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We explore the predictions of ΛsCDM, a novel framework suggesting a rapid anti–de Sitter (AdS) to de
Sitter (dS) vacua transition in the late Universe, on bound cosmic structures. In its simplest version, the
cosmological constant Λs abruptly switches sign from negative to positive, attaining its present-day value at
a redshift of z† ∼ 2. The ΛsCDM model emerges as a promising solution to major cosmological tensions,
particularly theH0 and S8 tensions, as well as other less definite tensions. A key aspect of our investigation is
examining the impact of the abrupt ΛsCDM model on the formation and evolution of bound cosmic
structures. We identify three primary influences: (i) the negative cosmological constant (AdS) phase for
z > z†, (ii) the abrupt transition marked by a type-II (sudden) singularity, leading to an abrupt increase in the
Universe’s expansion rate at z ¼ z†, and (iii) an increased expansion rate in the late Universe under a positive
cosmological constant for z < z†, compared to ΛCDM. Utilizing the spherical collapse model, we
investigate the nonlinear evolution of bound cosmic structures within the ΛsCDM framework. We find that
the virialization process of cosmic structures and, consequently, their matter overdensity vary depending on
whether the AdS-dS transition precedes or follows the turnaround. Specifically, structures virialize with
either increased or reduced matter overdensity compared to the Planck-ΛCDM model, contingent on the
timing of the transition. Additionally, our results demonstrate that the sudden singularity does not result in
the dissociation of bound systems. Despite its profound nature, the singularity exerts only relatively weak
effects on such systems, thereby reinforcing the model’s viability in this context.
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I. INTRODUCTION

The current standard model of cosmology, the Lambda–
cold dark matter (ΛCDM) model [1], has been remarkably
successful in explaining a broad spectrum of cosmological
observations [2–8]. However, setting aside the notoriously
challenging theoretical issues associated with the cosmo-
logical constant Λ [9–14], the era of high-precision cosmol-
ogy has seen the emergence of multiple discrepancies at
various levels of statistical significance. Notably, the so-
called H0 and S8 tensions, observed when analyzing
different data sets within the ΛCDM model framework,
suggest that the model might be incomplete [14–22].
The most statistically significant disagreements lie in the

values of the Hubble constant, H0, and the weighted
amplitude of matter fluctuations, S8. Estimations of H0

show a discrepancy that reaches a significance of 5σ, as
seen between the Planck cosmic microwave background
(CMB) estimate under the ΛCDM assumption [4] and the

local distance ladder measurements by the SH0ES team
[23]. Additionally, the S8 tension within the ΛCDM
framework becomes apparent in the differing results
obtained from Planck CMB data and KiDS-1000 cosmic
shear measurements [7], with discrepancies reaching a 3σ
level. In particular, estimates from the Planck-ΛCDM
framework suggest H0 ¼ ð67.4� 0.5Þ km s−1Mpc−1 [4],
while the localH0 measurement by the SH0ES team, using
luminosities of Cepheid calibrators and type Ia super-
novae, indicates H0 ¼ ð73.04� 1.04Þ km s−1Mpc−1 [23].
The tension in S8 is highlighted when comparing con-
straints on S8 from high-redshift observations, like the
Planck data (TT, TE, EEþ lowE), reporting S8 ¼ 0.834�
0.016 [4], against those from lower-redshift observations,
such as weak gravitational lensing (S8 ¼ 0.759þ0.024

−0.021 [7]
and S8 ¼ 0.772� 0.022 [24]) and galaxy clustering
(S8 ¼ 0.736� 0.051 [25]), implying that the Planck data
predict a stronger growth of cosmological perturbations
than what dynamical probe observations infer. A consis-
tency test of the Planck-ΛCDM framework suggests that
S8 determinations from fσ8 constraints increase with
effective redshift, showing a ∼3σ tension with the
Planck-ΛCDM predictions at lower redshifts, but aligning
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within 1σ at higher redshifts, hinting that the S8 tension is
physical in origin and potentially indicating a breakdown
in the standard ΛCDM model [26].
In addressing the H0 tension, a variety of extensions to

the ΛCDM model have been proposed, which can be
broadly categorized as follows:
(1) Early-time models: These models introduce new

physics before recombination (z≳ 1100) to reduce
the sound horizon scale, thereby increasing the H0

value. Examples include early dark energy (EDE)
[27–32], new EDE [33–35], anti–de Sitter (AdS)
EDE [36–38], and modified gravity [39–45]. Also
notable is the approach that suggests modification at
the inflationary epoch, with oscillations in the
inflaton potential [46].

(2) Intermediate-/late-time models: These models in-
troduce new physics at intermediate to late times
(0.1≲ z≲ 3.0). Their goal is to adjust the expan-
sion-rate history HðzÞ to align H0 predictions with
local measurements while remaining consistent
with CMB and late-time observational data. Exam-
ples include the ΛsCDM model [47–50] (which
posits a rapidly sign-switching cosmological
constant Λs, from AdS to dS, in the late Universe
as conjectured from the findings in graduated
dark energy (gDE) [47]), phantom crossing dark
energy [51–57], the omnipotent dark energy model
[51,56], dynamical DE on top of an AdS back-
ground [56,58–60], and (nonminimally) interacting
dark energy (IDE) [61–72].1

(3) Ultra late-time models: These models implement
changes in either fundamental physics or stellar
physics during the recent past (z≲ 0.01) [53,83–86].

While our list includes some key examples from the
numerous attempts to resolve the H0 tension through new
physics, it is by no means exhaustive. For a comprehen-
sive overview and detailed classification of various
approaches, please refer to Refs. [16,18,19]. It is fair to
say that, as of now, there is no widely accepted model that is
both observationally and theoretically fully satisfactory.
Moreover, addressing the H0 tension while ensuring com-
patibility with all available data and without exacerbating
other, less significant discrepancies such as the S8 tension
remains a challenging task. Currently, only a few models are
known to propose simultaneous solutions to both the H0

and S8 tensions. Among these, without claiming to be

exhaustive, are the ΛsCDM model [47–50], New EDE
[34,35], inflation with oscillations in the inflaton potential
[46], some IDE models [65,67,72], sterile neutrinos with a
nonzero massesþ dynamical DE [87], DM with a varying
equation-of-state parameter [88], and AdS-EDE with ultra-
light axion [38]. However, even with an optimistic view, it is
difficult to claim that these models currently present a
completed theoretical framework. Among them, the
ΛsCDM model stands out for its simplicity, introducing
only one extra free parameter compared to the standard
ΛCDM model, z†, which signifies the redshift of the rapid
AdS-dS transition. The remainder of this paper focuses on
the ΛsCDM model.
Another aspect drawing our attention to the ΛsCDM

model is its potential relevance to recent findings from the
James Webb Space Telescope (JWST). As initially noted
in [49] (refer to Sec. IV C therein), the model’s incorpo-
ration of a negative (AdS) cosmological constant for z≳ 2
could lead to enhanced structure formation at these higher
redshifts. This possibility aligns with observations from
JWST’s deep-space probes (z≳ 5), which suggest that
structure formation is more intense at these higher redshifts
than predicted by the standard ΛCDM framework [89,90].
Specifically, JWST observations have revealed that the
early formation of luminous galaxies [90–98] exhibits more
intense growth.2 Moreover, galaxies within the redshift
range of 7≲ z≲ 10 display an unusually high star-for-
mation rate [89,101–103] and the observed number density
of ultraviolet bright galaxies at redshift z ∼ 15 exceeds
expectations, posing a challenge to the galaxy formation
models based on the ΛCDMmodel [94,104]. Recent works
have shown [96,105,106] that the presence of a negative
cosmological constant (or, more broadly, negative energy
densities contributing to the Friedmann equation) at rel-
evant redshifts can accommodate the anomalous findings
on cosmological structures observed by the JWST’s deep-
space probes.
The ΛsCDM model exhibits features that can address

both theH0 and S8 tensions and, potentially, the anomalous
findings from the JWST. All of these features are controlled
by a single extra free parameter, z† ∼ 1.8 [49,50], the
redshift at which the cosmological constant switches its
sign from negative to positive and achieves its present-day
value. The mechanism by which the ΛsCDM model
achieves these outcomes is straightforward [48–50]: the
presence of a negative cosmological constant for z > z†
implies that HðzÞ is smaller than in ΛCDM at these higher
redshifts. Consequently, the smaller HðzÞ, offering less
resistance against structure growth, leads to faster structure
growth for z > z†, aligning with findings from JWST. On
the other hand, due to the fact that the comoving angular

1DE densities that reach negative values, consistent with a
negative (AdS-like) cosmological constant, especially for
z≳ 1.5–2, are also observed in model-independent/nonparamet-
ric observational reconstructions [73–82]. Furthermore, a recent
model-independent reconstruction of the IDE kernel, employing
Gaussian process methods as suggested in [78], reveals that DE
assumes negative densities for z≳ 2, which suggests that IDE
models do not preclude the possibility of negative DE densities at
high redshifts.

2However, some studies such as those in [99–101] argue that
the JWST data are not robust enough to conclusively assert a
tension with the ΛCDM model.
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diameter distance to the last scattering surface, DMðz�Þ ¼
c
R z�
0 H−1dz (where z� ≈ 1090), is strictly determined by the

CMB power spectra, any reduction in HðzÞ for z > z†,
compared to ΛCDM, must be compensated by an increase
in HðzÞ for z < z†. This explains both the higher H0 values
predicted by ΛsCDM and the suppression of structure
growth for z < z†, in comparison to ΛCDM, as the larger
HðzÞ for z < z† implies greater resistance to structure
growth. Essentially, ΛsCDM predicts higher values of both
H0 and σ8 compared to ΛCDM. However, the decreased
value of Ωm0, due to the increased H0, outweighs the
increased σ8, resulting in a decreased S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0=0.3

p
.

Thus, it is conceivable that the ΛsCDM model can account
for intense structure growth at higher redshifts while
simultaneously accommodating weaker growth at redshifts
z≲ 2 [24,107–110].
The ΛsCDM [47–49] model emerges as one of the

promising models for addressing major cosmological ten-
sions and stands as the most economical model among those
in the literature with this capability. While the abrupt/rapid
nature of the Λs, along with its shift from negative to
positive values, presents challenges in identifying a concrete
physical mechanism, the phenomenological success of
ΛsCDM, despite its simplicity, strongly encourages the
search for possible underlying physical mechanisms.
Furthermore, it could have profound implications in theo-
retical physics, given that Λ < 0 is a theoretical sweet spot;
the AdS vacuum is welcome due to the AdS/CFT corre-
spondence [111] and is preferred by string theory and string
theory–motivated supergravities [112]. Thereby, it would be
natural to associate Λs with a possible AdS-dS (phase)
transition that is derived in such fundamental theories and
the theories that find motivation from them. Recently, it was
shown in [113] that although the AdS swampland con-
jecture suggests that Λs in the late Universe seems unlikely
—due to the AdS vacua being an infinite distance apart from
dS vacua in moduli space—it can still be realized through
the Casimir forces of fields inhabiting the bulk. Another
study [114] demonstrated that in various formulations of
general relativity (GR) it is possible to obtain a sign-
switching cosmological constant through an overall sign
change of the metric. In a more recent study [115], it was
demonstrated that within a type-II minimally modified
gravity framework, known as VCDM [116,117], an aux-
iliary scalar field with a linear potential3 can induce an
effective cosmological constant, enabling the realization
of an abrupt ΛsCDM model through a piecewise linear
potential with two segments and facilitating smooth
ΛsCDMmodels by smoothing out this potential. This novel
theoretical framework, endowed with a specific Lagrangian
from the VCDM theory, elevates ΛsCDM to a theoretically

complete physical cosmology, offering a fully predictive
description of our Universe. These theoretical develop-
ments, emerging shortly after the introduction of the
ΛsCDM model, suggest that this model could potentially
serve as an alternative to the standard ΛCDM model in the
near future.
The simplest version of theΛsCDMmodel is constructed

phenomenologically by replacing the usual Λ in the
standard ΛCDM model with Λs ≡ Λs0sgnðz† − zÞ, where
a cosmological constant undergoes an abrupt sign switch in
the past, occurring at redshift z†, and maintains a constant
positive value thereafter [48–50]. In this paper, we occa-
sionally refer to this model as the abrupt ΛsCDM. It is
characterized by the following Friedmann equation:

H2ðzÞ
H2

0

¼Ωm0ð1þzÞ3þΩΛs0
sgnðz†−zÞþΩk0ð1þzÞ2; ð1Þ

where the transition is incorporated using the signum
function (sgn) and Λs0 > 0 represents the present-day value
of Λs (or for redshifts z < z†).

4 Here, HðzÞ represents the
Hubble parameter, while Ωm0, ΩΛs0

, and Ωk0 denote the
present-day density parameters for the pressureless fluid
(baryonsþ CDM), sign-switching cosmological constant,
and spatial curvature, respectively. In the abrupt ΛsCDM
model, the Hubble parameter exhibits a discontinuity in the
past, specifically, at redshift z ¼ z†, indicative of a-type II
(sudden) singularity at this exact redshift [122].5,6 Although
this singularity is mild, being weak enough not to com-
promise the cosmological model’s viability (see Appendix A
for further discussion and Refs. [121,125,127,128] for
additional reading), it nonetheless imparts a velocity kick
to particles. This, in turn, delays the growth of overdensities
following the sign switch in the cosmological constant.
Thus, compared to the standard model, the ΛsCDM model
enhances early-Universe structure growth, particularly for
z > z†, driven by an initially negative cosmological con-
stant. Conversely, in the late Universe (z < z†) when Λs

becomes positive, it predicts weaker structure growth. This is
attributed to a lower Ωm0, a consequence of a larger H0, in

3Refer to Refs. [118–120] for discussion on the utilization of a
scalar field with a linear potential in the context of DE modeling
within the GR framework.

4Note that this abrupt behavior of Λs, as described and
considered in this work, represents an idealized depiction of a
rapid transition phenomenon, akin to a phase transition, from
AdS vacuum to dS vacuum, or a DE model such as gDE [47]
capable of mimicking this behavior [49]. Additionally, it is
important to emphasize that Λs, whether exhibiting abrupt
changes or not, does not violate the principle of energy con-
servation. For further details on this aspect, see Refs. [49,121].

5For a general overview of cosmological singularities, readers
are referred to Refs. [122–126].

6This singularity is absent in smooth ΛsCDMmodels featuring
a rapidly yet smoothly occurring sign switch, as realized under
the VCDM framework in Ref. [115]. However, this work delves
into the effects of Λs in its most extreme form, the abrupt ΛsCDM
model, within the GR framework.

TRANSITION DYNAMICS IN THE ΛsCDM … PHYS. REV. D 109, 103522 (2024)

103522-3



comparison to ΛCDM, combined with the added impact of
the velocity kick at the transition.
The behavior of spherically symmetric overdensities in a

universe dominated by DE has been extensively studied
[105,129–139]. The spherical collapse model is a funda-
mental tool for understanding the evolution of these over-
densities within a Friedmann-Robertson-Walker (FRW)
cosmology. These overdensities function as “subuniverses”
with mean densities exceeding the background matter
density. They are influenced by both DE and the expansion
dynamics of the FRW background. Despite the universe’s
overall expansion, these overdensities evolve relatively
independently, akin to the evolution of a closed FRW
universe [140–144]. Initially expanding with the cosmo-
logical background, they eventually succumb to local
gravitational forces, leading to a “turnaround” phase.
After this turnaround, the regions begin to collapse, a
process that, according to GR, would theoretically lead to a
singularity. However, from an astrophysical standpoint,
virialization is commonly understood to occur before the
formation of a singularity, resulting in a stable equilib-
rium state.
The spherical collapse model encompasses three distinct

phases:
(1) Expansion phase: Initially, the overdense region

expands in tandem with the cosmic background.
(2) Turnaround: Eventually, this spherically symmetric

region decouples from the cosmic expansion, reach-
ing its maximum radius. Here, local gravitational
forces become dominant, initiating the collapse.

(3) Shell crossing and virialization: In this final stage,
shells within the overdensity undergo gravitational
oscillations and interactions, leading to an exchange
of gravitational potential energy and ultimately
resulting in virialization. This stabilizes the system
in a state of equilibrium.

In this study, we utilize the spherical collapse model to
investigate the formation and evolution of bound cosmic
structures within the abrupt ΛsCDM model. Our primary
objective is to assess the impact of replacing the positive
cosmological constant in the ΛCDM model with an abrupt
sign-switching cosmological constant. This exploration
involves analyzing the effects of (i) a past negative
cosmological constant (AdS) phase for z > z† ∼ 2, (ii) the
abrupt transition itself, characterized by a sudden jump in
the expansion rate of the Universe—a type-II (sudden)
singularity—at z ¼ z†, and (iii) the increased expansion rate
of the Universe in the ΛsCDM model for z < z†. Notably,
aside from the faster expansion rate, the ΛsCDM and
ΛCDM models are identical for z < z†. Our investigation
focuses on the densities and scales of virialized structures,
characterized by their virial and turnaround radii, across
various turnaround redshifts zta while accounting for the
sign switch in the cosmological constant in the late
Universe. We identify three primary transition scenarios

based on the timing of Λs ’s sign switch, i.e., the AdS-dS
transition, relative to the evolutionary stage of the over-
densities: two occurring before virialization ða† < avirÞ,
specifically, before turnaround (a† < ata < avir) and after
turnaround (ata < a† < avir), and a third scenario where the
transition occurs post-virialization (avir < a†).
In this paper, we first revisit the spherical collapse model

with a cosmological constant of arbitrary sign, employing a
semi-Newtonian framework. We derive virialized densities,
building upon the methodology presented in earlier work
[105] (Sec. II). We then extend our analysis to the ΛsCDM
model [47–50], incorporating transitional effects of the
cosmological constant into our calculations (Sec. III). Our
results include derived virialized densities in the ΛsCDM
model, which we compare with those in the ΛCDM model.
In particular, this analysis focuses on the transition marked
by a sudden cosmological singularity [122]. Last, employ-
ing the Newtonian approximation of a bound system within
an expanding background [145–148], we examine the
impact of this sudden singularity on systems that virialized
before the transition (Sec. IV).

II. SPHERICAL COLLAPSE MODEL IN THE
PRESENCE OF A COSMOLOGICAL CONSTANT

In this section, we focus on calculating virialized
densities and radii using the turnaround overdensity (δta)
in the presence of a cosmological constant [105,137].
Building upon the methodology and results presented here,
we analyze the ΛsCDM model in the next section.

A. Expansion phase

1. Background Universe

In our analysis, we use RðtÞ to represent the local scale
factor within the spherical overdensity and Rp for the
physical radius, defined as Rp ≡ RðtÞχ0, where χ0 is the
corresponding comoving radius. The notation ρm denotes
the (pressureless) matter energy density of the spherical
overdensity and ρ̃m denotes the matter energy density of the
background Universe. The overdensity at a given cosmic
epoch, characterized by the background scale factor a, is
described as

δðaÞ ¼ ρmðaÞ − ρ̃mðaÞ
ρ̃mðaÞ

: ð2Þ

At the turnaround time, denoted as tta, the background scale
factor reaches ata ≡ aðttaÞ. Simultaneously, the scale factor
of the overdense region attains its maximum value, denoted
as Rta ≡ RðttaÞ, resulting in its maximum physical
size Rp;ta ≡ Rta χ0.
The evolution of the scale factor of the perturbation,

RðtÞ, and the scale factor of the background, aðtÞ, are
governed by their respective Friedmann equations. These
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equations incorporate the effects of spatial curvature,
matter density, and the cosmological constant within the
spherical overdensity. The Friedmann equation for the
background Universe is provided in the following form
[133,136,137,144]:

ȧ2

a2
¼ 8πG

3
ρ̃m0ða−3 þ ωþ ξa−2Þ; ð3Þ

where ω and ξ are defined as

ω≡ ρΛ0
ρ̃m0

¼ ΩΛ0

Ωm0

;

ξ≡ ρ̃crit;0 − ρ̃m0 − ρΛ0
ρ̃m0

¼ 1

Ωm0

− 1 − ω: ð4Þ

2. Overdensity

Let us define an initial comoving time ti, which is the
moment when the scale factors and their time derivatives
for both the background Universe and the overdense region
are the same:

ai ¼ Ri; ȧi ¼ Ṙi: ð5Þ

With these initial conditions, we reformulate the Friedmann
equations for the local overdensity and the background as
follows:

Ṙ2

R2
¼ 8πG

3
ρm;i

�
R−3 þ ρΛ;i

ρm;i
− κ̄R−2

�
; ð6Þ

ȧ2

a2
¼ 8πG

3
ρ̃m;i

�
a−3 þ ρΛ;i

ρ̃m;i
þ ξ̄a−2

�
: ð7Þ

We define the parameters corresponding to the spatial
curvatures of both the spherically overdense region and
the cosmological background at time ti as

κ̄≡ ρm;i þ ρΛ;i − ρcrit;i
ρm;i

;

ξ̄≡ ρ̃crit;i − ρ̃m;i − ρΛ;i
ρ̃m;i

: ð8Þ

From Eq. (5), we infer that the critical densities at time ti for
both the overdense region and the cosmological back-
ground are identical:

ρcrit;i ≡ 3

8πG
Ṙ2
i

R2
i
; ρ̃crit;i ≡ 3

8πG
ȧ2i
a2i

: ð9Þ

Assuming that −κ̄ ¼ ξ̄ at that initial moment and
ρcrit;i ¼ ρ̃crit;i, this leads to the relationship ρm;i ¼ ρ̃m;i.
Subsequently, we can express the overdensity as

ρmðaÞ ¼ ρ̃m;iR−3ðaÞ: ð10Þ

Equations (2) and (10), evaluated at the moment ti, yield

R−3ðaÞ ¼ a−3½1þ δðaÞ�: ð11Þ

Given that ρ̃m;i ¼ ρ̃m0a−3i and applying the rescaling trans-
formations aiR → R and κ̄=ai → κ, Eq. (6) is rewritten as
[129,133,137,139]

Ṙ2

R2
¼ 8πG

3
ρ̃m0ðR−3 þ ω − κR−2Þ; ð12Þ

which is the Friedmann equation for the local overdensity
with scale factor RðtÞ. By dividing Eq. (12) by Eq. (3) and
taking the square root, we deduce that

dR
da

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
R
1þ ωR3 − κR
1þ ωa3 þ ξa

s
: ð13Þ

This equation describes the dynamics of the overdensity,
where the positive branch corresponds to expansion
(pre-turnaround) and the negative branch indicates con-
traction (post-turnaround).

B. Turnaround

We can determine the physical size of the overdensity at
the turnaround, denoted as Rp;ta, using the criterion

dR
da

����
a¼ata

¼ 0: ð14Þ

This condition consequently establishes the relationship
between κ, ω, and Rta:

κ ¼ ð1þ ωR3
taÞR−1

ta : ð15Þ

By rearranging the corresponding terms on each side of the
positive branch of Eq. (13), which represents the expansion
phase of the overdensity, and considering Eq. (15), we
derive

Z
R

0

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

1þ ωR3 − ½ð1þ ωR3
taÞR−1

ta �R

s

¼
Z

a

0

da
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
1þ ωa3 þ ξa

r
: ð16Þ

In Eq. (16), employing transformation of variables such
that on the lhs u ¼ R=Rta and on the rhs y ¼ a=ata,
we obtain
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Z
1

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
a−3ta ð1þ δtaÞð1 − uÞ − ωuð1 − u2Þ

r

¼
Z

1

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta þ ωy3 þ ξa−2ta y

r
: ð17Þ

Thus, for given values of ξ, ω, and ata, we can calculate the
density contrast at the turnaround, denoted as δta.

C. Shell crossing and virialization

1. Gravitational potential of the halo

Drawing from the contributions of [149–152], we
characterize the gravitational potential energy of a system
composed of both DE and DM, noting that virialization is
exclusive to the DM component. The gravitational potential
energy of the halo system can be represented as

Uhalo ¼
1

2

Z
V
ρDMΦDMdV þ

Z
V
ρDMΦDEdV: ð18Þ

The gravitational potentials of DM (ΦDM) and DE (ΦDE)
can be written as (see Appendix B for the derivation)

ΦDMðrÞ ¼
�
−2πGρDMðR2 − r2=3Þ; r < R;

−4πGρDMR3=3r; r ≥ R;

ΦDEðrÞ ¼ 2πGρDEð1þ 3wDEÞ
r2

3
: ð19Þ

Considering a homogeneous spherical distribution of DM
with a physical radius Rp and massM, the energy densities
of DM and DE are given by

ρDM ≡ 3M=4πR3
p;

ρDE ≡ ρDMeDE

�
a
ata

�
−3ð1þwDEÞ� Rp

Rp;ta

�
3

; ð20Þ

where eDE represents the ratio of the densities at the
turnaround:

eDE ≡ ρDEðataÞ
ρDMðataÞ

: ð21Þ

Thus, the integrals over the volume of ρDMΦDM and
ρDMΦDE, considering Eqs. (19)–(21), read as follows:

1

2

Z
V
ρDMΦDMdV ¼ −

3

5

GM2

Rp
;

Z
V
ρDMΦDEdV ¼ −

3

5

GM2

Rp
ΘDE

�
a
ata

�
−3ð1þwDEÞ� Rp

Rp;ta

�
3

;

ð22Þ

where ΘDE ≡ − 1
2
ð1þ 3wDEÞeDE. Consequently, by fol-

lowing Eq. (18), the potential energy of the system can
be expressed as

Uhalo¼−
3

5

GM2

Rp

�
1þΘDE

�
a
ata

�
−3ð1þwDEÞ� Rp

Rp;ta

�
3
�
: ð23Þ

2. Virialization condition

The conservation of energy, from the moment of the
turnaround until the virialization stage, implies

E ≡ Uhalo

���
Rp¼Rp;ta

¼ ðKhalo þ UhaloÞ
���
Rp¼Rp;vir

: ð24Þ

Assuming that the virial theorem holds, the kinetic energy
can be written as

Khalo ¼
Rp

2

dUhalo

dRp
ð25Þ

and, given Eq. (25), Eq. (24) suggests the virialization
condition

UhalojRp¼Rp;ta
¼
�
Rp

2

dUhalo

dRp
þ Uhalo

�����
Rp¼Rp;vir

: ð26Þ

For a potential given in Eq. (23), Eq. (26) can be recast as

4ΘDEαDEη
3 − 2ð1þ ΘDEÞηþ 1 ¼ 0; ð27Þ

where η and αDE are defined through

η≡ Rp;vir

Rp;ta
; αDE ≡

�
avir
ata

�
−3ð1þwDEÞ

: ð28Þ

The solution of Eq. (27) expanded in terms of ΘDE can be
expressed by [105,134,135,149–155]

η ¼ 1

2
þ 1

4
ΘDEð−2þ αDEÞ

þ 1

8
Θ2

DEð−2þ αDEÞð−2þ 3αDEÞ þ… ð29Þ

In the specific case of a positive cosmological constant
(wΛ ¼ −1) as the DE component, implying αΛ ¼ 1 and
ΘΛ ¼ eΛ, Eq. (27) can be written as

4eΛη3 − 2ð1þ eΛÞηþ 1 ¼ 0: ð30Þ

This can be approximated by

η ¼ 1

2
−
eΛ
4
−
e2Λ
8
þ…; ð31Þ
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where the parameter eΛ ≡ ωa3ta=ð1þ δtaÞ, obtained
from Eq. (21).

3. Density contrast at the virialization

Given that tvir ¼ 2tta and assuming the collapse is
completed at t ¼ tvir, Eq. (3) leads toZ

yvir

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta þ ωy3 þ ξa−2ta y

r

¼ 2

Z
1

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta þ ωy3 þ ξa−2ta y

r
; ð32Þ

where yvir ≡ avir=ata. Therefore, given specific values of ξ,
ω, and ata, we can use Eq. (32) to compute the scale factor
at virialization, avir. Subsequently, the value of δvir can be
calculated using the following relation:

1þ δvir ¼ ð1þ δtaÞ
�
yvir
η

�
3

: ð33Þ

III. ΛsCDM: Λs-SIGN SWITCH BEFORE
VIRIALIZATION

Within the ΛsCDM [48–50] framework, the evolution of
the background Universe is governed by

ȧ2

a2
¼ 8πG

3
ρ̃m0½a−3 þ ωssgnð1=a† − 1=aÞ þ ξsa−2�; ð34Þ

whereas the evolution for the overdensity is described by

Ṙ2

R2
¼ 8πG

3
ρ̃m0½R−3 þ ωssgnð1=a† − 1=aÞ − κsR−2�; ð35Þ

where ωs and ξs are parameters defined as

ωs ≡ ρΛs0

ρ̃m0

¼ ΩΛs0

Ωm0

;

ξs ≡ ρ̃crit;0 − ρ̃m0 − ρΛs0

ρ̃m0

¼ 1

Ωm0

− 1 − ωs:

After dividing Eq. (34) by Eq. (35), we obtain

dR
da

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
R
1þ ωssgnð1=a† − 1=aÞR3 − κsR
1þ ωssgnð1=a† − 1=aÞa3 þ ξsa

s
: ð36Þ

A. Λs-sign switch before the turnaround
(a† < ata < avir)

1. Density contrast at the turnaround

Assuming that the Λs-sign switch transition occurs
during the expansion phase of the overdensity, we integrate
Eq. (36) as follows:

Z
R

0

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

1þ ωssgnð1=a† − 1=aÞR3 − κsR

s

¼
Z

a

0

da
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
1þ ωssgnð1=a† − 1=aÞa3 þ ξsa

r
: ð37Þ

By implementing the changes of variables u ¼ R=Rta on
the lhs of Eq. (37) and y ¼ a=ata on the rhs of Eq. (37), and
integrating until the turnaround moment, we obtain the
following system of equations:

Z
y†

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta − ωsy3 þ ξsa−2ta y

r

¼
Z

u†

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
a−3ta ð1þ δtaÞð1 − uÞ − ωsuð1þ u2Þ

r
; ð38Þ

Z
1

y†

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta þ ωsy3 þ ξsa−2ta y

r

¼
Z

1

u†

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
a−3ta ð1þ δtaÞð1 − uÞ − ωsuð1 − u2Þ

r
: ð39Þ

Here we have denoted y† ≡ a†=ata, u† ≡ R†=Rta, and
κs ¼ ð1þ ωsR3

taÞR−1
ta , given that the cosmological constant

is positive at the moment of turnaround. Thus, for a given
y†, we can derive the corresponding values of u† and δta
that satisfy Eqs. (38) and (39) simultaneously.

2. Density contrast at the virialization

In such a case, the Λs-sign switch transition occurs prior
to the turnaround moment. As a result, at the turnaround,
the cosmological constant has already been positive,
ensuring that the collapse proceeds with a positive cos-
mological constant throughout, similar to the ΛCDM case.
At the moment of turnaround,

ρΛs
ðataÞ

ρmðataÞ
¼ sgnð1=a† − 1=ataÞeΛs

≡ eΛs
; ð40Þ

where we have defined

eΛs
≡ ωsa3ta=ð1þ δtaÞ: ð41Þ

The virialization condition results in

4eΛs
η3 − 2ð1þ eΛs

Þηþ 1 ¼ 0; ð42Þ

which can be approximated by

η ¼ 1

2
−
eΛs

4
−
e2Λs

8
þ… ð43Þ
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Assuming that the collapse is completed at t ¼ tvir (with
tvir ≃ 2tta), the Friedmann equation for the background
universe (for y† < 1) is given by

Z
y†

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta − ωsy3 þ ξsa−2ta y

r

þ
Z

yvir

y†

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta þ ωsy3 þ ξsa−2ta y

r

¼ 2

 Z
y†

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta − ωsy3 þ ξsa−2ta y

r

þ
Z

1

y†

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta þ ωsy3 þ ξsa−2ta y

r !
: ð44Þ

From Eq. (44), we deduce that

Z
yvir

1

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta þ ωsy3 þ ξsa−2ta y

r

¼
Z

y†

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta − ωsy3 þ ξsa−2ta y

r

þ
Z

1

y†

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta þ ωsy3 þ ξsa−2ta y

r
: ð45Þ

Thus, it becomes feasible to deduce the value of avir in
terms of ata and subsequently δvir from Eq. (33).

B. Λs-sign switch after the turnaround (ata < a† < avir)

1. Density contrast at the turnaround

Given that the transition occurs after the turnaround (i.e.,
a† > ata), the expansion phase persists with a negative
cosmological constant throughout. The value of δta is
determined using the following equation:

Z
1

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
a−3ta ð1þ δtaÞð1 − uÞ þ ωsuð1 − u2Þ

r

¼
Z

1

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta − ωsy3 þ ξsa−2ta y

r
; ð46Þ

which corresponds to Eq. (17), with the substit-
ution of ω → −ωs.

7 Note that have used the relation
κs ¼ ð1 − ωsR3

taÞR−1
ta , where the cosmological constant is

negative at the moment of turnaround.

2. Effect of the type-II singularity: Free particle
in the Hubble flow

We assume that a certain amount of kinetic energy is
induced in each free particle that experienced the Λs-sign
switch transition event. Considering the RW metric,

ds2 ¼ −dt2 þ a2½dχ2 þ χ2ðdθ2 þ sin2 θdϕ2Þ�; ð47Þ

the physical distance is given by rðtÞ ¼ aðtÞχ, with χ being
the comoving coordinate. The geodesic equation, repre-
senting the physical radial coordinate of a free particle with
a constant comoving coordinate in an RW metric, is
expressed as [145]

̈r −
ä
a
r ¼ 0: ð48Þ

To elucidate the consequences of the type-II (sudden)
singularity that occurs at the Λs-sign switch transition
(see Appendix A), it is imperative to evaluate the integral
of Eq. (48) over an interval surrounding the transition
moment. Consider, in particular, the time interval t given by
t∈ ½t† − ε; t† þ ε�, where ε is a positive infinitesimal.
Proceeding with this approach and given that r ¼ aχ,Z

t†þε

t†−ε
dẗr −

Z
t†þε

t†−ε
dt
ä
a
r ¼ 0 ⇒ ṙjt†þε

t†−ε ¼ ðHrÞjt†þε
t†−ε : ð49Þ

Consider the velocity difference8 around the moment of
singularity t†:

δV ≡ ṙðþÞ − ṙð−Þ ¼ HðþÞrðt†Þ −Hð−Þrðt†Þ: ð50Þ
Given the continuity of the physical distance rðtÞ, we derive
the velocity impulse as

δV ¼ δHr†: ð51Þ
Here we denote the discontinuous increase in the Hubble
parameter resulting from the sign switch of the cosmo-
logical constant, as derived from the Friedmann equation:

δH ≡HðþÞ −Hð−Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρ̃m0

3

r h
ða−3† þ ωs þ ξsa−2† Þ12

− ða−3† − ωs þ ξsa−2† Þ12
i
: ð52Þ

The solution to the geodesic equation for a free particle,
as denoted in Eq. (48), within the ΛsCDM framework can
be derived using joint boundary conditions at the transition
moment, i.e., rðtÞ is continuous at t† and also Eq. (51).
These conditions include the continuity of rðtÞ at t† and the

7We have also assumed that ata ≤ amΛs
≡ ðΩm0=ΩΛs0

Þ13, i.e.,
the moment where H2ðamΛs

Þ ¼ 0.

8Throughout the text, we define the left and right limits of a
function as fð−Þ ≡ limε→0 fðt† − εÞ and fðþÞ ≡ limε→0 fðt† þ εÞ,
respectively.
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conditions described in Eq. (51), which account for the
velocity kick. With a specified set of initial conditions for r
and ṙ, we are able to derive the analytical solution (C8)
(Fig. 1). Considering that the physical distance r ¼ aχ
[where aðtÞ is the scale factor, as shown in Eq. (C6)], this
follows the exact same form as aðtÞ, assuming a constant χ
(see Appendix C for a detailed derivation of the scale factor
in the ΛsCDM model).

3. Effect of the type-II singularity:
Spherical collapse model

A free particle in constant comoving coordinates will
infall due to the contraction of the spherical overdensity
entrained by the spacetime geometry. Following the same
reasoning as in Sec. III B 2, we introduce the corresponding
velocity kick to a particle in the spherical overdensity as

ΔV ≡ ṘðþÞ
p;† − Ṙð−Þ

p;† ; ð53Þ

where Ṙp ≡ χ0aH
dR
da. During the collapsing phase, we

implement the negative branch of Eq. (36) in Eq. (53),
which results in

ΔV ¼ −χ0a†

 
HðþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a†
R†

1þ ωsR3
† − κsR†

1þ ωsa3† þ ξsa†

s

−Hð−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a†
R†

1 − ωsR3
† − κsR†

1 − ωsa3† þ ξsa†

s !
: ð54Þ

4. Effect of the type-II singularity:
Modified virialization condition

We assume the transition occurs during the collapse of
the overdensity (where a† > ata) at the turnaround moment,

ρΛs
ðataÞ

ρmðataÞ
¼ sgnð1=a† − 1=ataÞeΛs

¼ −eΛs
; ð55Þ

and the potential energy of the system, at the moment when
the scale factor attains the value ata and the cosmological
constant is negative, is substituted according to Eq. (22) as

Uhalo ¼ −
3

5

GM2

Rp

�
1 − eΛs

�
Rp

Rp;ta

�
3
�
: ð56Þ

Energy conservation is upheld right until the brink of the
singularity’s emergence at a ¼ a†. If ε > 0 is an infini-
tesimally small positive quantity and t† − ε represents the
moment just before the singularity, then, given the con-
tinuity of Rp, when ε → 0 we obtain

Kð−Þ ¼ UhalojRp;ta
− UhalojRp;†

: ð57Þ

Immediately after, energy conservation continues to be
valid but incorporates an energy impulse attributed to the
singularity. Specifically, the velocity V of a spherically
symmetric shell is given by V ¼ Ṙ

R Rp. This implies that for
t† þ ε, due to a velocity kick, V transitions to V þ ΔV
[Eq. (54)]. Consequently, this impulse affects the kinetic
energy in the following manner:

KðþÞ ¼ Kð−Þ½1þ Δ�2; ð58Þ

where we have defined Δ as

Δ≡ ΔV
jVð−Þj ¼

ΔV
jχ0a†Hð−ÞdR

da
ð−Þj

¼ 1−
HðþÞ

Hð−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þωsR3

†− κsR†Þð1−ωsa3†þ ξsa†Þ
ð1þωsa3†þ ξsa†Þð1−ωsR3

†− κsR†Þ

s
: ð59Þ

From immediately post-singularity up to the point of
virialization, the conservation of energy, along with the
virial theorem, gives

Rp

2

dUhalo

dRp

����
Rp;vir

þ UhalojRp;vir
¼ KðþÞ þ UhalojRp;†

: ð60Þ

Equations (58) and (57) combined imply the following
modified virialization condition:

FIG. 1. Utilizing the joint boundary conditions at the transition
moment t=t† ¼ 1, an analytical solution to the geodesic equation
for a free particle within the ΛsCDM cosmological framework is
derived. The solution is for the geodesic (C8), which maintains
the continuity of the physical distance rðtÞ and incorporates the
velocity kick (51). The initial conditions rðt=t† ¼ 0.5Þ ¼ r0 and
ṙðt=t† ¼ 0.5Þ ¼ r0=t† are imposed. We observe that the effect of
the kick (at t=t† ¼ 1) is insignificant. Additionally, as ðz†Þ
decreases, the velocity kick intensifies, causing the ratio

	
r
r0



to reach higher values.
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Rp;vir

2

dUhalo

dRp

����
Rp;vir

þ Uhalo

���
Rp;vir

¼ ðUhalojRp;ta
− UhalojRp;†

Þð1þ ΔÞ2 þ Uhalo

���
Rp;†

: ð61Þ

Implementing the potential energy, given by Eq. (56), into
Eq. (61) and taking into account that the singularity takes
place subsequent to the turnaround moment, i.e., a† > ata,
we derive

−
1 − y−3ð1þwÞ

vir Θη3

10Rp;vir
þ 1 − y−3ð1þwÞ

† Θu3†
5Rp;†

þ 3Θy−3ð1þwÞ
vir R2

p;vir

10R3
ta

− ð1þ ΔÞ2
�
−
1 − Θ
5Rta

þ 1 − y−3ð1þwÞ
† Θu3†
5Rp;†

�
¼ 0: ð62Þ

Subsequently, for a cosmological constant (wΛ ¼ −1),
Eq. (62) implies that

Δ0ð−1þ u†Þ þ u†

�
1 −

1

2η

�
þ u†eΛs

½−1þ 2η2 þ Δ0ð−1þ u2†Þ� ¼ 0; ð63Þ
where we have defined the following dimensionless
parameters:

Δ0 ≡ Δð2þ ΔÞ; u† ≡ R†
Rta

:

Note that when Δ ¼ 0, Eq. (27) is recovered, correspond-
ing to a collapse with a negative cosmological constant.
While Eq. (63) admits an analytical solution, its complexity
can hinder a straightforward physical interpretation. As
such, we resort to an approximate solution. At first order in
Δ0 and for values of u† close to 1, we obtain

η ¼ 1

2

�
1þ Δ0ð1 − u†Þ

u†

�
þ eΛs

4
½1þ 2Δ0ð1 − u2†Þ�

−
e2Λs

8

�
1þ 7Δ0ð1 − u†Þ

u†

�
þ… ð64Þ

This approximation remains valid for jΔj ≪ 1. In cases
where this condition is not met, it becomes necessary to
resort to the analytical solutions of Eq. (63) (Fig. 2). The
collapse of an overdense region and the expansion of the
Universe exert opposing effects. The impact of the singu-
larity on the overdensity is significant when y† ≃ 1 and
becomes smaller for values that are further away, as well as
for larger values of zta, as shown in Fig. 3. Although the
sudden singularity extracts kinetic energy (i.e., when
−1 ≤ Δ < 0) from the collapsing overdensity, it is notable
that near the turnaround moment the velocity of the
contracting overdensity approaches zero. Consequently,
the “velocity brake” (occurring when Δ < −1) is sufficient
to reverse the direction, effectively inducing a velocity kick.
This kick expands the shell once more to a slightly larger

value of a new physical radius, before it collapses again and
eventually virializes.
Additionally,we can assume a brief period of time after the

turnaround but before the shell crossing where we can still
apply the negative branch of Eq. (36). Thus, by integrating
Eq. (36) throughout the period where the scale factor ranges
from ata to a†, we obtain the following equation:

Z
1

u†

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u
a−3ta ð1þ δtaÞð1 − uÞ þ ωsuð1 − u2Þ

r

¼
Z

y†

1

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta − ωsy3 þ ξsa−2ta y

r
: ð65Þ

We evaluate u† using Eq. (65) and then incorporate η, as
calculated in Eq. (64).
Subsequently, the value of Rvir is ascertained in accor-

dance with Eq. (69), leading to the determination of the
anticipated ratios, as discussed in Sec. III C.
Assuming that tvir ≃ 2tta and that the collapse is com-

pleted when t ¼ tvir, Eq. (34) yields ðy† > 1)

Z
y†

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta − ωsy3 þ ξsa−2ta y

r

þ
Z

yvir

y†

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta þ ωsy3 þ ξsa−2ta y

r

¼ 2

Z
1

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta − ωsy3 þ ξsa−2ta y

r
; ð66Þ

FIG. 2. Variation of Δ with respect to zta, obtained by keeping
y† ∈ ½1.01; 1.02; 1.04; 1.06; 1.08� constant. The collapse of the
overdense region and the expansion of the Universe exert
opposing effects. Consequently, the emergence of the sudden
singularity effectively dissipates kinetic energy (Δ < 0), as
demonstrated above. The shaded gray area represents the region
of −1 ≤ Δ < 0, where only the kinetic energy is extracted from
the overdensity. Meanwhile, forΔ < −1, the overdensity expands
once more to a slightly larger value of a new physical radius,
before it collapses again and eventually virializes.
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FIG. 3. Numerical analysis performed to calculate δta, δvir, ρvir, and Rp;ta for post-turnaround (shades of blue) and pre-turnaround
(shades of red) cases, where the cosmological parameters are derived from the analysis given in Appendix D. Each panel is obtained by
varying 1.7 ≤ zta ≤ 4.7 for constant y† ≡ a†=ata. The corresponding z† value for a given zta can be calculated via 1þ z† ¼ ð1þ ztaÞ=y†.
Even though we use the same physical matter density parameter throughout the analysis, the Ωm0 parameters will be different for both
models. For a given z†, one can easily find the corresponding Ωm0 for the ΛsCDM model [see Eq. (D7)]. For the upper left, upper right,
and middle right figures, curves for ðy† < 1Þ appear above the dashed line ðΛCDMÞ, with density/overdensity increasing as ðy†Þ values
rise. For ðy† > 1Þ, despite a similar increase, curves remain below the dashed line. An exception is the upper left figure, where for
ðy† > 1Þ, overdensity decreases as ðy†Þ increases. In the middle left figure, curves for ðy† ¼ 0.6; 0.7; 0.8Þ are below the dashed line,
decreasing sequentially, while those for ðy† ¼ 1.08; 1.05; 1.01Þ are above but also decrease sequentially. The lower right figure shows
that the highest point corresponds to ðy† ¼ 0.6Þ, with subsequent values following in a labeled sequence.
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from which we obtainZ
y†

1

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta − ωsy3 þ ξsa−2ta y

r

þ
Z

yvir

y†

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta þ ωsy3 þ ξsa−2ta y

r

¼
Z

1

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
a−3ta − ωsy3 þ ξsa−2ta y

r
: ð67Þ

It then becomes feasible to deduce the value of avir in terms
of ata through Eq. (32) and subsequently δvir from Eq. (33).

C. Contrasting ΛsCDM with standard ΛCDM: Insights
into the physical outcomes

Based on Eqs. (11) and (20), the physical radius of the
overdensity at turnaround is expressed as

Rp;ta ¼
�

3M
4πð1þ δtaÞρ̃m0

�1
3

ata: ð68Þ

Furthermore, using the definition of η from Eq. (28), we can
write the virialized physical radius of the overdensity as

Rp;vir ¼ ð1þ ztaÞ−1
�

3M
4πð1þ δtaÞρ̃m0

�1
3

η: ð69Þ

Consequently, the ratio of the virialized matter density in
the ΛsCDM model to that in the ΛCDM model [1,4] reads

ðρvirÞΛs

ðρvirÞΛ
≡
�ðRp;virÞΛs

ðRp;virÞΛ

�
−3

¼ ð1þ δΛs
ta Þ

ð1þ δΛtaÞ
�
ηðeΛs

Þ
ηðeΛÞ

�
−3
: ð70Þ

The physical effects of the Λs-sign switch (AdS-dS)
transition can primarily be understood by considering the
timing of the transition relative to the turnaround moment,
distinguishing between the pre-turnaround (z† > zta) and
post-turnaround (zta < z†) Λs-sign switch transitions.
These effects are demonstrated in Fig. 3 where, for a
realistic assessment, the cosmological parameters for both
models, namely,ΛsCDM (for various z† cases) andΛCDM,
are chosen to ensure consistency with the Planck-CMB
power spectra, as detailed in Appendix D.

1. Pre-turnaround Λs-sign switch transition (z† > zta)

We first consider the case y† < 1, where the Λs-sign
switch transition occurs before the turnaround, i.e., z† > zta.
Our findings indicate that if this transition happens before
turnaround, the density contrast at turnaround (δta) will be
higher than in the ΛCDM model, as shown in the top-left
panel of Fig. 3. The rationale behind this is as follows.
Because the transition has already occurred, the positive
cosmological constant has already begun to influence the
curvature of the halo as described by Eq. (15) (ωs > 0). On
the other hand, as illustrated in Fig. 4 which is plotted by
choosing zta ¼ 2 (noting that different values of zta do not

change the trends in the plots), a larger y† < 1 results in the
overdensity evolving under the negative cosmological
constant’s influence for a longer period. This implies that
for larger y† < 1 values the negative cosmological con-
stant’s slowing-down effect on the overdensity’s expansion,
due to its induced gravitational attraction, lasts longer,
leading to denser structures. Consequently, we observe
generally higher δta values for the ΛsCDM model compared
to the ΛCDMmodel in the top-left panel of Fig. 3, with this
difference increasing for larger y† values, as long as y† < 1.
We note that the expansion rate of the background Universe,
ȧ ¼ HðzÞ

1þz , around zta is almost identical across various y†
values for a given zta, as seen in Fig. 4 which is plotted by
choosing zta ¼ 2 as an example. Thus, the expansion rate of
the Universe at or around the turnaround moment does not
intervene in and influence our discussions on the value of δta
within theΛsCDM framework. And, of course, since δta and
Rp;ta are interrelated through Eq. (68), a higher δta corre-
sponds to a smaller Rp;ta and vice versa for a given value of
zta or ata. Finally, the collapsing phase of the overdensity
proceeds under the influence of a positive cosmological
constant until virialization, similar to the standard ΛCDM
model. Therefore, evidently, the larger values of δta achieved
in the ΛsCDM model compared to the ΛCDM model give
rise to corresponding larger values of δvir and ρ

Λs
vir, as seen in

the top- and middle-right panels of Fig. 3, respectively.

2. Post-turnaround Λs-sign switch transition (zta > z†)

We now consider the case y† > 1, where the Λs-sign
switch transition occurs after the turnaround, i.e., zta > z†,

FIG. 4. ȧ≡HðzÞ=ð1þ zÞ vs z plotted for constant y† ≡ a†=ata,
by fixing the turnaround redshift at 2 (i.e., zta ¼ 2). We have
applied the method described in Appendix D to determine the
cosmological parameters. For a fixed ata, as y† → 0, the scale factor
of the transition approachesa†→0 and theΛsCDMmodel dynamics
becomes similar to ΛCDM. Meanwhile, as y† → 1=ata, the tran-
sition approaches today. Also note that before the transition the
expansion rate of the Universe is smaller (ȧΛsCDM < ȧΛCDM), but
after the transition it is faster (ȧΛsCDM > ȧΛCDM) than the ΛCDM
universe. As ðy†Þ increases, the transition occurs at lower redshifts.
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focusing on the phase during which the halo is collapsing,
but well before shell crossing, when the halo is still
homogeneous and isotropic. In this phase, the density
contrast at the turnaround, δta, will be lower compared
to that in the ΛCDM model, with this effect being more
pronounced at lower values of zta, as seen in the top-left
panel of Fig. 3. The rationale behind this is as follows.
In theΛCDMmodel, the overdensity experiences a positive
cosmological constant throughout its evolution. In contrast,
in the post-turnaround Λs-sign switch transition case of the
ΛsCDM model the overdensity experiences a negative
cosmological constant until and for some time after reach-
ing the turnaround radius. This implies that less matter
energy density is required for the overdensity to achieve
turnaround due to the enhancing gravitational attraction
effects of the negative cosmological constant (in contrast to
the positive cosmological constant), leading to less curva-
ture for the overdensity. We note that the lower the zta, the
larger difference in δta between the ΛsCDM and ΛCDM
models. This is understandable as at lower redshifts the
cosmological constant is more dominant in both models,
but it is negative in the ΛsCDM and positive in the ΛCDM
model. Specifically, the lower the zta, the higher the δta in
the ΛCDM model, while the lower the zta, the lower the δta
in the ΛsCDM model.
Note that δta is almost identical for a given zta value, with

only barely visible differences at lower zta values for various
y† values. This is explained by the fact that for z > zta the
expansion rates of the Universe for different y† values are
almost the same, allowing the overdensities to evolve
through nearly identical background Universe dynamics
until turnaround is achieved, as seen in Fig. 4 which is
plotted by choosing zta ¼ 2 as an example. Note that for
different y† > 1 values, we use the same physical matter
density value and fix the angular size of the sound horizon at
the last-scattering surface to ensure consistency with CMB-
Planck spectra (see Appendix D), resulting in slightly
different values for Ωm0, corresponding to slightly different
H0 values. This implies, for a given zta, slightly different
matter density parameters/expansion rates of the Universe at
the times when the overdensity is evolving towards the
turnaround, and the time taken to reach the turnaround
radius would be slightly different. TheΩm0 can be read from
the bottom panels of Fig. 3; for the y† ¼ f1.01; 1.05; 1.08g
values we used, we have z† ¼ f1.97; 1.86; 1.78g and
Ωm0 ¼ f0.2821; 0.2777; 0.2739g. In other words, ȧ is
almost identical across all ΛsCDM cases for y† > 1 for z >
zta and thus is not expected to cause significant variations in
δta for different y† > 1 values. In these cases, the over-
density experiences the negative cosmological constant
for a nearly identical duration; see Fig. 4. The minor
variations in δta are attributed to slightly different values
of Ωm0, implying slightly different expansion rates of the
Universe and hence a slightly different passage of time
taken until turnaround is achieved. In the middle-left panel

of Fig. 4, we plot the ratio of the physical radius of the halo at
the turnaround in the ΛsCDM model to that in the ΛCDM
model, viz., RΛs

p;ta=R
Λ
p;ta.

9 We observe that RΛs
p;ta=R

Λ
p;ta > 1,

being larger for lower values of zta, and it is almost identical
for different y† > 1 valueswith a barely visible difference for
small zta values. This aligns with expectations when con-
sidering Eq. (15) forω → −ωs, implying the higher values of
Rp;ta correspond to lower values of δta.
Finally, in the top-right panel of Fig. 3 we plot the density

contrast at the moment of virialization, δvir, for the cases
where the Λs-sign switch transition occurs during the
collapsing phase, before the halo virializes. It is conceivable
that the δvir values in the ΛsCDM are lower than in the
ΛCDMmodel, similar to the situation with δta. However, we
immediately see that, although this expectation holds,
unlike with the situation for δta, the δvir values differ
significantly for different y† values and become more
pronounced for lower zta values. This phenomenon is not
surprising and can roughly be explained as follows. As seen
in Fig. 4 (plotted by choosing zta ¼ 2 as an example), the
larger the value of y†, the greater the difference between z†
and zta, implying that the Λs-sign switch transition occurs
later in the collapsing phase of the overdensity for larger
y† > 1 values. That is, given that δta is almost the same for a
given zta for different values of y†, for larger y† values, the
Λs-sign switch transition occurs when the overdensity is
more compact, and thereby it is conceivable that the rapid
increase in the Universe’s expansion rate at the transition
will have less influence on the collapsing overdensity for
larger y† > 1 values. A more precise, but also more concise,
explanation is as follows. We observe that the impact of the
singularity at z† on the overdensity is considerable when
y† ≃ 1 and diminishes for values further from 1 or for larger
zta values. The singularity extracts kinetic energy (i.e., when
−1 ≤ Δ < 0), leading to a “velocity brake” in the collapse.
Conversely, when Δ < −1, it induces a velocity kick,
reversing the direction of the collapse and reexpanding
the shell to a slightly larger new physical radius before its
eventual collapse and virialization. This effect, observable
in Fig. 2, suggests that higher Δ values result in lower
virialized densities in the halo.

IV. IMPACT OF BACKGROUND EXPANSION
ON BOUND SYSTEMS

A. Newtonian approximation of a bound system
in an expanding background

Numerous studies have been devoted to exploring
the impacts of cosmic expansion on bound systems
[146,148,156–160]. In the Newtonian limit, the vicinity
of a point massM situated within a dynamically expanding
background is characterized as follows:

9The results are independent of the halo’s mass, as demon-
strated in Eq. (68).
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ds2 ¼ −
�
1 −

2GM
aχ

�
dt2 þ a2½dχ2 þ χ2ðdθ2 þ sin2 θdϕ2Þ�;

ð71Þ

where t is the comoving time and a≡ aðtÞ. Interpreting the
gravitational field of the point mass as a weak field, and by
admitting low velocities, the geodesic equations can be
differentiated with respect to the coordinate time t as

ẍμ þ Γμ
νσ ẋνẋσ ¼ 0; ð72Þ

where ˙≡ d=dt. For the geodesic equation in the χ
coordinate, considering θ ¼ π=2 in the equatorial plane,
we derive

GM
χðtÞ2aðtÞ3 − χðtÞϕ̇ðtÞ2 þ 2ȧðtÞχ̇ðtÞ

aðtÞ þ χ̈ðtÞ ¼ 0: ð73Þ

Similarly, the geodesic equation for x3, taking θ ¼ π=2
again, yields

2ȧðtÞϕ̇ðtÞ
aðtÞ þ 2ϕ̇ðtÞχ̇ðtÞ

χ
þ ϕ̈ðtÞ ¼ 0⇒

d
dt
½ðaχÞ2ϕ̇� ¼ 0: ð74Þ

Defining L ¼ ðaχÞ2ϕ̇ as the angular momentum per unit
mass, we express the geodesic equation from Eq. (73) in
terms of the physical radial coordinate r ¼ aχ as follows:

̈r −
ä
a
r −

L2

r3
þGM

r2
¼ 0: ð75Þ

Considering a moment in time t0 where expansion can be
disregarded [i.e., ṙðt0Þ ¼ 0], we define the physical radius
of an orbit as r0 ≡ rðt0Þ. The angular speed at this moment,
neglecting expansion, is described as

ϕ̇2jt¼t0 ¼
L2

r40
≡ ω2

0 ≡GM
r30

: ð76Þ

Given the condition outlined in Eq. (76), this leads to the
conclusion that L2 ¼ GMr0. While a circular orbit with a
constant physical radius does not exist at all times, r0
represents the radius at a specific instant. Under the
condition that the initial angular speed is significant
enough to overlook cosmic expansion, it approximates
a stable Newtonian circular orbit, assuming L2 ≠ 0 and
ṙ ¼ 0 at all times.
Additionally, considering a rescaling d=dt ¼ t−1initd=dt̄

and 0≡ d=dt̄ (where tinit is the initial cosmic time selected
for the system), we derive from Eq. (75)

r̄00 ¼ ω̄2
0

r̄3
−
ω̄2
0

r̄2
þ a00

a
r̄; ð77Þ

where

a00

a
¼ −

1

2
ðH0tinitÞ2Ωm0

h
a−3 − 2ωsa−1δð1=a† − 1=aÞ

− 2ωssgnð1=a† − 1=aÞ
i
; ð78Þ

and

r̄≡ r
r0
; ω̄0 ≡ω0tinit; t̄≡ t

tinit
; ϕ̇≡ ω̄0

r̄2
: ð79Þ

The final step before proceeding to solve Eq. (77) involves
initiating from an orbit with a rescaled radius, r̄ðtinitÞ ¼ s,
taking into account the expanding background. This is
achieved by setting the rhs of Eq. (77) to zero and solving
for s:

ω̄2
0ð1 − sÞ þ a00

a

����
tinit

s4 ¼ 0: ð80Þ

Subsequently, we numerically solve the geodesic equa-
tion, as presented in Eq. (77), for a bound system.
Numerical examples of bound orbits within the ΛsCDM
mode are demonstrated in Figs. 5 and 5.

B. Physical outcomes

We consider a point particle with a path parametrized by
the proper time τ. In this setting, the x0-geodesic equation is

d
dτ

�
dt
dτ

�
1−

2GM
aχ

��
¼ −HðaχÞ dt

dτ

�
L2

ðaχÞ3 þ
1

aχ

�
a
dχ
dτ

�
2
�
:

ð81Þ

For the first integral of a timelike geodesic, described by
ds2 ¼ −dτ2 and assuming θ ¼ π=2, we redefine the metric
from Eq. (71) as

−1 ¼ −
�
1 −

2GM
aχ

��
dt
dτ

�
2

þ a2
�
dχ
dτ

�
2

þ L2

ðaχÞ2 : ð82Þ

Assuming a sufficiently small time interval where every
cosmic bound system maintains a physical radius r ¼ aχ

TABLE I. Clusters of galaxies form massive, virialized struc-
tures. Nevertheless, this is not the case for superclusters.
Assuming an initial angular speed defined by ω2

0 ¼ GM=r30,
we derive some very rough typical scales for both galaxy clusters
and superclusters [161–165].

System M½M⊙� R[Mpc] T0½H−1
0 � ω0½H0�

Cluster ∼1015 ∼2 ∼1 ∼10
Supercluster ∼1016 ∼100 ∼100 ∼0.01
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and adheres to the approximation HðaχÞ ≪ 1, a particle in
orbit with this radius will conform to this approximation. If
we also assume a small peculiar velocity, the second term in
Eq. (81) is deemed higher order, simplifying the equation to

dt
dτ

�
1 − 2GM

aχ

�
¼ k≡ const: ð83Þ

Upon integrating Eq. (83) into Eq. (82), we derive

−1 ¼ −
�
1þ 2GM

aχ

�
k2 þ a2

�
dχ
dτ

�
2

þ L2

ðaχÞ2 : ð84Þ

In the regime of small peculiar velocities (dt ≃ dτ), this
results in an expression for the quasienergy:

E≡ k2 − 1

2
¼ 1

2
ṙ2 −

GM
r

−Hrṙþ 1

2
H2r2 þ L2

2r2
: ð85Þ

Consider a particle initially moving in an orbit at rðtinitÞ ¼
sr0 [with ṙðtinitÞ ¼ 0] in a bound system. During a short
time interval around t†, if the approximations r̄ðtinitÞ ≃ 1

and ˙̄r ≃ 0 are valid, then Eq. (85) simplifies to

E ¼ 1

2
ðH þ δHÞ2r20 þ

ðω0r0Þ2
2

− ðω0r0Þ2: ð86Þ

Given these approximations, consider any particle in a
system with mass M that initiates its orbit at a time tinit,
where tinit ∈ ðt† − T; t†Þ and T is sufficiently small. The
particle has an initial angular momentum L and ṙðtinitÞ ¼ 0.
Also, the particle’s initial physical radius is approximately
rðtinitÞ ≃ r0 ≃ rðt†Þ. We define the critical angular speed,
ωcrit, at the moment t†, if and only if the total energy E ¼ 0,
according to the equation

ωcrit ¼ H þ δH: ð87Þ

Given that the singularity is relatively weak, it alone cannot
dissociate any bound system before the continual expan-
sion of the Universe does. Thus, the dissociation of bound
orbits is primarily driven by cosmic expansion, with the
singularity inducing a minor perturbation that slightly
increases the Hubble value at a specific instant. This
perturbation contributes minimally to the dissociation of
a bound orbit. Notably, the timing of initiating a bound
orbit significantly influences its evolution, as demonstrated
in Fig. 5, where we initiate an orbit near the moment of the
singularity. We calculate the critical angular speed, ωcrit, to
be approximately 3 for ΛsCDM and 2.9 for ΛCDM.
Given the brief period when the cosmological constant is

negative in the ΛsCDM model compared to its positive
phase, variations in orbits relative to those equivalent orbits
in the ΛCDM model suggest a scenario in the ΛsCDM
model where orbits with sufficiently low angular speed may
dissociate, unlike their counterparts in the ΛCDM model.
However, this dynamic changes when orbits are initiated far
in the past, away from the singularity. In such cases, the
negative cosmological constant in the ΛsCDM model aids
in maintaining the orbit’s binding over a significant period,
preventing the singularity from weakening the gravitational
attraction enough to cause more dissociation than in the
ΛCDM model.
The critical initial angular speed, ωcrit, approximated

from Eq. (87), acts as a threshold. For bound systems with

FIG. 5. A particle in orbit, embedded in ΛCDM (gray) and
ΛsCDM (red), with t† ¼ 0.2383H−1

0 for Ωm0 ¼ 0.29, and
tinit ¼ 0.238H−1

0 . The initial angular velocity is set as ω0 ¼
21H0 (top) and ω0 ¼ 2.98H0 (bottom) (see also Table I). We
initiate a circular orbit against an expanding background, i.e.,
with a rescaled radius r̄ðtinitÞ ¼ s and ṙðtinitÞ ¼ 0. The s is
determined by solving Eq. (80). Subsequently, we numerically
solve Eq. (77) in each case. The black dot represents the position
of the particle in orbit in the rescaled x − y plane at the moment of
the singularity.
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an angular speed ω0—the speed in a Newtonian bound
system disregarding cosmic expansion—dissociation due
to the cosmic expansion occurs if and only if ωcrit > ω0.
This approximation holds mainly for orbits beginning at
moments near t†. The results from Eq. (87) align well with
those obtained numerically from the geodesic equation (75),
as shown in Fig. 5. However, this method does not
accurately approximate numerical results for orbits starting
well before the moment under study; such an example is
shown in Fig. 6.

V. CONCLUSION

The ΛsCDM model [47–50] has emerged as a highly
promising approach to addressing major cosmological

tensions within the standardΛCDMmodel and its canonical
extensions, such as the H0 and S8 tensions. This achieve-
ment is realized through the introduction of a single
parameter, z†, to the six-parameter base ΛCDM model.
This parameter determines the timing of an abrupt AdS-dS
transition, changing from Λs ¼ −Λs0 for z > z† to its late-
time positive value Λs ¼ Λs0 for z < z†. Examining the
implications of adopting the ΛsCDM model framework for
the Universe’s evolution, especially on the formation and
evolution of bound cosmic structures, is crucial. The switch
to the ΛsCDM model is anticipated to impact bound cosmic
structures for three primary reasons: (i) the negative
cosmological constant (AdS) phase for z > z† ∼ 2, (ii) the
abrupt transition itself, marked by a sudden jump in the
Universe’s expansion rate—a type-II (sudden) singularity—
at z ¼ z†, and (iii) the increased expansion rate compared to
the ΛCDM model for z < z†. Despite the faster expansion
rate, theΛsCDM andΛCDMmodels are otherwise identical
for z < z†. All of these aspects warrant thorough inves-
tigation as their potential effects can be used to test the
unique predictions of the model. In this paper, we analyzed
the nonlinear evolution of a spherical overdensity within the
ΛsCDM cosmology. We began by revisiting the dynamics
of spherical collapse within the ΛCDM framework and then
integrated the physical effects of the AdS-dS transition into
the spherical collapse model. This integration was accom-
plished by adjusting the Friedmann equations for the
ΛsCDM model. Furthermore, using energy considerations,
we made predictions about the eventual state of the halo,
dependent on the timing of the transition relative to the
turnaround. Specifically:
(1) If the turnaround occurs after the transition, in what

we refer to as the pre-turnaround transition, halos
that form and undergo this transition exhibit virial-
ized overdensities exceeding those predicted by the
Planck-ΛCDM model, particularly at lower turn-
around redshifts. This observation can be attributed
to the increased δta values resulting from a period
with a negative cosmological constant, which facil-
itates the formation of denser structures. In both the
ΛCDM and ΛsCDM models under pre-turnaround
transition scenarios, the expansion of the Universe
reaches the turnaround radius with a positive cos-
mological constant. This results in greater curvature
and matter overdensity at the turnaround radius
compared to the post-turnaround case.

(2) If the turnaround occurs before the transition, in
what we refer to as the post-turnaround transition,
halos experiencing this transition typically achieve
virialization at lower overdensities compared to
those predicted by Planck-ΛCDM. This observation
can be attributed to the negative cosmological
constant at the turnaround, necessitating a lower
matter overdensity at this moment, which results in
reduced curvature at turnaround. Consequently, in

FIG. 6. A particle in orbit, embedded in ΛCDM (gray) and
ΛsCDM (red), with t† ¼ 0.2383H−1

0 for Ωm0 ¼ 0.29 and tinit ¼
0.01H−1

0 . The initial angular velocity is set asω0 ¼ 15H0 (top) and
ω0 ¼ 10H0 (bottom) (see also Table I). We initiate a circular orbit
against an expanding background, i.e., with a rescaled radius
r̄ðtinitÞ ¼ s and ṙðtinitÞ ¼ 0. The s is determined by solving
Eq. (80). Subsequently, we numerically solve Eq. (77), in each
case. The black dot represents the position of the particle in orbit in
the rescaled x − y plane at the moment the singularity.
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this scenario, overdensities attain a larger maximum
physical radius owing to their diminished matter
overdensity and curvature.

In the abrupt ΛsCDM model, we have observed that the
Hubble parameter displays a discontinuity at a specific
past redshift, z ¼ z†. This discontinuity leads to a type-II
(sudden) singularity at z ¼ z†, as discussed in Appendix A
and supported by [122]. Despite its mild nature, this
singularity imparts a velocity kick to particles. We have
shown that smoothing out the abrupt behavior effectively
eliminates this singularity, even when the transition occurs
very rapidly. Hence, our findings regarding the velocity
kick pertain to the extreme version of the ΛsCDM model.
However, we demonstrated that, even in this case, we
ascertain that the singularity’s impact on Newtonian
bound virialized systems is minimal, thereby not threat-
ening the model’s viability in this context. Notably, the
singularity, being relatively weak, does not lead to
the dissociation of large bound systems before this is
done by the Universe’s continuous background expansion.
For instance, large clusters or superclusters, correspond-
ing to ω0 < 10H0, will be dissociated by the background
expansion but remain practically unaffected by the sin-
gularity (as illustrated in Figs. 5 and 6). The expansion in
both the ΛsCDM and ΛCDM models tends to induce
dissociation of bound systems at scales of large clusters
and above at similar levels. Therefore, the presence of
unbound orbits is primarily driven by Universal expan-
sion, with the singularity merely causing an increase in the
Hubble expansion rate at a specific moment. Interestingly,
the negative cosmological constant in the ΛsCDM model
tends to enhance the stability of bound systems due to its
attractive gravity effects.
The outcomes of our analysis open intriguing avenues

for future research. Broadening the scope, a natural
extension could involve generalizing the spherical collapse
model to accommodate a more diverse range of sudden
cosmological singularities. Another promising direction is
the investigation of the impact of the Λ-sign switch
transition on gravitational waves traversing the sudden
cosmological singularity, as discussed in [128]. Moreover,
delving into the physical mechanisms that induce the sign
switch of the cosmological constant, as explored in
Refs. [113–115], remains a significant area of interest.
TheΛsCDMmodel, with its potential to address the Hubble
and S8 tensions, may also influence early-Universe struc-
ture growth due to its period of a negative cosmological
constant. Our current study assumed a uniform transition in
a homogeneous universe. However, slight inhomogeneities
could lead to timing variations in this transition, as
suggested in [49]. Such variations might result in different
regions of the Universe experiencing the cosmological
constant’s sign switch at distinct redshifts, with potential
implications for galaxy formation. This scenario could

encompass sudden singularities of varying intensities and
even halos formed entirely under a negative cosmological
constant. Recent observations from the JWST hint at more
intense early galaxy formation, potentially aligning with
our model’s implications. Although our results show only
minor deviations from the ΛCDM model for structures
formed at higher redshifts, they underscore the necessity for
further exploration. In particular, the prospect of halos
forming entirely under a negative cosmological constant
could present a different narrative and warrants detailed
investigation.

The Mathematica (v12) and PYTHON files used for the
production of the figures and the derivation of the main
results of the analysis can be found at the camarman/
transition-dynamics-lscdm repository under the MIT
license.
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APPENDIX A: DEMONSTRATION OF TYPE-II
SINGULARITY

We study the effects an abrupt transition described by the
signum function. This description leads to a type-II
(sudden) singularity, characterized by

t ¼ t†; a ¼ a† < ∞;

ρtotða†Þ < ∞; jPtotða†Þj → ∞; ðA1Þ

with the following characteristics: the scale factor aðtÞ is
continuous and nonzero at the moment t†, the first
derivative of the scale factor ȧ is discontinuous at t†,
and its second derivative ä diverges at t† [122]. We prove
this argument by considering that ä=a ¼ Ḣ þH2, and by
implementing Friedmann equation

H2 ¼ 8πG
3

ρ̃m0½a−3 þ ωssgnð1=a† − 1=aÞ� ðA2Þ

we obtain
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ä
a
¼ −

4πG
3

ρm0½a−3 − 2ωssgnð1=a† − 1=aÞ
− 2ωsa−1δð1=a† − 1=aÞ�; ðA3Þ

where δ represents the Dirac delta function. It is evident that
at the precise moment of the singularity, äa → ∞. Given that
Ptot ¼ − 1

8πG ½2 ä
a þ ðȧaÞ2�, at the moment of transition,

Ptot → −∞. This is a feature that can arise in universes
with any spatial curvature. Additionally, by resembling a
smooth transition, the energy density of Λs will be written
as follows:

ρΛs
ðaÞ ¼ ρΛs0

tanh½σða − a†Þ�
tanh½σð1 − a†Þ�

; ðA4Þ

for ρΛs0
> 0, where a† < 1 and σ > 0

10 is a parameter
determining the rapidity of the transition. Under this
parametrization, the total energy density and total pressure
of the Universe, containing only dust and Λs, can be
written as

ρtotðaÞ ¼ ρm0a−3 þ ρΛs0

tanh½σða− a†Þ�
tanh½σð1− a†Þ�

;

PtotðaÞ ¼ −ρΛs0

�
tanh½σða− a†Þ�
tanh½σð1− a†Þ�

þ σ
a
3

sech2½σða− a†Þ�
tanh½σð1− a†Þ�

�
:

ðA5Þ

Upon examining the characteristics of ρtotðaÞ and PtotðaÞ at
a ¼ a†, we find

ρtotða†Þ ¼ ρm0a−3† ;

Ptotða†Þ ¼ −ρΛs0

a
3

σ

tanh½σð1 − a†Þ�
: ðA6Þ

Notice that ρtotða†Þ does not depend on σ, and Ptotða†Þ is
negative but finite for finite values of σ (See also Fig. 7).
The “smoothed-out energy density of Λs” [Eq. (A6)

[reduces, by taking σ → ∞, to an abrupt (sudden)
AdS → dS transition, which we study in this paper:

lim
σ→∞

ρΛs
ðaÞ ¼ ρΛs0

sgn½a − a†�: ðA7Þ

In this case, we observe that the total pressure diverges to
negative infinity,

lim
σ→∞

Ptotða†Þ ¼ −∞; ðA8Þ

while the total energy density remains positive and finite.
Thus, this behavior, which occurs at the limit of σ → ∞, is
characterized by a type-II (sudden) cosmological singu-
larity [122,123]. Note that at the moment when the
singularity occurs, the equation of state parameter wΛs

is undefined; this is a feature of sudden singularities. But
even for finite values of σ, i.e., by smoothing out ρΛs

(ensuring continuity at ρΛs
, which implies it should obtain

the zero value at the moment of the transition), where a
sudden cosmological singularity won't occur, even then,
given that we have assumed the continuity equation ρ̇þ
3Hðρþ pÞ ¼ 0 together with an equation of state, we
conclude that the right and left limits of the equation of
state parameter at the moment of transition will be
wð�Þ → �∞. Therefore, the equation of state parameter
cannot be defined even for finite σ (see [121]).

APPENDIX B: GRAVITATIONAL POTENTIALS
FOR DM AND DE

The Poisson equation for a barotropic fluid, described by
P ¼ wρ, is expressed as

∇2Φ ¼ 4πGρð1þ 3wÞ: ðB1Þ

In a theoretical framework where a homogeneous energy
density is spherically distributed within a radius R and the

FIG. 7. Total density and total pressure of the ΛsCDM universe
[see Eq. (A5)] with respect to the scale factor. For σ → ∞, we
observe that ρtotða†Þ → const > 0, while Ptotða†Þ → −∞. The
curves become steeper as the ðσÞ value increases.

10One must set σ ≫ 1 to approximate the signum function.
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gravitational potential is denoted as Φ≡ΦðrÞ, the general
solution is applied:

ΦðrÞ ¼ 2πGρð1þ 3wÞ r
2

3
−
C
r
þD: ðB2Þ

The gravitational potential of DM, ΦDM, is determined by
assuming ρðr > RÞ ¼ 0. As a result, the general solution is
reformulated as

ΦIðr > RÞ ¼ 2πGρð1þ 3wÞ r
2

3
−
C
r
þD;

ΦIIðr < RÞ ¼ C
r
þD: ðB3Þ

The boundary conditions are defined as follows: (a)
ΦIðr ¼ 0Þ < ∞, (b) ΦIIðr → ∞Þ ¼ 0, (c) ΦIðr ¼ RÞ ¼
ΦIIðr ¼ RÞ, and (d) dΦI=drjr¼R ¼ dΦII=drjr¼R. Applying
the general solution from Eq. (B3) for the DM density ρDM
(assuming wDM ¼ 0) within a sphere of radius R, we obtain

ΦDMðrÞ ¼
�
−2πGρDMðR2 − r2=3Þ; r ≤ R;

−4πGρDMR3=3r; r ≥ R:
ðB4Þ

Meanwhile, the gravitational potential of DE, ΦDE, is
determined by imposing a uniform energy density across
the Universe as boundary conditions: (a) Φðr ¼ 0Þ < ∞
and (b) Φðr ¼ 0Þ ¼ 0. Thus, applying these conditions to
Eq. (B2), we deduce that

ΦDEðrÞ ¼ 2πGρDEð1þ 3wDEÞ
r2

3
: ðB5Þ

APPENDIX C: SCALE FACTOR
OF THE ΛsCDM MODEL

To elucidate the scale factor in terms of comoving time,
we employ the Friedmann equation, articulated as

H2

H2
0

¼ Ωm0a−3 þ ΩΛs0
sgnð1=a† − 1=aÞ: ðC1Þ

The scale factor maintains continuity and can be char-
acterized by integrating Eq. (C1), as demonstrated below:

ȧ ¼ H0½Ωm0a−1 þ ΩΛs0
a2sgnð1=a† − 1=aÞ�12: ðC2Þ

In particular, for a < a† the integration is given byZ
a

0

da

ðΩm0a−1 −ΩΛs0
a2Þ12 ¼ H0t: ðC3Þ

By changing the variable a ¼ y
2
3

	
1−ΩΛs0
ΩΛs0


1
3 and given that

da ¼ 2
3

	
1−ΩΛs0
ΩΛs0


1
3y−

1
3dy, Eq. (C3) implies

aðtÞ ¼
�
1 −ΩΛs0

ΩΛs0

�1
3

sin
2
3

�
3

2

ffiffiffiffiffiffiffiffiffi
ΩΛs0

p
H0t

�
: ðC4Þ

Subsequently, if a > a†, then the integration proceeds as

Z
a†

0

da

ðΩm0a−1 −ΩΛs0
a2Þ12

þ
Z

a

a†

da

ðΩm0a−1 þΩΛs0
a2Þ12 ¼ H0t: ðC5Þ

In that case, Eq. (C5) implies

aðtÞ ¼
�
1 −ΩΛs0

ΩΛs0

�1
3

sinh
2
3

�
3

2

ffiffiffiffiffiffiffiffiffi
ΩΛs0

p
H0ðt − t†Þ

þ sinh−1
�
sin

�
3

2

ffiffiffiffiffiffiffiffiffi
ΩΛs0

p
H0t†

���
: ðC6Þ

Subsequently, we get

ä
a
¼

8><
>:

− 4
9
A2

1

h
1þ 1

1−cos ð2A1tÞ
i
; t < t†;

− 4
9
A2

1

h
−2þ 1

sinh½A1ðt−t†ÞþA2�
i
; t > t†;

ðC7Þ

where we have denoted

A1 ≡ 3

2
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − Ωm0Þ

p
;

A2 ≡ sinh−1½sinðA1t†Þ�:

Next, the general solutions to the free particle geodesic (48)
are outlined separately for the two distinct periods of
comoving time, t ≥ t† and t ≤ t†, as follows:

rðtÞ¼

8>>>>>>>>><
>>>>>>>>>:

C1½−1þ cosðA1tÞ2�14P
1
6
1
6

½cosðA1tÞ�

þC2½−1þ cosðA1tÞ2�14Q
1
6
1
6

½cosðA1tÞ�; t≤ t†;

BD12F1

h
−1

6
;1
3
;5
6
; tanh2½A1ðt− t†ÞþA2�

i
þBD2 tanh

2
3½A1ðt− t†ÞþA2�; t≥ t†;

ðC8Þ

where we have denoted

B≡ ½−1þ tanh2ðA1ðt − t†Þ þA2Þ�−1=2;

and Pm
l , Q

m
l represent the associated Legendre functions of

the first and second kind, respectively. Meanwhile, 2F1 is
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the hypergeometric function [166]. The constants are
determined through the appropriate boundary conditions.

APPENDIX D: DETERMINING COSMOLOGICAL
PARAMETERS

In order to determine the cosmological parameters for
our analysis, we follow a method used in [167–169]. The
locations of peaks (i.e., peak spacing) in the CMB power
spectrum,11 lA, are well-measured quantities and are
defined as

lA ≡ πð1þ z�Þ
DAðz�Þ

r�s
¼ π

θ�s
; ðD1Þ

where θ�s ≡ r�s=dAðz�Þ represents the angular size of the
sound horizon at the last-scattering surface [170–172].
Here, r�s represents the comoving sound horizon at the last-
scattering surface:

r�s ¼
Z∞
z�

csðzÞ
dz

HðzÞ ; ðD2Þ

where csðzÞ is the sound speed of the photon-baryon fluid,

csðzÞ ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ 3ωb
4ωγð1þzÞÞ

q ; ðD3Þ

and z� is the redshift at the last-scattering surface, which
can be approximated analytically via [173]

z� ¼ 1048½1þ 0.00124ðωbÞ−0.738�½1þ g1ðωmÞg2 �;
g1 ¼ 0.0783ðωbÞ−0.238½1þ 39.5ðωbÞ0.763�−1;
g2 ¼ 0.560½1þ 21.1ðωbÞ1.81�−1: ðD4Þ

Meanwhile, the proper angular diameter distance to the
last-scattering surface is defined as

DAðz�Þ≡ dAðz�Þ
1þ z�

¼ c
1þ z�

Zz�
0

dz
HðzÞ : ðD5Þ

In what follows, we start the calculations by assuming that
the acoustic scale and the physical density parameter for
matter in the ΛCDM Universe will be equal to the ΛsCDM

model12 (i.e., lΛA ≃ lΛs
A and ωΛ

m ≃ ωΛs
m ). Since ΛsCDM does

not change Neff or the physics of the early Universe, we can
further assume that ωΛ

r ≃ ωΛs
r and ωΛ

b ≃ ωΛs
b .

Under these conditions, z� and csðzÞ will be the same for
the ΛCDM and ΛsCDM models, which can be seen via
Eqs. (D3) and (D4). By combining Eqs. (D1), (D2), and
(D5), we can write

θ�s ¼
R
∞
z�

csðzÞdzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmð1þzÞ3þωrð1þzÞ4þðh2

0
−ωm−ωrÞfDEðzÞ

pR z�
0

cdzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmð1þzÞ3þωrð1þzÞ4þðh2

0
−ωm−ωrÞfDEðzÞ

p : ðD6Þ

Since the value of the parameter θ�s is fixed by Planck CMB
observations almost model independently, we can constrain
h0 for any given fDEðzÞ≡ ρDEðzÞ=ρDE;0 [viz., fΛðzÞ≡ 1

and fΛs
ðzÞ≡ sgnðz† − zÞ], provided the pre-recombination

Universe remains as in the standard cosmological model.
To simplify the above procedure, one can use the fitting

formulas given below to calculate the Ωm0 for the ΛsCDM
model, expressed in terms of the transition redshift, z†:

Ωm0ðz†Þ ¼ c0 þ c1z−1† þ c2z−2† þ c3z−3† : ðD7Þ

By assuming the Table II parameters, we obtain the
constants of the equation as ðc0; c1; c2; c3Þ ¼ ð0.3093;
0.0155;−0.0994;−0.0722Þ, which correctly finds Ωm0

up to the order of 10−4 for 1.5 ≤ z† ≤ 11.5.

TABLE II. Plik best-fit values taken from the Planck 2018 data
set [4]. We define the physical radiation density parameter as the
sum of the physical photon and neutrino density parameters,
ωr ≡ ωγ þ ωn ¼ 2.469 × 10−5 × ½1þ 7

8
ð 4
11
Þ4=3Neff �, with Neff ¼

3.046 for the standard model of particle physics.

Parameter Value

ωb 0.022383
ωm 0.143140
ωr 4.177 × 10−5

100θ�s 1.041085

12CMB distance priors, lA and R, (viz., ωm) are actually
derived parameters by fitting a cosmological model to the CMB
power spectra [174–176]. Thus, the underlying cosmology would
change the distance priors [177]. Since ΛsCDM does not change
the physics of the early Universe, we can assume that it will not
cause a significant variation in lA or ωm.

11Also known as the “acoustic scales.”
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Starobinsky, and C. Umiltà, J. Cosmol. Astropart. Phys. 10
(2020) 044.

[44] G. Franco Abellán, M. Braglia, M. Ballardini,
F. Finelli, and V. Poulin, J. Cosmol. Astropart. Phys. 12
(2023) 017.

[45] M. Petronikolou and E. N. Saridakis, Universe 9, 397
(2023).

[46] D. K. Hazra, A. Antony, and A. Shafieloo, J. Cosmol.
Astropart. Phys. 08 (2022) 063.

[47] O. Akarsu, J. D. Barrow, L. A. Escamilla, and J. A.
Vazquez, Phys. Rev. D 101, 063528 (2020).

[48] O. Akarsu, S. Kumar, E. Özülker, and J. A. Vazquez, Phys.
Rev. D 104, 123512 (2021).

[49] O. Akarsu, S. Kumar, E. Özülker, J. A. Vazquez, and A.
Yadav, Phys. Rev. D 108, 023513 (2023).

[50] O. Akarsu, E. Di Valentino, S. Kumar, R. C. Nunes, J. A.
Vazquez, and A. Yadav, arXiv:2307.10899.

[51] E. Di Valentino, A. Mukherjee, and A. A. Sen, Entropy 23,
404 (2021).

[52] G. Alestas, L. Kazantzidis, and L. Perivolaropoulos, Phys.
Rev. D 101, 123516 (2020).

[53] G. Alestas, L. Kazantzidis, and L. Perivolaropoulos, Phys.
Rev. D 103, 083517 (2021).

[54] M. R. Gangopadhyay, S. K. J. Pacif, M. Sami, and M. K.
Sharma, Universe 9, 83 (2023).

[55] S. Basilakos, A. Lymperis, M. Petronikolou, and E. N.
Saridakis, Eur. Phys. J. C 84, 297 (2024).

[56] S. A. Adil, O. Akarsu, E. Di Valentino, R. C. Nunes, E.
Özülker, A. A. Sen, and E. Specogna, Phys. Rev. D 109,
023527 (2024).

[57] M. R. Gangopadhyay, M. Sami, and M. K. Sharma, Phys.
Rev. D 108, 103526 (2023).

[58] L. Visinelli, S. Vagnozzi, and U. Danielsson, Symmetry
11, 1035 (2019).

[59] K. Dutta, Ruchika, A. Roy, A. A. Sen, and M.M. Sheikh-
Jabbari, Gen. Relativ. Gravit. 52, 15 (2020).

[60] A. A. Sen, S. A. Adil, and S. Sen, Mon. Not. R. Astron.
Soc. 518, 1098 (2022).

[61] S. Kumar and R. C. Nunes, Phys. Rev. D 96, 103511
(2017).

[62] E. Di Valentino, A. Melchiorri, and O. Mena, Phys. Rev. D
96, 043503 (2017).

TRANSITION DYNAMICS IN THE ΛsCDM … PHYS. REV. D 109, 103522 (2024)

103522-21

https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1051/0004-6361/202039070
https://doi.org/10.1051/0004-6361/202039070
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1146/annurev.aa.30.090192.002435
https://doi.org/10.1146/annurev.aa.30.090192.002435
https://doi.org/10.1142/S0218271800000542
https://doi.org/10.1142/S0218271800000542
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1016/S0370-1573(03)00120-0
https://doi.org/10.1016/j.dark.2016.02.001
https://doi.org/10.1016/j.astropartphys.2021.102605
https://doi.org/10.1016/j.astropartphys.2021.102605
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1016/j.aop.2022.169159
https://doi.org/10.1016/j.aop.2022.169159
https://doi.org/10.1016/j.newar.2022.101659
https://doi.org/10.1016/j.newar.2022.101659
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.3390/universe9090393
https://doi.org/10.3390/universe9020094
https://arXiv.org/abs/2402.04767
https://doi.org/10.3847/2041-8213/ac5c5b
https://doi.org/10.1051/0004-6361/202347986
https://doi.org/10.1088/1475-7516/2022/02/008
https://doi.org/10.1088/1475-7516/2022/02/008
https://doi.org/10.1093/mnrasl/slad165
https://doi.org/10.1093/mnrasl/slad165
https://doi.org/10.1103/PhysRevD.94.103523
https://doi.org/10.1103/PhysRevD.94.103523
https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1103/PhysRevD.98.083525
https://doi.org/10.1016/j.dark.2023.101347
https://doi.org/10.1146/annurev-nucl-111422-024107
https://doi.org/10.1146/annurev-nucl-111422-024107
https://doi.org/10.1016/j.physletb.2023.137988
https://doi.org/10.1016/j.physletb.2023.137988
https://doi.org/10.1103/PhysRevD.103.L041303
https://doi.org/10.1103/PhysRevD.103.L041303
https://doi.org/10.1088/1475-7516/2023/11/033
https://doi.org/10.1088/1475-7516/2023/11/033
https://arXiv.org/abs/2307.03481
https://doi.org/10.1103/PhysRevD.101.083507
https://doi.org/10.1103/PhysRevD.102.083523
https://doi.org/10.1016/j.physletb.2023.137770
https://doi.org/10.1016/j.physletb.2023.137770
https://doi.org/10.1103/PhysRevD.100.103524
https://doi.org/10.1103/PhysRevD.100.103524
https://doi.org/10.1103/PhysRevD.102.023529
https://doi.org/10.1103/PhysRevD.102.023529
https://doi.org/10.1103/PhysRevD.103.023503
https://doi.org/10.1103/PhysRevD.103.023503
https://doi.org/10.1103/PhysRevD.103.043528
https://doi.org/10.1103/PhysRevD.103.043528
https://doi.org/10.1088/1475-7516/2020/10/044
https://doi.org/10.1088/1475-7516/2020/10/044
https://doi.org/10.1088/1475-7516/2023/12/017
https://doi.org/10.1088/1475-7516/2023/12/017
https://doi.org/10.3390/universe9090397
https://doi.org/10.3390/universe9090397
https://doi.org/10.1088/1475-7516/2022/08/063
https://doi.org/10.1088/1475-7516/2022/08/063
https://doi.org/10.1103/PhysRevD.101.063528
https://doi.org/10.1103/PhysRevD.104.123512
https://doi.org/10.1103/PhysRevD.104.123512
https://doi.org/10.1103/PhysRevD.108.023513
https://arXiv.org/abs/2307.10899
https://doi.org/10.3390/e23040404
https://doi.org/10.3390/e23040404
https://doi.org/10.1103/PhysRevD.101.123516
https://doi.org/10.1103/PhysRevD.101.123516
https://doi.org/10.1103/PhysRevD.103.083517
https://doi.org/10.1103/PhysRevD.103.083517
https://doi.org/10.3390/universe9020083
https://doi.org/10.1140/epjc/s10052-024-12573-4
https://doi.org/10.1103/PhysRevD.109.023527
https://doi.org/10.1103/PhysRevD.109.023527
https://doi.org/10.1103/PhysRevD.108.103526
https://doi.org/10.1103/PhysRevD.108.103526
https://doi.org/10.3390/sym11081035
https://doi.org/10.3390/sym11081035
https://doi.org/10.1007/s10714-020-2665-4
https://doi.org/10.1093/mnras/stac2796
https://doi.org/10.1093/mnras/stac2796
https://doi.org/10.1103/PhysRevD.96.103511
https://doi.org/10.1103/PhysRevD.96.103511
https://doi.org/10.1103/PhysRevD.96.043503
https://doi.org/10.1103/PhysRevD.96.043503


[63] W. Yang, A. Mukherjee, E. Di Valentino, and S. Pan, Phys.
Rev. D 98, 123527 (2018).

[64] S. Pan, W. Yang, E. Di Valentino, E. N. Saridakis, and S.
Chakraborty, Phys. Rev. D 100, 103520 (2019).

[65] S. Kumar, R. C. Nunes, and S. K. Yadav, Eur. Phys. J. C
79, 576 (2019).

[66] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi,
Phys. Rev. D 101, 063502 (2020).

[67] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi,
Phys. Dark Universe 30, 100666 (2020).

[68] M. Lucca and D. C. Hooper, Phys. Rev. D 102, 123502
(2020).

[69] A. Gómez-Valent, V. Pettorino, and L. Amendola, Phys.
Rev. D 101, 123513 (2020).

[70] S. Kumar, Phys. Dark Universe 33, 100862 (2021).
[71] R. C. Nunes, S. Vagnozzi, S. Kumar, E. Di Valentino, and

O. Mena, Phys. Rev. D 105, 123506 (2022).
[72] A. Bernui, E. Di Valentino, W. Giarè, S. Kumar, and R. C.
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