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We argue that the lensing power spectrum of astrometric shift (lensing shift power spectrum) is a
powerful tool for probing the clustering property of dark matter on subgalactic scales. First we give the
formalism to probe the nature of dark matter by using the lensing shift power spectrum. Then, leveraging
recent measurements of the lensing shift power spectrum on an angular scale of approximately 1 arcsec
toward the gravitationally lensed quasar MG J0414þ 0534 at the redshift of zS ¼ 2.639, we place
constraints on the mass of warm dark matter (WDM) particles mWDM and their fraction in a mixed dark
matter (MDM) model rWDM, in which WDM and cold dark matter coexist. Although the constraint derived
from the above single lensing system is not as strong as the existing constraints, as we show in this paper,
the lensing shift power spectrum has a great potential to obtain much tighter constraints on WDM and
MDMmodels through future observations, highlighting the importance of well-controlled systematic error
considerations for achieving enhanced precision.
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I. INTRODUCTION

Many years have passed since the existence of dark
matter (DM) was suggested (for reviews from a historical
perspective, see, e.g., [1,2]). Since then, vast evidence for
DM has been accumulated and now we know that approx-
imately 25% of the present Universe consists of DM (see,
e.g., results from Planck satellite [3]). Although the identity
of DM is still a mystery, cold dark matter (CDM) paradigm
has been very successful in explaining a wide range of
observations on large scales.
However, it has also been argued that the CDM-based

simulations may raise some inconsistencies with observa-
tions of structures on small scales such as the missing
satellite problem [4,5], the cusp-core problem [6,7] and
too-big-to-fail problem [8,9]. Although these problems
might be resolved at least partially once one properly takes
account of baryonic effects (e.g., [10–12]), there have been
many works trying to address these issues by invoking
noncold dark matter scenarios such as warm dark matter
(WDM) in which small-scale structure can be suppressed
due to free-streaming effect. Indeed, WDM can naturally
arise in some particle physics models such as sterile
neutrinos [13,14], gravitino [15,16], axino [17] and so on.
Motivated by the perspectives of these considerations,
constraints on themasses ofWDMmWDM have been studied
invariousworks by using Lyman-α forest (for a recent work,
see [18–21]), strong gravitational lensing [22–24], satellite
galaxies of the Milky Way [25,26] and so on, which put a

lower bound on mWDM as mWDM > 2–5 keV at 95% C.L.
By combining some of these observations, tighter bounds
on mWDM have been obtained as mWDM > 6.048 keV
ð95%C:L:Þ from the combination of strong gravitational
lens, Lyman-α and Milky Way satellites [27] and mWDM >
9.7 keV ð95%C:L:Þ from strong gravitational lens and
Milky Way satellites [28].
Since constraints onmWDM have become more stringent,

the ability of WDM in resolving the small-scale problems
has been challenged [29]. However, a simple extension such
as a mixed dark matter (MDM) scenario in which cold and
warmDMcoexist maymake theWDMparadigm still viable
as a solution to the small-scale crisis, and the small-scale
structure can be suppressed in a different manner from the
one in the pureWDMmodel. TheMDMscenario can also be
realized in particle physics theories (see, e.g., [30,31]),
which stimulated works to constrain theWDMmass and the
fraction of WDM in MDM using Lyman-α forest, gravita-
tional lensing and so on [32–36] (see also, e.g., [37],
expected constraints from future 21 cm observations).1

So far,many studies have used the flux ratios of quadruply
lensed quasars to constrain the properties of dark matter on
subgalactic scales [22,39–45] (see also [23,24] for recent
works). Actually measured flux ratios can be used to
estimate the lensing convergence power spectrum [46]

1See also [38] for a mixed scenario with CDM and fuzzy dark
matter.
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(see also [47–51]), fromwhich non-CDMmodels could also
be constrained.
Other studies have used astrometric shifts of lensed

extended images [52–57]. Anomalous astrometric shifts
due to a dwarf-galaxy sized halo have been detected in
the lensed quasar B1938þ 666 with a source redshift
zs ¼ 0.881 in the near-infrared band [58]. A similar result
has been obtained for the lensed submillimeter galaxy
SDP.81 with a source redshift zs ¼ 3.042 [59,60].
In this paper, we investigate a potential of power spectrum

of astrometric shift (lensing shift power spectrum) to probe
the properties of WDM and MDM. We first constrain the
mass of WDM particles and the fraction of WDM in MDM
models using a recent measurement owing to small-scale
structures (halos and troughs) in sightlines [61].
The use of astrometric shifts in a strongly lensed image is

more advantageous than convergence if relative positions
of delensed2 extended source images are measured pre-
cisely. Indeed, astrometric shifts can be directly measured
from the relative positions of delensed extended source
images that have two dimensional (radial and tangential)
information. Therefore, we can constrain dark matter
models with fewer number of lens samples compared to
methods that use only flux ratios. If one uses only flux
ratios of lensed images and positions of lensing galaxies
and lensed images, the number of observables may not be
sufficient to model complex models. For instance, some
anomalous quadruple lenses have faint galaxies in the
vicinity of lensed arcs. The lack of observables leads to
ignoring contributions from these faint galaxies, which
results in an artificial increase of ‘anomalous’ lens systems.
Therefore, the previous constraints that use only flux ratios
of lensed images and positions of lensing galaxies and
lensed images might be too stringent. Without the infor-
mation of astrometric shifts, we have to resort to statistical
methods that require a large number of samples. Moreover,
we can easily observe astrometric shifts caused by inter-
vening objects with subgalactic masses. Astrometric shifts
can be significantly enhanced in the lens plane if the
delensed images reside in the vicinity of caustics [62].
Typically, the amplitude of shift along the tangential
direction of an Einstein ring is enhanced by a factor of
≳10 in the lens plane in cusp or fold caustics lenses [63].
Thus lensing shift power spectrum can be a powerful tool to
constrain the WDM and MDM scenarios in which fluctua-
tions of dark matter distribution on scales of ≲10 kpc are
suppressed. To our knowledge, lensing shift power spec-
trum has not been used so far to constrain dark matter
models and hence this paper is the first one to utilize it as a
cosmological dark matter probe.

The structure of this paper is the following. In the next
section, we summarize how we calculate matter power
spectra in WDM and MDM models. Then, in Sec. III, we
give our formalism to investigate the lensing power spectra,
focusing on that of the astrometric shift to obtain con-
straints on the WDM mass and the fraction of WDM in the
MDM model. In Sec. IV, we present constraints derived
from a recent measurement of the lensing power spectrum,
and expected ones attainable from the future observations.
Then in the final section, we give the conclusion of this
paper.

II. MATTER POWER SPECTRA
IN WARM DARK MATTER AND
MIXED DARK MATTER MODELS

In this section, we briefly summarize the formulas to
calculate nonlinear matter power spectra in models with
WDM and MDM.
The prime effect of WDM particles is to suppress the

structure in the Universe on scales below the free-streaming
scale λfs which can be written as [64]

λfs ≃ 0.2 Mpc

�
1 keV
mWDM

�
g�ðtNRÞ−1=2g�sðtNRÞ1=3

×

�
2þ log

�
teq
tNR

��
; ð2:1Þ

where teq and tNR are the times at radiation-matter equality
and when WDM particles become nonrelativistic, respec-
tively. g�ðtNRÞ and g�sðtNRÞ are the effective number of
degrees of freedom and its entropic counterpart at tNR. If all
the WDM particles are thermally produced, the present
energy density of WDM is given by [64]

ΩWDMh2 ¼
�
TWDM

Tν

�
3
�
mWDM

94 eV

�
3

; ð2:2Þ

where TWDM and Tν are the temperatures of WDM and
neutrino, respectively.
To calculate the lensing power spectra, we need that for

matter fluctuations on small scales, in which nonlinear
effects should be taken into account. In the following
analysis, we adopt a fitting formula, constructed from
N-body simulations to compute nonlinear matter power
spectra in WDM and MDMmodels assuming that baryonic
effects are sufficiently small.
Given a fitting function of matter power spectrum in the

CDM model, which is denoted as PCDMðk; zÞ, the corre-
sponding WDM nonlinear power spectrum PWDMðk; zÞ is
given by [22]

PWDMðk; zÞ
PCDMðk; zÞ

¼ 1

ð1þ k=kdÞ0.7441
; ð2:3Þ

2Here “delensing” means a local inverse mapping from a
primary lens plane to a source plane using an unperturbed smooth
potential that describes the primary lens.
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with

kdðmWDM; zÞ ¼ 388.8h Mpc−1
�
mWDM

1 keV

�
2.027

D1.583ðzÞ;

ð2:4Þ

where DðzÞ is the linear growth factor at z, which is
normalized as Dð0Þ ¼ 1. A fitting function of nonlinear
matter power spectrum of CDM PCDMðk; zÞ is given in the
Appendix. Nonlinear matter spectra at z ¼ 0 in CDM and
pure WDM models are shown in the left panel of Fig. 1
where we take the mass of WDM as mWDM ¼ 1 keV and
5 keV. As the WDM mass decreases, the free-streaming
scale becomes larger and small-scale powers are more
suppressed.
Next we consider MDM models in which CDM and

WDM coexist. To quantify the fraction of WDM, we define
the fraction parameter as

rWDM ≡ ΩWDMh2

ΩCDMh2 þ ΩWDMh2
¼ ΩWDMh2

ΩDMh2
; ð2:5Þ

whereΩWDM,ΩCDM andΩDM are the present WDM, CDM,
and total DM density parameters, respectively. The cases of
rWDM ¼ 0 and 1 correspond to the standard CDM and the
pure WDM models, respectively. Once we specify mWDM
and rWDM, one can obtain a nonlinear matter power
spectrum in the MDM model by adopting the following
fitting formula obtained from N-body simulations [36]:

PMDMðk; zÞ
PCDMðk; zÞ

¼ ð1 − fWDMðrWDMÞÞ þ
fWDMðrWDMÞ
ð1þ k=k0dÞ0.7441

;

ð2:6Þ

where fWDMðrWDMÞ is a function of rWDM, which is
given as

fWDMðrWDMÞ ¼ 1 − exp

�
−
1.551r0.5761WDM

1 − r1.263WDM

�
; ð2:7Þ

and

k0d ¼
kd

r5=6WDM

: ð2:8Þ

Nonlinear matter power spectra in MDM models at z ¼ 0
for rWDM ¼ 0, 0.5 and 1 are shown in the right panel of
Fig. 1. The mass of WDM is assumed as mWDM ¼ 1 keV.
The case with rWDM ¼ 0 corresponds to the CDM case. As
can be easily expected, for a smaller rWDM, the suppression
of nonlinear matter power spectrum becomes less
significant.
By using the nonlinear matter power spectra in WDM

and MDM models described above, we can calculate
lensing power spectra, which are going to be compared
to observational results recently obtained in [61], and
expected data in future observations. In the next section,
we describe how we can analyze them in WDM and MDM
models given the WDM mass and the fraction of WDM.

III. LENSING SHIFT POWER SPECTRUM

In this section, we summarize our formalism to calculate
the lensing power spectrum. In the following, we fix the
cosmological parameters as H0 ¼ 67.36 km s−1Mpc−1,
Ωmh2 ¼ 0.143, Ωbh2 ¼ 0.02237 and σ8 ¼ 0.811, which
are derived from the Planck data [3].
First, let us suppose a lens system in which a point source

at an angular position y is lensed with a deflection angle α.
Then the angular position x of a lensed image is given by
the lens equation,

y ¼ x − αðxÞ: ð3:1Þ

Second, we consider a lens system in which a point source
at a perturbed angular position ỹ is lensed by a primary lens
that dominates the deflection of light with an angle α and a
secondary lens with an astrometric shift δα with jδαj ≪ jαj
at the primary lens plane. Notice that an astrometric shift is
given by the gradient of a projected gravitational potential

FIG. 1. (Left panel): Nonlinear matter power spectra of pure WDM models at z ¼ 0. (Right panel): Nonlinear power spectra of MDM
models with mWDM ¼ 1 keV at z ¼ 0. For comparison, we also plot the CDM case in both panels.
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perturbation δψ as δα ¼ ∇δψ .3 Then the perturbed angular
position x̃ is given by

ỹ ¼ x̃ − αðx̃Þ − δαðx̃Þ; ð3:2Þ

where

x̃ ¼ xþ δx; ð3:3Þ

ỹ ¼ yþ δy; ð3:4Þ

with δx and δy being the perturbations of x and y.
Equations (3.3) and (3.4) represent a relationship between
the unperturbed and perturbed coordinates. Since the
unperturbed coordinates x and y are not directly observable
physical quantities, their choices are arbitrary. In other
words, we have a two-dimensional gauge freedom for
describing the shift of the images. In the ‘source plane
gauge’ in which δx ¼ 0, we have δy ¼ −δα [61]. Then
the astrometric shift δα with respect to the photon path in
the macro (unperturbed) model is given by a shift δy in the
source plane in the macro model.
An astrometric shift can be decomposed into various

subcomponents (see Fig. 2), such as contributions
δαcluster=galaxy from luminous galaxies and clusters,
δαsubhalo from dark subhalos associated with the primary
lens and δαLOS from line-of-sight (LOS) structures (dark
halos and troughs) in the intergalactic space, which can be
written as

δα ¼ δαcluster=galaxy þ δαsubhalo þ δαLOS: ð3:5Þ

As mentioned above, we assume that jδαsubhaloj and jδαLOSj
are sufficiently smaller than jαj (weak lensing approxima-
tion), which is valid as long as the direction x is sufficiently
far from the centers of these small-scale dark lens objects so
that the strong lensing effect is negligible.
We assume that δαgalaxy=cluster can be subtracted by

cutting off the scales below which this gives a sizable
contribution, and its cut-off wave number is denoted as kmin
which is described below. After the subtraction, we have

δα ≈ δαsubhalo þ δαLOS: ð3:6Þ

The two-point correlation function hδαðxÞ · δαðx0Þi
describes a weak lensing effect owing to the subhalos
and the LOS structures. Moving to the Fourier space, the
lensing shift power spectrum defined on a region with a
solid angle of A that includes lensed arcs is given by

PαðlÞ≡ A
ð2πÞ2 hjδ̂αðlÞj

2i; ð3:7Þ

where l ¼ jljwith l being an angular wave vector which can
be written in terms of an angular scale δθ as [61]

l ¼ 1.296 × 106

ðδθ=100Þ : ð3:8Þ

δ̂αðlÞ is the Fourier transform of δαðxÞ in the comoving
coordinates which is given as

δ̂αðlÞ ¼
Z

d2xδαðxÞe−il·x: ð3:9Þ

The ‘dimensionless’ power, which represents the amplitude
of astrometric shift at an angular scale of ∼l−1 per
logarithmic interval of l is defined as

Δ2
αðlÞ≡ 2πl2PαðlÞ: ð3:10Þ

Considering the LOS contribution, the two-point corre-
lation function of δα is approximately given by [66,67]

ξαðθÞ≡ hδαð0ÞδαðθÞi ¼ 4

Z
rS

0

dr

�
QðrÞ
gðrÞ

�
2

×
Z

kmax

kmin

dk
2πk

Pðk; rÞJ0
�
kgðrÞθ�; ð3:11Þ

where

FIG. 2. Illustration of our lens system. The yellow solid
and dashed lines show the perturbed and nonperturbed paths,
respectively.

3If a secondary lens (perturber) does not reside in the primary
lens plane, we need to add a rotational or curl (magnetic)
component to the astrometric shift due to coupling between α
and δα [65]. In that case, δα is interpreted as an electric (rotation
free) component and the simple scaling relations between
potential, shift and convergence power spectra are broken.
However, the ratio of the magnetic component to the electric
one is estimated to be ∼30% at the distance in which kmin
corresponds to l ¼ 1.3 × 105 [65]. Since the lensing contribution
from halos residing at a larger distance from the dominant lens is
strongly suppressed, we expect that the coupling effect is
subdominant in MG J0414þ 0534. For smaller angular scales
(l > 1.3 × 105), the coupling effect is much weaker.
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QðrÞ ¼ 3H2
0Ωm;0

2c2
rðr − rSÞ

rS
½1þ zðrÞ�; ð3:12Þ

and

gðrÞ ¼
(
r ðr < rLÞ
rLðrS−rÞ
rS−rL

ðr ≥ rLÞ;
ð3:13Þ

with rS and rL being the comoving distance to the source
and the primary lens, respectively. gðrÞ describes an
unperturbed light path, J0 is the zero-order Bessel function,
and Pðk; rÞ is the nonlinear matter power spectrum, which
is given by PWDM or PMDM [Eq. (2.3) or (2.6)] derived from
fitting the outcomes of N-body simulations for the pure
WDM or mixed DM cases. kmin corresponds to the wave
number above which δαcluster=galaxy can be neglected, and
describes the possible sizes and positions of LOS halos.
Actually, since kmin is difficult to determine, here we take a
conservative approach with regard to the treatment of kmin:
we choose kmin such that the data gives a best fit when kmin
is varied. In other words, kmin is treated as a model
parameter in our analysis.
This treatment is equivalent to adding the sharp k-space

filter in the integrand in Eq. (3.11) [67,68]. We adopt the
upper cut-off kmax in the k-integral as kmax ¼ 105h Mpc−1,
which corresponds to the observed small scale structures in
the quasar host galaxy [61]. Note that we assumed that the
emitted light propagates on the surface of a combined pair
of cones in the comoving space, which is a good approxi-
mation in the vicinity of a lensed arc [69].
By using the two-point correlation function, the lensing

shift power spectrum can be written as

PαðlÞ ¼ 2π

Z
dθ θξαðθÞJ0ðlθÞ

¼ 4

Z
rS

0

dr

�
QðrÞ
gðrÞ

�
2
Z

kmax

kmin

dk
k
Pðk; rÞδD

�
k− l=gðrÞ�
lgðrÞ

¼
(

4
l2
R rS
0 dr

�
QðrÞ
gðrÞ

	
2
P
�

l
gðrÞ ; r

	
ðl=rL ≤ kminÞ

0 ðotherwiseÞ:
ð3:14Þ

We should note that we need to change of the form of gðrÞ
depending on the range for r as given in Eq. (3.13). In the
following analysis, we use ΔαðlÞ, defined in Eq. (3.10),
instead of the power spectrum PαðlÞ.
Here we briefly mention the relation between the lensing

shift and convergence power spectra. If a perturbing object
resides at the primary lens plane, the astrometric shift δαðθÞ
owing to the perturber is related to a convergence pertur-
bation δκðθÞ as

δκðθÞ ¼ 1

2
∇θ · δαðθÞ; ð3:15Þ

where ∇θ denotes the two-dimensional gradient operator
(see, e.g., [66]). Then, the convergence power Δκ is
proportional to the shift power Δα as

ΔκðlÞ ¼
l
2
ΔαðlÞ: ð3:16Þ

If a perturbing object does not reside at the primary lens
plane, the relation Eq. (3.16) no longer holds and another
term that is linear to the LOS distance parameter appears in
the right hand side of Eq. (3.16) due to coupling between α
and δα [65].
In our analysis, we constrain the WDM mass and the

fraction of WDM in the MDM model using a lensing shift
power spectrum, which was measured using ALMA
(Atacama Large Milllimeter/submillimeter Array) observa-
tions of the quadruply lensed quasarMG J0414þ 0534 [61].
The redshifts of the source and the primary lens (early type
galaxy) of MG J0414þ 0534 are zS ¼ 2.639 [70] and
zL ¼ 0.9584 [71], respectively. These redshifts are adopted
in the our analysis. The lensing shift power spectrum was
obtained by fitting discrete Fourier modes of potential
perturbation that satisfy the Dirichlet boundary condition
on the sides of a square with a sidelength of L to the
observed data. The lens system consists of a massive early
type galaxy G, which acts as a primary lens, and an object
X, which is possibly a less massive galaxy, and an object Y,
which is possibly a dusty dwarf galaxy. The gravitational
effects of object X and object Y were subtracted using a
smooth potential for each object. In the following analysis,
we use only the lensing shift power at the angular wave
number of l ∼ 1.3 × 106 with L ¼ 300.6, which roughly
corresponds to the effective Einstein radius 100.1 of galaxy
G. We expect that the measured powers on angular scales
larger than the Einstein radius are sensitive to the Dirichlet
boundary condition because of the proximity in the scale.
Moreover, lack of information on the radial direction in the
primary lens plane due to the small size of source would
lead to a suppression of powers on large angular scales,
which is the reason why we do not use the data on larger
scale, but only use the data at l ∼ 1.3 × 106.
Table I shows the measured angular wave number, the

mean value of the lensing shift power and its 1σ uncertainty
σα;obs [61]. We also consider two other types of errors that
contribute to the uncertainty, which are not included in the
quoted error in [61]. One is the cosmic variance error σα;cv

TABLE I. Observed lensing power spectrum Δα½arcsec� at l ∼
1.3 × 106 with L ¼ 300.6 [61]. σα;obs; σα;cv and σα;msd are 1σ errors
originating from the measurement quoted in [61], the cosmic
variance and the mass-sheet degeneracy, respectively.

l Δα σα;obs σα;cv σα;msd

1.3þ0.08
−0.08 × 106 0.0081 �0.0006 �0.00153 �0.00081
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due to a limited number of the measured discrete Fourier
modes Nmode, which is given by Δα=ð2N1=2

modeÞ where
Nmode ¼ 7 for the bin of l ∼ 1.3 × 106 [61]. The other
one is the error due to the mass sheet degeneracy [72],
which is denoted as σα;msd and yields uncertainty in the
Hubble constant obtained from time delay. We assume a
conservative 10% error due to the ambiguity in the mass
profile of the primary lens of MG J0414þ 0534 [73]. Then,
we include 10% of the shift power spectrum for CDM as
the error since the result of [61] is consistent with the
CDM model.
In the following analysis, we neglect contribution from

subhalos that reside in the halo of the primary lens, and
directly compare the theoretically computed lensing shift
power caused by the LOS [i.e., Eq. (3.14)] with the
measured power given in Table I. In CDM models, a
recent theoretical study show that subhalos in the primary
lens of MG J0414þ 0534 are expected to contribute just
one third of the total magnification effect [74]. In WDM or
MDM models, the ratios of the subhalo to LOS contribu-
tions are not known. However, we expect that the subhalo
contribution is subdominant. The reason is as follows: The
lensing effect of subhalos in WDM or MDMmodels would
be much weaker than that in the CDM model due to the
suppression of small-scale fluctuations. It is likely that
suppression of LOS structures in WDM or MDMmodels is
less stringent than that of subhalos, because subhalos
should be formed at a redshift higher than zL at which
suppression is much stronger than lower redshifts z < zL.
Thus we expect that the subhalo contribution is subdomi-
nant in WDM or MDM models.
Figure 3 shows the power spectra of astrometric shift for

several values of mWDM and rWDM, as well as the measured
one from [61] with the 1σ total error σtotal which is
evaluated as

σtotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2α;obs þ σ2α;cv þ σ2α;msd

q
: ð3:17Þ

We also show the spectra in the CDM model for compari-
son. As seen in Fig. 3, as mWDM (rWDM) decreases
(increases), the amplitude of the power spectrum decreases,
from which one can see how stringent constraints onmWDM
and rWDM can be obtained by comparing with the error
depicted. The purple points and error bars are the mock data
expected in future observations, which we will give some
detail in the next section. We also note that the lensing shift
power spectrum for the CDM case takes a maximum value
at l ∼ 2.6 × 106, which corresponds to the scale at which
kmin is given by kL ¼ l=gðrLÞ with kL and rL respectively
being the wave number and comoving distance correspond-
ing to zL [see Eq. (3.14)]. Indeed the lensing shift power
spectrum depends on the value of kmin through the change
of the range of r in the integral (3.14), and the contribution
from the LOS halos becomes the largest when kL ¼ kmin.
Figure 4 illustrates that, for the shift power spectrum at l
smaller than 2.6 × 106 (in the figure, the cases with l ¼
1.3 × 106 and 1.8 × 106 are shown), the range of scale k is
determined by that for r for a given l via the relation
k ¼ l=gðrÞ. In other words, the range of r can be restricted
by those of k for a given l. For example, in the CDM case,
we find that only LOS halos residing at r=ðh−1 GpcÞ≲ 1 or
3≲ r=ðh−1 GpcÞ contribute to the shift power spectrum at
l ¼ 1.3 × 106. The restriction on the location of LOS halos
is much severer for the power at l ¼ 1.8 × 105. On the other
hand, at l ¼ 2.6 × 106, there is no restriction on the
location of LOS halos that can contribute to the integral.
This is the reason why the lower cutoff kmin affects the
lensing shift power spectrum.

FIG. 3. The lensing power spectra for WDM (left) and MDM with mWDM ¼ 1 keV (right) toward zS ¼ 2.639. The orange circle and
the error bar show the measured value for L ¼ 3.6 arcsec in [61]. Purple squares represent mock data (for the case of NL ¼ 30 with NL
the number of lens system; for details, see the next section) expected from future observations, which have the same value as the one of
the power spectrum for CDM. kmin is set such that the lensing shift powers are best fitted to the measured one for the parameter set:
kmin ≃ 1190 hMpc−1 (CDM), kmin ≃ 773 hMpc−1 (mWDM ¼ 1 keV), kmin ≃ 585 hMpc−1 (mWDM ¼ 0.1 keV), kmin ≃ 925 hMpc−1

(rWDM ¼ 0.5) and kmin ≃ 1121 hMpc−1 (rWDM ¼ 0.12). kmin for each dashed line is obtained by fitting the model to the mock data.
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IV. CONSTRAINTS ON WDM AND MDM

Now, in this section, we discuss constraints on the mass
and the fraction of WDM from a recent measurement [61]
and expected data in future observations. In order to obtain
constraints on the parameters mWDM in the pure WDM
model, and mWDM and rWDM in the MDM model, we
evaluate the χ2 defined as

χ2 ¼
X
i

ðΔth
α − Δobs

α Þ2
σ2α;obs þ σ2α;cv þ σ2α;msd

����
l¼li

; ð4:1Þ

where Δth
α is a theoretically predicted shift power spectrum

in the WDM and MDM models and Δobs
α is the observed

one. σα;obs, σα;cv and σα;msd are uncertainties described in
the previous section. The values of Δobs

α , σα;obs, σα;cv and
σα;mds are given in Table I. By calculating χ2, we evaluate
the bounds onmWDM for the pure WDMmodel, andmWDM
and rWDM for the MDM model. First we present our results
for the pure WDM case, then those for the MDM case
follow.

A. Pure WDM case

Figure 5 shows Δχ2 as a function of mWDM, from which
we can read off the 2σ bound on the WDM mass as

mWDM ≳ 0.19 keV ð95% C:L:Þ: ð4:2Þ

Although this bound is not as strong as other existing
constraints, it should be noted that the above limit is
obtained only with a single lens system. Once we observe
more lens systems, which is expected to be the case in the

near future, we would be able to obtain much tighter bound.
We discuss attainable constraints from expected future data
in Sec. IV C.
In Fig. 6, we show nonlinear power spectra for the cases

with the pure WDM, MDM and CDM cases (the param-
eters assumed in each case are shown in the legend of
the figure), and the range of scales kmin < k < kmax are
depicted with shaded colors, which contribute to the
lensing shift power spectrum. As seen from the figure,
kmin in the CDM model is larger than the non-CDM
models, which implies that the distance between a LOS
halo and the primary lens (galaxy G) in the CDM model is
expected to be larger than those in the non-CDM models.
Therefore, if the redshifts of LOS halos are measured, the
property might be used to check consistency with the
adopted model.

FIG. 4. Dependence of the wave number on the comoving
distance r, which is determined by k ¼ l=gðrÞ. The dashed lines
represent to the value of kL corresponding the comoving distance
to zL for each l at which k takes the minimum value. The red
dash-dotted line corresponds to kmin ≃ 1190 hMpc−1 which gives
the best-fit shift power spectrum for the CDM case. The purple
dash-dotted line is for kmax ¼ 105 hMpc−1, which is fixed in our
analysis. The shaded region indicates the range that contributes to
the shift power spectrum for a given l.

FIG. 5. Plot of Δχ2 ≡ χ2 − χ2min for the WDM model. The dot-
dashed line shows 1σ error, while the dot-dot-dashed one
indicates 2σ error.

FIG. 6. Nonlinear power spectra at z ¼ 0.9584 which are
used to calculate the lensing shift power spectra for CDM
and non-CDM models. The shaded regions represent the
range of the power spectra contributing to the integral (3.14),
i.e., kmin < k < kmax.
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B. Mixed DM case

Next we discuss the case of MDM, in which WDM and
CDM particles coexist. In this case, we have two param-
eters to characterize the model: mWDM and rWDM.
In Fig. 7, 1σ and 2σ allowed regions are shown in the

mWDM–rWDM plane. Needless to say, even with the same
mWDM, when the fraction ofWDM is small, the suppression
of the power spectra becomes milder as seen from Fig. 1
(see, also Fig. 6). The fraction of WDM is constrained, for
example, in the case ofmWDM ¼ 0.1 keV, as rWDM ≲ 0.72.
As in the case of the pure WDM model, the current
constraint is not so severe, however, it can be much tighter
in the near future, which will be also discussed in the next
section.

C. Future expected constraints

In the analysis of the previous sections, we have used the
measured lensing shift power spectrum derived from a
single lens system alone. If more similar lens systems are
added to evaluate the lensing power spectrum, the con-
straints would be significantly improved. Ongoing and
planned observations with ALMA [75] and James Webb
Space Telescope (JWST) [76] will surely improve the
constraint on dark matter models. In the near future,
next-generation ground telescopes such as the Thirty
Meter Telescope (TMT) [77], the Extremely Large
Telescope (ELT) [78] and the next generation Very
Large Array (ngVLA) [79] will become very powerful
tools by measuring the lensing shift power spectrum with
better accuracy on smaller scales.
To investigate to what extent constraints will become

more stringent in future observations, we assume a meas-
urement of Δα with five bins for the range of
3.1 × 106 ≤ l ≤ 108, which are equally spaced on a loga-
rithmic scale (see also Fig. 3). Indeed, such scales could be
observed by ngVLA [79] and VLBA [80]. Each center
value is given by Eq. (3.14) for the CDM model. We assign
the uncertainties of the mock measurement as follows.

Although the lensing power spectrum would be more
precisely measured in the future observations, we con-
servatively assume that the lensing shift power spectrum
per lens system is the same as the one in the power for
MG J0414þ 0534 and it does not depend on angular
scales, and the systematic errors are negligible. However,
given that the number of strong lens system is increased
from one to NL, the uncertainties decrease as σ ∝ 1=

ffiffiffiffiffiffiffi
NL

p
.

Here we consider the cases with (i) NL ¼ 30 and
(ii) NL ¼ 100, which would be achievable in about a
few to ten years, respectively [81,82]. To evaluate the
future projected constraints on mWDM and rWDM, we
replace the uncertainties for the lensing power spectrum as

σα;obs →
σα;obsffiffiffiffiffiffiffi
NL

p ; σα;cv →
σα;cvffiffiffiffiffiffiffi
NL

p ; σα;msd →
σα;msdffiffiffiffiffiffiffi
NL

p ; ð4:3Þ

where σα;obs, σα;cv and σα;msd correspond to the errors given
in Table I, respectively. We assume that the correlations
between the errors in different bins are negligible.
In Table II, we show future projected 2σ constraints on

mWDM for rWDM ¼ 1, 0.75 and 0.5 where the first one
corresponds to the pure WDM case and the latter two to the
MDM one. In Table III, the projected 2σ constraints on
rWDM are listed. As seen from the tables, we can obtain
more stringent bounds on the WDM mass and the fraction
of WDM once more lens systems to evaluate the power
spectrum are observed, which shows that our method using
the lensing shift power spectrum would be very promising
to constrain the pure WDM and MDMmodels although the
current constraint is not yet so strong.
As a final remark, we also mention a future prospect of

other lensing observations. For example, observations of
flux ratio of gravitationally lensed quasars can provide a
limit on WDM as mWDM ≥ 9.7 keV by using 31 lensed
quasars in infrared bands from JWST which are attainable
in the future [83]. Given that we assume a conservative

FIG. 7. 1σ and 2σ constraints in the rWDM–mWDM plane.

TABLE II. Projected 2σ constraints on mWDM expected in
future observations for the cases with the fraction of WDM fixed
as rWDM ¼ 1, 0.75 and 0.5.

NL

rWDM ¼ 1 (pure
WDM)

rWDM ¼ 0.75
(mixed)

rWDM ¼ 0.5
(mixed)

30 ≳6.3 keV ≳4.8 keV ≳3.6 keV
100 ≳9.0 keV ≳7.0 keV ≳5.3 keV

TABLE III. Projected 2σ constraints on rWDM expected in
future observations for the cases with the WDM masss fixed as
mWDM ¼ 2 keV, 5 keV and 7 keV.

NL mWDM ¼ 2 keV mWDM ¼ 5 keV mWDM ¼ 7 keV

30 ≲0.25 ≲0.80 ≤ 1
100 ≲0.14 ≲0.46 ≲0.74
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error for the expected constraints, such a method would
give a comparable limit to ours.

V. CONCLUSION AND DISCUSSION

In this paper, we have investigated the constraints on
WDM and MDM models by using the lensing shift power
spectrum obtained in [61]. To our knowledge, our analysis
represents the inaugural attempt to utilize the lensing shift
power spectrum for constraining cosmological models.
Notably, our study is pioneering in deriving constraints
on WDM and MDM models through this tool.
While it is in principle feasible to combine information

from lensing power spectra for convergence and potential,
as also acquired in [61], we adopt a conservative approach
to use the shift power spectrum alone in our investigation.
Since potential and convergence perturbations are not
directly observable quantities, they may be more prone
to systematic errors. On the other hand, we exclusively rely
on the directly measurable astrometric shift power spec-
trum, which is less susceptible to systematic errors inherent
in observations.
By leveraging the lensing shift power spectrum obtained

from a single lens system, reported in [61], we establish a
constraint on the WDM mass as

mWDM ≳ 0.19 keV ð95%C:L:Þ; ð5:1Þ

for the scenario where WDM constitutes the entire dark
matter content. In the MDM models where WDM coexists
with CDM, we introduce the parameter rWDM characteriz-
ing the fraction of WDM in the total DM. The constraints
on rWDM are contingent upon the WDM mass and are
illustrated in Fig. 7.
The above analysis is based on a single quasar lens

system. While the current constraints on WDM and MDM
from this single systemmay not rival the stringency of other
methodologies, the potential for much tighter constraints
arises with the availability of additional lens systems,
contingent on well-controlled systematic error mitigation.
Anticipating forthcoming observations, we project future

bounds on mWDM and rWDM, as shown in Tables II and III.
In the pure WDM case, the expected constraints on the
WDM mass mWDM would be

mWDM ≳ 6.3 keV ð95%C:L:Þ ð5:2Þ

for NL ¼ 30, and

mWDM ≳ 9.0 keV ð95%C:L:Þ ð5:3Þ

for NL ¼ 100, both of which are obtained by assuming the
CDM model as a fiducial one. Ongoing observations with
ALMA and JWST, coupled with future possibilities with
TMT, ELTand ngVLAwithin the next decade, would bring

the lensing shift power spectrum a robust tool for exploring
a range of non-CDM models.
To attain more stringent constraints on non-CDM mod-

els, refinement of our analysis methodology is imperative.
In our current approach, we neglected the coupling effect
between the deflection α from the primary lens and that
from the secondary lens δα. While this simplification
suffices for the present analysis, the impact of coupling
could become significant if the comoving distance between
primary and secondary lenses is sufficiently large. For
instance, our investigation of MG J0414þ 0534 indicates a
preference for the CDM model with LOS halos residing
farther from the primary lens compared to WDM and
MDM models. This circumstance may require a magnetic
component in the deflection angle due to the coupling.
Future observations of time delay could potentially break
the degeneracy due to ‘extended multiplane mass sheet
transformation,’ stemming from the ambiguity in the red-
shifts of the LOS halos and the mass sheet and shear in their
lens planes [65].
Additionally, we omitted contributions from subhalos

within the halo of the primary lens in our analysis. While
we expect these contributions to be subdominant, their
inclusion could enhance lensing shift powers, resulting in
less stringent constraints on non-CDMmodels. Accounting
for such contributions requires a thorough understanding of
subhalo properties across various redshifts in non-CDM
models. Cosmological simulations incorporating complex
baryonic physics become indispensable for accurately
estimating the perturbing effects of subhalos and LOS
halos in non-CDM scenarios.
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APPENDIX: NONLINEAR MATTER
POWER SPECTRUM

In this paper, we employ the fitting formula for the
nonlinear matter power spectra in the WDM and MDM
models based on the CDM one given by [69] (and [84]).
There are eight parameters, an, bn, cn, αn, βn, γn, μn, and νn,
in the formula. We use the same parameters as [69] but
adopt an, cn and γn from [84]. The following is a summary
of those parameters:
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log10 an ¼ 0.9221þ 2.0595neff þ 2.4447n2eff

þ 1.2625n3eff þ 0.2874n4eff − 0.7601C; ðA1Þ

log10bn ¼−0.5642þ0.5864neff þ0.5716n2eff −1.5474C;

ðA2Þ

log10 cn ¼ 0.4747þ 2.1542neff þ 0.8582n2eff þ 0.8329C;

ðA3Þ

αn ¼ j6.0835þ1.3373neff −0.1959n2eff −5.5274Cj; ðA4Þ

βn ¼ 2.0379 − 0.7354neff þ 0.3157n2eff þ 1.2490n3eff
þ 0.3980n4eff − 0.1682C; ðA5Þ

γn ¼ 0.2247 − 0.2287neff þ 0.9726C

− 0.0533 ln

�
k

h Mpc−1

�
; ðA6Þ

μn ¼ 0; ðA7Þ

log10 νn ¼ 5.2105þ 3.6902neff : ðA8Þ

Here the effective spectral index neff and the curvature C
are defined as

neffþ3¼−
d lnσ2ðRÞ
d lnR

����
σ¼1

; C¼−
d2 lnσ2ðRÞ
d lnR2

����
σ¼1

; ðA9Þ

or

neff ¼ I1 − 3; C ¼ 2I1 þ I21 − I2; ðA10Þ

where

I1 ¼
2

k2σ

Z
dk
k
k2Δ2

LinðkÞe−ðk=kσÞ
2

;

I2 ¼
4

k4σ

Z
dk
k
k4Δ2

LinðkÞe−ðk=kσÞ
2

; ðA11Þ

and the wave number kσ is determined so that σ2ðk−1σ Þ ¼ 1.
Note that the variance σ2 is computed by applying the
Gaussian filter. The linear matter power spectrumΔ2

LinðkÞ is
evaluated by the fitting formula given in [85].
We obtain the nonlinear matter power spectrum Δ2ðkÞ≡

k3PCDMðkÞ=ð2π2Þ by substituting the above into the fol-
lowing expression [69]:

Δ2ðkÞ ¼ Δ2
QðkÞ þ Δ2

HðkÞ; ðA12Þ

where

Δ2
QðkÞ ¼ Δ2

LinðkÞ
�f1þ Δ2

LinðkÞgβn
1þ αnΔ2

LinðkÞ
�

× exp

�
−
ðk=kσÞ

4
−
ðk=kσÞ2

8

�
; ðA13Þ

Δ2
HðkÞ ¼

1

1þ μnðk=kσÞ−1 þ νnðk=kσÞ−2

×
anðk=kσÞ3f1ðΩmÞ

1þ bnðk=kσÞf2ðΩmÞ þ ½cnf3ðΩmÞðk=kσÞ�3−γn
;

ðA14Þ

with

f1ðΩmÞ ¼ Ω−0.0307
m ðzÞ; f2ðΩmÞ ¼ Ω−0.0585

m ðzÞ;
f3ðΩmÞ ¼ Ω0.0743

m ðzÞ: ðA15Þ
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