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We examine big bang nucleosynthesis (BBN) in models with a time-varying gravitational constant G,
when this time variation is rapid on the scale of the expansion rateH, i.e, Ġ=G ≫ H. Such models can arise
naturally in the context of scalar-tensor theories of gravity and result in additional terms in the Friedman
equation. We examine two representative models: a step-function evolution for G and a rapidly oscillating
G. In the former case, the additional terms in the Friedman equation tend to cancel the effects of an initial
value of G that differs from the present-day value. In the case of deuterium, this effect is large enough to
reverse the sign of the change in (D/H) for a given change in the initial value ofG. For rapidly oscillatingG,
the effect on the Friedman equation is similar to that of adding a vacuum energy density, and BBN allows
upper limits to be placed on the product of the oscillation frequency and amplitude. The possibility that a
rapidly oscillating G could mimic a cosmological constant is briefly discussed.
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I. INTRODUCTION

The possibility that the gravitational constant G might
evolvewith time has long been a topic of interest, dating back
to Dirac’s large numbers hypothesis [1]. Many limits can be
placed on the time variation ofG, including constraints from
the cosmic microwave background [2], binary pulsars [3],
seismology of the sun [4] and other stars [5], and precision
measurements of the orbits of Mars [6] and the Moon [7].
(For reviews, see Refs. [8,9]). While the solar system
measurements [6,7] give the tightest limits on Ġ=G, they
can constrain this variation only over the course of the past
few decades. The physical system that provides limits on the
time variation of G over the longest timeline is big bang
nucleosynthesis (BBN), which is sensitive to changes in G
between the first few seconds of the Universe and the
present day.
BBN limits on the time variation of G have been widely

investigated [10–20]. Nearly all of these papers assume a
slowly varying value for G, in the sense that Ġ=G ≪ H,
where H is the Hubble parameter, or they simply take
G to be constant during BBN, with a value different
from its present-day value. An exception is the discus-
sion of Accetta and Steinhardt [21], who examined the
cosmological effects of a rapidly oscillating G. (See also
Ref. [22]). Our study represents a reexamination and
extension of this early work. We investigate two variations
on this idea proposed in the literature, a step-function
variation in G and a rapidly oscillating G, and we
demonstrate their effect on BBN.

As is well known, time variation of fundamental con-
stants is only well defined when the constants in question
are dimensionless, a fact which is often glossed over in
discussions of the time variation of G. A variation in G
corresponds to a change in the Plank mass MPl ¼ 1=

ffiffiffiffi
G

p
,

so that a time variation in G can be modeled as a change in
the ratio ofMPl to all of the other masses and energy scales
in the Standard Model. This point is discussed in more
detail in Ref. [19].
In the next section, we discuss our particular models for

rapidly varying G. In Sec. III, we calculate the changes in
primordial element production, highlighting the effects
unique to rapid time variation of G. In Sec. IV we discuss
our main results. We find that the modifications to the
Friedman equation that are unique to rapidly varying G
have a profound effect on the predicted primordial element
abundances. For a step-function variation in G, the addi-
tional terms in the Friedman equation tend to partially
cancel the effect on BBN of an initially different value ofG,
while for rapidly oscillating G we can place upper limits on
the product of the oscillation frequency and amplitude.

II. MODELS WITH RAPIDLY VARYING G

In the standard zero-curvature cosmological model, the
evolution of the scale factor a is given by the Friedman
equation:

�
ȧ
a

�
2

¼ 8πGρ
3

; ð1Þ

where ρ is the total energy density in the Universe, and the
overdot denotes derivative with respect to time. An
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adiabatic change in G, for which Ġ=G ≪ H ≡ ȧ=a can be
modeled by simply taking G to be the appropriate function
of time in Eq. (1). However, this approach is inadequate
when Ġ=G ≫ H. In Ref. [21], Accetta and Steinhardt
present a variant of the Friedman equation for the case of
rapidly varying G, namely

�
ȧ
a

�
2

¼ Ġ
G
ȧ
a
þ 8πG

3
ðρM þ ρϕÞ; ð2Þ

where ρM is the standard background energy density
(matter plus radiation), and ρϕ is the contribution from a
scalar field ϕ that couples to gravity and provides the
change inG. The prototypical models that produce this type
of evolution are scalar-tensor theories of gravity, with
action (see, e.g., Ref. [23])

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
FðϕÞR −

1

2
ωðϕÞϕ;μϕ;μ − VðϕÞ þ LM

�
:

ð3Þ
Here R is the Ricci scalar, VðϕÞ is the scalar field potential,
and LM is the Lagrangian for the matter. Taking ωðϕÞ ¼ 1,
the value of G is given in terms of F by

1

8πG
¼ FðϕÞ; ð4Þ

and the Friedman equation reduces to Eq. (2), with the
scalar field density taking the usual form,

ρϕ ¼ ϕ̇2

2
þ VðϕÞ: ð5Þ

Following Ref. [21], we will consider only the case where
ρϕ ≪ ρM, with the result that Eq. (2) can be solved for ȧ=a:

ȧ
a
¼ 1

2

Ġ
G
þ
�
8πG
3

ρM þ 1

4

�
Ġ
G

�
2
�
1=2

: ð6Þ

Wewill assume thatG evolves to its present-day value,GN ,
with Ġ ¼ 0, shortly after BBN, so our models can be
assumed to satisfy all of the non-BBN constraints on the
time variation of G.
In what follows, we will consider two representative

models for the time evolution of G. In the first model, we
assume thatG evolves approximately as a step function, with
initial value ð1þ AÞGN for t < ti, where A is a dimension-
less constant, and G ¼ GN at t > tf, with linear evolution
between these twovalues. Then the full expression forGðtÞ is

G=GN ¼ ð1þ AÞ; t < ti; ð7Þ

G=GN ¼ 1þA

�
tf− t

tf− ti

�
; ti < t< tf; ð8Þ

G=GN ¼ 1; t > tf: ð9Þ

Step functionmodels forG have been explored in connection
with inflation [24] and,more recently, as a possible resolution
of the Hubble tension [25–30]. Other observational conse-
quences of a step-function change in G are explored in
Refs. [29–31].Models of this kind are easily generated in the
context of scalar-tensor theories with a step function FðϕÞ
(see, e.g., Refs. [24,31]), and they naturally asymptote to
G ¼ GN , with Ġ ¼ 0, at late times. In general, the value ofA
is taken to be a free parameter in these models, but models
that resolve the Hubble tension typically require a change in
G on the order of 10%.
A second set of models we examine are those with

rapidly oscillating G, which we take to have the form

G=GN ¼ 1þ A cosðωtþ ϕÞ; ð10Þ

where A, ϕ, and ω are constants. Such models arise
naturally in scalar-tensor theories when the scalar field
oscillates in the minimum of a potential. This was the
model originally discussed in Ref. [21], and these models
were also examined in the context of dark energy in
Ref. [32]. One can construct more general models in which
ω evolves with time, but for simplicity, and to pinpoint how
oscillating models affect BBN, we will consider only the
case where ω can be treated as constant during the epoch of
BBN. Unlike the case of a step function, we cannot take
Eq. (10) to apply all the way up to the present day. While
the average value ofG is always equal toGN , Eq. (6) shows
that any oscillation that is “rapid” at the epoch of BBN
(Ġ=G ∼ s−1) will dominate the expansion at late times,
producing an expansion law completely at odds with
observation. Hence, we assume that Eq. (10) applies only
at early times, with G evolving toward a constant value of
GN at some time after BBN.

III. EFFECTS ON BIG BANG
NUCLEOSYNTHESIS

In standard BBN, element production takes place in two
stages (see, e.g., Refs. [20,33] for recent discussions). At
early times, (T ≳ 1 MeV) the weak interactions maintain a
thermal equilibrium ratio between neutrons and protons:

nþ νe ↔ pþ e−;

nþ eþ ↔ pþ ν̄e;

n ↔ pþ e− þ ν̄e; ð11Þ

while a thermal abundance of deuterium is maintained by

nþ p ↔ Dþ γ: ð12Þ

The weak reactions drop out of thermal equilibrium at
T ∼ 1 MeV, while free neutron decay continues until
T ∼ 0.1 MeV, when rapid fusion into heavier elements
occurs. At this point, nearly all of the remaining neutrons
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become bound into 4He, with a small fraction incorporated
into deuterium, tritium, and 3He. There is also production of
7Li and 7Be, with the latter decaying into the former via
electron capture at the beginning of the recombination
era [34]. The element abundances produced in BBN
depend on the baryon/photon ratio η, which can be
independently determined from the cosmic microwave
background. We adopt a value of η ¼ 6.1 × 10−10, con-
sistent with results from Planck [35]. This value of η yields
predicted abundances of D and 4He consistent with obser-
vations. On the other hand, the 7Li abundance predicted by
BBN is well known to lie a factor ∼3 above the observa-
tionally inferred value, giving rise to the so-called “lithium
problem” [36]. As it is not clear whether this problem lies in
the interpretation of the lithium abundance observations or
in the standard model of BBN itself, we will concentrate on
4He and deuterium production. Following standard prac-
tice, we give the primordial 4He abundance as a mass
fraction, Yp, and the deuterium abundance as a number
density relative to hydrogen, (D/H).
When the change in G is taken to be a constant during

BBN, the effect on the 4He and deuterium abundances is
well fit by [33]

Yp ¼ Yp0ðG=GNÞ0.357; ð13Þ

and

ðD=HÞ ¼ ðD=HÞ0ðG=GNÞ0.952; ð14Þ

where the 0 subscript denotes the standard values of these
abundances with an unmodified gravitational constant.
Although both the 4He and deuterium abundances are
increasing functions of G, this dependence arises for
different reasons in these two cases. The 4He abundance
depends mostly on the abundance of free neutrons when
rapid fusion commences. An increase in G causes the weak
rates to freeze out at a higher temperature, when the
equilibrium abundance of free neutrons is larger. Since
nearly all of these neutrons end up in 4He, the result is a
larger 4He abundance. However, changing G also has a
second effect on the 4He abundance. A larger G corre-
sponds to a smaller Hubble time at a given temperature.
Thus, the temperature at which rapid fusion begins corre-
sponds to a smaller time over which free neutron decay can
occur, giving more neutrons to bind into 4He. This dual
dependence on G can be seen in Ref. [16], which presents
response functions for the various element abundances as a
function of a change in G that is effectively a delta function
of time. For Yp, the response function is always positive,
with dual peaks at T ∼ 1 MeV and T ∼ 0.1 MeV, corre-
sponding to the two effects noted above. Deuterium, on the
other hand, is sensitive almost entirely to the value of
G when fusion begins. Given an arbitrarily long time,

essentially all of the deuterium would fuse into heavier
nuclei; the existence of primordial deuterium is a result of
the relatively short time over which fusion can occur.
Increasing G decreases this time, resulting in less fusion of
deuterium into heavier elements and a corresponding
increase in (D/H). This is evident in the response function
for deuterium given in Ref. [16]. This response function is
positive and sharply peaked near T ∼ 0.1 MeV.
To calculate the primordial element abundances, we have

modified PRyMordial, a Python code for BBN calculations [37],
incorporating Eq. (6) for the Friedman equation. To high-
light the specific effects of rapid changes inG, we have also
calculated the primordial element abundances using the
standard Friedman equation (1) with time-varying G. We
have chosen to present our results in terms of the change in
the primordial 4Hemass fraction,ΔYp, and the change in the
number density of deuterium relative to hydrogen,ΔðD=HÞ,
due to the time variation in G, rather than giving the altered
values of Yp and (D/H) themselves. This approach has
the advantage thatΔYp andΔðD=HÞ are less sensitive to the
input parameters such as the baryon-to-photon ratio, the
neutron lifetime, and changes to the nuclear cross sections,
because altering these parameters will tend to change both
the standard-model and nonstandard values of these abun-
dances in roughly the same way. Although we provide
constraints on Ġ=G for the rapidly oscillating models, such
constraints are subject to future changes in the observed
element abundances, sowe consider our results forΔYp and
ΔðD=HÞ to be more interesting and fundamental.
Consider first the step-function evolution for G

[Eqs. (7)–(9)]. As it is impractical to scan over the entire
parameter space, and we are most interested in the effect of
including the Ġ=G terms in the modified Friedman equa-
tion, we consider only two representative values for A
(−0.1 and þ0.1) and scan over ti and tf. Our results for the
4He abundances in this case with A ¼ −0.1 and A ¼ þ0.1
are displayed in Figs. 1 and 2. First consider the effect of
simply altering G in the standard Friedman equation
without including the Ġ=G terms. When ti is large, this
is simply equivalent to BBN with a different (constant)
value of G: here G ¼ ð0.9ÞðGNÞ (Fig. 1, left) or G ¼
ð1.1ÞðGNÞ (Fig. 2, left). As we have already noted, 4He is
most sensitive to the value of G at early times; for large ti,
we simply obtain a constant increase or decrease in the 4He
abundance, given by the corresponding constant change in
G as in Eq. (13). However, when we use the full expression
for the scale factor given by Eq. (6) (Figs. 1 and 2, right),
we see that the Ġ=G terms strongly modify the change in
the primordial 4He production, producing more complex
behavior. In particular, for A < 0, we have Ġ=G > 0, so the
Ġ=G terms increase the value of ȧ=a. This partially cancels
the effect of the smaller initial value of G, producing a
smaller decrease in Yp. The opposite effect occurs when
A ¼ þ0.1. In this case, Ġ=G is negative, resulting in a
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decrease in ȧ=a that partially cancels the effect of the initially
larger value ofG. Thus, in both cases, the effect of including
the additional Ġ=G terms in the expression for ȧ=a in Eq. (6)
is to reduce the overall effect of the change in G.
Turning to deuterium (Figs. 3 and 4), we see a similar

effect but with an even larger magnitude. As expected, a
simple step-function change in G in the unmodified
Friedman equation results in change in (D/H) with the
same sign as the change in G. However, making use of
Eq. (6) gives an additional contribution to ȧ=a with the
opposite sign, as it does for 4He. In the case of deuterium,
this effect is so large that it reverses the sign of the change
in (D/H) over almost all of the parameter space: an initial
value of G larger than GN gives a reduction in (D/H), while
an initial G smaller than GN corresponds to an increase in
(D/H).
One might naively assume that the effect of adding these

Ġ=G terms to the Friedman equation would be maximized

for the smallest possible values of tf − ti, for which the
change in G most closely approximates a step function and
Ġ=G is maximized. While decreasing tf − ti does increase
Ġ=G, it also reduces the range in time over which Ġ=G is
nonzero. There is a trade-off between these two effects,
which produces a much more complex dependence of the
element abundances on ti and tf in Figs. 1–4 than does a
simple change in G in Eq. (1).
While we have concentrated on the deuterium and 4He

abundances, we have also checked to see whether there are
any parameter values that significantly reduce the predicted
7Li abundance while at the same time giving acceptable
abundances for deuterium and 4He, thus serving as a
possible solution to the lithium problem. We find no such
parameter values for the step function change in G. In
general, a significant reduction in 7Li is always accom-
panied by an unacceptably large increase in the predicted

FIG. 1. Change in the 4He mass fraction,ΔYp, for a step-function variation inG [Eqs. (7)–(9)] as a function of ti and tf , with A ¼ −0.1
using (left) only the standard Friedman equation (1) and (right) the full Friedman equation (6) including the appropriate Ġ=G terms.

FIG. 2. As Fig. 1, with A ¼ þ0.1.
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deuterium abundance. A similar effect has been seen in
other proposed solutions to the lithium problem using
nonstandard BBN (see, e.g., Ref. [36]).
A full set of constraints on the allowed parameter space

would require a scan over the value of A as well as ti and tf
and would, in any case, not provide much insight into this
model. However, we can use our limited set of results to
make useful qualitative statements about BBN constraints
on this model. In going from a constant change in G to a
step-function change without including the Ġ=G terms in
the Friedman equation, it is clear from Figs. 1 and 2 that the
step function always produces a smaller change in 4He and
deuterium than does the same constant change in G. This is
to be expected, since the only effect of the step function in
this case is to reduce the time over which G differs from its
present-day value. Thus, any observational limits for a

particular value of A will always be weaker in the step-
function case than in the case where the change in G is
constant throughout nucleosynthesis. In going from the
naive step-function model to one which correctly incorpo-
rates the additional Ġ=G terms in the Friedman equation,
these limits are weakened even further when considering
4He, since the effect of adding these additional terms tends
to counteract the effect of changing the value of G, as we
have noted. However, in the case of deuterium, the situation
is more complex. In this case, the sign of the effect on the
deuterium abundance can change, with the most extreme
values forΔðD=HÞ corresponding to ti ¼ 200–500 sec and
tf ¼ 400–700 sec. Over this range, observational limits on
deuterium have the potential to place tighter constraints on
a step-function variation in G than on models with a
constant G. However, this range for ti and tf represents
only a small slice of parameter space for these models.

FIG. 4. As Fig. 3, for A ¼ þ0.1.

FIG. 3. Change inD/H expressed asΔðD=HÞ×105 for a step-functionvariation inG [Eqs. (7)–(9)] as a function of ti and tf, withA ¼ −0.1
using (left) only the standard Friedman equation (1) and (right) the full Friedman equation (6) including the appropriate Ġ=G terms.
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Now consider the effect of an oscillatory change in G
[Eq. (10)]. We can distinguish three regimes. For
ω−1 > 103 s, the value of G is roughly constant during
BBN with Ġ=G < H throughout BBN, so Eqs. (13)
and (14) give the primordial 4He and deuterium abundances
in this case, with well-known limits already derived in the
literature. For ω−1 ∼ 1–103 s, we find that the element
abundances are a complicated function of A, ω, and ϕ in
Eq. (10), with results that do not provide much insight. The
case ω−1 < 1 s is more amenable to the derivation of limits
on the model parameters. In this case, the first term in
Eq. (6) averages to zero, and the effective density is simply
increased by an amount proportional to ðĠ=GÞ2. This
density increase is constant (or at least can be taken to
be constant during BBN; it must, of course decay away at
some time after BBN). Expressing this effective change in
density in terms of a constant ρ0, we have

Gρ0 ¼
3

32π

�
Ġ
G

�
2

; ð15Þ

¼ 3

64π
A2ω2; ð16Þ

where the second equality is valid for A ≪ 1 and ωt ≫ 1,
for Hubble time t. It is clear that the effects of an oscillating
G with constant oscillation frequency ω cannot be modeled
using the conventional parametrization in terms of an
additional effective number of relativistic degrees of free-
dom. Instead, the ratio of ρ0 to the background radiation
density will be a sharply increasing function of time.
Hence, values of ðĠ=GÞ2 large enough to be ruled out
by the deuterium abundance will have a negligible impact
on Yp, so we need consider only the former in deriving
limits on this model. (Conversely, an additional stiff
component with ρ ∝ a−6 has a much larger effect on the
4He abundance than on the deuterium abundance, so that
only limits on the former need be considered in that
case [38]).
In the regime of interest for ρ0, our numerical simulations

are well fit by a change in (D/H) given by

ΔðD=HÞ ¼ 1.9ðGρ0=s−2Þ0.7; ð17Þ

which can be expressed in terms of the parameters in
Eq. (10) as

ΔðD=HÞ ¼ 0.10ðA2ω2=s−2Þ0.7: ð18Þ

Recent numerical simulations give, as the prediction of
standard BBN (SBBN) [20,39],

ðD=HÞSBBN ¼ ð2.51� 0.11Þ × 10−5; ð19Þ

while observations yield [20,39]

ðD=HÞobs ¼ ð2.55� 0.03Þ × 10−5: ð20Þ

Taken together, these suggest a very conservative upper
bound on ΔðD=HÞ:

ΔðD=HÞ < 0.2 × 10−5: ð21Þ

Then Eq. (18) gives an upper bound on the parameters in a
model with rapidly oscillating G with constant oscillation
frequency, namely

Aω < 4.4 × 10−4 s−1; ð22Þ

subject to the range over which our discussion is valid:
A ≪ 1 and ω−1 < 1 s.

IV. DISCUSSION

While our investigation of the effects of a rapidly
changing G on BBN is far from exhaustive, it does provide
some interesting new results. For models motivated by
scalar-tensor theories, the effects of including the additional
Ġ=G terms in the Friedman equation are profound. In the
case of a step-function potential, these terms tend to cancel
the effects of an initial value of G that differs from the
present-day GN ; in the case of deuterium, we find that they
can even reverse the sign of the change in (D/H). For a
rapidly oscillating G with constant oscillation frequency,
the effect is similar to adding a constant vacuum energy
density. This dominantly effects deuterium production,
allowing us to place an upper limit on the product of the
oscillation frequency and amplitude.
Our main results show that models with rapidly varying

G provide very distinct cosmological signatures beyond
previously considered models with adiabatic variations in
G. It would be interesting to examine these effects during
other cosmological epochs. For example, it is tempting to
consider whether a rapidly oscillating G with constant
oscillation frequency could mimic the effect of a cosmo-
logical constant. From Eqs. (6) and (10), a present-day
value of ΩΛ ≈ 0.7 can be achieved for Aω ¼ 5.4×
10−18 s−1. Additionally, we require that A ≪ 1 and
ωt0 ≫ 1, where t0 is the present-day Hubble time, in order
for Eq. (15) to be valid and the first term in Eq. (6) to be
ignored. While one could, in principle, choose sufficiently
small A and sufficiently large ω to evade all other
observational constraints on time-varying G, it is far from
clear that this could originate in any realistic model.

ACKNOWLEDGMENTS

We are grateful to A.-K. Burns, T. M. P. Tait, and M.
Valli for providing access to an early verson of PRyMordial,
and for helpful discussions regarding the code.

ANISH GIRI and ROBERT J. SCHERRER PHYS. REV. D 109, 103521 (2024)

103521-6



[1] P. A. M. Dirac, Nature (London) 139, 323 (1937).
[2] J. Ooba, K. Ichiki, T. Chiba, and N. Sugiyama, Prog. Theor.

Exp. Phys. 2017, 043E03 (2017).
[3] W.W. Zhu et al., Mon. Not. R. Astron. Soc. 482, 3249

(2019).
[4] D. B. Guenther, L. M. Krauss, and P. Demarque, Astrophys.

J. 498, 871 (1998).
[5] E. P. Bellinger and J. Christensen-Dalsgaard, Astrophys.

J. Lett. 887, L1 (2019).
[6] A. S. Konopliv, S. W. Asmar, W.M. Folkner, Ö. Karatekin,

D. C. Nunes, S. E. Smrekar, C. F. Yoder, and M. T. Zuber,
Icarus 211, 401 (2011).

[7] F. Hofmann and J. Muller, Classical Quantum Gravity 35,
035015 (2018).

[8] J.-P. Uzan, Living Rev. Relativity 14, 2 (2011).
[9] C. M. Will, Living Rev. Relativity 17, 4 (2014).

[10] A. Serna and J. M. Alimi, Phys. Rev. D 53, 3087 (1996).
[11] D. I. Santiago, D. Kalligas, and R. V. Wagoner, Phys. Rev. D

56, 7627 (1997).
[12] T. Damour and B. Pichon, Phys. Rev. D 59, 123502 (1999).
[13] X. Chen, R. J. Scherrer, and G. Steigman, Phys. Rev. D 63,

123504 (2001).
[14] C. J. Copi, A. N. Davis, and L. M. Krauss, Phys. Rev. Lett.

92, 171301 (2004).
[15] V. Pettorino, C. Baccigalupi, and G. Mangano, J. Cosmol.

Astropart. Phys. 01 (2005) 014.
[16] C. Bambi, M. Giannotti, and F. L. Villante, Phys. Rev. D 71,

123524 (2005).
[17] T. Clifton, J. D. Barrow, and R. J. Scherrer, Phys. Rev. D 71,

123526 (2005).
[18] A. Coc, K. A. Olive, J.-P. Uzan, and E. Vangioni, Phys. Rev.

D 73, 083525 (2006).
[19] J. Alvey, N. Sabti, M. Escudero, and M. Fairbairn, Eur.

Phys. J. C 80, 148 (2020).

[20] T.-H. Yeh, J. Shelton, K. A. Olive, and B. D. Fields,
J. Cosmol. Astropart. Phys. 10 (2022) 046.

[21] F. S. Accetta and P. J. Steinhardt, Phys. Rev. Lett. 67, 298
(1991).

[22] C. M. Will and P. J. Steinhardt, Phys. Rev. D 52, 628 (1995).
[23] F. Perrotta, C. Baccigalupi, and S. Matarrese, Phys. Rev. D

61, 023507 (2000).
[24] A. Ashoorioon, C. van de Bruck, P. Millington, and S. Vu,

Phys. Rev. D 90, 103515 (2014).
[25] V. Marra and L. Perivolaropoulos, Phys. Rev. D 104,

021303 (2021).
[26] Z. Sakr and D. Sapone, J. Cosmol. Astropart. Phys. 03

(2022) 034.
[27] G. Benevento, J. A. Kable, G. E. Addison, and C. L.

Bennett, Astrophys. J. 935, 156 (2022).
[28] J. A. Kable, G. Benevento, G. E. Addison, and C. L.

Bennett, Astrophys. J. 959, 143 (2023).
[29] G. Alestas, I. Antoniou, and L. Perivolaropoulos, Universe

7, 366 (2021).
[30] G. Alestas, L. Perivolaropoulos, and K. Tanidis, Phys. Rev.

D 106, 023526 (2022).
[31] E. A. Paraskevas and L. Perivolaropoulos, Universe 9, 317

(2023).
[32] D.Li, S.Pi, andR. J.Scherrer, Phys.Rev.D97, 023530 (2018).
[33] B. D. Fields, K. A. Olive, T.-H. Yeh, and C. Young,

J. Cosmol. Astropart. Phys. 03 (2020) 010.
[34] R. Khatri and R. A. Sunyaev, Astron. Lett. 37, 367 (2011).
[35] P. A. R. Ade et al., Astron. Astrophys. 594, A13 (2016).
[36] B. D. Fields, Annu. Rev. Nucl. Part. Sci. 61, 47 (2011).
[37] A.-K. Burns, T. M. P. Tait, and M. Valli, Eur. Phys. J. C 84,

86 (2024).
[38] S. Dutta and R. J. Scherrer, Phys. Rev. D 82, 083501 (2010).
[39] T.-H. Yeh, K. A. Olive, and B. D. Fields, J. Cosmol.

Astropart. Phys. 03 (2021) 046.

BIG BANG NUCLEOSYNTHESIS WITH RAPIDLY VARYING G PHYS. REV. D 109, 103521 (2024)

103521-7

https://doi.org/10.1038/139323a0
https://doi.org/10.1093/ptep/ptx046
https://doi.org/10.1093/ptep/ptx046
https://doi.org/10.1093/mnras/sty2905
https://doi.org/10.1093/mnras/sty2905
https://doi.org/10.1086/305567
https://doi.org/10.1086/305567
https://doi.org/10.3847/2041-8213/ab43e7
https://doi.org/10.3847/2041-8213/ab43e7
https://doi.org/10.1016/j.icarus.2010.10.004
https://doi.org/10.1088/1361-6382/aa8f7a
https://doi.org/10.1088/1361-6382/aa8f7a
https://doi.org/10.12942/lrr-2011-2
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1103/PhysRevD.53.3087
https://doi.org/10.1103/PhysRevD.56.7627
https://doi.org/10.1103/PhysRevD.56.7627
https://doi.org/10.1103/PhysRevD.59.123502
https://doi.org/10.1103/PhysRevD.63.123504
https://doi.org/10.1103/PhysRevD.63.123504
https://doi.org/10.1103/PhysRevLett.92.171301
https://doi.org/10.1103/PhysRevLett.92.171301
https://doi.org/10.1088/1475-7516/2005/01/014
https://doi.org/10.1088/1475-7516/2005/01/014
https://doi.org/10.1103/PhysRevD.71.123524
https://doi.org/10.1103/PhysRevD.71.123524
https://doi.org/10.1103/PhysRevD.71.123526
https://doi.org/10.1103/PhysRevD.71.123526
https://doi.org/10.1103/PhysRevD.73.083525
https://doi.org/10.1103/PhysRevD.73.083525
https://doi.org/10.1140/epjc/s10052-020-7727-y
https://doi.org/10.1140/epjc/s10052-020-7727-y
https://doi.org/10.1088/1475-7516/2022/10/046
https://doi.org/10.1103/PhysRevLett.67.298
https://doi.org/10.1103/PhysRevLett.67.298
https://doi.org/10.1103/PhysRevD.52.628
https://doi.org/10.1103/PhysRevD.61.023507
https://doi.org/10.1103/PhysRevD.61.023507
https://doi.org/10.1103/PhysRevD.90.103515
https://doi.org/10.1103/PhysRevD.104.L021303
https://doi.org/10.1103/PhysRevD.104.L021303
https://doi.org/10.1088/1475-7516/2022/03/034
https://doi.org/10.1088/1475-7516/2022/03/034
https://doi.org/10.3847/1538-4357/ac80fd
https://doi.org/10.3847/1538-4357/acfed0
https://doi.org/10.3390/universe7100366
https://doi.org/10.3390/universe7100366
https://doi.org/10.1103/PhysRevD.106.023526
https://doi.org/10.1103/PhysRevD.106.023526
https://doi.org/10.3390/universe9070317
https://doi.org/10.3390/universe9070317
https://doi.org/10.1103/PhysRevD.97.023530
https://doi.org/10.1088/1475-7516/2020/03/010
https://doi.org/10.1134/S1063773711060041
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1146/annurev-nucl-102010-130445
https://doi.org/10.1140/epjc/s10052-024-12442-0
https://doi.org/10.1140/epjc/s10052-024-12442-0
https://doi.org/10.1103/PhysRevD.82.083501
https://doi.org/10.1088/1475-7516/2021/03/046
https://doi.org/10.1088/1475-7516/2021/03/046

