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We examine the second law of thermodynamics in the context of horizon cosmology, in particular,
whether the change of total entropy (i.e., the sum of the entropy for the apparent horizon and the entropy for
the matter fields) proves to be positive with the cosmic expansion of the universe. The matter fields inside
the horizon obey the thermodynamics of an open system as the matter fields have a flux through the
apparent horizon, which is either outward or inward depending on the background cosmological dynamics.
Regarding the entropy of the apparent horizon, we consider different forms of the horizon entropy like the
Tsallis entropy, the Rényi entropy, the Kaniadakis entropy, or even the four-parameter generalized entropy;
and determine the appropriate conditions on the respective entropic parameters coming from the second
law of horizon thermodynamics. The constraints on the entropic parameters are found in such a way that it
validates the second law of thermodynamics during a wide range of cosmic eras of the universe, particularly
from inflation to radiation dominated epoch followed by a reheating stage. Importantly, the present work
provides a model independent way to constrain the entropic parameters directly from the second law of
thermodynamics for the apparent horizon.
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I. INTRODUCTION

One of the distinctive features of Bekenstein-Hawking
entropy of a black hole is that it depends on the area of the
event horizon [1–4], unlike the classical thermodynamics
where the entropy of a thermodynamic system depends on
the volume of the same under consideration. Based on such
an interesting feature of Bekenstein-Hawking entropy, and
depending on the nonadditive statistics, various other forms
of entropies have been proposed such as Tsallis [5] and the
Rényi [6] entropies. The Barrow entropy has been recently
proposed in [7] to capture the fractal nature of a black hole
originated from the quantum gravitational effects.
Furthermore, the Sharma-Mittal (which is essentially a
combined form of the Tsallis and the Rényi entropies) [8],
the Kaniadakis entropy [9], and the entropy in the context
of loop quantum gravity (LQG) [10] are some other well-
known descriptions of entropies which are some functions
of the Bekenstein-Hawking entropy variable. Despite their
different forms, all of these entropies share some common
properties, like (a) they converge to the Bekenstein-
Hawking entropy for some suitable limit of the respective
entropic parameters, and (b) they are a monotonically

increasing function with respect to the Bekenstein-
Hawking variable. Such common properties immediately
lead to a natural question that whether there exists any
generalized entropy which can generalize all these known
entropies proposed so far. In this route, a few parameter
dependent generalized entropies have been proposed in
[11–13], which is a generalized form of all the aforemen-
tioned entropies for appropriate limits of the entropic
parameters. However, according to the conjecture made
in [12], a four-parameter dependent entropy is the minimal
version of generalized entropy. Some possible implications
of generalized entropies to cosmology as well as to black
hole physics are discussed in [12–16].
In the context of cosmology, the homogeneous and

isotropic universe acquires an apparent horizonwhich, being
a null surface, divides the observable universe from the
unobservable one. Thus, in analogy of black hole thermo-
dynamics, the apparent horizon in cosmology may also be
associated with an entropy [17–28]. Furthermore, the
entropic cosmology proves to be equivalent to holographic
cosmology with suitable holographic cutoffs which actually
depend on the entropy function under consideration [29]. In
this regard holographic cosmology, initiated by Witten and
Susskind in [30–32], earned a lot of attention as it is directly
related to the entropy construction. The most intriguing*Corresponding author: tanmoy.paul@visva-bharati.ac.in
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question in modern cosmology is to explain the accelerating
phases of the universe during two extreme curvature regimes,
namely the inflation and the dark energy era of the universe.
The holographic cosmology sourced from the aforemen-
tioned entropies successfully explains the dark energy era of
the universe for constant as well as for variable exponents of
the entropy functions, and generally known as the holo-
graphic dark energy (HDE) model [33–45]. Besides the dark
energy era, the holographic cosmology also turns out to be a
suitable candidate to explain the inflationary era during the
early stage of the universe when the size of the universe was
small and the holographic energy density is good enough to
trigger an inflation of the universe [46,47]. More interest-
ingly, the holographic cosmology provides unification of an
early inflation to a late dark energy era of the universe in a
covariant manner [48]. All of these works reflect the intense
interest on holographic or equivalently on entropic cosmol-
ogy corresponding to various entropy functions.
In the arena of entropic cosmology, the cosmological

field equations are based on the first law of thermodynam-
ics of the apparent horizon. However, a consistent cosmo-
logical scenario also demands the validation of the second
law of horizon thermodynamics, i.e., whether the change of
total entropy (which is the sum of the horizon entropy and
the entropy of the matter fields) proves to be positive with
the cosmic expansion of the universe. In the present paper
we intend to do this. In this regard, the matter fields inside
the horizon obey the thermodynamics of an open system as
the matter fields can have an inward or outward flux
through the apparent horizon. Regarding the entropy for the
apparent horizon, we will consider different forms of the
horizon entropy like the Tsallis entropy, the Rényi entropy,
the Kaniadakis entropy, or even the four-parameter gener-
alized entropy, and will determine the appropriate con-
ditions on the respective entropic parameters coming from
the second law of horizon thermodynamics. The constraints
on the entropic parameters are found in such a way that it
validates the second law of thermodynamics during a wide
range of cosmic evolution of the universe, particularly from
inflation → reheating → radiation era, respectively.
The paper is organized as follows: in Sec. II, we will

discuss the basic formalism of apparent horizon thermo-
dynamics and will determine the cosmological field equa-
tions corresponding to a general form of horizon entropy.
Section III is reserved for the thermodynamics of the matter
fields inside the horizon. In Sec. IV, we will focus on the
total entropy and its change with the cosmic time. The
paper will end with some concluding remarks in Sec. V.

II. THERMODYNAMICS OF APPARENT
HORIZON AND COSMOLOGICAL FIELD

EQUATIONS

We consider the (3þ 1)-dimensional spatially flat
Friedmann-Lemaître-Robertson-Walker (FLRW) universe,
whose metric is given by

ds2 ¼
X

μ;ν¼0;1;2;3

gμνdxμdxν ¼ −dt2 þ aðtÞ2ðdr2 þ r2dΩ2
2Þ;

ð1Þ

where dΩ2
2 is the line element of a two-dimensional sphere

of unit radius (particularly on the surface of the sphere). We
also define

ds⊥2 ¼
X

M;N¼0;1

hμνdxMdxN ¼ −dt2 þ aðtÞ2dr2: ð2Þ

The radius of the apparent horizon Rh ¼ R≡ aðtÞr for the
FLRW universe is given by the solution of the equation
hMN

∂MR∂NR ¼ 0 (see [17,18]) which immediately leads to

Rh ¼
1

H
; ð3Þ

with H ≡ 1
a
da
dt represents the Hubble parameter of the

universe. It may be noted that the apparent horizon in
the case of a spatially flat FLRWuniverse becomes equal to
the Hubble radius. The surface gravity κ on the apparent
horizon is defined as [17]

κ ¼ 1

2
ffiffiffiffiffiffi
−h

p ∂M

� ffiffiffiffiffiffi
−h

p
hMN

∂NR

�����
R¼Rh

: ð4Þ

For the metric of Eq. (1), we have R ¼ ar and obtain

κ ¼ −
1

Rh

�
1þ Ḣ

�
Rh

2

2

��
; ð5Þ

where the following expression is used:

Ṙh ¼ −HḢRh
3: ð6Þ

The surface gravity of Eq. (5) is related with the temper-
ature via Th ¼ jκj=ð2πÞ, i.e.,

Th ≡ jκj
2π

¼ 1

2πRh

����1 − Ṙh

2HRh

���� ¼ H
2π

����1þ Ḣ
2H2

����; ð7Þ

in terms of the Hubble parameter and its derivative.
Consequently, we may associate an entropy (Sh) to the
apparent horizon, which in turn follows the thermodynamic
law given by [18]

ThdSh ¼ −dEþWdV; ð8Þ
where V ¼ 4

3
πR3

h is the volume of the space enclosed by the
apparent horizon (for a different thermodynamic law, see
[26]). Moreover, E ¼ ρV is the total internal energy of the
matter fields inside the horizon, andW ¼ 1

2
ðρ − pÞ denotes

the work density by the matter fields [18,26]. Equation (8)
argues that the horizon entropy exists due to the reasons
(a) decrease of internal energy of the matter fields inside of
the horizon, denoted by the term −dE in the rhs of Eq. (8),
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and (b) the work done by the matter fields coming through
the term WdV. The decrease of internal energy of the
matter fields as well as the work done by the matter fields
may be regarded as an energy flux through the apparent
horizon. Since the apparent horizon divides the observable
universe from the unobservable one, such energy flux can
be thought of as some information loss of the observable
universe, which in turn gives rise to an entropy of the
horizon. However, here we would like to mention that a
proper understanding of microscopic origin for the entropy
of the apparent horizon still eludes us and one may see [49]
for some progress in this regard.
The following points need to be mentioned regarding the

temperature of the apparent horizon mentioned in Eq. (7):
(a) the form of Th in Eq. (7) (coming from the surface
gravity of the apparent horizon) is different from that in
[50], where the authors used Th ¼ H=ð2πÞ. Actually in the
context of black hole thermodynamics, the gravitational
field equations can be interpreted from the thermodynamics
of the event horizon, in which case the temperature of the
horizon is proportional to the surface gravity of the same
[3,20,51]. In this regard, the important point is that if
gravity has a thermodynamic connection owing to the
presence of a horizon, then the temperature of the horizon
should have a universal definition both in black hole as well
as in cosmological context. Keeping this in mind and from
the analogy of black hole thermodynamics, here in the
cosmological scenario, we similarly consider the temper-
ature of the apparent horizon to be the surface gravity of the
same [as per Eq. (7)] which is also widely accepted in
[14,18,19,26,27]. Moreover, it may be noted that the Th in
Eq. (7) reduces to that used in [50] for a de Sitter universe.
(b) Equation (7) clearly indicates that Th goes to zero
during the radiation era (i.e. for H ∝ a−2, a is the scale
factor of the universe), in which case the trace of the
energy-momentum tensor of the matter field inside of the
horizon vanishes. This is analogous to the case of an
extremal Reissner-Nordstrom black hole, in the context of
black hole thermodynamics, where the temperature of the
event horizon vanishes due to Q ¼ M (where Q and M
represent charge and mass of the black hole, respectively).
Therefore the radiation dominated era may be considered as
an extremal case in the sector of horizon cosmology. As a
result, the rhs of Eq. (8) consequently vanishes and thus the
thermodynamic law (8) becomes a trivial one during the
radiation era, due to which Eq. (8) is unable to extract the
change of horizon entropy (i.e., dSh) when the universe
undergoes through radiation dominated era. (c) Finally, we
would like to mention that Th always comes with a positive
value (including Th ¼ 0 for a radiation dominated uni-
verse) due to the absolute value of κ.
In the context of entropic cosmology, the thermodynam-

ics of the apparent horizon governed by Eq. (8) fixes the
gravitational field equations, and depending on the form of
Sh, the field equations get modified. However irrespective
of the form, Sh shares some common properties:

(i) Sh is a monotonic increasing function of the
Bekenstein-Hawking entropy variable S ¼ A=ð4GÞ
(where A ¼ 4πR2

h denotes the area of the apparent
horizon).

(ii) Sh goes to zero in the limit of S → 0, which can be
thought as equivalent of the third law of thermody-
namics.

In the following, we derive the gravitational field equations
from Eq. (8) for a general form of the horizon entropy given
by Sh. Taking E ¼ ρV and W ¼ 1

2
ðρ − pÞ into account,

Eq. (8) can be written by

ThṠh ¼ −ρ̇V −
1

2
ðρþ pÞV̇; ð9Þ

where the overdot symbolizes d
dt of the respective quantity.

Because of the energy conservation (local conservation) of
the matter fields inside of the horizon, we have ∇μTμν ¼ 0

(where ∇μ is the covariant derivative formed by the metric
gμν, and Tμν is the energy-momentum tensor of the matter
field) which, due to the FLRW metric of Eq. (1), takes the
following form:

ρ̇þ 3Hðρþ pÞ ¼ 0: ð10Þ

Using the above expression into Eq. (9), one gets

ThṠh ¼ ðρþ pÞ
�
3HV −

V̇
2

�
; ð11Þ

which, owing to V ¼ 4
3
πR3

h, takes the following form:

Ṡh ¼
8π

H3
ðρþ pÞ: ð12Þ

As mentioned above, Sh is a function of the Bekenstein-
Hawking entropy variable S, and thus Eq. (12) can be
expressed by

Ḣ

�
∂Sh
∂S

�
¼ −4πGðρþ pÞ; ð13Þ

where we have used S ¼ π
GH2 as the Bekenstein-Hawking

entropy and Ṡ ¼ − 2π
G ð ḢH3Þ. The above equation acts as the

second Friedmann equation in the context of horizon
cosmology where the entropy of the apparent horizon is
given by Sh. Clearly for Sh ¼ S, i.e., when the entropy of
the horizon is given by the Bekenstein-Hawking entropy,
Eq. (13) reduces to the usual Friedmann equation for
Einstein gravity. Integrating both sides of Eq. (13), by
taking the energy conservation of the matter fields into
account, yields the following expression:

Z �
∂Sh
∂S

�
dðH2Þ ¼ 8πG

3
ρþ Λ

3
; ð14Þ
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where Λ is the constant of integration (also known as the
cosmological constant), and the integration can be per-
formed once we consider a specific form of the horizon
entropy in terms of the Bekenstein-Hawking entropy
variable [i.e., Sh ¼ ShðSÞ]. Equation (14) acts as the first
Friedmann equation in the horizon cosmology for a general
form of the horizon entropy, and once again, it reduces to
the usual Friedmann equation for Sh ¼ S. Thus, the
entropic cosmology with the Bekenstein-Hawking horizon
entropy is similar to that in case of Einstein gravity;
otherwise, some other form of the horizon entropy will
result to a modified Friedmann equation. For instance, in
the case of the Tsallis entropy where Sh ¼ Sδ (here δ is a
parameter and known as the Tsallis exponent), Eqs. (14)
and (13) become

H2

�
δ

2 − δ

��
π

GH2

�
δ−1

¼ 8πG
3

ρþ Λ
3
; ð15Þ

and

δ

�
π

GH2

�
δ−1

Ḣ ¼ −4πGðρþ pÞ; ð16Þ

respectively. The corresponding field equations for other
forms of horizon entropies can be similarly obtained, which
will be evaluated in following sections. Here it deserves
mentioning that, in order to derive the Friedmann Eqs. (13)
and (14), we have used only the first law of thermody-
namics of the apparent horizon. However in the context of
horizon thermodynamics, a consistent cosmology also
demands the validity of the second law of thermodynamics,
i.e. the change of total entropy (which is the sum of the
horizon entropy and the entropy of the matter fields) with
cosmic time should be positive. In this regard, beside the
thermodynamics of the apparent horizon governed by
Eq. (8), we also need to consider the thermodynamics of
the matter fields.

III. THERMODYNAMICS OF THE MATTER
FIELDS INSIDE OF THE HORIZON

The matter fields inside of the apparent horizon obey the
following thermodynamic law:

TmdSm ¼ dðρVÞ þ pdV − μdN; ð17Þ
where Tm and Sm represent the temperature and the entropy
of the matter fields, respectively; note that Tm, in general, is
different than the horizon temperature (see Sec. IV for the
details). As we will discuss later, the matter fields have a
flux through the apparent horizon, and moreover, the flux is
either outward or inward depending on the background
cosmic evolution of the universe. Owing to the presence of
such flux, the matter fields obey the thermodynamic law
(17) applicable for an open system where μ symbolizes the

chemical potential and dN represents the change of matter
particles within the horizon in time dt. Therefore the
effective work done by the matter fields is given by
dWm ¼ pdV − μdN. Equation (17) immediately leads to

TmṠm ¼ ρ̇V þ ðρþ pÞV̇ − μṄ; ð18Þ

which, due to V ¼ 4π
3H3, takes the following form:

TmṠm ¼ −
4π

H2
ðρþ pÞ

�
1þ Ḣ

H2

�
− μṄ: ð19Þ

For a better understanding of Ṅ, we need to understand that
the comoving expansion speed of the universe differs from
the speed of the formation of the apparent horizon. In
particular, the comoving speed of the universe at a physical
distance d from an observer is given by vc ¼ Hd, while the
speed of the formation of the apparent horizon comes as
vh ¼ −Ḣ=H2. Therefore vc ¼ 1 at the apparent horizon
(i.e. at d ¼ 1=H). Thus, vc > vh occurs for an accelerating
universe when − Ḣ

H2 < 1; while for a decelerating universe,

when − Ḣ
H2 > 1, the comoving expansion of the universe

remains less than the speed of the formation of the apparent
horizon (i.e., vc < vh). To illustrate this issue, let us focus
on Fig. 1 where, for instance, we show the case of vc > vh
(the other case of vc < vh can be similarly demonstrated).
The concentric spheres in Fig. 1 denote
(i) S1: the visible universe bounded by the apparent

horizon at time t with respect to a comoving
observer (labeled by O). Therefore the radius of
the sphere is given by OS1 ¼ 1

HðtÞ, and thus the

volume of the sphere is VðtÞ ¼ 4π=ð3H3Þ.
(ii) S2: the visible universe bounded by the apparent

horizon at time tþ dt with respect to a comoving

FIG. 1. Comparison between the formation of apparent horizon
and the comoving expansion of the universe, in order to calculate
dN
dt . The detailed explanation of the figure is given below.
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observer (labeled by O). Therefore OS2 ¼ 1
HðtþdtÞ ¼

1
H − Ḣ

H2 dt (at the leading order in dt), and thus the
volume of the sphere is given by

Vðtþ dtÞ ¼ 4π

3

�
1

H
−

Ḣ
H2

dt

�
3

:

(iii) S3: Because of the difference between vc and vh (as
mentioned earlier), let us consider that the surface S1
moves from S1 → S3 (within time dt) by the
comoving expansion speed. Therefore the volume
of the sphere S3 is given by

Vcðtþ dtÞ ¼ 4π

3

�
1

H
þ dt

�
3

;

where we use vcðtÞ ¼ 1 at d ¼ 1=H.
In Fig. 1, the visible universe at time t and at tþ dt are

described by the spheres S1 and S2, respectively. However,
due to vc ≠ vh, the amount of matter fields within S1 at time
t is not equal to that within S2 at tþ dt. This indicates that
there exists a flux of the matter fields through the horizon.
In order to calculate this, we determine

Vcðtþ dtÞ − Vðtþ dtÞ ¼ 4π

3

�
1

H
−

Ḣ
H2

dt

�
3

−
4π

3

�
1

H
þ dt

�
3

¼ 4π

H2
ð1 − ϵÞdt;

within the first order in dt, or equivalently, we have

d
dt

½Vcðtþ dtÞ − Vðtþ dtÞ� ¼ 4π

H2
ð1 − ϵÞ; ð20Þ

where ϵ ¼ −Ḣ=H2 (generally known as slow roll param-
eter). The amount of matter fields enclosed within Vcðtþ
dtÞ and Vðtþ dtÞ will eventually lead to the flux of the
same through the horizon at time dt. Considering the
energy per particle to be u, we can write

dN
dt

¼ −
1

u
d
dt

½Vcðtþ dtÞ − Vðtþ dtÞ�; ð21Þ

where the negative sign indicates that the particle number
inside the horizon decreases (with time) when Vcðtþ dtÞ >
Vðtþ dtÞ [due to vc > vh used in Fig. 1, we get
Vcðtþ dtÞ > Vðtþ dtÞ. However for a decelerating uni-
verse, when vc < vh, one will obtain Vcðtþ dtÞ <
Vðtþ dtÞ]. Using Eq. (20), we immediately get

dN
dt

¼ 1

u

�
4π

H2

�
ðϵ − 1Þ: ð22Þ

Equation (22) argues that the rate of change of the particle
number inside of the horizon in turn depends on whether the
parameter ϵ is larger or less than unity. Two different cases
appear in this regard—(a) during the accelerated expansion
of the universe when ϵ < 1 (for instance, during the
inflation), Ṅ comes to be negative from Eq. (22), or
equivalently, the matter fields have an outward flux through
the horizon, while (b) Ṅ becomes positive during the
decelerated expansion when ϵ > 1 (i.e., during the reheating
and radiation era). With the chemical potential
μ≡ ∂

∂N ðtotal energyÞ ¼ u, we have the following expression
from Eq. (22):

μṄ ¼ −
4πρ

H2
ð1 − ϵÞ: ð23Þ

Plugging this into Eq. (17) yields

TmṠm ¼ −
4π

H2
ðρþ pÞ

�
1þ Ḣ

H2

�
þ 4πρ

H2
ð1 − ϵÞ; ð24Þ

which is the final expression of Ṡm, and we will use this at
some later stage.

IV. CHANGE OF TOTAL ENTROPY WITH
COSMIC EXPANSION

We start this section by defining the total entropy of the
visible universe (bounded by the apparent horizon) as the
sum of horizon entropy and the entropy of the matter fields
inside of the horizon, in particular,

Stot ¼ Sh þ Sm: ð25Þ

According to the second law of thermodynamics of the
apparent horizon, the change of Stot needs to be positive
with cosmic expansion of the universe, i.e.,

dStot
dt

> 0 ⇒
dSh
dt

þ dSm
dt

> 0: ð26Þ

In the previous sections, Eqs. (12) and (24) provide the
change of horizon entropy as well as the change of matter
fields’ entropy (with respect to the cosmic time). Having
obtained these, we immediately determine the change of
total entropy as

Ṡh þ Ṡm ¼ 8π

H3
ðρþ pÞ þ 1

Tm

�
−
4π

H2
ðρþ pÞ

�
1þ Ḣ

H2

�

þ 4πρ

H2
ð1 − ϵÞ

�
: ð27Þ

Consequently we get
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Th
dSh
dt

þ Tm
dSm
dt

¼ −2πðρþ pÞ
�
Ḣ
H4

�
þ 4πρ

H2
ð1 − ϵÞ;

ð28Þ

where Th and Tm represent the temperature of the apparent
horizon and of the matter field, respectively.
The above expression depicts that for a de Sitter (dS)

universe, when ϵ ¼ 0 or H ¼ constant, ThṠh þ TmṠm
comes as a positive quantity. Actually the horizon entropy
in a dS universe remains constant (with time)—this is
because the apparent horizon becomes static in a dS
universe and thus the entropy of the horizon remains
constant with time, or equivalently, this can be understood
directly from Eq. (12) as ρþ p ¼ 0 for ϵ ¼ 0. However, the
entropy of matter fields inside the horizon changes with the
cosmic expansion even in a dS universe. This is due to
the fact that vc > vh in the dS expansion [where vh ¼ 0 for
the dS case; see the discussion about vc and vh after
Eq. (19)], and consequently, there exits an outward flux of
the matter field through the apparent horizon. Therefore the
matter field in a dS universe, which is associated with
cosmological constant, follows ρ̇ ¼ V̇ ¼ 0 and Ṅ < 0 (the
negative Ṅ represents the outward flux of the matter field
from inside the horizon). Here it deserves mentioning that,
due to the nature of cosmological constant, the total energy
of the matter field inside the horizon (i.e., E ¼ ρV) remains
constant despite the existence of the outward flux through
the horizon. As a result, the entropy of the matter field in
the dS scenario increases with time according to the
thermodynamics of the matter field.
Coming back to Eq. (28), it shows that ThṠh þ TmṠm

depends on the energy density and the pressure of the
matter fields which in turn are controlled by the specific
model under consideration. However, in order to examine
the constraints on entropic parameters in a model inde-
pendent way direct from the second law of horizon
thermodynamics, we need to eliminate ρ and p from the
above expression by using the Friedmann Eqs. (13) and
(14). As a result, we obtain

Th
dSh
dt

þ Tm
dSm
dt

¼ ϵ2

2G

�
∂Sh
∂S

�
−
3ðϵ − 1Þ

2G
1

H2

Z �
∂Sh
∂S

�
dðH2Þ; ð29Þ

with recall that ϵ ¼ −Ḣ=H2.
Based on [52], we may consider that the temperature of

the matter fields inside of the horizon coincides with the
temperature of the latter except during the radiation era. In
particular,

Th ≠ Tm during radiation era;

Th ¼ Tm otherwise: ð30Þ

The fact that Th ≠ Tm in the radiation era is also expected
as the horizon temperature vanishes during the same, while
it is well known that the temperature of radiation fluid goes
by Tm ∝ a−1 and hence is nonzero. Therefore other than the
radiation era, the second law of thermodynamics of
apparent horizon can be equivalently written by

Th
dSh
dt

þ Tm
dSm
dt

> 0; ð31Þ

as Th ¼ Tm > 0. As a whole, we will use Eq. (29) to
examine the validation of the second law of horizon
thermodynamics from inflation to reheating era; such
examination during the radiation era needs to be done
separately from Eq. (29) because of Th ¼ 0 and the
thermodynamic law (8) [by using which, Eq. (29) is
derived] identically vanishes from both sides in the radi-
ation period.
Equation (29) demonstrates that ThṠh þ TmṠm depends

on the form of the horizon entropy as well as on the
evolution of the Hubble parameter through ϵ ¼ −Ḣ=H2. In
the next few subsections, we will consider different forms
of the horizon entropy like the Tsallis entropy, the Rényi
entropy, the Kaniadakis entropy, or even the four-parameter
generalized entropy; and examine the appropriate condi-
tions in order to validate the second law of horizon
thermodynamics. Moreover, for each horizon entropy,
we will further consider different cosmological epochs of
the universe [due to presence of the parameter ϵ in the rhs of
Eq. (29)]. In this regard, we will particularly concentrate
on the following evolutionary stages of the universe:
inflation→reheating→radiationera, respectively. Thereby
the early stage of the universe is described by a de Sitter (or
a quasi–de Sitter) inflation when the Hubble parameter
remains almost constant (or equivalently, ϵ ≃ 0). After the
inflation ends, the universe enters to the reheating era,
during which the matter energy density decays to relativ-
istic particles with a certain decay width generally consid-
ered to be constant (in the same spirit of [53,54]). During
the reheating evolution of the universe, the Hubble param-
eter is generally parametrized by a power law form of the
scale factor, i.e., HðaÞ ∝ a−

3
2
ð1þω0Þ (with a being the scale

factor of the universe and ω0 is a constant). Here ω0,
defined by ω0 ¼ −1 − 2Ḣ=ð3H2Þ, is the equation of state
(EOS) parameter of the reheating era and thus related to ϵ
by ϵ ¼ 3

2
ð1þ ω0Þ. Moreover, the ω0 generally lies between

0 ≤ ω ≤ 1 depending on the background dynamics of the
same. Based on the above arguments, we may write the
Hubble parameter during inflation and during reheating as

(i) during the inflation: H ¼ HI (constant);
(ii) during the reheating era: HðaÞ ¼ Hfð aafÞ−

3
2
ð1þω0Þ,

where ω0 is the reheating EOS parameter and

0 ≤ ω0 ≤ 1. ð32Þ
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Here HI is the inflationary energy scale; the suffix “f” with
some quantity denotes the same at the end of inflation, for
instance, af is the scale factor at the end of inflation. Clearly
the Hubble parameter H ¼ HðaÞ written in the above
fashion is continuous at the junction between two stages.
We would like to mention that the evolution of the Hubble
parameter is governed by Eqs. (13) and (14) for a given
form of entropy of the apparent horizon, from which one
can reconstruct ρ ¼ ρðaÞ and p ¼ pðaÞ at different cosmic
eras by using the corresponding H ¼ HðaÞ from Eq. (32).

A. Tsallis entropy

For the systems with long range interactions where the
Boltzmann-Gibbs entropy is not applied, one needs to
introduce the Tsallis entropy which is given by Sh ≡ ST ¼
Sδ (where the suffix “T” stands for Tsallis entropy and
S ¼ π

GH2 is the Bekenstein-Hawking entropy), the cosmo-
logical field equations are given by Eqs. (15) and (16),
respectively. Owing to the Tsallis entropy, the integral
present in the last term of Eq. (29) can be determined as
follows:

1

H2

Z �
∂ST
∂S

�
dðH2Þ ¼ δ

ð2 − δÞ
�

π

GH2

�
δ−1

: ð33Þ

Plugging the above expression into Eq. (29), and by
using ∂ST

∂S ¼ δð π
GH2Þδ−1, yields the change of total entropy, in

particular,

Th

�
dST
dt

�
þ Tm

�
dSm
dt

�

¼
�

δ

2G

��
π

GH2

�
δ−1

�
ϵ2 −

3ðϵ − 1Þ
ð2 − δÞ

�
: ð34Þ

Therefore in the case of Tsallis entropy, the quantity
ThṠT þ TmṠm takes the above form which needs to be
positive according to the second law of thermodynamics of
the apparent horizon. As mentioned after Eq. (29), due to
the dependence of ϵ we will examine the conditions for the
positivity of the rhs of Eq. (34) by considering different
cosmological epochs of the universe from the inflation to
the radiation dominated era.
(1) During inflation. Here ϵ ≃ 0 (which is well approxi-

mated during inflation in the present context), or
equivalently, H ¼ HI (constant). As a result,
Eq. (34) leads to the following expression:

Th

�
dST
dt

�
þTm

�
dSm
dt

�
¼ 3

ð2−δÞ
�

δ

2G

��
π

GH2

�
δ−1

:

ð35Þ

Therefore ThṠT þ TmṠm > 0 during inflation re-
quires the constraint on the Tsallis exponent as

0 < δ < 2: ð36Þ

(2) During reheating stage. Recall that the EOS param-
eter during the reheating stage is symbolized by ω0

which is related to ϵ by

ϵ ¼ 3

2
ð1þ ω0Þ: ð37Þ

Because of the above form of ϵ, Eq. (34) takes the
following form:

Th

�
dST
dt

�
þ Tm

�
dSm
dt

�

¼ 9

4

ð1þ ω0Þ2
ð2 − δÞ

�
δ

2G

��
π

GH2

�
δ−1

×
�
2ð2þ 3ω0 þ 3ω2

0Þ
3ð1þ ω0Þ2

− δ

�
: ð38Þ

Consequently ThṠT þ TmṠm > 0 during the reheat-
ing stage demands the following constraints on the
Tsallis exponent as

0 < δ <
2ð2þ 3ω0 þ 3ω2

0Þ
3ð1þ ω0Þ2

: ð39Þ

The fact that the reheating EOS parameter generally
lies within ω0 ¼ ½0; 1� allows the quantity
2ð2þ3ω0þ3ω2

0
Þ

3ð1þω0Þ2 to have a minimum given by

Min

�
2ð2þ 3ω0 þ 3ω2

0Þ
3ð1þ ω0Þ2

�
¼ 5

4
; ð40Þ

and thus Eq. (39) is immediately written as

0 < δ <
5

4
: ð41Þ

(3) During radiation era. According to the discussion
after Eq. (31), the second law of horizon thermo-
dynamics during the radiation era needs to be treated
separately from Eq. (34). Considering the radiation
fluid as an ideal Bose gas having temperature Tm,
the entropy of the radiation inside of the apparent
horizon is given by

Sm ∝ VT3
m ∝

�
1

aH

�
3

; ð42Þ

where we use V ¼ 4π
3H3 and Tm ∝ a−1. Consequently,

the change of Sm (with respect to the cosmic time) is
obtained as
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Ṡm ∝
3

a3H2
ðϵ − 1Þ; ð43Þ

with ϵ ¼ −Ḣ=H2. Since the universe during the
radiation stage goes through a decelerated expan-
sion, the parameter ϵ must be larger than unity. This
in turn argues from Eq. (43) that the entropy of the
radiation fluid inside of the horizon increases with
time, in particular,

Ṡm > 0; ð44Þ

during the radiation era. Besides the entropy of the
matter fields, we also need to calculate the change of
the horizon entropy (which is the Tsallis entropy in
the present case). For this purpose, by using
ST ¼ Sδ, we get

ṠT ¼ −
2πδ

G

�
π

GH2

�
δ−1

�
Ḣ
H3

�
; ð45Þ

where we use S ¼ π=ðGH2Þ. Owing to the Fried-
mann equations for Tsallis entropy from Eqs. (15)
and (16), the above equation turns out to be

ṠT ¼ 4π

GH

�
δ

2 − δ

��
π

GH2

�
δ−1

; ð46Þ

which is positive for δ < 2. Therefore Eqs. (44) and
(46) clearly argue that the change of total entropy
during the radiation era proves to be positive for

0 < δ < 2: ð47Þ

As a whole, the constraint on the Tsallis exponent, from
inflation to radiation dominated era, comes as

(i) during inflation: 0 < δ < 2 [from Eq. (36)];
(ii) during reheating era: 0 < δ < 5

4
[from Eq. (41)];

(iii) during radiation era: 0 < δ < 2 [from Eq. (47)].
Because of the reason that δ remains constant with the
cosmic expansion of the universe, all of the above con-
straints on δ during different cosmic eras get simultane-
ously fulfilled if it follows

0 < δ < Min

�
2;
5

4
; 2

	
; ð48Þ

or equivalently,

0 < δ <
5

4
: ð49Þ

Therefore in the case of Tsallis entropy, the second law of
thermodynamics of apparent horizon is ensured during the
entire cosmic evolution of the universe (i.e, from

inflation → reheating → radiation era) if the Tsallis expo-
nent lies within the range given by Eq. (49). Here it may be
noted that such range of δ also covers the case of the
Bekenstein-Hawking entropy where δ ¼ 1.

B. Rényi entropy

In the case of Rényi entropy for the apparent horizon,
given by

Sh ≡ SR ¼ 1

α
ln ð1þ αSÞ; ð50Þ

where α is a constant (known as the Rényi exponent) and
S ¼ π=ðGH2Þ is the Bekenstein-Hawking entropy, the
Friedmann equations [i.e., Eqs. (14) and (13)] become

H2

�
1 −

�
πα

GH2

�
ln

�
1þ GH2

πα

��
¼ 8πG

3
ρ; ð51Þ

and

Ḣ

�
GH2=ðπαÞ

1þ GH2=ðπαÞ
�

¼ −4πGðρþ pÞ; ð52Þ

respectively (recall that ρ and p represent the energy
density and the pressure for normal matter fields inside
of the horizon). With the form of the Rényi entropy, the
integral in Eq. (29) is evaluated as

1

H2

Z �
∂SR
∂S

�
dðH2Þ ¼ 1 −

�
πα

GH2

�
ln
�
1þ GH2

πα

�
; ð53Þ

and by using the above expression into Eq. (29) yields the
following form for the change of total entropy (horizon
entropyþ entropy of matter fields); in particular, we obtain

Th
dSR
dt

þ Tm
dSm
dt

¼ ϵ2

2G

�
GH2=ðπαÞ

1þGH2=ðπαÞ
�

−
3ðϵ − 1Þ

2G

�
1 −

�
πα

GH2

�
ln

�
1þ GH2

πα

��
: ð54Þ

Clearly, ThṠR þ TmṠm explicitly depends on the Hubble
parameter. Thus, the condition ThṠR þ TmṠm > 0, coming
from the second law of thermodynamics of the apparent
horizon, needs to be examined for different cosmic eras of
the universe [see Eq. (32) for the Hubble parameter at
different era].
(1) During inflation. The slow roll parameter takes

ϵ ≃ 0 during inflation, and consequently, Eq. (54)
is given by
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Th

�
dSR
dt

�
þ Tm

�
dSm
dt

�

¼ 3

2G

�
1 −

πα

GH2
I
ln

�
1þGH2

I

πα

��
; ð55Þ

where, recall that HI is considered to be the constant
Hubble parameter during the inflation [see Eq. (32)].
Now the function [within the curly braces of
Eq. (55)], namely,

f

�
πα

GH2
I

�
¼ 1 −

πα

GH2
I
ln

�
1þ GH2

I

πα

�
;

is positive valued for α > 0; otherwise, the function
is either negative valued or becomes undefined [in

particular, fð πα
GH2

I
Þ is not defined in the range

πα
GH2

I
¼ ½−1; 0�]. Therefore the condition ThṠR þ

TmṠm > 0 gets satisfied for positive Rényi expo-
nent, i.e., for

α > 0; ð56Þ

during inflation.
(2) During reheating stage. The Hubble parameter

during the reheating stage is shown in Eq. (32)
where the reheating EOS parameter ω0 is related to ϵ
by ϵ ¼ 3

2
ð1þ ω0Þ. Using these into Eq. (54) along

with a little bit of simplification, we get

Th

�
dSR
dt

�
þ Tm

�
dSm
dt

�
¼ 9ð1þ ω0Þ2

8G

�
GH2

f

πα

��
a
af

�
−3ð1þω0Þ�

1þ GH2
f

πα

�
a
af

�
−3ð1þω0Þ�−1

−
3ð1þ 3ω0Þ

4G

�
1 −

πα

GH2
f

�
a
af

�
3ð1þω0Þ

ln

�
1þGH2

f

πα

�
a
af

�
−3ð1þω0Þ��

: ð57Þ

Here af represents the scale factor at the end of
inflation, and thus the scale factor during the
reheating era obeys a > af . Therefore the term
present within the curly braces in the second line
of Eq. (57) becomes positive for

α > GH2
f =π; ð58Þ

which, in turn, ensures the positivity of ThṠR þ
TmṠm during the reheating stage. We would like to
mention that Hf , is a model dependent quantity that
depends particularly on the specific forms of the
energy density and the pressure of the matter fields.
Actually Eqs. (51) and (52), along with some
specific forms of ρ and p, control the evolution of
the Hubble parameter in the case of Rényi entropy;
and thus the Hf gets fixed by these equations with
certain ρ and p. For instance, if the matter field is
given by a canonical scalar field, then ρ ¼ 1

2
Φ̇2 þ

VðΦÞ and p ¼ 1
2
Φ̇2 − VðΦÞ [where Φ is the scalar

field and VðΦÞ is its potential]: in this case, the
scalar field potential controls the Hubble parameter
as per Eqs. (51) and (52), and thus fixes Hf .
However in the current work, rather than considering
any particular model, our main motive is to find
the constraints on entropic exponent(s) in a
modelindependent way from the second law of
horizon thermodynamics.

(3) During radiation era. We have established in
Eq. (44) that the radiation fluid inside the apparent
horizon exhibits an increasing entropy with the

cosmic expansion, Ṡm > 0 during the radiation
dominated stage. Moreover, the change of horizon
entropy (which is the Rényi entropy in the present
case) is obtained from Eq. (50) as follows:

ṠR ¼ −
2π

G

�
Ḣ

H3ð1þ πα=ðGH2ÞÞ
�
; ð59Þ

which, due to Ḣ < 0 during the radiation era, is
positive for α > 0. Therefore the validity of the
second law of horizon thermodynamics, i.e.,
Ṡm þ ṠR > 0, results in the following constraint:

α > 0: ð60Þ

As a whole, the constraint on the Rényi exponent, from
inflation to radiation dominated eras followed by a reheat-
ing stage, comes as

(i) during inflation: α > 0 [from Eq. (56)];
(ii) during reheating era: α > GH2

f =π [from Eq. (58)];
(iii) during radiation era: α > 0 [from Eq. (60)].

Since α is a constant with the cosmic expansion of the
universe, all of the above constraints on α during different
cosmic eras get concomitantly fulfilled if it obeys

α > Max½0; GH2
f =π; 0�; ð61Þ

which is equivalent to

α > GH2
f =π: ð62Þ
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The monotonic decreasing behavior of the Hubble param-
eter (with the cosmic time) is indeed ensured from Eq. (52)
as the matter fields obey the null energy condition during
the standard big bang cosmology. Therefore in the case of
Rényi entropy, the second law of thermodynamics of
apparent horizon is valid during the entire cosmic evolution
of the universe if the Rényi exponent lies within the range
given by Eq. (62).

C. Kaniadakis entropy

The Kaniadakis entropy function takes the following
form:

Sh ≡ SK ¼ 1

K
sinhðKSÞ; ð63Þ

where K is the Kaniadakis exponent, and once again, S
symbolizes the Bekenstein-Hawking entropy. Using ∂SK

∂S ¼
coshðKSÞ and S ¼ π=ðGH2Þ, the Friedmann equations, i.e.
Eqs. (13) and (14), become

H2

�
cosh

�
Kπ
GH2

�
−
�

Kπ

GH2

�
shi

�
Kπ

GH2

��
¼ 8πG

3
ρ; ð64Þ

and

Ḣ cosh

�
Kπ
GH2

�
¼ −4πGðρþ pÞ; ð65Þ

respectively. Here shiðzÞ is the “Sinh integral” function and
is defined by shiðzÞ ¼ R

z
0 dt sinhðtÞ=t. Moreover, the inte-

gral in Eq. (29), for Kaniadakis entropy, is obtained as

1

H2

Z �
∂SK
∂S

�
dðH2Þ¼ cosh

�
kπ
GH2

�
−
�

kπ
GH2

�
shi

�
kπ
GH2

�
;

ð66Þ

using which into Eq. (29), we get

Th

�
dSK
dt

�
þ Tm

�
dSm
dt

�
¼

�
1

2G

�
ϵ2 cosh

�
kπ
GH2

�
−
�

3

2G

�
ðϵ− 1Þ

�
cosh

�
kπ
GH2

�
−
�

kπ
GH2

�
shi

�
kπ
GH2

��
: ð67Þ

Having obtained Eq. (67), we now examine the condition ThṠK þ TmṠm > 0, in the case of Kaniadakis entropy, during a
different cosmic era of the universe.
(1) During inflation. Here H ¼ HI or ϵ ¼ 0 [see Eq. (32)], and hence Eq. (67) is given by

Th

�
dSK
dt

�
þ Tm

�
dSm
dt

�
¼ 3

2G

�
cosh

�
Kπ

GH2
I

�
−
�

Kπ

GH2
I

�
shi

�
Kπ
GH2

I

��
: ð68Þ

It is clear that the function within the curly braces in
the rhs of Eq. (68) needs to be positive in order to
validate the second law of thermodynamics during
the inflation. To have a better understanding, we give
a plot of the function with respect to the variable Kπ

GH2

in Fig. 2 which demonstrates that the function
acquires positive values in the range given by
−1.4≲ Kπ

GH2
I
≲ 1.4. Therefore the condition ThṠK þ

TmṠm > 0 gets satisfied during the inflation for the
following range of the Kaniadakis exponent:

−1.4
�
GH2

I

π

�
≲ K ≲ 1.4

�
GH2

I

π

�
; ð69Þ

whereHI is the inflationary Hubble parameter and is
a model dependent quantity, as discussed
after Eq. (58).

(2) During reheating stage. The Hubble parameter
evolves according to Eq. (32), and moreover, the
reheating EOS parameter ω0 is related to ϵ by
ϵ ¼ 3

2
ð1þ ω0Þ. Plugging these into Eq. (67) yields

the following expression:

Th

�
dSK
dt

�
þ Tm

�
dSm
dt

�
¼ 3ð1þ 3ω2

0Þ
8G

cosh

�
Kπ
GH2

f

�
a
af

�
3ð1þω0Þ�

þ 3ð1þ 3ω0Þ
4G

�
Kπ
GH2

f

��
a
af

�
3ð1þω0Þ

shi

�
Kπ
GH2

f

�
a
af

�
3ð1þω0Þ�

: ð70Þ
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The rhs of Eq. (70) contains a “Cosh” function and a
“Shi” function. Owing to the fact that coshðzÞ as
well as z × shiðzÞ remain positive for all real z, we
may argue that the expression in the rhs of Eq. (70) is
positive for all possible values of Kaniadakis ex-
ponent K. Therefore in the case of Kaniadakis
entropy, the second law of horizon thermodynamics
during the reheating stage is ensured for the entire
range of K.

(3) During radiation era. In the case of Kaniadakis
entropy, the change of horizon entropy comes as

ṠK ¼ −
2π

G
cosh

�
Kπ

GH2

��
Ḣ
H3

�
;

and the change of the entropy for the radiation fluid
inside the horizon is given by Eq. (43), i.e.,

Ṡm ∝
3

a3H2
ðϵ − 1Þ:

Therefore the change of the total entropy during the
radiation dominated epoch becomes

Ṡm þ ṠK ∼
3

a3H2
ðϵ − 1Þ − 2π

G
cosh

�
Kπ

GH2

��
Ḣ
H3

�
;

ð71Þ

which, due to ϵ > 1, is indeed positive for all
possible values of K.

As a whole, the constraint on the Kaniadakis exponent,
from inflation to reheating, is obtained as

(i) during inflation: −1.4ðGH2
I

π Þ≲K≲1.4ðGH2
I

π Þ [from
Eq. (69)];

(ii) during reheating and radiation era: all possible
values of K [see the discussion after Eqs. (70)
and (71), respectively].

Because of the fact that K should not vary with the cosmic
expansion of the universe as it is a constant, all of the above
constraints on K during different cosmic eras get concomi-
tantly fulfilled if it obeys

−1.4
�
GH2

I

π

�
≲ K ≲ 1.4

�
GH2

I

π

�
: ð72Þ

Therefore in the case of Kaniadakis entropy, the second law
of thermodynamics of apparent horizon is valid during the
entire cosmic evolution of the universe if the Kaniadakis
exponent satisfies Eq. (72). The inflationary Hubble
parameter HI can be determined from the Friedmann
equations [i.e., Eqs. (64) and (65)] with specific forms
of ρ and p. However, this is not the subject of the present
paper as we are interested to determine the constraints on
entropic exponent(s) in a model independent way, particu-
larly from the second law of horizon thermodynamics.

D. Four-parameter generalized entropy

As mentioned in the Introduction that recently there has
been an attempt to generalize the known entropies for the
apparent horizon proposed so far (like the Tsallis entropy,
the Rényi entropy, the Barrow entropy, the Sharma-Mittal
entropy, the Kaniadakis entropy, and the loop quantum
gravity entropy). With this motivation, a six-parameter and
a four-parameter generalized entropy has been proposed
in [11,12], respectively, which leads to various forms of
horizon entropies (in particular, the Tsallis entropy, the
Rényi entropy, the Barrow entropy, the Sharma-Mittal
entropy, the Kaniadakis entropy, and the loop quantum
gravity entropy) for suitable representation of the entropic
parameters. However, it has been argued in [12] that the
minimum number of parameters required in a generalized
entropy function that can generalize all the aforementioned
entropies is equal to 4. Thus, we will consider the four-
parameter generalized entropy, namely,

Sh ≡ Sg½αþ;α−;β; γ� ¼
1

γ

��
1þ αþ

β
S

�
β

−
�
1þ α−

β
S

�
−β
	
;

ð73Þ

in the present context, and will examine its validation under
the second law of thermodynamics of the apparent horizon.
Here the suffix “g” in Sg stands for generalized entropy,
and α�, β and γ are the corresponding entropic parameters.
With the above form of Sg, the corresponding Friedmann
equations from Eqs. (13) and (14) take the following form:

–2 –1 0 1 2

–1.0

0.0

0.5

1.0

–0.5

FIG. 2. The function present within the curly braces in the rhs
of Eq. (68), namely Fð Kπ

GH2
I
Þ ¼ coshð Kπ

GH2
I
Þ − ð Kπ

GH2
I
Þshið Kπ

GH2
I
Þ (along

the vertical axis), with respect to Kπ
GH2 (along the horizontal axis).
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GH4β

πγ

�
1

ð2þ βÞ
�
GH2β

πα−

�
β

2F1

�
1þ β; 2þ β; 3þ β;−

GH2β

πα−

�

þ 1

ð2 − βÞ
�
GH2β

παþ

�−β
2F1

�
1 − β; 2 − β; 3 − β;−

GH2β

παþ

�	
¼ 8πGρ

3
þ Λ

3
; ð74Þ

and

1

γ

�
αþ

�
1þ παþ

βGH2

�
β−1

þ α−

�
1þ πα−

βGH2

�
−β−1

	
Ḣ ¼ −4πGðρþ pÞ; ð75Þ

respectively. Moreover, the integral present in Eq. (29), in the case of Sg, comes as

1

H2

Z �
∂Sg
∂S

�
dðH2Þ ¼ 1

γ

�
αþ

ð2 − βÞ
�
GH2β

παþ

�
1−β

2F1

�
1 − β; 2 − β; 3 − β;−

GH2β

παþ

�

þ α−
ð2þ βÞ

�
GH2β

πα−

�
1þβ

2F1

�
1þ β; 2þ β; 3þ β;−

GH2β

πα−

�	
; ð76Þ

where 2F1½arguments� represents the hypergeometric function. Plugging the above expression into Eq. (29), we obtain
ThṠg þ TmṠm and is given by

Th

�
dSg
dt

�
þ Tm

�
dSm
dt

�
¼

�
1

2G

��
ϵ2

γ

��
αþ

�
1þ παþ

GH2β

�
β

þ α−

�
1þ πα−

GH2β

�
−β
�

−
�

3

2G

�
ðϵ − 1Þ 1

γ

�
αþ

ð2 − βÞ
�
GH2β

παþ

�
1−β

2F1

�
1 − β; 2 − β; 3 − β;−

GH2β

παþ

�

þ α−
ð2þ βÞ

�
GH2β

πα−

�
1þβ

2F1

�
1þ β; 2þ β; 3þ β;−

GH2β

πα−

�	
: ð77Þ

Similar to the other cases, here we will also consider various cosmic eras (particularly from
inflation → reheating → radiation era) to investigate the requirement ThṠg þ TmṠm > 0 coming from the second law
of thermodynamics.
(1) During inflation. Here H ¼ HI or ϵ ¼ 0 [see Eq. (32)], and hence Eq. (77) becomes

Th
dSg
dt

þ Tm
dSm
dt

¼
�

3

2G

�
1

γ

�
αþ

ð2 − βÞ
�
GH2

I β

παþ

�
1−β

2F1

�
1 − β; 2 − β; 3 − β;−

GH2
I β

παþ

�

þ α−
ð2þ βÞ

�
GH2

I β

πα−

�
1þβ

2F1

�
1þ β; 2þ β; 3þ β;−

GH2
I β

πα−

�	
: ð78Þ

In order to examine ThṠg þ TmṠm > 0 during inflation from Eq. (78), we consider a condition: GH2
I β

πα�
< 1. Such

consideration is indeed physical as the inflationary Hubble parameter is generally considered to be less than the

Planck scale, for instance, the typical energy scale during inflation is given by HI ∼ 10−3=
ffiffiffiffi
G

p
. Owing to GH2

I β
πα�

< 1,
the hypergeometric function in Eq. (78) may be expanded in a Taylor series, and up to the leading order term, we get

Th

�
dSg
dt

�
þ Tm

�
dSm
dt

�
¼

�
3

2G

�
1

γ

�
αþ

ð2 − βÞ
�
GH2

I β

παþ

�
1−β�

1 −
ð1 − βÞð2 − βÞ

ð3 − βÞ
�
GH2

I β

παþ

��

þ α−
ð2þ βÞ

�
GH2

I β

πα−

�
1þβ

�
1 −

ð1þ βÞð2þ βÞ
ð3þ βÞ

�
GH2

I β

πα−

��	
: ð79Þ

Moreover, due to GH2
I β

πα�
< 1, the term containing ðGH2

I β
παþ

Þ1−β becomes the dominated one, and thus Eq. (79) may be

expressed as
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Th

�
dSg
dt

�
þ Tm

�
dSm
dt

�
≈
�

3

2G

�
αþ

γð2 − βÞ
�
GH2

I β

παþ

�
1−β

; ð80Þ

which is positive for γ > 0 and 0 < β < 2. Therefore ThṠg þ TmṠm > 0 gets fulfilled during the inflation for the
following ranges of the entropic parameters:

α�
β

> GH2
I =π; 0 < β < 2 and γ > 0: ð81Þ

(2) During reheating stage. With ϵ ¼ 3
2
ð1þ ω0Þ during the reheating stage [where ω0 is the effective EOS parameter

during the reheating, see Eq. (32)], and by using GH2β
πα�

< 1 (as the Hubble parameter during the cosmic evolution of
the universe is well less than the Planck scale), we may write Eq. (77) as

Th
dSg
dt

þ Tm
dSm
dt

¼
�

1

2G

�
αþ
γ

�
GH2β

παþ

�
1−β�

ϵ2 −
3ðϵ − 1Þ
ð2 − βÞ

�
1 −

ð1 − βÞð2 − βÞ
ð3 − βÞ

�
GH2β

παþ

��	

þ
�

1

2G

�
α−
γ

�
GH2β

πα−

�
1þβ

�
ϵ2 −

3ðϵ − 1Þ
ð2 − βÞ

�
1 −

ð1þ βÞð2þ βÞ
ð3þ βÞ

�
GH2β

πα−

��	
; ð82Þ

where H ¼ Hfða=afÞ3ð1þω0Þ, and once again, we expand the hypergeometric function of Eq. (77) as a Taylor series

(with respect to the variable GH2β
πα�

) and retain up to the leading order term. Moreover, due to
GH2

f β
πα�

< 1, the term

containing ðGH2β
παþ

Þ1−β in the above equation contributes the most with respect to the other terms, and thus Eq. (82)

becomes

Th
dSg
dt

þ Tm
dSm
dt

¼
�
9ð1þ ω2

0Þ
8G

�
αþ

γð2 − βÞ
�
GH2

f β

παþ

�
a
af

�
−3ð1þω0Þ�1−β

×

�
2ð2þ 3ω0 þ 3ω2

0Þ
3ð1þ ω0Þ2

− β

	
; ð83Þ

where we use the relation between ϵ and ω0 (as aforementioned). The rhs of Eq. (83), and consequently
ThṠg þ TmṠm, becomes positive for γ > 0 and

0 < β <
2ð2þ 3ω0 þ 3ω2

0Þ
3ð1þ ω0Þ2

: ð84Þ

For ω0 ¼ ½0; 1�, we immediately have

Min

�
2ð2þ 3ω0 þ 3ω2

0Þ
3ð1þ ω0Þ2

	
¼ 5

4
;

and thus, Eq. (84) is equivalently written as 0 < β < 5=4. Therefore the validation of the second law of horizon
thermodynamics gets ensured if the entropic parameters of Sg follow:

α�
β

> GH2
f =π; 0 < β <

5

4
and γ > 0: ð85Þ

(3) During radiation era. Using Eq. (73), we determine the change of the four-parameter generalized entropy with
cosmic time, and it is given by

Ṡg ¼ −
�
2πḢ
GH3

�
1

γ

�
αþ

�
1þ παþ

βGH2

�
β−1

þ α−

�
1þ πα−

βGH2

�
−β−1

	
; ð86Þ

which, along with Eq. (44), immediately results to the change of the total entropy as
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Ṡm þ Ṡg ∼
3

a3H2
ðϵ − 1Þ −

�
2πḢ
GH3

�
1

γ

�
αþ

�
1þ παþ

βGH2

�
β−1

þ α−

�
1þ πα−

βGH2

�
−β−1

	
: ð87Þ

The above equation clearly indicates that the total
entropy during the radiation era (when ϵ > 1)
increases with time for the following range of
entropic parameters corresponding to Sg:

α� > 0; β > 0 and γ > 0: ð88Þ

As a whole, the constraints on the entropic parameters
corresponding to the four-parameter generalized entropy,
coming from the validation of the second law of horizon
thermodynamics, are given by

(i) during inflation: α�β > GH2
I =π; 0 < β < 2 and γ > 0

[from Eq. (81)];
(ii) during reheating era: α�

β > GH2
f =π; 0 < β < 5

4
and

γ > 0 [from Eq. (85)];
(iii) during radiation era: α�

β > 0; β > 0 and γ > 0
[from Eq. (88)].

Clearly the constraint on γ is the same during the entire
evolution, however α� and β should follow

α�
β

> Max½GH2
I =π; GH

2
f =π; 0�;

0 < β < Min

�
2;
5

4

	
; ð89Þ

in order to concomitantly satisfy their constraints during all
the different cosmic eras. Because of Ḣ < 0 from Eq. (75),
the above inequality is immediately written as

α�
β

> GH2
I =π and 0 < β < 5=4: ð90Þ

Therefore in the context of four-parameter generalized
entropy (Sg), the second law of thermodynamics of
apparent horizon is valid during the entire cosmic evolution
of the universe (from inflation to radiation dominated era
followed by a reheating epoch) if the entropic parameters
follow Eq. (90) along with γ > 0. Here it deserves
mentioning that such ranges of α�, β, and γ in turn make
the Sg [from Eq. (73)] as a monotonic increasing function
with respect to the Bekenstein-Hawking variable (S).

V. CONCLUSION

The work investigates the second law of thermodynam-
ics in the context of horizon cosmology, where the universe
is described by a spatially flat FLRW metric. Actually in
the realm of horizon cosmology, the first law of thermo-
dynamics fixes the cosmological field equations. However,
a consistent cosmology, besides the first law, also demands
the validation of the second law of thermodynamics for the

apparent horizon. For this purpose, the present work
examines whether the change of total entropy (i.e. the
sum of the entropy of the apparent horizon and the entropy
of the matter fields) proves to be positive with the cosmic
expansion of the universe. In this regard, the matter fields
inside the horizon show an outward or an inward flux
through the apparent horizon depending on whether the
universe undergoes an accelerated or a decelerated expan-
sion, respectively. Owing to the presence of such a flux,
the matter fields inside the horizon obey the thermody-
namics of an open system. It turns out that the change of
total entropy (with respect to the cosmic time) depends on
the form of horizon entropy as well as on the evolution of
the Hubble parameter. Regarding the entropy for the
apparent horizon, we consider different forms of the
horizon entropy, namely, the Tsallis entropy, the Rényi
entropy, the Kaniadakis entropy, or even the four-param-
eter generalized entropy; and moreover, for each horizon
entropy, we further concentrate on different cosmological
epochs of the universe during its evolution history
particularly from inflation → reheating → radiation era,
respectively. Thereby the early stage of the universe is
described by a de Sitter (or a quasi–de Sitter) inflation
when the Hubble parameter remains almost constant, and
during the reheating stage of the universe, the Hubble
parameter is generally parametrized by a power law form of
the scale factor, i.e., HðaÞ ∝ a−

3
2
ð1þω0Þ (with a being the

scale factor of the universe and ω0 is the effective EOS
parameter of the reheating era). With such considerations,
we determine the appropriate conditions on the respective
entropic parameters (for different horizon entropies afore-
mentioned) in order to validate the second law of thermo-
dynamics from inflation to radiation dominated era
followed by a reheating stage. Here it deserves mentioning
that the constraints on the entropic parameters in turn make
the respective entropy as a monotonic increasing function
with respect to the Bekenstein-Hawking entropy variable.
In summary, the current work provides model indepen-

dent constraints on entropic parameters (for different
entropy functions of apparent horizon) directly from the
second law of horizon thermodynamics during a wide
range of cosmic eras of the universe.
Finally, we would like to mention that in the current

work, we do not consider the dark energy epoch of the
universe. However, the investigation of the second law of
horizon thermodynamics during the dark energy era is
important from its own right, as it may help to understand
the late time acceleration of the universe directly from the
second law of horizon thermodynamics. We hope to
consider this issue in some future work.
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