effect:
Since EDE boosts the expansion rate before
recombination, it leads to a suppression of the
growth of gravitational potential wells. The growth
of potential wells, however, is well constrained by
the eISW effect, which itself can be obtained from
the amplitude of the acoustic peaks, especially the
first, of the CMB power spectrum. In order to
preserve the fit to the CMB data, the matter
density, Ωm, is increased, which in turn leads to
a higher amplitude of matter clustering, σ8, at late
times [128]. Further, an increase of the expansion
rate before recombination leads to increased damp-
ing on small scales of the CMB, which can be
compensated by a higher Ωm and higher ns [129],
again resulting in a higher σ8.

(3) EDEþmν: In this model, the value of H0 is
almost constant at a value around H0 ∼
70 km=s=Mpc while σ8 decreases, relaxing the
σ8 tension. The approximately constant value of
H0 is a result of increasingly higher preferred
values of fede for higher fixed values of mν. As
discussed above, a higher fede results in a higher
σ8, as a consequence of preserving the amplitude
of the eISW effect and the small-scale damping.
Massive neutrinos, on the other hand, suppress the
growth of structure in the late Universe due to
their noncold nature, which allows them to escape
and smooth out potentials (free streaming), which
in turn decreases σ8 [130]. However, a higher fede
and a higher mν come at the cost of a worsened
goodness of fit to the data [73]. The EDEþ
neutrino model does not have a ΛCDM limit, as
opposed to the other models considered here, since
the parameters of the EDE model ffede; zc; θig are
left free to vary during the analysis.

(4) Neff : As one of the most well-known extensions of
the standard cosmological model, the impact of
varying Neff in the cosmological tensions has been
largely discussed in the literature [41,42,108].
The effect of an increase in Neff from the

standard model value is very similar to the case
of EDE or other models that lead to a decrease of
the sound horizon at recombination, although the
physics of adding a new relativistic species is
different. A larger value of Neff leads to a decrease
in the sound horizon at recombination since this
extra radiation increases the radiation energy den-
sity, increasing the expansion rate HðzÞ. Keeping
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θs fixed and decreasing rs results in a decrease in
DA and a consequent increase in the late time
expansion rate, H0. Adding extra relativistic spe-
cies also delays the time of the matter and
radiation equivalence, and increases the damping
scale, causing a similar decrease of DA at fixed
damping angular scale θd ¼ rd=DA. These effects
lead to a shift and smear of the acoustic peaks.
Like in the EDE case, this leads to an enhance-
ment in the amplitude of the eISW effect. Again,
to preserve the fit to the CMB data, the matter
density is increased, leading to a higher σ8. This
positive correlation between H0 and σ8 in this
model is what we see in Fig. 1.

(5) δme and δme þΩk: When altering the electron
mass, we are affecting the ionization history during
recombination, by changing the energy level of
hydrogen (EH ∼me) and the Thomson scattering
cross section (σT ∼ 1=m2

e), affecting the recombi-
nation redshift. Therefore, if the electron mass was
bigger in the early times compared to late times,
the energy necessary to ionize the hydrogen atoms
gets larger and the Thomson scattering cross
section gets smaller. This leads to an earlier
recombination, reducing the sound horizon and
the Silk damping scale. This model has a positive
correlation between the electron mass and the
Hubble constant. In the same way as the models
described above, this model also suffers from the
H0 − ωm degeneracy, which raises the matter
density while the current expansion rate grows,
worsening the σ8 tension. On the other hand, if
one lowers the electron mass at early times, then
the σ8 value can be in agreement with the local
measurements, despite worsening the H0 tension.
Adding a small amount of curvature in this

model does not change the correlation of the
parameters but allows a higher value of H0 and
σ8 to be obtained for the same electron mass when
compared with the case with zero curvature.

As we saw above, most of the early time solutions to
the Hubble tension that reduce the sound horizon lead to
an increase in ωm, which worsens the σ8 tension. That is
the reason we see the positive correlation between H0

and σ8 in the plot for many of the early time solutions
like the EDE, varying me and varying Neff models. It is
difficult to decrease the sound horizon without changing
ωm and fully solve the tensions unless the prerecombi-
nation solution has a mechanism to avoid that, like the
EDEþmν model.
Another possibility is considering new physics postre-

combination, known as the late-time solutions to the
Hubble tension. In these solutions, we change the late-
time evolution of the angular diameter distance, DAðzÞ,

for redshifts lower than z⋆, without changing DAðz⋆Þ
and rsðz⋆Þ.
(1) Modified DE: One of the possible late-time solutions

is modifying the dark energy behavior with a
constant dark energy equation state w ≠ −1. By
changing w, we modify the DE energy density,
directly changing the late expansion rate of the
Universe. To get an increase in H0, we need the
energy density of dark energy to be increasing with
time. In this scenario, this is possible by considering
phantom dark energy w < −1 [61,95]. Since the
dark energy density is increasing in order to obtain
higher values of H0, its energy density was smaller
than what we predicted for ΛCDM in the past.
Therefore, to maintain a flat universe Ωtotal ¼ 1, a
higher density of matter in the past is necessary,
which in turn increases σ8. Having w < −1 also
affects the growth of perturbations, both through its
impact from the background expansion and the
varied sound speed. This modified expansion of
the Universe from the phantom DE leads to pertur-
bations that cluster more than in the case of ΛCDM,
which increases σ8. This behavior can be seen in
Fig. 1 where we get a positive correlation between
H0 and σ8 for the phantom DE model.
For quintessence, with −1 < w < −1=3, we can

only have smaller values ofH0 than the ΛCDM one,
exacerbating the Hubble tension, as we can see in
Fig. 1. Using only CMB, due to the geometrical
degeneracy one cannot fully constrain w, while
adding BAO or supernova data break this degen-
eracy allowing to constrain HðzÞ [131].

An alternative to the H0-σ8 plane in Fig. 1 is to plot
the normalized quantities δH0 and δσ8, which are
defined as

δH0 ≡H0ðExtÞ −H0ðCMBÞ
H0ðLocalÞ

; δσ8 ≡ σ8ðExtÞ − σ8ðCMBÞ
σ8ðLocalÞ

;

ð4Þ

where the quantities with subscript (Ext) denote the
inferred parameters in the ΛCDM extension, H0ðCMBÞ
and σ8ðCMBÞ are the mean values reported by the Planck
collaboration [2], H0ðLocalÞ is the mean value of the Hubble
parameter reported by the SH0ES collaboration [7] and
σ8ðLocalÞ the mean value of σ8 reported by the KiDS-1000
collaboration for cosmic shear [18]. The δH0-δσ8 plane is
shown in Fig. 2, and contains the same information as Fig. 1
but has the advantage that one can compare the empirical
lines with respect to the “origin,”which represents the values
preferred by the Planck CMB data assuming the ΛCDM
model. As we can see in Fig. 2, not all models have aΛCDM
limit and pass close to the origin.
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B. Extensions of the visual tool

The visual tool we presented in the previous section
has the goal of illustrating the correlation between H0

and σ8, in order to show whether there is a region in the
parameter space where the model’s prediction can reach
values of H0 that are compatible with SH0ES and/or
values of σ8 that are compatible with KiDS. It does not
tell us, however, whether the model can solve the
tensions since it does not take into account the quality
of the fit to the data. The values of the model parameters
that solve the tensions might not correspond to the ones
preferred by the data but might be ruled out by the data.
To visualize not only the relation between cosmolo-

gical parameters but also the region of parameter space
that is preferred by the data, we color code the H0-σ8
plane according to the goodness of fit, Δχ2ðθÞ ¼
−2 lnðLðθÞ=LmaxÞ. The place where the χ2 is minimum

corresponds to the best fit parameters. As an example,
in Fig. 3, we show this for the H0 and σ8 values of the
EDE and EDEþ ν models obtained from a minimization
in [72,73]. We can see that the minimum χ2 does not
correspond to the highest values ofH0, which lie within the
SH0ES 68% credible interval (blue-shaded region). In the
case of the EDEþ ν model, the empirical line may suggest
that the model is able to resolve both tensions, but the
region where it reaches the highest values of H0 and
smallest values of σ8 are disfavored by the data.
Therefore, although the correlation between H0 and σ8

might indicate the possibility of a model to solve both
tensions, it is important to consult other statistics, like the
goodness of fit to the data, in order to conclude whether a
model can solve the cosmological tensions. Moreover, the
method used above does not include the variance or error
bar of the parameters, which needs to be taken into account
for a complete analysis.

FIG. 2. Same as Fig. 1 but showing the normalized quantities δH0 and δσ8 as defined in Eq. (4).
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V. CONCLUSIONS

In this paper, we present a visualization tool, the H0-σ8
plane, that provides an easy way to explore the correlation
between the H0 and σ8 parameters for different cosmo-
logical models. This method is inspired in [61], from which
we went further in elaborating a more general illustrative
representation to show the tendency of broad classes of
models to solve one or both cosmological tensions. Such a
method maintains the advantages of its parent method,
namely that fixing one or a few extra parameters of the
model does not inflate the error bars compared to ΛCDM
and, hence, leads to an easier visualization of the corre-
lation between H0 and σ8 [56,61]. Since the analysis is
done in a lower-dimensional parameter space, the method
allows for a simple check of the tendency between H0

and σ8. We expect that this visualization method is particu-
larly useful for models that are affected by prior volume
effects in the MCMC analysis, where this tool allows us to
explicitly read the correlation between H0 and σ8, informa-
tion that might be hidden in an MCMC posterior.
We constructed the H0-σ8 plane for a few representative

models that claim to address the tensions, choosing a
heterogeneous sample of behaviors for a better illustration
of the tool. One or more of the beyond-ΛCDM parameters
of these models is fixed and a statistical analysis is
performed. We performed an MCMC analysis for most
models and a minimization for the models that are affected
by prior volume effects. We showed that the resulting
H0-σ8 plane can illustrate very clearly the correlation H0

and σ8 for these models. It is particularly interesting to
apply this method to some of the most promising solutions

to the H0 tension, to understand their correlation with the
σ8 tension. Therefore, we analyze the varying electron mass
and the EDE models, gold and silver medals in [41]. We
can see that both present the same tendency: an increase in
H0 leads to an increase in σ8, worsening the σ8 tension.
This tendency had already been pointed out in the literature
for EDE [132,133] but shown explicitly for the varying
electron mass model. This tool also makes it easy to see the
role of allowing the neutrino masses to be free in models
like EDE, which changes the relation between H0 and σ8
compared to the model with fixed neutrino masses. Another
interesting case is the HLI model, which presents a negative
correlation between H0 and σ8, i.e. the relation that is most
promising for simultaneously solving both tensions. This is
an interesting behavior of this model first reported here,
which can be quickly visualized in the H0-σ8 plane.
Note that the simpleH0-σ8 plane shown in Sec. IVA can

be improved to provide additional information. For exam-
ple, while in its vanilla form, it does not quantify the
goodness of fit (or χ2), this can be added through the color
code presented in Sec. IV B. With this extra information,
one can assess if the tension-resolving part of the parameter
space corresponds to the one that is favored by the data. In
addition, the slopes of each model in the plot are related to
the specific dataset used. Moreover, one can compare the
results with different datasets to see how the slopes of the
curves vary, testing how the parameter space is sensitive to
a specific dataset. Finally, one can also add error bars on the
H0-σ8 plane, if desired. In general, this tool is very versatile
and can be expanded as desired by adding additional
information.

FIG. 3. H0-σ8 plane for the EDE and EDEþ ν models and the respective Δχ2 of each run. The blue horizontal region represents the
1-σ and 2-σ contour from SH0ES [7] and the vertical pink region represents the 1-σ and 2-σ contour from KiDS-1000 3 × 2 pt analysis
[18]. In blue, we show the marginalized 68% and 95% confidence interval obtained by the Planck collaboration [62].
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In this work, we focused on the cosmological
tensions and constructed the H0-σ8 plane, but this
method could be used as a fast way of visualizing
the correlation between any other cosmological param-
eters of interest. We envision the presented method
could be useful as a quick illustrative tool that aids in
model building, particularly for complex models with
many parameters, which are not well constrained by
observational data.
We acknowledge the use of CosmoMC and MontePython

package.
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APPENDIX: PARAMETER’S VALUES
IN ΛCDM EXTENSIONS

Here we present the complete results that were used to
construct the H0-σ8 plane in Sec. IV. The values of H0 and
σ8 considered in each extension of ΛCDM are shown in the
tables below:
Non-minimal Higgs-Like Inflation (HLI)

Early Dark Energy

Extra Number of Effective Relativistic Species

Varying Effective Electron Mass and Curvature

TABLE II. Best fit parameters in the early dark energy model,
with standard and nonstandard neutrino mass. The first column
shows the values of the fixed parameter of the theory, fede for the
EDE model andmν for the EDEþ neutrinos. The analysis for the
EDE and EDEþmν models were performed in Ref. [72] and
[73], respectively. H0 is in units of km/s/Mpc.

EDE H0 σ8

fede ¼ 0 67.60 0.811
fede ¼ 0.05 69.17 0.823
fede ¼ 0.10 71.04 0.835
fede ¼ 0.15 72.85 0.850

EDEþmν H0 σ8 fede

mν ¼ 0.06 70.08 0.8282 0.0773
mν ¼ 0.09 69.96 0.8235 0.0818
mν ¼ 0.15 70.13 0.8145 0.0993
mν ¼ 0.24 70.11 0.8016 0.117

TABLE III. Parameter constraints for the ΛCDMþ Neff mod-
els. The first column shows the values of Neff set for the extended
model. All the values are in 68% C.L.,H0 is in units of km/s/Mpc.
A full analysis is presented in Ref. [56].

H0 σ8

Neff ¼ 3.046 67.72� 0.41 0.8099� 0.0059
Neff ¼ 3.15 68.36� 0.42 0.8149� 0.0059
Neff ¼ 3.55 70.76� 0.42 0.8330� 0.0061
Neff ¼ 3.95 73.11� 0.46 0.8499� 0.0067

TABLE I. We report here the constraints of the nonminimal
Higgs-like inflation model obtained in Ref. [43] by setting the
Nefold ¼ N to fixed values. All the value are in 68% confidence
limits (C.L.), H0 is in units of km/s/Mpc.

H0 σ8

N ¼ 55 67.71� 0.44 0.804� 0.003
N ¼ 56 67.94� 0.45 0.793� 0.003
N ¼ 58 68.37� 0.39 0.779� 0.004
N ¼ 60 68.46� 0.38 0.766� 0.005

TABLE IV. Parameter constraints for the ΛCDMþme and
ΛCDMþme þΩk models. The first column shows the values of
me and Ωk set in the analysis. All the value are in 68% C.L.,H0 is
in units of km/s/Mpc.

H0 σ8

δme ¼ 0.96, Ωk ¼ 0 61.73� 0.40 0.7635� 0.0065
δme ¼ 1.00, Ωk ¼ 0 67.72� 0.41 0.8099� 0.0059
δme ¼ 1.06, Ωk ¼ 0 77.97� 0.56 0.8879� 0.0079
δme ¼ 1.06, Ωk ¼ 0.01 81.26� 2.3 0.9120� 0.0081
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