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Some attempts of easing the critical Hubble tension present in modern cosmology have resorted to using
variations of fundamental constants, such as the fine-structure constant, at the time of recombination. In this
article we demonstrate that there are critical hurdles to construct such viable models using scalar fields,
due to the striking precision of local constraints on the fine-structure constant stability. These hurdles
demonstrate that in single-field models one has to extremely fine-tune the shape of the potential and/or the
initial conditions. Indeed, for single-field models in a potential that is not fine-tuned we can put a generic
bound at recombination of Δα=α < 5 × 10−4 (95% CL).
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I. INTRODUCTION

Thanks to the incredible experimental and theoretical
effort undertaken within the last decades, the precision
of the measurement and understanding of the underlying
cosmological model has steadily increased. However, this
increased precision has uncovered new tensions between
different measurements of cosmological parameters—such
as the Hubble constant (which specifies the current
expansion rate)—within the cosmological standard model
(ΛCDM, involving a cosmological constant and cold
collisionless dark matter). This Hubble tension between
local distance ladder measurements using Cepheids and
determinations from the Planck satellite measuring the
cosmic microwave background (CMB) anisotropies have
now reached a significance of beyond 5σ [1–3].
It has been recently proposed that an early variation of

the fundamental constants could ease this Hubble tension
by delaying the time at which recombination occurs [4–8].
Such primordial variations can be constrained directly
using the CMB anisotropies and spectral distortions, but
these constraints remain loose enough to allow for the
existence of significant deviations with respect to the local
values measured on Earth [8–11]. However, to remain
consistent from a high-energy physics perspective, a space-
time-dependent fundamental constant—as the fine-
structure constant α, quantifying the intensity of the
electromagnetic force—must be induced by a fundamental
field implemented at the Lagrangian level (for a review see
for example [12]). Such fields are for example unavoidable

in string theory, with the scalar dilaton field, partner mode
of the graviton, inducing a variation of all the standard
model’s gauge couplings [13].
In general, any model that shows a displacement of such

a coupled field causes a variation of the fine-structure
constant in the early Universe. However, as we will detail
within this work, if a relatively large relative variation of the
fine-structure constant is desired, this displacement should
occur as early as possible. As such, investigating scalar
fields that become dynamical around the time of recombi-
nation are of particular interest. The prime example of such
fields is an axionlike particle (ALP) with a decay constant
such that it becomes dynamical around recombination.
Indeed, such a field has been used to supply an era of early
dark energy (EDE) contribution [14,15], which has also
been shown to provide a successful path in order to ease
the Hubble tension [16–18], though not without caveats
[19–25]. These ALPs are deeply motivated both from high
energy, as solution to the strong CP problem and modes
from string theory [26,27]. Moreover, such ALPs could
produce some parity-violating signal in the cosmic micro-
wave background which claims to have been detected in
Planck data [28–30]. Note, however, that this claim of
detection has been contested by recent analyses as [31]. As
such, an important question to address is whether such an
ALP could be also coupled to electromagnetism and induce a
variation of the fine-structure constant, further alleviating the
H0 tension (and/or overcoming the shortcomingsofEDE).As
proposed in [32], such a field fully coupled to electromag-
netism through both a scalar and a pseudo-scalar term is
expected to be present in general scalar-tensor theories.
We will see that such a scenario would be in conflict

with the extremely tight constraints imposed by laboratory
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data on Earth today. Along with our exploration of
the swampland conjectures in [33], we will derive an
“almost-no-go” theorem, stating that a simple early
varying fine-structure constant scalar field model cannot
possibly provide fine-structure constant variations large
enough to be cosmologically relevant without an extreme
level of fine-tuning in either the potential or the field
initial conditions.
We will start by presenting the theoretical background

for varying fine-structure constant models in Sec. II A,
followed by the derivation of an almost-no-go theorem
for models with early fine-structure constant variation in
Sec. II B. The validity of this theorem will then be
demonstrated in two models: axionlike particles coupled
to electromagnetism in Sec. III A and a toy model with a
hyperbolic tangent potential in Sec. II B. Finally, we will
discuss the extent and the limits of our study followed by
our conclusions in Sec. IV.

II. THEORETICAL MOTIVATION

In order to remain consistent with the most basic
principles of physics, any variation of the fundamental
constants of nature must be implemented at the Lagrangian
level, promoting the constants to scalar fields. In Sec. II A,
we will present the formalism allowing for a consistent
variation of the fine-structure constant. From this theoreti-
cal background, we will show in Sec. II B using simple
derivations that such scalar field models cannot allow for an
early variation of the fine-structure constant while remain-
ing compatible with local data without an extraordinary
amount of fine-tuning.

A. Fields coupled to electromagnetism

The fine-structure constant α is a dimensionless gauge
coupling quantifying the intensity of the electromagnetic
force. It represents a favorable observable in order to
investigate the possible variation of the fundamental con-
stants, as its impact on physics is well known and it is
possible to measure its value with a great accuracy
throughout cosmic history using multiple independent
probes [34].1 As far as we know, the only self-consistent
path to promote α as a dynamical quantity is to introduce
new fields at the Lagrangian level which are responsible for
its variation. If α → αðϕÞ, then the electromagnetic kinetic
Lagrangian must be modified as

−
1

4
FμνFμν → −

1

4
BFðϕÞFμνFμν ð1Þ

in order to preserve the U(1) gauge invariance of the theory,
such that the fine-structure constant evolves as

Δα
α0

¼ αðϕÞ − α0
α0

¼ BFðϕÞ−1 − 1; ð2Þ

where α0 ∼ 1=137 is the value of the fine-structure
constant measured in laboratory.2 Including a kinetic and
potential term for the scalar field, its full Lagrangian can be
written as

L ¼ −
1

2
∂μϕ∂

μϕ − VðϕÞ − 1

4
BFðϕÞFμνFμν þ � � � : ð3Þ

Knowing that the possible fine-structure constant varia-
tions allowed by experiments are extremely restricted, the
scalar coupling can be typically linearized as

BFðϕÞ ≃ 1þ ζðϕ − ϕ0Þ; ð4Þ

where ζ ¼ ∂ϕBFjϕ¼ϕ0
(with the sign convention of [36]).

This approximation appears to accurately model the time
variation of the fine-structure constant through cosmic
history for a wide range of models. While we will use
this linearization in the remainder of the main text, we also
discuss how generic this approach is in Appendix B.
From the expression of BF, one can express the varia-

tions of the fine-structure constant as

Δα
α0

≃ −ζðϕ − ϕ0Þ: ð5Þ

The amplitude of variations of such a scalar field through
cosmological times, and hence the allowed variations of α,
are sharply restricted by the atomic clocks measurement
of [39] providing a bound of

1

α0

dα
dt

����
z¼0

¼ ð1.8� 2.5Þ × 10−19=yr: ð6Þ

As such, in the absence of screening mechanisms, any
significant variations of the field from the CMB responsible
for a different fine-structure constant at recombination must
brutally rapidly decrease to match local constraints.
In addition, direct astrophysical measurements of Δα=α0

itself (which are made using quasars) lead to Δα=α0ð1 ≤
z ≤ 2.5Þ ∼ 10−6 (see item 2). For comparison, these
measurements can be converted to give an approximate
estimation of the fine-structure constant drift rate of
ðdα=dtÞ=α0jz≃1.5 ∼ 10−16h=yr. Such estimation can be
done by comparing the measurement of quasars at different
redshifts (here we used a polynomial regression of the data

1Additionally, α is dimensionless, and only the stability of
dimensionless constant can be investigated unambiguously. For a
discussion see for example [35].

2This formalism for fine-structure constant variations was
presented in [36] as a generalization of the models of Bekenstein
[37] and Sandvik, Barrow, and Magueijo [38], which are the
limiting cases where the scalar field is proportional to the electron
charge [leading through a change of variables to αðϕÞ ¼ α0e2ϕ

and BFðϕÞ ∝ e−2ϕ for a canonically normalized field ϕ].
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up to various orders). Hence, local data on ðdα=dtÞ=α0 are
more stringent than local data by around two and a half
orders of magnitude.

B. Almost a no-go theorem

Let us now investigate further how the experimental
bounds can constrain the presence of varying α during
recombination. For this, let us look at the two ingredients
that are present for such a model:

(i) a relevantly large Δα=α0 at the time of recombina-
tion (by definition) and

(ii) a small d ln α=d ln a today in order to avoid atomic
clock constraints.

As we are going to see, in a standard formalism of coupling
based on a single scalar field, these two conditions are
highly incompatible.
First, we must consider what we mean by relevantly

large Δα=α0 during recombination. For our purpose, we
will choose a benchmark value of Δα=α0ðzcmbÞ ¼ 10−2,
which would in principle completely resolve the Hubble
tension (this value was computed with a simple code such
that it leads to the same angular sound horizon while raising
H0 to 73.04 km=s=Mpc, the value preferred by [1]).
However, it is already clear that such high values of

αðzcmbÞ are not compatible with the Planck 2018 angular
power spectra measurements, since it is possible to infer a
constraint of [9]

Δα
α0

ðzcmbÞ ¼ ð−0.7� 2.5Þ × 10−3: ð7Þ

However, we note that this constraint is dependent on
the geometrical degeneracies present in the CMB and as
such might be eased when introducing additional model
parameters such as curvature, variation of the neutrino
mass, dark energy equation of state, etc. Instead, the
bound we derive below will be mostly independent of the
specifics of the evolution of the various cosmic energy
densities and their perturbations. We also note that it has
been derived assuming typically a constant shift of
the fine-structure constant. Finally, we will see that the
bound we derive is even tighter than that obtained from
the CMB itself.
Now, let us introduce the two quantities

D≡ Δα
α0

ðzcmbÞ ¼ −ζΔϕ ¼ −ζ
Z

0

ln acmb

dϕ
d ln a

d ln a; ð8Þ

ϵ≡ d ln α
d ln a

����
z¼0

¼ −ζ
dϕ

d ln a

����
z¼0

: ð9Þ

In this notation we can succinctly summarize our con-
straints as ϵ ≃ ð1.76� 2.44Þ × 10−9=h from Eq. (6), where
we use the usual definition of h ¼ H0=½100 km=s=Mpc�.

Comparing with a benchmark value ofD ≃ 10−2 gives us a
ratio of D=ϵ ∼ 107. If we reparametrize the field speed
evolution through some function UðzÞ such that

dϕ
d ln a

¼ UðzÞ dϕ
d ln a

����
z¼0

; ð10Þ

we can immediately relate the two expressions as

D ¼ ϵ

Z
ln 1þzcmb

0

UðzÞd lnð1þ zÞ: ð11Þ

Importantly, this relation is independent of the precise value
of ζ, since it simultaneously rescalesD and ϵ. As such, the
combination of a given desiredD at early times and a given
constraint on ϵ from atomic clock observations gives a
coupling-independent constraint on the necessary evolution
of the field speed.
Looking at the rough order of magnitude of this con-

straint, the problem becomes quickly apparent. In only
roughly seven e-folds (from recombination to now), the
relative field speed UðzÞ has to vary by approximately a
factor ofD=ϵ ∼ 107. It turns out that with mild assumptions
this combination is almost impossible. Below, we will put a
bound on D=ϵ from simple considerations and translate it
into a bound on D. To show this, let us slightly rewrite the
equations of motion for the scalar field speed3

dϕ̇
d ln a

þ 3ϕ̇ ¼ −
1

H
dV
dϕ

ð12Þ

and explicitly integrate to obtain

ϕ̇ ¼ Ca−3 − a−3
Z

a3

H
dV
dϕ

d ln a: ð13Þ

Let us, for a moment, focus on the homogeneous equation.
We are going to come back to the inhomogeneous part in a
bit. The homogeneous part ϕ̇ ¼ Ca−3 tells us that from
Hubble drag the field speed can only decay at a rate of
a−3 ¼ ð1þ zÞ3. This immediately places a tight constraint
on UðzÞ ¼ ϕ̇=H ·H0=ϕ̇0. Indeed, since vð0Þ ¼ 1 by def-
inition, we would have UðzÞ ¼ ð1þ zÞ3 ·H0=H in this
case. It is now easy to put a conservative bound on the
integral as

3We neglect the possible couplings of the field to the other
sectors of the Universe, expected to be present in such models in
the Klein-Gordon and the Friedmann equations through terms of
the form ζΔϕρi [38]. Given the allowed values for ζ, the impact
on the field evolution is expected to be largely subdominant; see
also Sec. IV.

INCOMPATIBILITY OF FINE-STRUCTURE CONSTANT … PHYS. REV. D 109, 103520 (2024)

103520-3



D=ϵ ≈
Z

ln 1þzΛ

0

ð1þ zÞ3H0

H
d lnð1þ zÞ þ 1ffiffiffiffiffiffiffi

Ωm
p

Z
ln 1þzcmb

ln 1þzΛ

ð1þ zÞ3ð1þ zÞ−3=2d lnð1þ zÞ

¼
Z

ln 1þzΛ

0

ð1þ zÞ3ð1þ zÞ−3
2
ð1þwÞd lnð1þ zÞ þ 2

3
ffiffiffiffiffiffiffi
Ωm

p ½ð1þ zcmbÞ3=2 − ð1þ zΛÞ3=2�

<
Z

ln 1þzΛ

0

ð1þ zÞ3ð1þ zÞ−3
2
ð1þð−1ÞÞd lnð1þ zÞ þ 2

3
ffiffiffiffiffiffiffi
Ωm

p ½ð1þ zcmbÞ3=2 − 0�

¼ 1

3
½ð1þ zΛÞ3 − 1� þ 2

3
ffiffiffiffiffiffiffi
Ωm

p ½ð1þ zcmbÞ3=2�

<
1

3
½ð1þ 10Þ3 − 1� þ 2

3 · 0.3
½ð1þ 1200Þ3=2� ≈ 9.3 × 104: ð14Þ

If we require our benchmark value of D=ϵ ∼ 107, then
this is obviously a contradiction. Indeed, we can use this
bound to impose limits on D ¼ ΔαðzcmbÞ=α0 as we show
below. However, we first aim to give a few details on the
calculation.
In the first line of Eq. (14) we have split the integral into

one part where we assume matter domination to hold
(above some zΛ) and one part where the dark energy might
be important.
In the second line we have combined the first and second

Friedmann equations

2ðḢ þH2Þ
H2

¼ −
8πG
3
ðρþ 3PÞ
8πG
3
ρ

¼ −ð1þ 3wÞ; ð15Þ

with w ¼ P=ρ being the total equation of state in the
Universe, which can quickly be simplified to

d lnH
d ln a

¼ Ḣ
H2

¼ −
1þ 3w

2
− 1 ¼ −

3

2
ð1þ wÞ; ð16Þ

which gives the relation of H=H0 ¼ ð1þ zÞ3=2ð1þwÞ used
here. Note that w at this point can and does depend on time
and is simply defined as wðzÞ ¼ PðzÞ=ρðzÞ. Now, for any
normal contents of the Universe, we have w∈ ½−1; 1� and
this allows us to quickly bound the first summand in the
third line of Eq. (14).4 Let us stress again that this derivation
is intended to propose a conservative bound rather than an
accurate estimate. In the same direction, we also bounded
1þ zΛ > 0 for the second summand. In the fourth line we
simply evaluate the remaining integral. Finally, we bound
zΛ < 10 and zcmb < 1200 as well as Ωm > 0.1 (to get

ffiffiffiffiffiffiffi
Ωm

p
> 0.3) in the fifth line to give the final upper bound.

Note that these are very conservative upper bounds,
since CMB data typically require a smaller recombination
redshift and measurements of baryonic acoustic oscillations
(BAO) or supernovae of type Ia (SNIa) require zΛ ∼
0.33 ≪ 10 and Ωm ∼ 0.3; see below.
Since the computation is always dominated by the

matter-dominated part (due to much larger integration
range), we can make the following statement: Given the
constraints on Ωm from Pantheonþ SNIa of [40]
(0.334� 0.018), we find that we can exclude ratios of
D=ϵ < 4.8 × 104 at 95% CL. This would translate for the
current bounds from atomic clocks intoD< ð2.8×10−4Þ=h
at 95% CL [using the value from BAO of [41] with Ωm ¼
0.299� 0.016 would give instead D < ð3.0 × 10−4Þ=h
at 95% CL].5

This bound is expected to apply maximally for physi-
cally motivated and consistent models emerging from
unification theories (as grand unified theories or string
theories), in which the potential contribution is usually
subdominant and in which the presence of couplings with
radiation freeze the field during radiation domination and
typically just lead to a logarithmically slow variation in
matter domination, leaving even less time for the field to
decelerate. As we will see below, the presence of a potential
that is not fine-tuned does not weaken these bounds.

C. The issue of potentials

We have considered only the homogeneous part of the
field evolution of Eq. (13) so far, and one could wonder if
the inhomogeneous part involving the potential slope
dV=dϕ could impart sufficient deceleration to allow the
field to evade this issue. Indeed, with complete freedom
over initial conditions and shape of the potential, this is
always trivially possible. One can simply construct such a
potential where ϕ̇ → 0 toward z ¼ 0. As we will argue

4In principle a w < −1 could break this argument, but this is
practically irrelevant for two reasons: (i) the first summand turns
out to have a negligible 0.5% contribution to the total sum, and
for it to have a 50% contribution one would need w ≃ −2.4,
which is strongly excluded by any late-time data, and (ii) the
bound assumed for zΛ of around 10 is very conservative, and even
if a nontrivial dark energy model with w ≪ −1 would be used,
also in this case the bounds could be made tighter by choosing a
less conservative zΛ.

5To obtain these constraints we used the corresponding
Gaussian probability densities for Ωm and ϵ from the respective
measurements and propagated them according to the laws of
transforming and multiplying independent random variables.
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below, this requires a fine-tuned and “unnatural” combi-
nation of initial conditions and potential shape.
Let us consider the energy conservation equation [or

equivalently Eq. (12)], which can be written as

dV
d ln a

þ 1

2

dϕ̇2

d ln a
¼ −3ϕ̇2 < 0: ð17Þ

This equation corresponds to motion in a potential with a
dissipative force,6 and as such the field must eventually
obey dV=d ln a < 0 (as the squared field speed trivially
cannot decrease below 0). Indeed, at any location within the
potential a field would naturally start rolling downhill
[ϕ̇ ¼ 0 ⇒ ϕ̈ ¼ −dV=dϕ and thus δ½V̇� ¼ −ðdV=dϕÞ2δt].
As such, we have a strong expectation that V̇ < 0 except in
a transitory phase where the field has been accelerated
before and suddenly encounters an uphill slope and has not
sufficiently decelerated. We stress here that it is not
impossible to generate V̇ > 0; it is simply not a “natural”
state for a field with arbitrary initial conditions in an
arbitrary potential.
However, the problem is slightly worse than just requir-

ing V̇ > 0 during part of the evolution. This is because
Eq. (13) weighs the contributions of a given dV=dϕ with
the current Hubble expansion rate as well as a factor of a3,
making the weight a function that is quite spiked toward
a → 1. Indeed, during matter domination we have
a3=H ∝ a4.5. This implies that the deceleration has to
happen mostly toward the end of the evolution and, as
such, be sudden. Since we are essentially requiring the field
to come to an abrupt halt, it does not move over great
distances of the potential, thus requiring essentially the
potential slope at a singular point (of the current-day field
position) to balance exactly to cancel out any remaining
velocity. This is the fine-tuning issue for nonoscillatory
solutions. In Sec. III B we show an example with a constant
slope dV=dϕ to decelerate the field and note that the final
field slope has to be extremely fine-tuned.
Another way to quickly decelerate the field might in

principle use strong oscillations. However, it can quickly
be shown that in a potential of type VðϕÞ ¼ A · ϕ2n the
envelope of the oscillations only decays as a−3=ðnþ1Þ (see
for example [16]), and the envelope of the oscillation speed
decays as a−3n=ðnþ1Þ. We reproduce for convenience the
argument of [42] in Appendix A and extend it to the field
speed. In any case, this behavior a−3n=ðnþ1Þ is slower than
a−3 for all n∈N, implying that the problem for oscillating
potentials is equal or even slightly worse, since they are
slightly more inefficient at dissipating energy and they

cannot use a slope dV=dϕ to decelerate, since it will be
traversed in both directions during any oscillation. For this
reason even oscillatory potentials cannot create a large D
for a given small bound on ϵ using the same reasoning as in
Eq. (14). However, here too there is an extremely fine-tuned
way to avoid a straight no-go theorem. If the oscillation
happens to reach its maximum just at z ¼ 0, then the field
speed there will be zero, meaning that any bound in ϵ is
trivially satisfied. Given that the field speed needs to be
about 1–2 orders of magnitude smaller today than the
expected speed from the decay of the field speed envelope,
this requires even more fine-tuning in the field position.
Indeed, one can quickly show that for the aforementioned
potential a field offset of ϕ ¼ ϕmaxð1 − εÞ gives a relative
velocity offset of

ffiffiffiffiffiffiffiffi
2nε

p
. Restricting the velocity to be

smaller than the velocity envelope by 2 orders of
magnitude [to reach D=ϵ ∼ 107, which is 2 orders of
magnitude larger than the bound of Eq. (14)] then would
bound ε≲ 10−4=ð2nÞ, which especially for large n is
quite a fine-tuned position for the final field. We discuss
such fine-tuning of oscillatory potentials in an example
case in Sec. III A.
In summary, if the potential is oscillatory, an extreme

degree of fine-tuning is required for a given value of the
fine-structure constant variation D ¼ Δα=α to be compat-
ible with the strict observations of ϵ ≪ 1, namely that the
field happens to exactly end up at the turnaround of the
oscillation today. If the potential is not oscillatory, one
needs to construct a potential that happens to have
exactly the correct slope toward z → 0 in order to
decelerate the field by just the right amount at the last
moment. In either case, the potential and/or the field
initial conditions need to be fine-tuned in order to avoid
the tight constraints. We show such fine-tuning explicitly
for a few examples in Sec. III.
Statement 1.We have demonstrated that one has to either

give up large fine-structure constants at recombination or
face an extreme degree of fine-tuning of the potential or the
initial conditions for any model where the fine-structure
constant variation is generated from the variation of a single
scalar field.

III. EXAMPLE STUDIES

The aim of this section is to illustrate and strengthen the
argument made in Statement 1. For this, we investigate two
example cases. One displays a highly oscillatory behavior
(due to an axionlike potential) and is investigated in
Sec. III A, whereas the other shows a fine-tuned potential
that aims to decelerate the field rapidly toward the end of its
movement and is investigated in Sec. III B.

A. Axionlike particles coupled to electromagnetism

Let us now verify the validity of the discussion above by
considering the canonical case of ALPs. Originally invoked

6This might become more obvious by replacing ϕ →
ffiffiffiffi
m

p
x,

which then immediately gives the normal kinetic term of a free
particle (ρ ¼ V þ 1

2
mẋ2). The dissipative force in this case would

simply be Fdiss ¼ −3Hẋ (whereas the normal force generated by
the potential is still Fpot ¼ −∂xV).
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to solve the strong CP problem in quantum chromody-
namics [26], the existence of ALPs is commonly proposed
in cosmology as a dark matter candidate [43], a source of
early dark energy [16] or at the origin of cosmic birefrin-
gence in the CMB [28–30].
The potential VnðϕÞ of an ALP is typically modeled by

the function [14,15]

VnðϕÞ ¼ ðmafaÞ2
�
1 − cos

�
ϕ

fa

��
n
; ð18Þ

which allows for a domination of the field energy density at
early times followed by a brutal damping in successive era.
As such, ALP are well motivated candidates to implement
an early variation of the fine-structure constant, assuming
their full coupling to electromagnetism as proposed in [32].
As such, ALPs are well-motivated candidates to implement
an early variation of the fine-structure constant.
The eventuality of coupling between EDE and electro-

magnetism was already investigated in a different context
by [44], and in some sense we are generalizing here this
work for axionic fields and with new datasets.
One can further note that such a phenomenology

could be well motivated within the framework of string
theory [45], where both EDE and the early variation of the
fine-structure constant could be caused by the existence of a
dilaton field coupled to an axion. We will however not
discuss this case here, focusing only on single scalar field
models for now. As such, we postpone such an inves-
tigation for future work.
The “canonical” ALP early dark energy model that has

been proven to have a significant impact on the Hubble
tension [6,16–18] has four fundamental parameters describ-
ing the model. These are fma; fa; n;ϕig, where the first
three parameters describe the potential of Eq. (18) and the
fourth parameter is the initial condition of the field
displacement (the initial field velocity is typically irrelevant
due to the strong Hubble drag at early times). These
parameters are typically further replaced by parameters
carrying more physical meaning, such as fede (the largest
fraction of energy density that the ALP EDE field reaches,
related to fa) and zc (the critical redshift at which the field
begins oscillating due to the weakening Hubble drag,
related to ma).
Furthermore, for the sake of simplicity, the initial field

displacement is replaced by the initial position along the
cosine curve of the potential, Θi ¼ ϕi=fa. In addition to
this parameter space, we introduce the linear coupling ζ of
the fine-structure constant to the field displacement as in
Eq. (5), self-consistently propagating the effect of a varied
fine-structure constant throughout recombination processes
as described for example in [9]. As such, the parameter base
can be written as fzc; fede; n;Θi; ζg in this notation.
To investigate the behavior of an ALP EDE coupled to

electromagnetism, we used a modified version of the CLASS

software [46] coupled to MontePython [47,48], along the line
of previous works using a similar setup [33,49,50] (follow-
ing also the idea behind the implementation of [16,51,52],
but adapting it to the new coding standard of CLASS v3.2.0,
which also involves variations of fundamental constants
[53]). For the plots we use LIQUIDCOSMO [54]. For
simplicity, we first focus on the n ¼ 3 case, which was
favored by observational data in order to address the H0

tension [17].
As further discussed in Appendix C, the model acts as

desired for a model implementing an early variation of the
fine-structure constant, inducing almost no variation of the
fine-structure constant at low redshift, until it suddenly
reaches a plateau associated with a different value of α ≠
α0 after an oscillatory transition close to the CMB epoch.
The time at which this transition occurs is directly given
by the critical redshift (zc). The parameters fede and ζ impact
the amplitude of the oscillations and the magnitude of the
plateau in αðzÞ while Θi impacts the number of oscillations
during the transition phase and the final speed of the field.
In order to confront this model with data, we use

likelihoods associated to various datasets7 also used in [50].
(1) Cosmological. We use CMB angular power spectra

and lensing reconstruction data from the Planck
satellite [56,57], baryonic acoustic oscillation data
from BOSS DR12 [58], the Pantheon SNIa sample
[59], and cosmic chronometers from [60]. We also
use a prior on the H0 value from [61], implemented
as discussed in [62] as a prior on the supernovae
absolute magnitude.

(2) Fine-structure. We use the spectroscopic measure-
ment points of quasars (QSO) from various datasets
[63–66] as well as a prior from the Oklo natural
nuclear reactor [67], and the updated bound on the
time variation of α of Eq. (6) coming from measure-
ments of atomic clocks [39], as already used in [33].

The results of this investigation can be found in Fig. 2,
where we show the constraints on the underlying model
parameters from only cosmological observations (item 1)
or also including fine-structure constant observations
(item 2). An enlargement of the constraints on ζ can be
found in Fig. 1. The immediate conclusion is that without
experiments probing the fine-structure constant, a large
range of ζ values is allowed (even slightly favoring a
positive value). For example, a point on the edge of the 2σ
exclusion limit with ζ ≃ 0.06 can be associated with a value
of ΔαðzcmbÞ=α0 ∼ 10−3.8

7We do not discuss the constraints coming from big bang
nucleosynthesis here (which would further reinforce the point we
want to make), as these are expected to be strongly model
dependent. On this topic, see e.g. [55].

8These suggestive values of ΔαðzcmbÞ=α0 naturally depend on
the other parameters of the model (such as Θi or zc). Here we use
the best-fit values of the corresponding run—rescaling only ζ—to
give a qualitative estimate.
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Instead, once likelihoods probing the fine-structure
constant are added, no such points are available anymore,
and the ζ is restricted to lead to cosmologically irrelevant
αðzÞ at the recombination times, in accordance with our
almost-no-go theorem of Statement 1. Put otherwise, while
it would be legitimate to think that local constraints on αðzÞ
at z ∼ 0 have no bearing on the possible behavior of the
field during recombination era at z ∼ 1100, quite the
opposite is true for a well-defined single-field model.
With the full likelihood set, the maximum values allowed
for the electromagnetic coupling are of the order of
ζ ∼ 10−4, which can be associated to a value of
Δα=α0ðzcmbÞ ∼ 10−6.
Overall, we report constraints on ζ and the associated

suggestive values of Δα=α0ðzcmbÞ in Table I.9

Importantly, it is possible to circumvent the relatively
narrow bounds on ζ reported in Table I entirely if one is
allowed to fine-tune their initial conditions (Θi) drastically,
such that the final field movement will be exactly in a

turnover of an oscillation. Since these fine-tuned initial
conditions take up a tiny negligible prior volume, they are
not visible in the posterior contours of Fig. 2. This behavior
of fine-tuned initial conditions or potential parameters
occupying a vanishing amount of prior space is expected
to be generic and not just related to this particular model.
This can lead us to conclude another interesting corollary

statement.
Statement 2. Even if fine-tuned initial conditions and/or

potential shape can reconcile large variations of the fine-
structure constant at recombination with the local bounds,
these typically occupy a negligible fraction of the prior
volume and might thus still be ruled out in a Bayesian
analysis.
However, in our ALP EDE example case we can force

the field into such fine-tuning by minimizing the likelihood
for a fixed ζ ¼ 10−3 (more than an order of magnitude
larger than the allowed range). In this case, we can reach a
similarly good maximum likelihood as in the full run,
differing only by Δχ2 ≃ 23.1 (largely driven by the QSO
and Oklo likelihoods), whereas the original best fit of the
full run would result in a Δχ2 ¼ 129 000 if simply rescaled
to have ζ ¼ 10−3. The reason is that with this minimization
strategy the fine-tuning of the initial conditions can be
performed such that the final field configuration is almost
perfectly at the turnover of a single oscillation. Such a
behavior is displayed in Fig. 3, comparing the minimized
best fit of the full run and the minimized best fit of the run
with ζ ¼ 10−3 fixed. While the former reaches the small
final field velocity through appropriately small ζ to lead to
cosmologically irrelevant αðzÞ at recombination times, the
latter reaches it by fine-tuning the Θi such that the final
field velocity is almost zero by virtue of the oscillation
ending at exactly z ¼ 0 (see also the field displacement
being at a peak in the same Fig. 3).
Another interesting corollary to the main Statement 1 can

be derived from the fact that we cannot find a region of
Δχ2 ≃ 0: since this “trick” of fine-tuning the deceleration of
the field at late times cannot lead to vanishing ΔαðzÞ for a
wide range of redshifts in an oscillatory potential, the QSO
and Oklo likelihoods at z > 0 necessarily impart a reason-
ably large likelihood penalty.
Statement 3. As such, even when there is an extreme

degree of fine-tuning in the design of the potential, other

FIG. 1. Contour plots of the parameter space of the ALP
scenario for three different datasets: no α data (red curve), no
atomic clock data (blue curve) and all likelihoods (green curve).
fi is a rescaling factor allowing one to easily compare the curves.

TABLE I. Mean and standard deviation of ζ for the various
data combinations in the ALP EDE case, corresponding to the
posteriors shown in Fig. 1 and corresponding variation of the
fine-structure constant at the emission of CMB associated to
the mean.

No α data No atomic clocks All likelihoods

ζ ð2.2� 1.9Þ × 10−2 ð−0.06� 0.77Þ × 10−3 ð0.06� 0.45Þ × 10−4

Δα
α0
ðzcmbÞ 2.5 × 10−4 −6.8 × 10−6 6.8 × 10−8

9We note that the ALP EDE model is always what drives the
higher value of H0 in this combined model (and there is no
correlation between ζ and fede) since the EDE is so much more
efficient at resolving the Hubble tension in a way that is
statistically preferred from the CMB data compared to the
αðzÞ introduced by the coupling (ζ).
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data on the fine-structure constant in the late Universe can
put even further constraints against a relevant fine-structure
at recombination.

B. Toy model

In this section we attempt to build a simple toy model
of a case in which the field does not oscillate around a
minimum in the potential but instead displays a continuous
motion. As such, according to Statement 1 it can only have
a significant impact at the time of recombination and avoid
the current fine-structure constraints by virtue of fine-
tuning of initial conditions or parameter values. For this,
we introduce a potential based on the hyperbolic tangent
function as

VðϕÞ ¼ 10−10 · ½faϕþ ð1 − fÞðsϕþ κÞ� þ V0 ð19Þ

with

f ¼ 1

2

�
tanh

�
ϕ

Σ

�
þ 1

�
; ð20Þ

with the free parameters fV0; κ; a; s;Σg.10 The factor 10−10
is used purely for numerical reasons related to the imple-
mentation in CLASS. We show one example of such a
potential in Fig. 4. The idea of this potential is to first
accelerate the field down a slope, which is accomplished by
the term sϕ with a negative slope s < 0, relevant as long as
ϕ ≪ −Σ. As soon as the field crosses the inflection point
(ϕ ≫ Σ), the second part of the potential becomes impor-
tant and decelerates the field through another linear
slope aϕ, now with positive slope a > 0. The value of Σ
quantifies the width of the transitional region. We addi-
tionally allow for an offset κ, which could in principle
further accelerate or decelerate the field only within the
transitional region.
As further discussed in Appendix C, this toy model

provides a great example of early fine-structure constant
variation, with a single brutal transition of the value of α
around zcmb, very close to a Heaviside function. The two
slopes s and a together drive the time and the amplitude of

FIG. 2. Contour plots of the parameter space of the ALP scenario for three different datasets: no α data (red), no atomic clock data
(blue) and all likelihoods (green).

10The offset parameter κ was introduced here for the sake of
generality but does not display any interesting behavior.
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the transition. As expected, ζ simply rescales the whole
evolution of the fine-structure constant.
For our toy experiment, we fix the cosmological param-

eters to the best-fitting parameters of Planck [2] and
investigate only the extension of the parameter space,
using flat priors on log10ð−sÞ∈ ½1; 15�, log10ðκÞ∈ ½−5; 5�,
log10ðaÞ∈ ½−10; 5�, and ζ∈ ½−10; 10� and we fix the
parameters Σ ¼ 10−5 and V0 ¼ 10−8. The initial field value
is also fixed to ϕðz → ∞Þ ¼ −10−2. Since the parameter
space is highly degenerate and difficult to explore with
traditional Markov chain Monte Carlo methods, we make
use of the POLYCHORD sampler [68] in this case.
We only put two requirements on the field, namely that

it should generate a cosmologically relevant variation of
the fine-structure constant at recombination, ΔαðzcmbÞ ¼
10−2 � 10−3 (thus avoiding the potential issue discussed in
Statement 2) and that it should avoid constraints by the
fine-structure observations detailed in item 2. These two
limitations alone are sufficient to force the model param-
eters into a tight fine-tuned degeneracy, which can be
observed in Fig. 5 (lower panel). The degeneracy manifests
as a one-to-one relation between the slope for acceleration
(−s) and the slope needed for deceleration (a). This slope
for deceleration has to balance exactly in such a way as to
make the field decelerate entirely until today. Examples of
the field trajectories are shown in Fig. 6 where this becomes
very apparent as a sudden and rapid stop or drop in velocity
toward z → 0 or equivalently a ¼ 1=ð1þ zÞ → 1.
It should also be noted that by construction the field

speed typically reaches Oð10−1Þ for this type of potential,
thus requiring smaller values of ζ when the field decelerates
later, which is typically the case for smaller slopes. This

FIG. 3. Axion EDE field (top) and field velocity (bottom) as a
function of redshift for the best fit of the full model (red) and for
the best fit of the model with ζ ¼ 10−3 fixed (blue). While the red
model reaches a small rescaled field velocity due to a small value
of ζ, the blue model reaches it only through the fine-tuning of the
initial conditions allowing for the exact cancellation of the field
speed today in the turnover of an oscillation.

FIG. 4. Example of a potential of the form of Eq. (19) with
parameters a ¼ 0.3, s ¼ −0.1, Σ ¼ 1, κ ¼ 0, and V0 ¼ 10−11.
The blue range marks the accelerating part of the potential
dominated by the downhill slope s < 0 for ϕ ≪ −Σ, while the
red marks the sudden deceleration regime dominated by the
uphill slope a > 0 for ϕ ≫ Σ. The intermediate region is
marked in green.

FIG. 5. Constraints on the parameter space of the toy model
with the hyperbolic tangent potential. Contours are derived for
different bounds on log10ð−sÞ.
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imparts an additional (though not as strong) degeneracy
between log10ðjζjÞ and log10ð−sÞ that can be seen in Fig. 5.
As such, even in this case we can conclude that one has to
fine-tune the potential such that the field suddenly and
rapidly decelerates exactly at z → 0 if one requires cos-
mologically relevant ΔαðzÞ at the time of recombination as
per Statement 1.

IV. DISCUSSION AND CONCLUSIONS

In this work we have theoretically derived an almost-
no-go theorem (Statement 1) about the impossibility to
have a large fine-structure constant at recombination while
remaining compatible with late time observations in a
single-field model without resorting to extreme fine-tuning
of the potential or its initial conditions.
We have given two examples in Sec. III that show the

impact of this almost-no-go theorem. Furthermore, we have
derived two corollary statements to this main statement,
which further restrict the fine-tuned models that avoid
Statement 1. Statement 2 states that the prior volume of
such fine-tuned models in a Bayesian analysis is typically
negligible, while Statement 3 states that other late-Universe
data probing the fine-structure data can still be an issue in
this case (especially for oscillating potentials). As such, it
appears that the often-investigated possibility of a fine-
structure constant variation around the time of recombina-
tion that has been proposed in the past to ease the Hubble
tension [8] does not seem feasible with current late-time
and laboratory observations of the fine-structure constant,
at least for single-field models.
Indeed, using fairly simple arguments one can derive an

upper bound on the variation of the fine-structure constant
at recombination of ΔαðzcmbÞ=α0 < 3 × 10−4=h (95% CL),

which can be further generalized to ΔαðzcmbÞ=α0 <
5 × 10−4 using a weak prior on the Hubble parameter.
We note that there are a few caveats to this discussion.

First and foremost, the argument can be avoided if screen-
ing mechanisms exist that would either allow the fine-
structure constant α to take on a different value depending
on the scale at which it is measured (such as the chameleon
mechanism; see for example [69]) or that would act
differently on the values of the fine-structure constant in
the late and the early Universe.11 Second, we perform a
linearization in the field displacement, the validity of which
is further discussed in Appendix B. Third, our model does
not consider possible couplings of the field to the other
sectors of the Universe (such as baryonic matter), as is
the case in many theories involving a varying αðzÞ. The
existence of such couplings, as the Bekenstein-type cou-
plings ζiρi [36], should impact slightly cosmic evolution of
the field but we do not expect it to drastically change our
conclusions (the field deceleration still needs to be fine-
tuned in terms of the additional coupling parameters).
We also want to point out that the same argument can in

principle be made for the variation of other fundamental
constants, such as the electron-to-proton mass ratio, which
has been shown in the past to be even more successful
in easing the Hubble tension [6,7,70]. Ultimately, such an
investigation would have to consider the combined varia-
tion of the fundamental constants that is expected in most
physically motivated models or define a well-defined
theory of varying only the electron mass.
Let us also note here that any varying constant model

must induce a violation of the Einstein equivalence
principle at some level (see for example [12,71]), such
that it should also be sharply constrained locally by
stringent tests of the universality of free fall performed
by experiments such as MICROSCOPE [72]. We did not
consider such a constraint here as its relation to the
underlying parameters is strongly model dependent and
the accurate bound provided by atomic clocks is in any case
stringent enough for our statements.
The improvement brought by future datasets is expected

to put further stress on coupled scalar field models. The
stringent bounds on the stability of fundamental constants
from laboratory data will be sharpened by the upcoming
nuclear clocks experiments [73] while early Universe
constraints will be updated by future generation of CMB

FIG. 6. Rescaled field speeds for the best-fitting models for the
various cases. Note that cases with lower log10ð−sÞ need a
smaller ζ to reach the same low rescaled field velocity [the peak
of the nonrescaled velocity is always at around Oð10−1Þ]. All of
the models show a very drastic deceleration toward z → 0 or
equivalently a → 1.

11Screening mechanisms would typically imply a change in the
effective value of α with the local density and hence discard
laboratory measurement such as atomic clocks, the density on
Earth’s surface being much greater than the one of the primordial
plasma at recombination. This would however leave the mea-
surements of QSO available, which derive from absorption
lines in low-density clouds. However, using the bounds of
ðdα=dtÞ=α0jz≃1.5 ∼ 10−16h=yr from QSO measurements and us-
ing the same reasoning as above only lead to the mild upper
bound of ΔαðzcmbÞ=α0 ≲ 0.1.
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missions such as Simons Observatory [74] and the combi-
nation of CMB-S4 [75] and Lite-BIRD [76], which will
measure the anisotropies of the last scattering surface at a
cosmic variance accuracy.12 The combination of these
datasets will rule out any cosmologically interesting varia-
tion of the fundamental constants at recombination, and
thus condemn simple and consistent solutions of the
Hubble tension based on such variations.
While the scope of the almost-no-go theorem has to be

clearly defined, we stress that the impressive work that has
gone into tightening the local laboratory constraints on
variations of fundamental constants have yielded such high
precision that now even seemingly unrelated cosmological
epochs are constrained by these data.
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APPENDIX A: OSCILLATORY DYNAMICS

Note that this is a simplified write-up of [42]. The
interested reader is encouraged to visit the original source.
In order to determine the behavior of the field envelope,

the idea is that the field oscillates between the two critical
points of the potential. These are the points where simulta-
neously ϕ̇ ¼ 0 and VðϕmaxÞ ¼ Vmax, with Vmax being
relatively constant over a single oscillation (as long as
the oscillation frequency is much larger than the Hubble
frequency).
Then the evolution of Vmax is directly a tracer of the total

energy density ρ [since ρðϕmaxÞ ¼ Vmax by definition]. The

advantage of using ρ instead of V is that ρ will typically not
decrease drastically during the oscillation, as the potential
energy is turned into kinetic energy. To find the density
evolution, we decompose ϕ̇2 ¼ ρþ P≡ ðγ þ γpÞρ̄ with
some constant part γ and some oscillatory part γp and some
mean evolution ρ̄. Note that the energy density is not
conserved [see Eq. (17)], though the overall stress-energy
is. Indeed, we use the energy conservation equation
dρ=d ln a ¼ −3ðρþ PÞ ¼ −3ðγ þ γpÞρ̄ [which is equiva-
lent to Eq. (17)] to find an equation involving ρ̄. On the
long timescales of interest we neglect γp (average it out,
giving also ρ̄ from the average of ρ), and we are left
with ρ̄ ∝ a−3γ. To explicitly find γ, one can average ϕ̇2=ρ̄≡
γ þ γp over any given single oscillation (which will be
the same in any other oscillation) and neglect for this the
slow variation of the field speed due to the Hubble friction.
In this limit ϕ̇ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðρ − VÞp
. This gives a period of

oscillation of

T ¼
Z

dt
dϕ

dt ¼
Z

ϕmax

−ϕmax

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðρ − VÞp dϕ: ðA1Þ

Plugging everything in then leaves us with

γ ≈
1

T

Z
T

0

ϕ̇2=ρ̄dt ¼ 1

T

Z
ϕmax

−ϕmax

ϕ̇=ρ̄dϕ ðA2Þ

¼
�Z

ϕmax

−ϕmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðρ−VÞ

p
=

ffiffiffī
ρ

p
dϕ

�
=

�Z
ϕmax

−ϕmax

ffiffiffī
ρ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðρ−VÞp dϕ

�
:

ðA3Þ

For the final step, we approximate ρ ≈ ρ̄ during the
oscillation and use V=ρ̄ ≈ V=Vmax ≈ ðϕ=ϕmaxÞ2n to obtain

γ ¼ 2n
nþ 1

; ðA4Þ

which can then easily be plugged into the equation for

Vmax ∝ ρ̄ ∝ a−3γ ∝ a−6n=ðnþ1Þ; ðA5Þ

and finally using Vmax ∝ ϕ2n
max we get the evolution of the

envelope as

ϕmax ∝ a−3=ðnþ1Þ: ðA6Þ

Note that d½ϕmax�=dt ≈ −−3H
nþ1

ϕmax and is not equal to
½dϕ=dt�max, the envelope of the oscillation speed. For the
latter, we simply recall that ϕ̇ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðρ − VÞp
is maximal

when V → 0, and there gives ϕ̇ ∝
ffiffiffī
ρ

p
∝ a−3n=ðnþ1Þ (the

same can be found using the virial theorem).

12See Refs. [5,11] as well as [10] for quantitative forecasts on
constraints on varying constants coming from measurements of
anisotropies and spectral distortions with future CMB experi-
ments.
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APPENDIX B: LINEARIZATION

One may wonder about the legitimacy of the lineariza-
tion BF ≃ 1þ ζΔϕ assumed throughout all this work,
especially for the early time evolution of the fields.
To test this linearization, we compare it with the

evolution predicted by other well-motivated models. The
canonical Bekenstein models [38,77] predict a variation of
the form

Δα
α0

¼ e−ζΔϕ − 1 ðB1Þ

with ζ ¼ −2. However, such a high value of ζ is clearly
excluded by data for the potential under consideration here,
so we generalize it to smaller values of the electromagnetic
coupling.
Another relevantmodel is the runaway dilatonmodel [13],

in which the fine-structure constant evolution is given
by [78]

Δα
α0

¼ 1 − ζð1 − e−ΔϕÞ: ðB2Þ

These two models are expected to be well described by our
linearization, at least near ϕ ¼ ϕ0.
The redshift evolutions of Δα=α0 in the linearized, the

Bekenstein, and the dilaton scenarios are displayed in Fig. 7
using the axionic potential, ζ ¼ 10−3 and best-fit values for
all the other parameters. We can see that the Bekenstein-
type model is well described by the linearization through-
out all of the cosmic history with difference never getting
greater than one permille. The runaway dilaton prediction,
however, has the same overall behavior but diverges
compared to the linearization (up to ∼20%) after it reaches
a plateau during radiation domination at very high redshift.
However, this is not a concern for several reasons.

First, at the time of recombination (z ∼ 1100) the typical
deviation is still in the permille range. Second, even at
earlier times, it can be shown that the leading-order
correction causes a smaller variation of ΔαðzÞ at equal ζ,
and thus our fine-tuning argument would be even
stronger for these types of couplings. Third, even in
other modified coupling scenarios that differ for a
constant ζ by order-unity factors in ΔαðzÞ, the argument
is only slightly weakened but otherwise remains intact

due to the large order of magnitude between the
constraint of Eq. (14) and the typical D=ϵ required to
be cosmologically relevant.
One could even imagine stronger deviations in cases

where BFðϕÞ has an even more exotic shape that could
not even be linearized. It might thus be possible to
counter the argument of this paper by using such a well-
designed choice of BFðϕÞ. However, this choice would
have to be motivated from an underlying high-energy
theory; otherwise, it would just amount to displace the
extreme level of fine-tuning at the level of the initial
conditions or potential shape toward the choice of the
BFðϕÞ function itself.
We will not discuss here possible kinetic coupling of the

field of the form BFðϕ; ∂μϕÞ as in [79] and leave such an
investigation for future works.

APPENDIX C: EVOLUTION OF THE
FINE-STRUCTURE CONSTANT

IN THE MODELS

In this appendix we display several examples of evolu-
tions of ΔαðzÞ=α0 and their variation with the relevant
underlying model parameters to facilitate the understanding
of the main text. In Fig. 8 we show the evolutions for the
ALP EDE model, while in Fig. 9 we show the evolution for
the tanh toy model of Sec. III B.

FIG. 7. Comparison of ΔαðzÞ=α0 for ζ ¼ 10−3 using different
expressions: linearization (red curve), dilatonlike coupling (green
curve) and exponential coupling (blue curve).
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FIG. 9. Impact of the different parameters of the hyperbolic tangent model on the cosmic evolution of ΔαðzÞ=α0. For purpose of
visualization we follow the degeneracy line of a and s. We see that simultaneously the redshift of the transition and to a lesser degree
the amplitude of the transition is modified. For ζ we note the expected behavior of only rescaling the overall amplitude of the ΔαðzÞ=α0.
We do not show the impact of the offset κ since the variation in terms of Δα=α0 is very small.

FIG. 8. Impact of the different parameters of the ALP model on the cosmic evolution of ΔαðzÞ=α0. We show only the additional
model parameters, and note that the usual cosmological ΛCDM parameters do not impart large changes on ΔαðzÞ=α0. Both fede
and ζ rescale the amplitude of the fine-structure constant variation, while ac ¼ 1=ð1þ zcÞ changes the redshift of the transition
from constant (due to Hubble drag) to oscillating field. Finally, Θi changes the phase of the oscillations (as well as very slightly
changing the initial redshift).
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LÉO VACHER and NILS SCHÖNEBERG PHYS. REV. D 109, 103520 (2024)

103520-14

https://doi.org/10.3847/2041-8213/ac5c5b
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1051/0004-6361/201833880
https://arXiv.org/abs/2311.13305
https://doi.org/10.1051/0004-6361/201424496
https://doi.org/10.1051/0004-6361/201424496
https://doi.org/10.1093/mnras/stab2777
https://doi.org/10.1093/mnras/stab2777
https://doi.org/10.1016/j.physrep.2022.07.001
https://doi.org/10.1103/PhysRevLett.130.161003
https://doi.org/10.1103/PhysRevLett.130.161003
https://arXiv.org/abs/2309.12083
https://doi.org/10.1093/mnras/stx2783
https://doi.org/10.1093/mnras/stac3697
https://doi.org/10.1093/mnras/stac3697
https://arXiv.org/abs/2307.06768
https://doi.org/10.12942/lrr-2011-2
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1016/0550-3213(94)90143-0
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1088/1475-7516/2022/08/025
https://doi.org/10.1088/1475-7516/2022/08/025
https://doi.org/10.1103/PhysRevD.98.083525
https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1016/j.dark.2023.101348
https://doi.org/10.1016/j.dark.2023.101348
https://doi.org/10.1103/PhysRevD.102.043507
https://doi.org/10.1103/PhysRevD.102.103502
https://doi.org/10.1088/1475-7516/2021/05/072
https://doi.org/10.1088/1475-7516/2021/05/072
https://doi.org/10.1103/PhysRevD.103.063502
https://doi.org/10.1103/PhysRevD.103.063502
https://doi.org/10.1093/mnras/stac2429
https://doi.org/10.1103/PhysRevLett.131.201001
https://arXiv.org/abs/2312.01977
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1103/PhysRevLett.125.221301
https://arXiv.org/abs/2203.04830
https://arXiv.org/abs/2203.04830
https://doi.org/10.1088/1475-7516/2023/01/044
https://doi.org/10.1088/1475-7516/2023/01/044
https://arXiv.org/abs/2401.11973
https://doi.org/10.1103/PhysRevD.80.105021
https://doi.org/10.1103/PhysRevD.80.105021
https://doi.org/10.1088/1475-7516/2023/10/039
https://doi.org/10.1016/j.physletb.2022.137002
https://doi.org/10.1016/j.physletb.2022.137002
https://arXiv.org/abs/hep-th/0208093
https://doi.org/10.1103/PhysRevD.65.085044


[37] J. D. Bekenstein, Fine-structure constant: Is it really a
constant?, Phys. Rev. D 25, 1527 (1982).

[38] H. B. Sandvik, J. D. Barrow, and J. Magueijo, A simple
cosmology with a varying fine structure constant, Phys. Rev.
Lett. 88, 031302 (2002).

[39] M. Filzinger, S. Dörscher, R. Lange, J. Klose, M. Steinel, E.
Benkler, E. Peik, C. Lisdat, and N. Huntemann, Improved
limits on the coupling of ultralight bosonic dark matter to
photons from optical atomic clock comparisons, Phys. Rev.
Lett. 130, 253001 (2023).

[40] D. Brout et al., The Pantheonþ analysis: Cosmological
constraints, Astrophys. J. 938, 110 (2022).

[41] S. Alam et al., Completed SDSS-IV extended Baryon
Oscillation Spectroscopic Survey: Cosmological implications
from two decades of spectroscopic surveys at the Apache
Point Observatory, Phys. Rev. D 103, 083533 (2021).

[42] M. S. Turner, Coherent scalar-field oscillations in an ex-
panding universe, Phys. Rev. D 28, 1243 (1983).

[43] C. B. Adams et al., Axion dark matter, arXiv:2203.14923.
[44] E. Calabrese, E. Menegoni, C. J. A. P. Martins, A.

Melchiorri, and G. Rocha, Constraining variations in the
fine structure constant in the presence of early dark energy,
Phys. Rev. D 84, 023518 (2011).

[45] S. Alexander and E. McDonough, Axion-dilaton destabili-
zation and the Hubble tension, Phys. Lett. B 797, 134830
(2019).

[46] J. Lesgourgues, The cosmic linear anisotropy solving
system (class) i: Overview, arXiv:1104.2932.

[47] https://github.com/brinckmann/montepython_public.
[48] T. Brinckmann and J. Lesgourgues, MontePython 3: Boosted

MCMC sampler and other features, Phys. Dark Universe 24,
100260 (2019).

[49] L. Vacher, J. D. F. Dias, N. Schöneberg, C. J. A. P. Martins,
S. Vinzl, S. Nesseris, G. Cañas-Herrera, and M. Martinelli,
Constraints on extended Bekenstein models from cosmo-
logical, astrophysical, and local data, Phys. Rev. D 106,
083522 (2022).

[50] L. Vacher, N. Schöneberg, J. D. F. Dias, C. J. A. P. Martins,
and F. Pimenta, Runaway dilaton models: Improved con-
straints from the full cosmological evolution, Phys. Rev. D
107, 104002 (2023).

[51] https://github.com/PoulinV/AxiCLASS.
[52] T. L. Smith, V. Poulin, and M. A. Amin, Oscillating scalar

fields and the Hubble tension: A resolution with novel
signatures, Phys. Rev. D 101, 063523 (2020).

[53] Our implementation of aninstantaneous transition of the
fine-structure constant is publicly available on the soft-
ware’s repository: https://github.com/lesgourg/class_public.

[54] Available at https://github.com/schoeneberg/liquidcosmo
based on getdist https://github.com/cmbant/getdist.

[55] M. T. Clara and C. J. A. P. Martins, Primordial nucleosyn-
thesis with varying fundamental constants. Improved con-
straints and a possible solution to the lithium problem,
Astron. Astrophys. 633, L11 (2020).

[56] Planck Collaboration, Planck 2018 results. V. CMB power
spectra and likelihoods, Astron. Astrophys. 641, A5 (2020).

[57] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VIII. Gravitational lensing, Astron. Astrophys. 641,
A8 (2020).

[58] T. B. Collaboration, The clustering of galaxies in the
completed SDSS-III Baryon Oscillation Spectroscopic
Survey: Cosmological analysis of the DR12 galaxy sample,
Mon. Not. R. Astron. Soc. 470, 2617 (2017).

[59] D. Scolnic et al., The Pantheonþ analysis: The full data set
and light-curve release, Astrophys. J. 938, 113 (2022).

[60] M. Moresco et al., Unveiling the Universe with emerging
cosmological probes, Living Rev. Relativity 25, 6 (2022).

[61] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri,
J. C. Zinn, and D. Scolnic, Cosmic distances calibrated to
1% precision with Gaia EDR3 parallaxes and Hubble space
telescope photometry of 75 Milky Way cepheids confirm
tension with ΛCDM, Astrophys. J. Lett. 908, L6 (2021).

[62] D. Camarena and V. Marra, On the use of the local prior on
the absolute magnitude of Type Ia supernovae in cosmo-
logical inference, Mon. Not. R. Astron. Soc. 504, 5164
(2021).

[63] C. J. A. P. Martins, The status of varying constants: A review
of the physics, searches and implications, Rep. Prog. Phys.
80, 126902 (2017).

[64] J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum,
R. F. Carswell, and M. B. Bainbridge, Indications of a
spatial variation of the fine structure constant, Phys. Rev.
Lett. 107, 191101 (2011).

[65] M. T. Murphy and K. L. Cooksey, Subaru telescope limits
on cosmological variations in the fine-structure constant,
Mon. Not. R. Astron. Soc. 471, 4930 (2017).

[66] M. T. Murphy et al., Fundamental physics with ESPRESSO:
Precise limit on variations in the fine-structure constant
towards the bright quasar HE 0515 − 4414, Astron. As-
trophys. 658, A123 (2022).

[67] Y. V. Petrov, A. I. Nazarov, M. S. Onegin, V. Y. Petrov,
and E. G. Sakhnovsky, Natural nuclear reactor at Oklo and
variation of fundamental constants: Computation of neu-
tronics of a fresh core, Phys. Rev. C 74, 064610 (2006).

[68] https://cobaya.readthedocs.io/en/latest/sampler_polychord
.html.

[69] K. A. Olive and M. Pospelov, Environmental dependence of
masses and coupling constants, Phys. Rev. D 77, 043524
(2008).

[70] T. Sekiguchi and T. Takahashi, Early recombination as a
solution to the H0 tension, Phys. Rev. D 103, 083507
(2021).

[71] T. Damour, F. Piazza, and G. Veneziano, Violations of the
equivalence principle in a dilaton-runaway scenario, Phys.
Rev. D 66, 046007 (2002).

[72] P. Touboul et al., MICROSCOPE mission: First results of a
space test of the equivalence principle, Phys. Rev. Lett. 119,
231101 (2017).

[73] P. Fadeev, J. C. Berengut, and V. V. Flambaum, Sensitivity
of 229Th nuclear clock transition to variation of the fine-
structure constant, Phys. Rev. A 102, 052833 (2020),

[74] The Simons Observatory collaboration, The Simons
Observatory, in BAAS, Vol. 51 (2019), p. 147.

[75] CMB-S4 Collaboration, CMB-S4 Science Case, Reference
Design, and Project Plan, arXiv:1907.04473

[76] LiteBIRD Collaboration, Probing Cosmic Inflation with the
LiteBIRD Cosmic Microwave Background Polarization
Survey, Prog. Theor. Exp. Phys., 11443 (2022), 114432F.

INCOMPATIBILITY OF FINE-STRUCTURE CONSTANT … PHYS. REV. D 109, 103520 (2024)

103520-15

https://doi.org/10.1103/PhysRevD.25.1527
https://doi.org/10.1103/PhysRevLett.88.031302
https://doi.org/10.1103/PhysRevLett.88.031302
https://doi.org/10.1103/PhysRevLett.130.253001
https://doi.org/10.1103/PhysRevLett.130.253001
https://doi.org/10.3847/1538-4357/ac8e04
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1103/PhysRevD.28.1243
https://arXiv.org/abs/2203.14923
https://doi.org/10.1103/PhysRevD.84.023518
https://doi.org/10.1016/j.physletb.2019.134830
https://doi.org/10.1016/j.physletb.2019.134830
https://arXiv.org/abs/1104.2932
https://github.com/brinckmann/montepython_public
https://github.com/brinckmann/montepython_public
https://doi.org/10.1016/j.dark.2018.100260
https://doi.org/10.1016/j.dark.2018.100260
https://doi.org/10.1103/PhysRevD.106.083522
https://doi.org/10.1103/PhysRevD.106.083522
https://doi.org/10.1103/PhysRevD.107.104002
https://doi.org/10.1103/PhysRevD.107.104002
https://github.com/PoulinV/AxiCLASS
https://github.com/PoulinV/AxiCLASS
https://doi.org/10.1103/PhysRevD.101.063523
https://github.com/lesgourg/class_public
https://github.com/lesgourg/class_public
https://github.com/schoeneberg/liquidcosmo
https://github.com/schoeneberg/liquidcosmo
https://github.com/cmbant/getdist
https://doi.org/10.1051/0004-6361/201937211
https://doi.org/10.1051/0004-6361/201936386
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.3847/1538-4357/ac8b7a
https://doi.org/10.1007/s41114-022-00040-z
https://doi.org/10.3847/2041-8213/abdbaf
https://doi.org/10.1093/mnras/stab1200
https://doi.org/10.1093/mnras/stab1200
https://doi.org/10.1088/1361-6633/aa860e
https://doi.org/10.1088/1361-6633/aa860e
https://doi.org/10.1103/PhysRevLett.107.191101
https://doi.org/10.1103/PhysRevLett.107.191101
https://doi.org/10.1093/mnras/stx1949
https://doi.org/10.1051/0004-6361/202142257
https://doi.org/10.1051/0004-6361/202142257
https://doi.org/10.1103/PhysRevC.74.064610
https://cobaya.readthedocs.io/en/latest/sampler_polychord.html
https://cobaya.readthedocs.io/en/latest/sampler_polychord.html
https://cobaya.readthedocs.io/en/latest/sampler_polychord.html
https://cobaya.readthedocs.io/en/latest/sampler_polychord.html
https://doi.org/10.1103/PhysRevD.77.043524
https://doi.org/10.1103/PhysRevD.77.043524
https://doi.org/10.1103/PhysRevD.103.083507
https://doi.org/10.1103/PhysRevD.103.083507
https://doi.org/10.1103/PhysRevD.66.046007
https://doi.org/10.1103/PhysRevD.66.046007
https://doi.org/10.1103/PhysRevLett.119.231101
https://doi.org/10.1103/PhysRevLett.119.231101
https://doi.org/10.1103/PhysRevA.102.052833
https://arXiv.org/abs/1907.04473
https://doi.org/10.1093/ptep/ptac150


[77] J. D. Bekenstein, Fine-structure constant variability, equiv-
alence principle, and cosmology, Phys. Rev. D 66, 123514
(2002).

[78] C. J. A. P. Martins, P. E. Vielzeuf, M. Martinelli, E.
Calabrese, and S. Pandolfi, Evolution of the fine-structure

constant in runaway dilaton models, Phys. Lett. B 743,
377 (2015).

[79] B. J. Barros and V. da Fonseca, Coupling quintessence
kinetics to electromagnetism, J. Cosmol. Astropart. Phys. 06
(2023) 048.
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