
Galaxy bispectrum in the spherical Fourier-Bessel basis

Joshua N. Benabou ,1,2,* Adriano Testa ,3 Chen Heinrich ,3 Henry S. Grasshorn Gebhardt ,3,4 and Olivier Doré 3,4
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The bispectrum, the three-point correlation in Fourier space, is a crucial statistic for studying many
effects targeted by the next-generation galaxy surveys, such as primordial non-Gaussianity (PNG) and
general relativistic (GR) effects on large scales. In this work we develop a formalism for the bispectrum in
the spherical Fourier-Bessel (SFB) basis—a natural basis for computing correlation functions on the curved
sky, as it diagonalizes the Laplacian operator in spherical coordinates. Working in the SFB basis allows for
line-of-sight effects such as redshift space distortions and GR to be accounted for exactly, i.e., without
having to resort to perturbative expansions to go beyond the plane-parallel approximation. Only analytic
results for the SFB bispectrum exist in the literature given the intensive computations needed. We
numerically calculate the SFB bispectrum for the first time, enabled by a few techniques: We implement a
template decomposition of the redshift-space kernel Z2 into Legendre polynomials, and separately treat the
PNG and velocity-divergence terms. We derive an identity to integrate a product of three spherical
harmonics connected by a Dirac delta function as a simple sum and use it to investigate the limit of a
homogeneous and isotropic Universe. Moreover, we present a formalism for convolving the signal with
separable window functions and use a toy spherically symmetric window to demonstrate the computation
and give insights into the properties of the observed bispectrum signal. While our implementation remains
computationally challenging, it is a step toward a feasible full extraction of information on large scales via a
SFB bispectrum analysis.

DOI: 10.1103/PhysRevD.109.103507

I. INTRODUCTION

Current and next-generation large-scale-structure (LSS)
surveys such as DESI [1], Euclid [2], SPHEREx [3] and the
Nancy Grace Roman Space Telescope [4] will measure the
galaxy density field over increasingly larger angular scales,
enabling us to constrain interesting physical effects that
become important on those scales, such as primordial non-
Gaussianity [5] (PNG) and general relativistic effects [6].
While many of our current techniques for estimators and

modeling are well-suited for small-area surveys, they are
challenged in larger surveys due to the breaking down of
previously used approximations on the full sky. In particu-
lar, the plane-parallel approximation, which assumes that
each galaxy has the same line-of-sight, breaks down when
the galaxy separation becomes large in a full-sky survey.
Additionally, the Newtonian modeling of galaxy density
also breaks down as general relativistic effects that grow as
1=k become important on large scales (for details see
Refs. [7–10]).

More precisely, redshift space distortions (RSD) induce
effects in the observed galaxy density field that depend on
the line-of-sight (LOS) of individual galaxies. Estimators
assuming a fixed LOS for the entire survey will inevitably
lose information at large galaxy separations. Even if one
uses Yamamoto-like estimators [11–13] which assume a
fixed LOS for each galaxy pair or triplet, there is still loss of
information as the galaxies could have large angular
separations in a given pair or triplet. The signal picked
up by the Yamamoto estimator also includes wide-angle
effects that are usually modeled either perturbatively as an
expansion in the angular separation of the galaxy pair (i.e.,
an expansion whose zero-order term is the plane-parallel
approximation) [14–17], or nonperturbatively via an exact
calculation in the correlation function space [18].
This raises the question of whether the Fourier basis is

the optimal basis to use on the full sky. Indeed, the Fourier
basis consists of the eigenfunctions of the Laplacian in
Cartesian coordinates; the spherical Fourier-Bessel (SFB)
basis, consisting of the eigenfunctions of the Laplacian in
spherical coordinates, is a more natural basis for data
analysis on the curved sky. The SFB basis was proposed for
studying galaxy surveys since the early 90’s [19,20] and*joshua_benabou@berkeley.edu
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was applied to data in the context of a power spectrum
analysis in Refs. [21–23]. Crucially, correlation functions
in the SFB basis do not suffer from the aforementioned
information loss at large angular separations and are not
biased by wide-angle effects.
Recently, an important limitation of the SFB analysis has

been overcome in Ref. [24], rendering computations of the
power spectrum much more feasible: a boundary condition
at the lower end of the redshift range was introduced,
avoiding the need to carry many modes to model vanishing
power outside of the survey footprint, which can introduce
numerical instabilities. Later, the authors of Ref. [25]
developed a SFB power spectrum estimator with a public
code release, which builds on this improvement as well as
those in Ref. [26] on pixel window effects and the
separation of angular and radial transforms, making a
SFB analysis feasible for surveys measuring the power
spectrum such as Nancy Grace Roman, SPHEREx and
Euclid (see also [27,28]).
An alternative to the SFB basis called tomographic

spherical harmonics (TSH) has also been explored in the
literature, where the galaxy density contrast in a redshift bin
is decomposed into spherical harmonics, and many redshift
bins are used. In the limit of thin bins, neighboring bins are
highly correlated, and the covariance matrix could become
nearly degenerate. For thick bins, one loses information
about the radial modes that are smaller than the bin size.
SFB modes, in contrast, are more efficient basis functions
since the radial modes are captured by spherical Bessel
functions which are orthogonal to each other, unlike in the
case of the redshift bin decomposition. See Ref. [29] for a
detailed analysis comparing the SFB and TSH power
spectrum (at Δz ¼ 0.1) for current and future surveys,
showing better fNL constraints in general for the SFB
method.
Limited effort, however, has been dedicated to the study

of the SFB bispectrum. The bispectrum is the 3-point
correlation function in Fourier space and is of great
importance to next-generation surveys. It is shown to be
powerful at breaking parameter degeneracies when com-
bined with the power spectrum for constraining galaxy
bias parameters, neutrino masses and primordial non-
Gaussianities (see e.g., [3,30–33]); the odd-parity bispec-
trum is also a smoking-gun signature for general relativistic
effects that become more important on large scales [34–36].
A comprehensive derivation of the SFB bispectrum

including all first and second-order GR effects, geometric
effects and PNG was achieved in Ref. [37]. However, due
to the complexity of the computations involved, there has
not yet been any work numerically evaluating the SFB
bispectrum signal. In fact, while most of the integrals
involved in calculating the signal are three-dimensional
and are doable, some of the most important and interesting
ones involving RSD and PNG contributions are four-
dimensional and are intractable to compute naively.

In this paper, we derive a mathematical identity to
express the six-dimensional angular integral of three
spherical harmonics connected by a Dirac-delta function
as a simple sum, and use it to study the bispectrum signal in
a homogeneous and isotropic Universe, to build intuition
for later understanding the observed bispectrum in a
realistic Universe. We also use this identity to accelerate
the computation of RSD and PNG terms contributing to the
observed bispectrum signal. Furthermore, we employ a
template decomposition of the second-order coupling
kernel in redshift space Z2 into products of Legendre
polynomials to evaluate all three-dimensional integrals.
These techniques allow us to calculate and visualize for the
first time the SFB bispectrum signal.
We apply a general formalism we develop for convolu-

tion with a separable window function (in the angular and
radial direction) to the toy example of a spherically
symmetric window function to obtain numerical results
that we study in detail. We derive key insights into the
properties of the observed SFB bispectrum in a realistic
Universe, highlighting those due to geometric effects.
The structure of this paper is as follows. In Sec. II we

review the SFB basis and the modeling of the SFB galaxy
power spectrum; we also describe the modeling of the
Fourier space tree-level galaxy bispectrum and define the
SFB bispectrum. Then in Sec. III we explore the calculation
of the SFB bispectrum in the simplest case of a homo-
geneous and isotropic Universe, building up key intuition
for interpreting the features of the observed bispectrum in
the next section. In Sec. IV, we incorporate various
observational effects into the bispectrum, including growth
of structure, galaxy bias, RSD, PNG and the survey
window function. We present our template decomposition
technique to enable its calculation, deferring the details of
the derivation to the appendices; we then visualize and
analyze the behavior of the observed bispectrum signal.
Finally, we conclude and discuss future work in Sec. V.

II. BACKGROUND

In this section, we begin by reviewing the SFB formal-
ism and the SFB power spectrum following Ref. [25], to
which we refer the readers for more details. We then review
the Fourier space bispectrum and describe the modeling of
the observed galaxy bispectrum in redshift space including
local PNG. Finally, we define the SFB bispectrum, which
we later compute in Secs. III and IV.

A. The SFB formalism

The spherical Fourier-Bessel mode δlmðkÞ of the density
contrast field δðrÞ is defined by

δlmðkÞ≡
Z

d3r

� ffiffiffi
2

π

r
k jlðkrÞY�

lmðr̂Þ
�
δðrÞ: ð1Þ
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The inverse transform is then

δðrÞ ¼
Z

dk
X
lm

� ffiffiffi
2

π

r
k jlðkrÞYlmðr̂Þ

�
δlmðkÞ; ð2Þ

where r ¼ rr̂ is the position vector, r is the comoving
distance from the origin, and r̂ is the line-of-sight direction.
The spherical Fourier-Bessel modes are related to the

Fourier modes via

δlmðkÞ ¼
k

ð2πÞ32 i
l

Z
d2k̂Y�

lmðk̂ÞδðkÞ; ð3Þ

for which the inverse relation is

δðkÞ ¼ ð2πÞ32
k

X
lm

i−lYlmðk̂ÞδlmðkÞ: ð4Þ

Note that in this paper we use the following convention
for the Fourier transform:

fðkÞ ¼
Z

d3r e−ik·rfðrÞ; ð5Þ

fðrÞ ¼
Z

d3k
ð2πÞ3 e

ik·rfðkÞ: ð6Þ

If unambiguous, we use the same symbol in configuration
space [e.g, fðrÞ] as in Fourier space [e.g, fðkÞ].

B. Observed galaxy SFB power spectrum

Let us denote the expansion of the matter density in
cosmological perturbation theory by

δðk; rÞ ¼
X∞
n¼1

DnðrÞδðnÞðkÞ; ð7Þ

with DðrÞ the growth factor. Then, in the linear regime, the
observed galaxy density contrast to first order can be
modeled as

δg;obs;ð1ÞðrÞ ¼ WðrÞDðrÞ
Z

d3q
ð2πÞ3 e

iq·r

× ÃRSDðμ; qμ; rÞbðr; qÞδð1ÞðqÞ; ð8Þ

where WðrÞ is the survey window, bðr; qÞ is the linear
galaxy bias, μ ¼ r̂ · q̂, and δð1ÞðqÞ is the matter density
contrast in Fourier space. In what follows, the matter
density contrast will always be denoted δ without any
superscript, while the galaxy density contrast is denoted
by δg.
The redshift-space distortion effects are contained in

ÃRSDðμ; qμ; rÞ, which can be modeled as

ÃRSDðμ; qμ; rÞ ¼ ð1þ βμ2ÞÃFoGðqμÞ; ð9Þ

where β ¼ f=b and f ¼ d lnD=d ln a (with a the scale
factor) is the linear growth rate. In this paper we ignore the
Fingers-of-God (FoG) effect and set ÃFoGðqμÞ ¼ 1.
Transforming to spherical Fourier-Bessel space we have

that

δg;obs;ð1Þlm ðkÞ ¼
Z

dq
X
LM

WLM
lm ðk; qÞδð1ÞLMðqÞ; ð10Þ

where the observed galaxy density δg;obslm ðkÞ is related to the
matter density δLMðqÞ by the mode coupling matrix
WLM

lm ðk; qÞ. In our convention, this mode coupling matrix
encodes galaxy physics such as galaxy bias and RSD
effects, unequal time effects such as the growth of structure,
and the survey window function WðrÞ,

WLM
lm ðk; qÞ ¼

Z
d2r̂YLMðr̂ÞY�

lmðr̂ÞWL
lðk; q; r̂Þ; ð11Þ

where

WL
lðk; q; r̂Þ ¼

2qk
π

Z
dr r2 WðrÞDðrÞbðr; qÞjlðkrÞ

× ÃRSDð−i∂qr;−iq∂qr; rÞjLðqrÞ; ð12Þ

where we replace the argument μ of ÃRSD by −i∂qr which
acts on eiq·r ¼ eiqrμ.
Noting that in a homogeneous and isotropic Universe,

the matter power spectrum satisfies

hδðkÞδ�ðk0Þi ¼ ð2πÞ3δDðk − k0ÞPðkÞ; ð13Þ

it follows that the 2-point function of the SFB modes is

hδg;obslm ðkÞδg;obs;�l0m0 ðk0Þi

¼
Z

dq
X
LM

WLM
lm ðk; qÞWLM;�

l0m0 ðk0; qÞPðqÞ: ð14Þ

In the full-sky limit where WðrÞ ¼ WðrÞ, we have that
WL

lðk; q; r̂Þ → Wl
lðk; qÞ is independent of r̂. Let us define

Wlðk; qÞ≡Wl
lðk; qÞ. Then the SFB power spectrum

Clðk; k0Þ defined via

hδg;obslm ðkÞδg;obs;�l0m0 ðk0Þi ¼ δKll0δ
K
mm0Clðk; k0Þ; ð15Þ

can be expressed as

Clðk; k0Þ ¼
Z

dqWlðk; qÞW�
lðk0; qÞPðqÞ; ð16Þ

where
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Wlðk; qÞ ¼
2qk
π

Z
dr r2WðrÞDðrÞ

× jlðkrÞðbðr; qÞjlðqrÞ − fðrÞj00lðqrÞÞ; ð17Þ

where we use Eq. (9) with μ → −i∂qr.
Note that in a homogeneous and isotropic Universe, for

which bðr; qÞ ¼ DðrÞ ¼ ÃRSD ¼ WðrÞ ¼ 1, Wlðk; qÞ
becomes a Dirac delta function, and we have that
Clðk; k0Þ ¼ δDðk − k0ÞPðkÞ. In reality, the kernels
Wlðk; qÞ are peaked at k ≈ q. We show examples of
Wlðk; qÞ for the spherical window WðrÞ ¼ 1½0;rmax�ðrÞ
for various values of rmax in Fig. 1, where we fix
k ¼ 4.18 × 10−2 and vary q=k for l ¼ 20. Here and in
the remainder of this work we use the Planck 2018
cosmology [38] as our fiducial cosmology. The matter
power spectrum at zero redshift and the linear growth
factors f and D are computed with the Boltzmann code

CAMB1 [39]. All other calculations are performed in
Julia [40].2

C. Observed Fourier galaxy bispectrum

We now review the observed galaxy bispectrum in
Fourier space including observational effects such as the
RSD and galaxy bias, but without the window function
convolution. For details on the derivation of the various
quantities, we refer the readers to Refs. [41] and [42]
which we follow closely. As we will also be concerned
with modeling the effects of PNG in the SFB bispectrum,
we will include its effects in the Fourier bispectrum
as well.
We consider PNG of the local type, for which the

fluctuations of the primordial gravitational potential are
parametrized by

ΦNGðxÞ ¼ φðxÞ þ fNLðφ2ðxÞ − hφ2iÞ; ð18Þ

where φ is a primordial Gaussian potential. Using the
Poisson equation, we may relate the long-wavelength
Gaussian potential to the linearly evolved primordial matter
density perturbation via

ΦNGðkÞ ¼
δð1Þðk; zÞ
αðk; zÞ ; ð19Þ

where

αðk; zÞ ¼ 2k2c2DðzÞTðkÞ
3H2

0Ωm
: ð20Þ

Here Ωm is the matter density, H0 is the Hubble constant,
and TðkÞ is the transfer function of matter perturbations,
normalized to 1 at low k. Eqs. (19)–(20) are valid in the
Newtonian limit on subhorizon scales [43–45].
In perturbation theory, the observed galaxy density

contrast field at position r is given by

δgðk; rÞ ¼
X∞
n¼1

DnðrÞ
Z

d3k1
ð2πÞ3…

Z
d3kn
ð2πÞ3 ð2πÞ

3δDðk1 þ � � � þ kn − kÞZnðk1;…; kn; rÞδð1Þðk1Þ � � � δð1ÞðknÞ; ð21Þ

where δð1Þ is the linear matter density field, and the nth order redshift space kernels Zn encode the mode coupling effects
from gravitational evolution, PNG and galaxy biasing. We assume the bivariate galaxy biasing model,

δgðxÞ ¼ bE10δðxÞ þ bE01φðxÞ þ bE20ðδðxÞÞ2 þ bE11δðxÞφðxÞ þ bE02ðφðxÞÞ2 þ bs2ðs2 − hs2iÞ − bE01n
2: ð22Þ

0.0 0.5 1.0 1.5 2.0

q/k

0

500

1000

1500

2000
W

�(
k
,q

)
[M

p
c
h
−1

]
rmax = 500 Mpc h−1

rmax = 1000 Mpc h−1

rmax = 5000 Mpc h−1

FIG. 1. Wlðk; qÞ for fixed l ¼ 20, k ¼ 4.18 × 10−2h Mpc−1

and for various sizes rmax of the survey window WðrÞ ¼
1½0;rmax �ðrÞ.

1https://camb.info/.
2Our code will be made available upon request.
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Above we define the tidal term [46,47],

s2ðkÞ ¼
Z

dq
ð2πÞ3 S2ðq; k − qÞδð1ÞðqÞδð1Þðk − qÞ; ð23Þ

and the (non-Gaussian) term encoding displacement of
galaxies from their initial Lagrangian coordinate positions q,

n2ðkÞ ¼ 2

Z
dq

ð2πÞ3 N2ðq; k − qÞ δ
ð1ÞðqÞδð1Þðk − qÞ

αðjk − qjÞ ; ð24Þ

where above we use the kernels,

N2ðk1; k2Þ ¼
k1 · k2
2k21

; ð25Þ

S2ðk1; k2Þ ¼
ðk1 · k2Þ2
k21k

2
2

−
1

3
: ð26Þ

The redshift space kernels at first and second order,
respectively, are given by

Z1ðk; rÞ ¼ bE10 þ fðrÞμ2 þ bE01
αðkÞ ; ð27Þ

Z2ðk1; k2; rÞ ¼ bE10

�
F2ðk1; k2Þ þ fNL

αðkÞ
αðk1Þαðk2Þ

�
þ
�
bE20 −

2

7
bL10S2ðk1; k2Þ

�
þ bE11

2

�
1

αðk1Þ
þ 1

αðk2Þ
�
þ bE02
αðk1Þαðk2Þ

− bE01

�
N2ðk1; k2Þ
αðk2Þ

þ N2ðk2; k1Þ
αðk1Þ

�
þ fðrÞμ2

�
G2ðk1; k2Þ þ fNL

αðkÞ
αðk1Þαðk2Þ

�
þ fðrÞ2k2μ2

2

μ1μ2
k1k2

þ bE10
fðrÞμk

2

�
μ1
k1

þ μ2
k2

�
þ bE01

fðrÞμk
2

�
μ1

k1αðk2Þ
þ μ2
k2αðk1Þ

�
; ð28Þ

where μ≡ k̂ · r̂, k≡ k1 þ k2, μi ≡ k̂i · r̂, and where the
coupling kernels for the real-space density and velocity-
divergence fields are

F2ðq1;q2Þ¼
5

7
þ1

2

�
q1
q2

þq2
q1

�
q1 ·q2
q1q2

þ2

7

ðq1 ·q2Þ2
ðq1q2Þ2

; ð29Þ

G2ðq1;q2Þ¼
3

7
þ1

2

�
q1
q2

þq2
q1

�
q1 ·q2
q1q2

þ4

7

ðq1 ·q2Þ2
ðq1q2Þ2

: ð30Þ

From Eq. (27) it follows that we may write the linear galaxy
bias appearing in Eq. (17) as bðr; qÞ ¼ bE10 þ bE01=αðq; rÞ.
The galaxy bispectrum in Fourier space is defined via

hδgðk1; r1Þδgðk2; r2Þδgðk3; r3Þi
¼ Bsðk1; k2; k3; r1; r2; r3Þð2πÞ3δDðk1 þ k2 þ k3Þ: ð31Þ

Working up to second order in the galaxy density field
expansion, the tree-level bispectrum is

Bsðk1; k2; k3; r1; r2; r3Þ
≡ 2Dðr1ÞDðr2ÞD2ðr3ÞPðk1ÞPðk2ÞZ1ðk1; r1Þ
× Z1ðk2; r2ÞZ2ðk1; k2; r3Þ þ 2 cyc perm; ð32Þ

where we sum over all cyclic permutations of the subscripts
of the quantities in parentheses. Note that in the absence of
RSD, linear growth, galaxy bias, and PNG, Eq. (32)
reduces to the matter bispectrum,

Bmðk1; k2; k3Þ≡ 2Pðk1ÞPðk2ÞF2ðk1; k2Þ þ 2 cyc perm

ð33Þ

We follow Ref. [41] to model the Eulerian biases,

bE10 ¼ 1þ bL10; ð34Þ

bE01 ¼ bL01; ð35Þ

bE20 ¼
8

21
bL10 þ bL20; ð36Þ

bE11 ¼ bL01 þ bL11; ð37Þ

bE02 ¼ bL02; ð38Þ

in terms of the Lagrangian biases, which are given by

bL01 ¼ 2fNLδcbL10; ð39Þ

bL11 ¼ 2fNLðδcbL20 − bL10Þ; ð40Þ

bL02 ¼ 4f2NLδcðδcbL20 − 2bL10Þ; ð41Þ

if one assumes a universal mass function, and where δc is
the critical overdensity for halo collapse, here set to its
value for spherical collapse δc ¼ 1.686.
Note that only bE10 and b

E
20 need to be specified in order to

determine all the other bias parameters. Specifically for our
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SFB bispectrum computation later, we will set bE10 ¼ 1.8
and bE20 ¼ 0.305. While there is no technical obstacle to
including redshift-dependent biases in the SFB calculation,
we choose flat biases here for simplicity.

D. SFB bispectrum definition

We now review the formalism for the SFB bispectrum.
We seek to compute the 3-point correlation function of the
observed galaxy overdensity field in SFB space,

hδg;obsl1m1
ðk1Þδg;obsl2m2

ðk2Þδg;obsl3m3
ðk3Þi: ð42Þ

In the following, it will be useful to distinguish between
two notions of isotropy, which we term observational
isotropy and intrinsic isotropy. Intrinsic isotropy refers
to the statistically isotropic distribution of galaxies on the
largest-scales in real-space. Due to RSD, the galaxy
clustering observed in surveys is not intrinsically isotropic
since, in redshift space, it depends on the angle to a given
LOS. On the other hand, the distribution observed by a full-
sky survey remains invariant under rotations about the
observer position. This observational isotropy is broken,
however, by a survey window which is not spherically
symmetric. We show in Appendix B that, assuming
observational isotropy, Eq. (42) is real and proportional
to the Gaunt factor,

Gl1l2l3
m1m2m3

≡
Z

d2r̂Yl1m1
ðr̂ÞYl2m2

ðr̂ÞYl3m3
ðr̂Þ; ð43Þ

which can be expressed in terms of Wigner-3j symbols,

Gl1l2l3
m1m2m3

¼
�ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

�1
2

×
�
l1 l2 l3
0 0 0

��
l1 l2 l3
m1 m2 m3

�
: ð44Þ

The Wigner-3j’s ensure the SFB 3-point function
vanishes unless the following conditions are satisfied:
(i) m1 þm2 þm3 ¼ 0, (ii) triangle inequality on the li:
li ≥ lj − lk, and (iii) l1 þ l2 þ l3 is even.
In order to rid of the purely geometric information

contained in the mi, we compute the “angle-averaged”
bispectrum,

BSFB
l1l2l3

ðk1; k2; k3Þ≡
X

m1;m2;m3

�
l1 l2 l3
m1 m2 m3

�
× hδg;obsl1m1

ðk1Þδg;obsl2m2
ðk2Þδg;obsl3m3

ðk3Þi: ð45Þ

Using the orthogonality relation in Eq. (A24) then gives

hδg;obsl1m1
ðk1Þδg;obsl2m2

ðk2Þδg;obsl3m3
ðk3Þi ¼

�
l1 l2 l3
m1 m2 m3

�
× BSFB

l1l2l3
ðk1; k2; k3Þ: ð46Þ

In the following subsections we will always plot the
dimensionless reduced bispectrum,

QSFB
l1l2l3

ðk1; k2; k3Þ

≡ BSFB
l1l2l3

ðk1; k2; k3Þ
Pðk1ÞPðk2Þ þ Pðk1ÞPðk3Þ þ Pðk2ÞPðk3Þ

; ð47Þ

which partially projects out the dependence of the signal on
ki coming from the matter power spectrum. Finally, we note
that the bispectrum is invariant under simultaneous cyclic
permutations of ðl1; l2; l3Þ and ðk1; k2; k3Þ, which allows us
to restrict to l1 ≤ l2 ≤ l3.
Before delving into the computation of the SFB bispec-

trum, let us briefly remark on its relation to the angular
bispectrum in spherical shells (i.e., the TSH bispectrum)
bl1l2l3ðr1; r2; r3Þ of Ref. [18], defined via

Gl1l2l3
m1m2m3

bl1l2l3ðr1; r2; r3Þ≡
Z

d2r̂1d2r̂2d2r̂3Y�
l1;m1

ðr̂1ÞY�
l2;m2

ðr̂2ÞY�
l3;m3

ðr̂3Þhδg;obsðr1Þδg;obsðr2Þδg;obsðr3Þi: ð48Þ

Using Eq. (46) in combination with Eq. (1), it follows that

BSFB
l1l2l3

ðk1; k2; k3Þ ¼
�
2

π

�3
2

k1k2k3

Z �Y
i

drir2i jliðkiriÞ
�
bl1l2l3ðr1; r2; r3Þ: ð49Þ

We see that the SFB bispectrum and the TSH bispectrum are related by an invertible linear transformation, and that the
multipole indices li are the same in the SFB and TSH formalisms (the wave numbers ki are the same between SFB and
Fourier space). In practice, in the TSH formalism many radial bins are desirable to fully exploit the large scale radial modes
(see Ref. [29], which studied this for the power spectrum), leading to a covariance matrix which is difficult to invert,
whereas this issue does not arise in the SFB basis.
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III. SFB BISPECTRUM IN A HOMOGENEOUS AND ISOTROPIC UNIVERSE

A. Key identity for fast computation

We first examine the bispectrum in the limit of a homogeneous and intrinsically isotropic Universe (by ignoring the
growth of structure, galaxy bias evolution, redshift-space distortions and window function effects) in order to study its
features and build up intuition for understanding the observed SFB bispectrum later in Sec. IV.
We can relate the SFB bispectrum to the Fourier bispectrum using the relation between the SFB and Fourier modes

in Eq. (3),

hδl1m1
ðk1Þδl2m2

ðk2Þδl3m3
ðk3Þi ¼

k1k2k3
ð2πÞ92 il1þl2þl3

Z
d2k̂1d2k̂2d2k̂3Y�

l1;m1
ðk̂1ÞY�

l2;m2
ðk̂2ÞY�

l3;m3
ðk̂3Þhδðk1Þδðk2Þδðk3Þi: ð50Þ

Due to homogeneity and isotropy, the Fourier bispectrum Bmðk1; k2; k3Þ [Eq. (33)] depends only on the lengths k1, k2 and
k3, so that we may write

hδl1m1
ðk1Þδl2m2

ðk2Þδl3m3
ðk3Þi ¼

k1k2k3
ð2πÞ92 il1þl2þl3ð2πÞ3Bmðk1; k2; k3ÞIl1l2l3m1m2m3

ðk1; k2; k3Þ; ð51Þ

where

Il1l2l3m1m2m3
ðk1; k2; k3Þ≡

Z
d2k̂1d2k̂2d2k̂3Y�

l1;m1
ðk̂1ÞY�

l2;m2
ðk̂2ÞY�

l3;m3
ðk̂3ÞδDðk1 þ k2 þ k3Þ: ð52Þ

Equation (52) has typically been written in terms of an integral over the spherical Bessel functions [37] (for details, see
Appendix C) as

Il1l2l3m1m2m3
ðk1; k2; k3Þ ¼ 8il1þl2þl3

Z
r2drjl1ðk1rÞjl2ðk2rÞjl3ðk3rÞ

Z
d2r̂Y�

l1;m1
ðr̂ÞY�

l2;m2
ðr̂ÞY�

l3;m3
ðr̂Þ: ð53Þ

where the second integral is the Gaunt factor [Eq. (43)]. Here we instead derive the identity (see derivation in Appendix C),

Il1l2l3m1m2m3
ðk1;k2;k3Þ¼

4π
3
2

k1k2k3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1þ1Þ

p �
l1 l2 l3
m1 m2 m3

� X
jmj≤minðl2;l3Þ

Yl2;mðθ12;0ÞYl3;−mðθ13;0Þð−1Þm
�
l1 l2 l3
0 m −m

�
; ð54Þ

which allows us to rapidly compute the angle-averaged bispectrum without any numerical integration,3

BSFB;iso=homo
l1l2l3

ðk1; k2; k3Þ ¼ Bmðk1; k2; k3Þil1þl2þl3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2l1 þ 1Þ

p
×

X
jmj≤minðl2;l3Þ

Yl2;mðθ12; 0ÞYl3;−mðθ13; 0Þð−1Þm
�
l1 l2 l3
0 m −m

�
: ð55Þ

Abovewe define θij as the angle between ki and kj, such that
cosðθ12Þ≡ k̂1 · k̂2 ¼ ϑðk1; k2; k3Þ, where ϑðk1; k2; k3Þ≡
k2
3
−k2

1
−k2

2

2k1k2
, and cosðθ13Þ≡ ϑðk1; k3; k2Þ. Furthermore, denot-

ing the spherical coordinates of r̂ by ðθ;ϕÞ, we define
Yl;mðr̂Þ≡ Yl;mðθ;ϕÞ. It is clear from Eq. (55) that the SFB
bispectrum in an isotropic and homogeneous Universe is
proportional to the Fourier bispectrum by a geometric factor
depending on the li and the angles between the ki. Physi-
cally, this factorization is the result of the absence of any
cosmological source of mode-coupling such as redshift
evolution, RSDor PNG,whichwould either break statistical

homogeneity or intrinsic isotropy. This geometric factor also
imposes the triangle inequality on the wave numbers, i.e.,
ki ≤ jkj − kkj, which is relaxed as we shall see in the next
section for the observed SFB bispectrum and is only
imposed approximately for spherically symmetric surveys
which extend to sufficiently large redshifts.

3For this purpose we precompute a lookup table of Ylmðθ; 0Þ
values and interpolate. Also note that we may halve the number of
terms in the sum by using its invariance under m → −m.
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The identity Eq. (54) is one of our key results. In addition
to trivializing the computation of the signal in a homo-
geneous and isotropic Universe, it provides analytic insight
into the geometric features of the observed bispectrum.
Crucially, we will employ this identity to render the
computation of the observed bispectrum tractable. We will
discuss these points in IV B.

B. Properties of the signal

In Fig. 2, we show two-dimensional cross sections
of the reduced bispectrum in an isotropic and homo-
geneous Universe as a function of k2=k1 and k3=k1 for
fixed k1, for three l-triplets ðl1; l2; l3Þ. The most striking
feature is the rectangular border outside of which the
signal vanishes; this is the enforcement of the triangle
inequality.
Another important feature is that the signal oscillates in

the space of ki ’s, which is not surprising, given that the
products of spherical harmonics in Il1l2l3m1m2m3

ðk1; k2; k3Þ,

Yl2;mðθ12; 0ÞYl3;−mðθ13; 0Þ; ð56Þ

oscillate as the angles between the ki’s vary. Further, the
number of oscillations as one moves from the center of
the plot corresponding to an equilateral k-triangle, toward
the borders of the rectangular region, corresponding to
degenerate triangles, is higher for larger li values.
We also show a one-dimensional cross section in Fig. 3,

taking the diagonal k2 ¼ k3, for two different equilateral l
shapes (l1 ¼ l2 ¼ l3 ¼ l). Perhaps the most important
feature to note in this plot is that the SFB bispectrum
effectively reduces to the matter bispectrum at the limit
k2 ¼ k3 ≫ k1 in the homogeneous and isotropic Universe.
Indeed, the geometric factor in Eq. (55) encodes the triangle
shape and thus generally depends on the triangle side

lengths ki. In the considered limit the triangle angles tend
towards a fixed shape, ðθ12; θ13; θ23Þ → ðπ=2; π=2; 0Þ,
so there is no such dependence. We have that
Biso=homo
l1l2l3

ðk1; k2; k3Þ reduces to Cl1l2l3Bmðk1; k2; k3Þ for a
prefactor Cl1l2l3, which quickly tends towards a constant as
l grows.
Similarly, in the limit of degenerate triangles e.g.,

k3 ¼ k2 þ k1, we have cosðθ12Þ ¼ cosðθ13Þ ¼ 1, such that
only the m ¼ 0 term in Eq. (55) is nonzero, and the
bispectrum reduces to

FIG. 3. The reduced bispectrum signal in an isotropic and
homogeneous Universe for fixed k1 ¼ 4.18 × 10−2h Mpc−1 as in
Fig. 2, but now taking a cross section along the diagonal k2 ¼ k3.
We show two equilateral l-triplets l1 ¼ l2 ¼ l3 ¼ l with l ¼ 10
and 30. The plot is cut at k2=k1 ¼ 0.5 on the left since there is no
signal below it where the triangle condition is violated (this
property does not hold for the observed bispectrum in a realistic
Universe, however). At high k2, the SFB bispectrum is propor-
tional to the Fourier-space bispectrum.

FIG. 2. The reduced SFB bispectrum signal for an isotropic and homogeneous Universe, as a function of k2 and k3 in units of k1,
which is fixed to k1 ¼ 4.18 × 10−2h Mpc−1 here. Each panel displays a different triplet li ≡ ðl1; l2; l3Þ. The bispectrum vanishes
identically for configurations ðk1; k2; k3Þ which do not satisfy the triangle condition. The oscillations are a result of the geometric
coupling in Eq. (56); their number is controlled by the values of l. Note that the color bar limits are saturated in each panel.
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BSFB;iso=homo
l1l2l3

ðk1; k2; k3Þ ¼ Bmðk1; k2; k3Þil1þl2þl3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2l1 þ 1Þ

p �
l1 l2 l3
0 0 0

�
; ð57Þ

where again we have that the cosmological signal and
the geometric coupling separate into a k-dependent and an
l-dependent piece.

C. Requirement on the sampling frequency for
resolving the oscillations

As we will see in the next section, the observed SFB
bispectrum signal has a similar oscillation pattern in the
space of k’s as in the isotropic and homogeneous limit.With
the analytic formula Eq. (55) at hand, we can easily estimate
the local frequency of oscillations in k-space, and thus the
minimum sampling of ki ’s required to resolve these oscil-
lations, assuming that the computation is performed on a
uniform cubic grid of ðk1; k2; k3Þ with spacing Δk.
For example, consider for a given k1, the oscillations

along the diagonal k2 ¼ k3, as are visible in Fig. 3.
Estimating the frequency of the oscillations amounts to
estimating the spacing between the roots of the associated
Legendre polynomials in the products of Ylm ’s in Eq. (56).
On the diagonal, the lowest point for which the signal is
nonzero corresponds to the degenerate isosceles triangle
k2 ¼ k3 ¼ k1=2, and the diagonal extends to the top right
into a squeezed triangle where k2; k3 ≫ k1. On this
trajectory, θ12 and θ13 vary from 0 to π=2. The associated
Legendre polynomial Pl

mðcosðθÞÞ has l − jmj roots on the
range 0 < θ < π, which are symmetric about π=2, so there
are ðl − jmjÞ=2 roots on the ranges we consider.
Consequently, the product of Yl2mYl3m crosses zero at

most ðl2 þ l3 − 2jmjÞ=2 times.4 The m ¼ 0 term has the
highest number of roots and may be used to estimate an
upper bound on the spacing of roots. Towards that purpose,
note that P0

l ðcosðθÞÞ is simply the Legendre polynomial
LlðcosðθÞÞ. Let θ1;…; θl be the sequence of roots of
LlðcosðθÞÞ in the interval ð0; πÞ, listed in increasing
order. Then we have the inequalities on the location of
the roots [48],

ν − 1
2

l
π < θν <

ν

lþ 1
π ðν ¼ 1; 2;…; ⌈l=2⌉Þ: ð58Þ

Hence, the first value of k2 above k2;min ¼ k1=2 for which
the spherical harmonic product of index m ¼ 0 vanishes
along the diagonal satisfies

krootν¼1
2 <

k1
2 cosðπ=ðl3 þ 1ÞÞ ; ð59Þ

Thus, to have at least N sampling points per oscillation, the
sampling Δk must satisfy

NΔk<krootν¼1
2 −k2;min<k1

�
1

2cosð π
l3þ1

Þ−
1

2

�
⟶
l3≫π k1

4

�
π

l3

�
2

:

ð60Þ

We have verified numerically that the estimated l−23 scaling
holds for bispectrum signal. Given the cost of computing
the observed bispectrum, this means that resolving the
oscillations of the signal within the triangle inequality
region is challenging at high l.
In Sec. IV C, we shall see that one property of the

observed bispectrum signal is that for large enough l it is
“Limber-suppressed” at low-k, in particular inside the
region where the triangle inequality is satisfied. This means
that we actually do not need to resolve the signal close to
the borders of this region, where the local frequency of
oscillations is higher, as the signal contains comparatively
little information there. We stress that, as the oscillations
are purely geometric in origin, they are not physically
important. The above discussion is rather intended to aid
the reader interested in computing the SFB bispectrum in
building intuition for some non-trivial features of the
signal.

IV. THE OBSERVED SFB BISPECTRUM

In this section, we begin by describing the template
decomposition we use in order to render the computation of
the observed SFB bispectrum feasible. We then give details
of the signal computation before studying its properties.
Note that we now incorporate redshift evolution, RSD

effects, PNG and survey window effects. Statistical homo-
geneity is now broken by the growth of structure and RSD,5

and the latter also breaks intrinsic isotropy. We restrict
ourselves to the linear regime k≲ 0.1h Mpc−1 for which
the tree-level bispectrum remains valid down to z ¼ 0, and
therefore do not include the FoG effect. We also choose to
not model the monopole and dipole here, as they are
affected by observer terms in GR such as the observer
potential and peculiar velocity [37]; i.e. we restrict our-
selves to multipoles li ≥ 2.

A. Template decomposition of the observed bispectrum

We begin by expressing the observed galaxy density
field by applying the window function to the galaxy density
field in redshift space,

4If l2 ¼ l3, it crosses zero ∼l2=2 times.

5Note that in Fourier space, one can still assume statistical
homogeneity by restricting to a given redshift bin and choosing
an effective redshift for the entire bin.
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δg;obsðrÞ ¼ WðrÞ
Z

d3q
ð2πÞ3 e

iq·rδgðq; rÞ: ð61Þ

To second order in the linear matter density field δð1Þ, we have from Eq. (21) that δg;obsðrÞ ¼ δg;obs;ð1ÞðrÞ þ
δg;obs;ð2ÞðrÞ, where

δg;obs;ð1ÞðrÞ ¼ WðrÞ
Z

d3q
ð2πÞ3 e

iq·rDðrÞZ1ðq; rÞδð1ÞðqÞ; ð62Þ

δg;obs;ð2ÞðrÞ ¼ WðrÞ
Z

d3q
ð2πÞ3 e

iq·rD2ðrÞ
Z

1

ð2πÞ3 d
3k1d3k2Z2ðk1; k2; rÞδð1Þðk1Þδð1Þðk2ÞδDðk1 þ k2 − qÞ: ð63Þ

Transforming the linear density contrast Eq. (62) into SFB space, we retrieve Eq. (10)where the kernelWLM
lm ðk; qÞ encodes

(linear) galaxy physics and RSD.We aim to derive a similar relation for the second-order density contrast. We now transform
Eq. (63) into SFB space using Eq. (1). Expressing the linear matter density contrast in the SFB basis from Eq. (4) and writing
the Dirac-delta as an integral over complex exponentials, we obtain

δg;ð2Þlm ðkÞ ¼
ffiffiffi
2

π

r
k
Z

d3r jlðkrÞY�
lmðr̂ÞWðrÞD2ðrÞ

Z
d3q eiq·r

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3 Z2ðk1; k2; rÞ

Z
d3x eik1·xeik2·xe−iq·x

×
1

k1

X
L1M1

i−L1YL1M1
ðk̂1Þδð1ÞL1M1

ðk1Þ
1

k2

X
L2M2

i−L2YL2M2
ðk̂2Þδð1ÞL2M2

ðk2Þ: ð64Þ

Naively inserting the expression for Z2 [Eq. (28)] into Eq. (64) would require evaluating high-dimensional angular
integrals, which is intractable. To simplify the calculation, we remark that Z2ðk1; k2; rÞ is nearly a polynomial in k̂1 · k̂2,

k̂1 · r̂, and k̂2 · r̂. Indeed, defining Z̃2 such that

Z2ðk1; k2; rÞ ¼ Z̃2ðk1; k2; rÞ þ fNL
αðkÞ

αðk1Þαðk2Þ
ðbE10 þ fðrÞμ2Þ þ fðrÞμ2G2ðk1; k2Þ; ð65Þ

we can decompose Z̃2 into Legendre polynomials in those
three variables and thereby factorize the dependence on the
k̂i and r̂,

Z̃2ðk1; k2; rÞ ¼
X
l1l2l3

Zl1l2l3ðk1; k2; rÞLl1ðk̂1 · k̂2Þ

× Ll2ðk̂1 · r̂ÞLl3ðk̂2 · r̂Þ: ð66Þ

Importantly, the sum over l1, l2, l3 is finite, and indexed by
nine triplets ðl1; l2; l3Þ whose corresponding coefficients
Zl1l2l3 are listed in Appendix D 1. As we discuss below, the
above Legendre decomposition permits to reduce the
bispectrum to a triple integral.
Two other terms remain. The term proportional to fNL in

Eq. (65) depends on k ¼ jk1 þ k2j through αðkÞ, so it
cannot be decomposed it in a similar fashion. In principle,
the term proportional to G2ðk1; k2Þ in Eq. (65) can be
decomposed in this manner; however, since μ2 ¼ ðk1 · r̂þ
k2 · r̂Þ=ðk21 þ k22 þ 2k1 · k2Þ it would render the sum
Eq. (66) infinite and slowly converging. Hence, we choose
to treat the G2 and fNL terms separately (and exactly), as
described in Appendix D 4.

We summarize the remainder of the derivation here,
leaving details to Appendix D: First, we insert the decom-
position Eq. (66) of Z̃2ðk1; k2; rÞ into Eq. (64), and use the
planewave expansion Eq. (A15) to decompose the complex
exponentials into spherical harmonics and spherical
Bessel functions. We rid of the angular integrals over q̂
with the orthogonality relation for spherical harmonics
Eq. (A10).
Then we apply Wick’s theorem to compute

hδg;ð2Þlm ðkÞδg;ð1Þl0m0 ðk0Þδg;ð1Þl00m00 ðk00Þi in terms of the two-point
functions. Finally, proceeding under the assumption of a
spherically symmetric window WðrÞ ¼ WðrÞ, we compute
the angle averaged bispectrum using Eq. (45) and obtain

BSFB
l1l2l3

ðk1;k2;k3Þ¼2

Z
dq2Wl2ðk2;q2ÞPðq2Þ

×
Z

dq3Wl3ðk3;q3ÞPðq3Þ

×Vl1l2l3
tot ðk1;q2;q3Þþ2cyc perm; ð67Þ

where
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Vl1l2l3
tot ðk1; q2; q3Þ≡ Vl1l2l3ðk1; q2; q3Þ þ Vl1l2l3

fNL;G2
ðk1; q2; q3Þ;

ð68Þ

where the specific forms of Vl1l2l3 and Vl1l2l3
fNL;G2

are given by

Eqs. (D33) and (D45) respectively. Note that the kernel
Wlðk; qÞ is already given by Eq. (17).
Let us briefly comment on the form of the dimensionless

kernel Eq. (68). The first term of Eq. (68) is given by

VlL1L2ðk; k1; k2Þ
≡ ð32πÞ32kk1k2

X
l1l2l3L3L4

gL1L2l
l1l2l3L3L4

JlL3L4

l1l2l3
ðk; k1; k2Þ; ð69Þ

where

JlL3L4

l1l2l3
ðk; k1; k2Þ≡

Z
dr r2 jlðkrÞjL3

ðk1rÞjL4
ðk2rÞ

×WðrÞD2ðrÞZl1l2l3ðk1; k2; rÞ; ð70Þ

is the contribution to SFB mode coupling by cosmological
sources (e.g., redshift evolution, RSD and PNG) and survey
window, and where gL1L2l

l1l2l3L3L4
is a purely geometric mode

coupling coefficient given by Eq. (D32).
In analogy to the SFB power spectrum, in which the

matter power spectrum is convolved with kernelsWlðk; qÞ
that describe the mode coupling through the product of two
spherical Bessel functions, the kernel Vl1l2l3ðk1; q2; q3Þ
contains a product of three spherical Bessel functions.
This endows the SFB bispectrum with key geometric
features which we discuss shortly. The second term of
Eq. (68), given by Eq. (D46), contains the contribution
from the fNL and G2 terms and is of a similar form to
Eq. (69). Our result matches the general form of the SFB
bispectrum derived in Ref. [37].

B. Signal computation

We compute the bispectrum for a uniform grid
of ðk1; k2; k3Þ of size 2003 with ki between kmin ¼ 4 ×
10−3h Mpc−1 (note that future surveys like SPHEREx
will be able to probe down to 10−3h Mpc−1) and kmax ¼
8 × 10−2hMpc−1 (to stay within linear regime) with uni-
form spacing Δk ¼ 3.8 × 10−4hMpc−1. For the toy win-
dow function, we assume a sphere WðrÞ ¼ 1½0;rmax�ðrÞ with
rmax ¼ 5000 Mpch−1, corresponding to a maximum red-
shift z ∼ 4.1. As a result of the large redshift range chosen
here, the kernels Wlðk; qÞ in Eq. (67) are highly peaked
around k ≈ q. For surveys with a smaller redshift extent
rmax, the kernel Wlðk; qÞ would have a smoother peak and
lower frequency oscillations (as in Fig. 1), which would
make the computation less computationally demanding.
Let us now examine more closely the form of the

integrals to be computed. Note first that Eq. (67) is a

two-dimensional integral (over q2 and q3) of the kernels
V tot. The first term in this kernel, Vl1l2l3 [Eq. (D30)] is a
sum of the one-dimensional Bessel integrals given in
Eq. (70). The second term Vl1l2l3

fNL;G2
is also effectively a

one-dimensional integral since the computationally-
intensive parts of the integrand, the integrals WG2

l , WfNL
l

and Il1l2l3 , can be precomputed on a grid. The precompu-
tation for Il1l2l3 requires a few seconds using the identity
Eq. (54), which expresses it as a finite sum with l3 terms.
Finally, the kernels Vl1l2l3ðk1; q2; q3Þ themselves are

precomputed on a q2-q3 grid to be reused for the various
triplets ðk1; k2; k3Þ. This, along with the final integration in
Eq. (67), is the bottleneck of the calculation, and limits the
number of l-triplets we may feasibly calculate. However,
the signal is sufficiently smooth in l that this might not pose
a problem for e.g., a Fisher forecast exercise. All grid
computations are parallelized using Julia’s multithreading
functionality; computing the kernels Vl1l2l3ðk1; q2; q3Þ
requires a few hours per triplet ðl1; l2; l3Þ with multi-
threading across 256 AMD EPYC 7763 CPUs.
Beyond dimensionality, a second numerical concern

is the oscillatory nature of the integrands. We perform
all integrals via Gauss-Legendre quadrature. To accurately
integrate Vl1l2l3

tot ðk1; q2; q3Þ, we observe that if the averaging
r-spacing is Δr, then we must impose k1 þ q2 þ
q3 ≲ π=Δr. This resolution requirement may be understood
physically by noting that in the limit of large r, the spherical
Bessel function jlðqrÞ oscillates with a spatial angular
frequency given by q. The product of three such functions
with asymptotic frequencies ðk1; q2; q3Þ will therefore have
a mode which oscillates with angular frequency
k1 þ q2 þ q3. This is seen in Fig. 7, where we plot the
integrand in Eq. (70) for a fixed triplet ðk1; q2; q3Þ. We use
Δr ¼ 5 Mpch−1. Further, to evaluate the bispectrum we
must convolve the kernels Vl1l2l3

tot ðk1; q2; q3Þ with the
Wl2ðk2; q2Þ, both of which oscillate quickly as q2 is varied.
This requires a sufficient sampling in the qi space. As the
computation time is quadratic in the number of sampling
points for each qi, only modest samplings are feasible; we
use 300 points for each qi, chosen as Gauss-Legendre
nodes. We have verified that with this sampling, the
bispectrum computation is converged to the 1% level.

C. Properties of the signal

The observed bispectrum signal displays a number of
salient features which we now discuss.

1. Oscillations in k and mode coupling

A cross section of the reduced bispectrum for fixed
k1 ¼ 0.0418h Mpc−1, for the same set of l-triplets as in
Fig. 2, is shown in Fig. 4. Perhaps the most striking feature
here is that the patterns of oscillations in k-space are similar
to those visible in Fig. 2 for the isotropic and homogeneous
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case. We may understand this from the mode coupling
coefficients gL1L2l

l1l2l3L3L4
in Eq. (69). Numerically we find that

they are generally suppressed unless ðL3; L4Þ ¼ ðL1; L2Þ,
such that the dominant contribution to the bispectrum
signal BSFB

l1l2l3
is from integrals of type Eq. (70) where the

spherical Bessel functions have the same indices l1, l2, l3,
as in the isotropic and homogeneous case [Eq. (51)–(53)].

2. Limber suppression at low k and high l

In Fig. 5, we increase the l values to l1 ¼ l2 ¼ l3 ¼ 90
and see that the overall amplitude of the oscillations
decreases by roughly an order of magnitude relative to
the leftmost panel of Fig. 4. To understand the suppression

with increasing l, which is generic, we note that for fixed r,
the spherical Bessel function jlðkrÞ is proportional to ðkrÞl
for small k; for large k, it oscillates with an amplitude
proportional to ðkrÞ−1. Further, in the Limber approxima-
tion6 [Eq. (A5)], for a fixed l and k, the Bessel function
jlðkrÞ is peaked around r ∼ ðlþ 1

2
Þ=k with a peak value

equal to ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð2lÞp

[51].
Physically, we may understand the suppression as

follows. For fixed ðk1; k2; k3Þ, the bispectrum at higher li
probes higher redshifts. If the survey window has finite
radial extent, these higher redshift contributions to the
signal are necessarily smaller, and vanish once the redshift
exceeds the extent of the survey. By contrast, when the
survey window has infinite size as in the homogeneous and
isotropic Universe, for every li there is a corresponding
redshift which contributes non-negligibly to the signal,
such that there is no such suppression at high li.
Given that the spherical Bessel functions go as ðkrÞl when

k≲ l=r, we should also expect a sharp suppression of the
bispectrum at low k. This suppression is not visible in the
first panel of Fig. 4 because this effect is only relevant for
l≳ kminrmax ¼ 20 in our fiducial setup. On the other hand it
visible in Fig. 5, for l1 ¼ l2 ¼ l3 ¼ 90. The onset of the low
k suppression is inside of the region where the triangle
inequality holds and is indicated by the dotted gray lines.
Recall from the previous sections that the frequency of

the oscillations increases as we approach the triangle
inequality boundary, making the computation increasingly
difficult close to the boundary with higher sampling needed
to resolve these oscillations. For small l, we have large
spacings Δk ∝ l−2 which are manageable. For large l, the
Limber suppression is helpful in the sense that it is not
necessary to compute the signal at the boundary since it is

FIG. 5. A illustration of the Limber suppression at low k, which
becomes visible for the reduced observed SFB bispectrum signal
within the triangle inequality region for sufficiently large l. Here
we show the signal for l1 ¼ l2 ¼ l3 ¼ 90, while still fixing
k1 ¼ 4.18 × 10−2hMpc−1. The onset of Limber suppression is
indicated by the gray dashed lines, where we expect the signal to
be suppressed according to the Limber approximation
ki ¼ ðli þ 1

2
Þ=rmax. The border of the region where the triangle

inequality on ðk1; k2; k3Þ holds is shown by the solid lines.

FIG. 4. The observed reduced SFB bispectrum for a realistic Universe, assuming a spherically symmetric survey window, for the same
set of l-triplets as in Fig. 2. The signal is sampled at 2002 pairs ðk2; k3Þ in each panel, whereas in Fig. 2 there are 4002 sampled pairs.

6Calling this the Limber approximation is standard in cosmol-
ogy. However, the term is slightly misleading, since the original
approximation by Limber [49] was in configuration space, and
only applied to Fourier-space by Kaiser [50]. The resulting
approximation effectively is that of Eq. (A5) [51].
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suppressed there by several orders of magnitude. This is
true both in a Fisher analysis or in a real data analysis where
we can simply choose to ignore this part of the data vector
as it contains almost no information. For example, for our
fiducial choice of window and range of k, the Limber
condition tells us that there is almost no Fisher information
contained in the multipoles l ≥ rmaxkmax ¼ 500, which we
have confirmed numerically.

3. Violation of the triangle condition

We saw that in an isotropic and homogeneous Universe,
the bispectrum signal vanishes identically when ðk1; k2; k3Þ
does not satisfy the triangle inequality. This is a conse-
quence of (intrinsic) isotropy. In the case of the observed
bispectrum, where this isotropy is broken by e.g., redshift
space distortions, this is no longer true, though it holds
approximately for wider survey windows. For lower values
of rmax, the signal strength is non-negligible even when
ðk1; k2; k3Þ violate the triangle inequality.
This is due to two reasons. First, the kernels Wlðk; qÞ

[Eq. (17)] are less peaked for smaller rmax, such that for
ðk1; k2; k3Þ which violate the triangle inequality, the inte-
gral Eq. (67) can pick up a non-negligible contribution from
the kernel Vl1l2l3

tot ðk1; q2; q3Þ for ðk1; q2; q3Þwhich do form a
triangle. Secondly, for smaller rmax, V

l1l2l3
tot ðk1; q2; q3Þ itself

can take non-negligible values for ðk1; q2; q3Þ which do not
form a triangle [indeed, the Bessel integrals Eq. (70) do not
come with any triangle condition]. As a result, the triangle
inequality is broken in the observed SFB bispectrum,
with the violation more severe at lower rmax. See Fig. 6
which illustrates this effect using rmax ¼ 500, 1000 and
2500 Mpch−1 (z ∼ 0.18, 0.37 and 1.2 respectively).

V. DISCUSSION

In this paper, we computed the SFB bispectrum signal
for the first time, discussing how to account for redshift

space distortions and primordial non-Gaussianity. Starting
with a toy example of the homogeneous and isotropic
Universe, we built up intuition for later understanding some
key features of the observed bispectrum convolved with a
toy spherically symmetric window.
To render the computation tractable, we leveraged a

decomposition of the second-order redshift space kernel
into products of three Legendre polynomials, which
allowed us to express the bispectrum, modulo RSD and
PNG terms, as a triple integral. Furthermore, we derived an
identity to express as a simple sum the six-dimensional
angular integral of three spherical harmonics (or equiv-
alently, the one-dimensional integral of a product of three
spherical Bessel functions on an infinite interval). This
enabled us to rapidly compute and study the signal in the
case of a homogeneous and isotropic Universe, and to
accelerate the calculation of the RSD and PNG contribu-
tions to the observed bispectrum.
Even with these techniques and the various numerical

optimizations we employed, computing the SFB bispec-
trum is clearly expensive: for each triplet of multipole
indices ðl1; l2; l3Þ and of wave numbers ðk1; k2; k3Þ, we
need to evaluate triple integrals with oscillatory integrands.
Our method requires Oð100Þ CPU hours for each l-triplet
to compute the signal on a grid of 2003 ðk1; k2; k3Þ triplets.
In a realistic data analysis, one would need to calculate the
signal for different cosmologies in a Monte Carlo Markov
chain (MCMC) on the order of seconds. We note however
that we have chosen a very large redshift extent z≲ 4,
corresponding to rmax ¼ 5000 Mpch−1, for which the
integration is the most challenging. Surveys with smaller
redshift extent would require less time for computation. We
may compare with the redshift ranges of existing and future
surveys (ignoring that these surveys of course do not have
spherically symmetric masks). For example, forecasted
SPHEREx constraints on fNL from Ref. [31] use
0 < z < 4.6, though most of the constraint actually comes

FIG. 6. A demonstration of the triangle condition violation in a realistic Universe—the observed reduced bispectrum signal for
different values of the redshift extent rmax ¼ 500, 1000 and 2500 Mpch−1 (corresponding to z ∼ 0.18, 0.37 and 1.2 respectively) at fixed
k1 ¼ 4.18 × 10−2h Mpc−1 and ðl1; l2; l3Þ ¼ ð4; 6; 8Þ. For smaller rmax, the violation of the triangle condition is more severe due to less
peaked Wl kernels (see Sec. IV C 3 for more explanations).
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from z≲ 2. Euclid’s galaxy clustering sample will come
from 0.7 < z < 1.8, while DESI will cover a wide redshift
range: up to z ¼ 1.0 using luminous red galaxies, up to
z ¼ 1.7 with emission line galaxies, and 2.1 < z < 3.5
with quasars [52].
There are several possibilities to accelerate and improve

the accuracy of the computation that we leave for future
work. For example, as the local frequency of the oscillations
in the signal can be estimated as a function of ðki; liÞ from the
isotropic and homogeneous bispectrum as in Sec. III C, the
signal can instead be sampled on a suitable nonuniform grid
of ðk1; k2; k3Þ. To improve upon the Gauss-Legendre quad-
rature method for integrating the spherical Bessel product
Eq. (70), the three-dimensional generalization of the
FFTLog method of [53] could prove superior. Leveraging
cache-friendly memory layouts may also help to speed up
some of the linear algebra operations involved in computing
these Bessel integrals on a grid in k-space.
For the purpose of calculations in a MCMC analysis, one

could also explore decomposing the bispectrum depend-
ence on cosmological parameters into precomputed tem-
plates and varying the coefficients of the template
corresponding to the varying cosmology. If it becomes
impossible to directly compute the signal for each point in
the cosmology parameter space sampled during the
MCMC, the use of emulators could also aid in minimizing
the evaluation time.
Another natural extension to this work is to incorporate

more physical and observational effects in the computation.
The most important physical effects on large-scales that we
have not included here are general-relativistic (GR) effects.
The authors of Ref. [37] detailed how to incorporate them
in the SFB bispectrum; in principle they may be evaluated
numerically within the same framework described in our
work, i.e. through (many) additional terms in the first order
kernels Wlðk; qÞ and in the second-order kernels Vl1l2l3 ,
after a template decomposition into Legendre polynomials
as in Sec. IVA. On smaller scales, more detailed modeling
of RSD (e.g., Fingers-of-God and Alcock-Paczynski
effects) and of the nonlinear regime would be needed. In
addition, we have used a spherically symmetric window
function to demonstrate the calculation, while realistic
window convolution is still to be explored.
To feasibly use the SFB bispectrum to analyze survey

data, a number of missing pieces would still need to be
filled in. In particular, it would be necessary to develop an
efficient SFB bispectrum estimator, e.g., by building off of
techniques developed by [25,28] for an SFB power
spectrum estimator. As allowing for a survey window of
arbitrary geometry in the modeling of the signal would
greatly increase the computational cost, one may explore
accounting for it in the estimator, e.g., by using a window-
less estimator which directly returns the window-
deconvolved bispectrum as pioneered in Ref. [54] for
the bispectrum multipoles.

Moreover, a realistic covariance matrix for the SFB
bispectrum beyond the Gaussian approximation also needs
to be developed, including complexities due to window
function convolution as well as non-Gaussian covariance. If
the window effects can be reliably removed at the estimator
level, then the covariance would be significantly simplified.
For the non-Gaussian covariance, an approximation similar
in form to that proposed in Ref. [55] may be applicable for
the SFB bispectrum, where the non-Gaussian part of the
covariance is dominated by the product of two bispectra
sharing the same large scale—a good approximation for
squeezed configurations and also tested to be good enough
for other configurations in Ref. [55] in the context of
Fourier-space bispectrum. Alternatively, to incorporate all
complexities at once, one may also develop mocks to
compute the mock-based covariance by averaging over
many realizations, once a fast SFB bispectrum estimator
exists. This method would include wide-angle effects
directly for mocks with large enough angular area, while
it could be challenging to incorporate all GR effects into
the mocks.
Since an advantage of the SFB formalism is that it avoids

the loss of information due to assuming inexact lines-of-
sights for individual galaxy triplets, it would also be
interesting to evaluate more quantitatively now this infor-
mation gain, for example by comparing to the standard
bispectrum multipole formalism in the local plane-parallel
approximation and to perturbative corrections thereof as in
[17]. Our work to enable the computation of the signal will
allow for such a study to be conducted. With a suitable
scheme to interpolate the signal in the space of multipoles
li, it could be feasible to conduct a Fisher forecast for
various cosmological parameters of interest, such as fNL or
RSD parameters.
Note that this loss of information may be small for

surveys with small angular extent but more important for
full-sky surveys like SPHEREx. Currently, with the excep-
tion of the TSH formalism, only perturbative approaches to
modeling wide-angle effects in the bispectrum have been
proposed [17,56], expanding from the global plane-parallel
approximation. Thus, the SFB bispectrum remains the only
method to fully account for all large scale effects non-
perturbatively on the largest angular scales while preserv-
ing the potential of retaining all information contained in
the radial modes.
Another advantage of the SFB formalism is that some of

the GR terms, which are mostly radial effects along the
line-of-sight, become easily disentangled from other
effects. In particular, the monopole and the dipole terms
in the SFB formalism contain all the observer terms in GR
arising from the potential and velocity at the observer
position. Some of these terms may be quantified via other
means before being subtracted (e.g., the velocity term
in the dipole), while others are intrinsically undetectable
(e.g., observer potential) and may need to be modeled
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through constrained realization if they affect observables of
interest.
Modeling these terms in a Cartesian framework amounts

to propagating these effects to every mode (and every order
if a perturbative expansion from the plane-parallel approxi-
mation is used), which would propagate potential system-
atics into every measured mode. In contrast, in a spherical
framework such as SFB, there is a clear radial and angular
separation that allows for the isolation of such terms into
just the monopole and dipole, which may then be discarded
or tested separately for systematics.
While the TSH formalism provides a similar advantage,

it requires many radial bins required to resolve the large
scale radial modes (which is important to do for measuring
fNL), which introduces highly correlated neighboring radial
bins, and leads to numerically instabilities during covari-
ance inversion. The SFB method is therefore a trade-off
between extracting the maximal amount of information and
the cost of computing the signal. In this regard, we have
made a step forward by rendering the SFB signal comput-
able and studying its various features.
This is merely the beginning of more efforts to follow to

make the calculation of the SFB bispectrum feasible for
next-generation surveys. With increasing computational
power in the future, along with more sophisticated numeri-
cal and mathematical techniques, the SFB bispectrum may
become a key formalism that will allow us to extract all of
the possible information from a full-sky galaxy survey.
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APPENDIX A: USEFUL FORMULAS

1. Dirac delta distribution

For a continuously differentiable function g with simple
roots fxig we have

δDðgðxÞÞ ¼
X
i

δDðx − xiÞ
jg0ðxiÞj

: ðA1Þ

For any function fðkÞ,Z
k2dk d2k̂δDðk − k0ÞfðkÞ

¼
Z

dk δDðk − k0Þ
Z

d2k̂δDðk̂ − k̂0ÞfðkÞ: ðA2Þ

Therefore,

δDðk − k0Þ ¼ k−2δDðk − k0ÞδDðk̂ − k̂0Þ: ðA3Þ

2. Spherical Bessel functions

To first order the Bessel function JνðxÞ may be approxi-
mated by a Dirac delta as [51]

JνðkrÞ ≃ δDðkr − νÞ: ðA4Þ

Therefore, for a spherical Bessel function jlðxÞ ¼ffiffiffiffiffiffiffiffiffiffi
π=2x

p
Jlþ1

2
ðxÞ we have

jlðkrÞ ≃
ffiffiffiffiffiffiffi
π

2rk

r
δD

�
r −

lþ 1
2

k

�
; ðA5Þ

to first order. In the cosmology literature, a version of this is
often called Limber’s approximation [49]. Spherical Bessel
functions satisfy the orthogonality relation,

δDðk − k0Þ ¼ 2kk0

π

Z
∞

0

dr r2jlðkrÞjlðk0rÞ: ðA6Þ

3. Spherical harmonics

Spherical harmonics can be expressed in terms of a
complex exponential and real associated Legendre func-
tions Pml ðxÞ as

Ylmðr̂Þ ¼ eimϕ

�ðl −mÞ!ð2lþ 1Þ
4πðlþmÞ!

�1
2

Pml ðcos θÞ: ðA7Þ

The associated Legendre functions are even or odd accord-
ing to the index,

Pm
l ð−xÞ ¼ ð−1ÞlþmPm

l ðxÞ: ðA8Þ

The completeness relation is
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X
lm

Ylmðr̂ÞY�
lmðr̂0Þ ¼ δDðr̂ − r̂0Þ: ðA9Þ

The spherical harmonics satisfy the orthogonality relation,Z
dΩr̂Ylmðr̂ÞY�

l0m0 ðr̂Þ ¼ δKll0δ
K
mm0 : ðA10Þ

For a rotation R about the origin that sends the unit vector
r to r0, we have

Yl;mðr0Þ ¼
Xl
m0¼−l

½DðlÞ
mm0 ðRÞ��Yl;m0 ðrÞ; ðA11Þ

where ½DðlÞ
mm0 ðRÞ�� is the complex conjugate of an entry of

the Wigner D-matrix. The Wigner D-matrix is a unitary
square matrix of dimension 2jþ 1. If R is defined by
proper Euler angles α, β, γ in the z-y-z convention, we have
the property,

Dl
m0ðRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Y�
l;mðβ; αÞ; ðA12Þ

and also the relation,

Dj
mkðRÞDj0

m0k0 ðRÞ

¼
Xjþj0

J¼jj−j0j
hjmj0m0jJðmþm0Þihjkj0k0jJðkþ k0Þi

×DJ
ðmþm0Þðkþk0ÞðRÞ; ðA13Þ

where hj1m1j2m2jj3m3i is a Clebsch-Gordan coefficient.
The latter is related to the Wigner 3j symbols by

hj1m1j2m2jJMi¼ð−1Þ−j1þj2−M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jþ1

p �
j1 j2 J

m1 m2 −M

�
:

ðA14Þ

We may also expand plane waves in terms of spherical
Bessels and spherical harmonics,

eiq·r ¼ 4π
X
l0;m0

il
0
jl0 ðqrÞY�

l0m0 ðq̂ÞYl0m0 ðr̂Þ; ðA15Þ

from which it follows, using Eq. (A10), thatZ
d2r̂Y�

l;mðr̂Þeiq·rðq̂ · r̂Þα ¼ 4πilY�
l;mðq̂Þð−i∂qrÞαjlðqrÞ:

ðA16Þ

The Legendre polynomials can be expressed as a sum over
spherical harmonics as

Llðk̂ · r̂Þ ¼
4π

2lþ 1

X
m

Ylmðk̂ÞY�
lmðr̂Þ: ðA17Þ

We also have the identities,

Y�
lmðr̂Þ ¼ ð−1ÞmYl;−mðr̂Þ; ðA18Þ

Ylmð−r̂Þ ¼ ð−1ÞlYl;mðr̂Þ: ðA19Þ

4. Gaunt factor

The Gaunt factor is

GlLL1

mMM1
≡

Z
d2r̂Ylmðr̂ÞYLMðr̂ÞYL1M1

ðr̂Þ; ðA20Þ

and it can be expressed in terms of Wigner-3j symbols,

GlLL1

mMM1
¼

�ð2lþ 1Þð2Lþ 1Þð2L1 þ 1Þ
4π

�1
2

�
l L L1

0 0 0

�
×
�
l L L1

m M M1

�
: ðA21Þ

Hence, a product of two spherical harmonics can be
reduced to a linear combination of spherical harmonics by

Yl1m1
ðr̂ÞYl2m2

ðr̂Þ ¼
X
L

ð−1ÞMGl1l2L
m1m2−MYLMðr̂Þ; ðA22Þ

whereM ¼ m1 þm2. Using this identity, one can derive by
recursion the analogous integral to Eq. (A20) for any
number of spherical harmonics. For four spherical har-
monics we have (as in Appendix A of Ref. [57])Z

d2r̂Yl1m1
ðr̂ÞYl2m2

ðr̂ÞYl3m3
ðr̂ÞYl4m4

ðr̂Þ

¼
X
L

ð−1ÞMGl1l2L
m1m2−MG

Ll3l4
Mm3m4

: ðA23Þ

5. Wigner symbols

The Wigner 3j symbols obey an orthogonality relation,

X
mM

�
l L L1

m M M1

��
l L L2

m M M2

�
¼ δKL1L2

δKM1M2
δTðl; L; L1Þ

2L1 þ 1
; ðA24Þ

where δTðl; L; L1Þ enforces the triangle relation that is
obeyed by the Wigner 3j-symbols; i.e. they vanish unless
jl − Lj ≤ L1 ≤ lþ L and mþM þM1 ¼ 0.
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The Wigner 3j’s acquire a phase for mi → −mi,�
j1 j2 j3

−m1 −m2 −m3

�
¼ ð−1Þj1þj2þj3

�
j1 j2 j3
m1 m2 m3

�
: ðA25Þ

We also have the identity,�
j1 j2 j3
m1 m2 m3

��
j1 j2 j3
l1 l2 l3

�
¼

X
m0

1
m0

2
m0

3

ð−1Þl1þl2þl3þm0
1
þm0

2
þm0

3

�
j1 l2 l3
m1 m0

2 −m0
3

��
l1 j2 l3

−m0
1 m2 m0

3

��
l1 l2 j3
m0

1 −m0
2 m3

�
; ðA26Þ

where a Wigner 6j-symbol appears on the lhs. Lastly, we also have

�
j13 j23 j33
m13 m23 m33

�8>><>>:
j11 j12 j13
j21 j22 j23
j31 j32 j33

9>>=>>; ¼
X

mr1;mr2;r¼1;2;3

�
j11 j12 j13
m11 m12 m13

��
j21 j22 j23
m21 m22 m23

��
j31 j32 j33
m31 m32 m33

�

×

�
j11 j21 j31
m11 m21 m31

��
j12 j22 j32
m12 m22 m32

�
; ðA27Þ

where a Wigner 9j-symbol appears on the lhs.

APPENDIX B: ENCODING OF OBSERVATIONAL ISOTROPY BY THE GAUNT FACTOR

Here we show that the 3-point function of the SFB modes of an observationally isotropic real-valued field δðrÞ is real and
proportional to the Gaunt factor. To see this, note that in real space, the 3-point function of δ can only depend on the
distances to each point and the angles on the sky. Therefore, we may expand it in Legendre polynomials as

hδðr1Þδðr2Þδðr3Þi ¼
X

L1L2L3

fL1L2L3
ðr1; r2; r3ÞLL1

ðr̂1 · r̂2ÞLL2
ðr̂2 · r̂3ÞLL3

ðr̂3 · r̂1Þ ðB1Þ

The Legendre polynomials may be further decomposed into sums over spherical harmonics via Eq. (A17). We may then
transform Eq. (B1) to spherical harmonic space to obtain

hδl1m1
ðr1Þδl2m2

ðr2Þδl3m3
ðr3Þi ¼

Z
d2r̂1 d2r̂2 d2r̂3Y�

l1m1
ðr̂1ÞY�

l2m2
ðr̂2ÞY�

l3m3
ðr̂3Þ

×
X

L1L2L3

AL1L2L3
fL1L2L3

ðr1; r2; r3Þ
X

M1M2M3

ð−1ÞM1þM2þM3Y�
L1−M1

ðr̂1ÞY�
L1M1

ðr̂2Þ

× Y�
L2−M2

ðr̂2ÞY�
L2M2

ðr̂3ÞY�
L3−M3

ðr̂3ÞY�
L3M3

ðr̂1Þ
¼

X
L1L2L3

AL1L2L3
fL1L2L3

ðr1; r2; r3Þ
X

M1M2M3

ð−1ÞM1þM2þM3Gl1L1L3

m1−M1M3
Gl2L2L1

m2−M2M1
Gl3L3L2

m3−M3M2
; ðB2Þ

where we define AL1L2L3
≡Q

i 4π=ð2Li þ 1Þ. Using the identity Eq. (A26) to evaluate the sum of Gaunt factors, we may
write

hδl1m1
ðr1Þδl2m2

ðr2Þδl3m3
ðr3Þi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ3ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

q �
l1 l2 l3
m1 m2 m3

�
×

X
L1L2L3

fL1L2L3
ðr1; r2; r3Þð−1ÞL1þL2þL3

�
l1 l2 l3
L1 L2 L3

��
l1 L1 L3

0 0 0

�

×

�
l2 L2 L1

0 0 0

��
l3 L3 L2

0 0 0

�
: ðB3Þ
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The Wigner 3j symbols inside the sum over the Li impose that l1 þ l2 þ l3 be even, hence the sum is proportional to the

symbol

�
l1 l2 l3
0 0 0

�
, and hδl1m1

ðr1Þδl2m2
ðr2Þδl3m3

ðr3Þi, to the Gaunt factor Gl1l2l3
m1m2m3

, which encodes the isotropy. The 3-

point function of the SFB modes is then obtained by applying the basis transformation Eq. (1); hence it is real.

APPENDIX C: AN IDENTITY FOR INTEGRATING A PRODUCT
OF THREE SPHERICAL HARMONICS

Here we derive the identity,

Il1l2l3m1m2m3
ðk1; k2; k3Þ≡

Z
d2k̂1d2k̂2d2k̂3Y�

l1;m1
ðk̂1ÞY�

l2;m2
ðk̂2ÞY�

l3;m3
ðk̂3ÞδDðk1 þ k2 þ k3Þ

¼ 4π
3
2

k1k2k3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þ

p �
l1 l2 l3
m1 m2 m3

� X
jmj≤minðl2;l3Þ

Yl2;mðθ12; 0ÞYl3;−mðθ13; 0Þð−1Þm
�
l1 l2 l3
0 m −m

�
;

ðC1Þ

which we use to calculate the SFB bispectrum in the homogeneous and isotropic Universe, as well as to accelerate part of
the calculation of the observed bispectrum.
We need only to show this for k1, k2, k3 which satisfy the triangle inequality, as otherwise the integral clearly vanishes.

Above, we define θij as the angle between ki and kj, such that cosðθ12Þ ¼ ϑðk1; k2; k3Þ≡ k2
3
−k2

1
−k2

2

2k1k2
and

cosðθ13Þ ¼ ϑðk1; k3; k2Þ, and we denote for the unit vector r̂ of spherical angles ðθ;ϕÞ, Yl;mðθ;ϕÞ≡ Yl;mðr̂Þ. The
angle-averaged form of Eq. (C1) is denoted Il1l2l3ðk1; k2; k3Þ such that

Il1l2l3m1m2m3
ðk1; k2; k3Þ ¼

�
l1 l2 l3
m1 m2 m3

�
Il1l2l3ðk1; k2; k3Þ: ðC2Þ

We begin by using Eq. (A1) and Eq. (A3) to write

δDðk1 þ k2 þ k3Þ ¼ k−23 δDðjk1 þ k2j − k3ÞδDð dk1 þ k2 þ k̂3Þ
¼ ðk1k2k3Þ−1δDðk̂1 · k̂2 − ϑðk1; k2; k3ÞÞδDð dk1 þ k2 þ k̂3Þ; ðC3Þ

such that, after integration over d2k̂3, Eq. (C1) becomes

Il1l2l3m1m2m3
ðk1; k2; k3Þ ¼ ðk1k2k3Þ−1ð−1Þl3

Z
d2k̂1d2k̂2Y�

l1;m1
ðk̂1ÞY�

l2;m2
ðk̂2ÞY�

l3;m3
ðð dk1 þ k2ÞÞδDðk̂1 · k̂2 − ϑðk1; k2; k3ÞÞ; ðC4Þ

where we used the parity property Eq. (A19). We then integrate over k̂2 by rotating it through an angle φ2 around k̂1, as the

Dirac delta fixes cosðθ12Þ ¼ ϑðk1; k2; k3Þ. Then cosðπ − θ13Þ also remains fixed and dk1 þ k2 rotates about k̂1 by the same
angle φ2.
We denote by Rðk̂1Þ the rotation sending the axis ẑ to k̂1. Using the rotation formula for spherical harmonics Eq. (A11)

and integrating over k̂1 · k̂2, Eq. (C4) becomes

Il1l2l3m1m2m3
ðk1; k2; k3Þ ¼ ðk1k2k3Þ−1ð−1Þl3

Z
d2k̂1dφ2Y�

l1;m1
ðk̂1Þ

� Xl2
m0

2
¼−l2

Dðl2Þ
m2;m0

2
ðRðk̂1ÞÞY�

l2;m0
2
ðθ12;φ2Þ

�

×

� Xl3
m0

3
¼−l3

Dðl3Þ
m3;m0

3
ðRðk̂1ÞÞY�

l3;m0
3
ðπ − θ13;φ2Þ

�
; ðC5Þ

where DðlÞ
m;m0 ðRðk̂1ÞÞ are Wigner D-matrix elements. As Y�

l;mðθ;ϕÞ is proportional to e−imϕ, integrating the pairwise
products of spherical harmonics over dφ2 gives factors 2πδKm0

2
;−m0

3
. Hence
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Il1l2l3m1m2m3
ðk1; k2; k3Þ ¼ 2πðk1k2k3Þ−1ð−1Þl3

Xminðl2;l3Þ

m0
2
¼−minðl2;l3Þ

Y�
l2;m0

2
ðθ12; 0ÞY�

l3;−m0
2
ðπ − θ13; 0Þ

×
Z

d2k̂1Y�
l1;m1

ðk̂1ÞDðl2Þ
m2;m0

2
ðRðk̂1ÞÞDðl3Þ

m3;−m0
2
ðRðk̂1ÞÞ; ðC6Þ

where DðlÞ
mm0 ðRÞ is the Wigner D-matrix. Using Eq. (A13), the integral in Eq. (C6) becomes

Z
d2k̂1Y�

l1;m1
ðk̂1ÞDðl2Þ

m2;m0
2
ðRðk̂1ÞÞDðl3Þ

m3;−m0
2
ðRðk̂1ÞÞ ¼

Xl2þl3

J¼jl2−l3j
hl2m2l3m3jJðm2 þm3Þihl2m0

2l3ð−m0
2ÞjJ0i

×
Z

d2k̂1Y�
l1;m1

ðk̂1ÞDJ
m2þm3;0

ðRðk̂1ÞÞ

¼ ð−1Þm1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2l1 þ 1

s
hl2m2l3m3jl1ð−m1Þihl2m0

2l3ð−m0
2Þjl10i; ðC7Þ

where the second equation above follows from the first by
applying the identity Eq. (A12) to write

DJ
m2þm3;0

ðRðk̂1ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2J þ 1

r
Y�
J;m2þm3

ðk̂1Þ; ðC8Þ

and then using the orthogonality of spherical harmonics
Eq. (A10). We obtain the final expression Eq. (C1) by
expressing the Clebsch-Gordan coefficients in terms of
Wigner 3j’s via Eq. (A14) and inserting Eq. (C7) into
Eq. (C6). In writing Eq. (C1) we have also removed the

complex conjugations from the spherical harmonics as they
are real, and used the parity of associated Legendre
polynomials Eq. (A8).
It is also instructive to rewrite the integral Eq. (C1) to

make explicit the consequence of isotropy. Using that

δDðk1 þ k2 þ k3Þ ¼
1

ð2πÞ3
Z

d3reiðk1þk2þk3Þ·r; ðC9Þ

and Eq. (A16) (for α ¼ 0), Eq. (C1) becomes

Il1l2l3m1m2m3
ðk1; k2; k3Þ ¼ 8il1þl2þl3

Z
r2drjl1ðk1rÞjl2ðk2rÞjl3ðk3rÞ

Z
d2r̂Y�

l1;m1
ðr̂ÞY�

l2;m2
ðr̂ÞY�

l3;m3
ðr̂Þ; ðC10Þ

where the angular integral is the Gaunt factor Gl1l2l3
m1m2m3

encoding the isotropy. The above radial integral of the
product of three spherical Bessel functions has been
evaluated analytically and by recursion in [58–61], though
typically with methods requiring more computation than
Eq. (C1). During the writing of this manuscript the authors
discovered Ref. [62], which also evaluated the radial
integral, leading to a result equivalent to Eq. (C1) via an
alternate derivation.

APPENDIX D: DETAILS OF THE BISPECTRUM
COMPUTATION

1. Legendre expansion coefficients Zl1l2l3ðr; k1; k2Þ
In this subsection we derive the coefficients

Zl1l2l3ðr; k1; k2Þ introduced in Eq. (66), which we reproduce
here,

Z̃2ðk1; k2; rÞ ¼
X
l1l2l3

Zl1l2l3ðk1; k2; rÞLl1ðk̂1 · k̂2ÞLl2ðk̂1 · r̂ÞLl3ðk̂2 · r̂Þ

¼
X
flimig

ð4πÞ3Zl1l2l3ðk1; k2; rÞ
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1ÞYl1m1

ðk̂1ÞY�
l1m1

ðk̂2ÞYl2m2
ðk̂1ÞY�

l2m2
ðr̂ÞYl3m3

ðk̂2ÞY�
l3m3

ðr̂Þ: ðD1Þ
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We first note that the form of Z2ðk1; k2; rÞ [see Eq. (28)]
implies that it can be written as a polynomial in μ1, μ2,
k̂1 · k̂2, and μ ¼ ðk1μ1 þ k2μ2Þ=k, except for the terms
proportional to fNL,

fNL
αðkÞ

αðk1Þαðk2Þ
ðbE10 þ fðrÞμ2Þ: ðD2Þ

Furthermore, except for the term,

fðrÞμ2G2ðk1; k2Þ; ðD3Þ

Z2ðk1; k2; rÞ is a polynomial of in μ1, μ2 and k̂1 · k̂2 alone,
which allows us to write the decomposition Eq. (66). In
fact, Eq. (D3) could also be included in this decomposition,
by writing

μ2 ¼ ðμkÞ2
k21 þ k22 þ 2k1k2k̂1 · k̂2

¼ ðk1μ1 þ k2μ2Þ2
k21 þ k22

X
n≥0

�
−

2k1k2
k21 þ k22

k̂1 · k̂2

�
n
: ðD4Þ

However, then the sum over l1, l2, l3 in Eq. (66) becomes
infinite, and truncating this slowly converging series after
even a small number of terms greatly increases the number
of non-vanishing coefficients Zl1l2l3 . Hence, we opt to treat
Eq. (D3) along with Eq. (D2) separately (and exactly) as
described in Appendix D 4.
Leaving out these terms, we have only nine coefficients

Zl1l2l3ðr; k1; k2Þ, which are listed below by triplet ðl1; l2; l3Þ.
We have dropped the implicit r-dependence for brevity.

ð0; 0; 0Þ∶ 1

3
bE10f þ 17

21
bE10 þ

1

2
bE20 þ

1

9
f2 þ bE01f

6αðk1Þ

þ bE01f
6αðk2Þ

þ bE11
2αðk1Þ

þ bE11
2αðk2Þ

þ bE02
αðk1Þαðk2Þ

ðD5Þ

ð0; 0; 2Þ∶ 1

9
fð3bE10 þ 2fÞ þ f

bE01
3αðk1Þ

ðD6Þ

ð0; 1; 1Þ∶
�
k1
2k2

þ k2
2k1

�
f

�
bE10 þ

3

5
f

�
þ bE01f

�
k2

2k1αðk2Þ
þ k1
2k2αðk1Þ

�
ðD7Þ

ð0; 1; 3Þ∶ f2
k2
5k1

ðD8Þ

ð0; 2; 0Þ∶ 1

9
fð3bE10 þ 2fÞ þ f

bE01
3αðk2Þ

ðD9Þ

ð0; 2; 2Þ∶ 4

9
f2 ðD10Þ

ð0; 3; 1Þ∶ f2
k1
5k2

ðD11Þ

ð1; 0; 0Þ∶ bE10

�
k1
2k2

þ k2
2k1

�
þ bE01

�
k2

2k1αðk2Þ
þ k1
2k2αðk1Þ

�
ðD12Þ

ð2; 0; 0Þ∶ 4

21
ðD13Þ

2. Derivation of the observed SFB bispectrum Eq. (67)

Here we detail the remainder of the derivation of the
observed bispectrum Eq. (67) after the Legendre expansion
of the second-order redshift-space kernel has been per-
formed as in Sec. D 1.
We first insert the decomposition of Z̃2ðk1; k2; rÞ

[Eq. (D1)] into δg;ð2Þlm [Eq. (64)], and use the identity in
Eq. (A15) to simplify the complex exponentials. We rid of
the angular integrals over q̂ with the orthogonality relation
for spherical harmonics Eq. (A10). After rearranging for
the angular and radial integrals and assuming a separable
window WðrÞ ¼ WðrÞWðr̂Þ, we obtain

δg;ð2Þlm ðkÞ ¼
ffiffiffi
2

π

r
k
Z

dr r2 jlðkrÞWðrÞD2ðrÞ4π
Z

dk1k1
ð2πÞ3

Z
dk2k2
ð2πÞ3

X
flimig

ð4πÞ3Zl1l2l3ðk1; k2; rÞ
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

× r2ð4πÞ3
X

fLiMig

X
LM

i−L1−L2þL3þL4jL3
ðk1rÞjL4

ðk2rÞδð1ÞL1M1
ðk1Þδð1ÞL2M2

ðk2Þ

×
π

2r2
GL3

M3

L4

M4

L
M

Z
d2r̂Wðr̂ÞYLMðr̂ÞY�

lmðr̂ÞY�
l2m2

ðr̂ÞY�
l3m3

ðr̂Þ

×
Z

d2k̂1Yl1m1
ðk̂1ÞYl2m2

ðk̂1ÞYL3M3
ðk̂1ÞYL1M1

ðk̂1Þ
Z

d2k̂2Y�
l1m1

ðk̂2ÞYl3m3
ðk̂2ÞYL4M4

ðk̂2ÞYL2M2
ðk̂2Þ: ðD14Þ
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We may rewrite this more compactly as

δg;ð2Þlm ðkÞ ¼
Z

dk1

Z
dk2

X
L1M1

X
L2M2

VlL1L2

mM1M2
ðk; k1; k2Þδð1ÞL1M1

ðk1Þδð1ÞL2M2
ðk2Þ; ðD15Þ

where we use V to denote the second-order coupling kernel in the SFB bispectrum,

VlL1L2

mM1M2
ðk; k1; k2Þ≡

ffiffiffi
π

2

r
28πkk1k2

Z
drr2jlðkrÞWðrÞD2ðrÞ

X
l1l2l3

Zl1l2l3ðk1; k2; rÞ
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

×
X
L3L4

jL3
ðk1rÞjL4

ðk2rÞCL1

M1

L2

M2

l
m

;L3L4

;l1l2l3
: ðD16Þ

Here CL1

M1

L2

M2

l
m

;L3L4

;l1l2l3
is a mode coupling coefficient,

CL1

M1

L2

M2

l
m

;L3L4

;l1l2l3
¼ i−L1−L2þL3þL4

X
m1m2m3

X
M3M4

X
LM

ð−1ÞMþm1GL3L4L
M3M4M

HLll2l3
−Mmm2m3

Hl1l2L3L1

m1m2M3M1
Hl1l3L4L2

−m1m3M4M2
ðD17Þ

and

Hl1l2l3l4
m1m2m3m4

≡
Z

d2 r̂Wðr̂ÞYl1m1
ðr̂ÞYl2m2

ðr̂ÞYl3m3
ðr̂ÞYl4m4

ðr̂Þ ðD18Þ

is the integral over four spherical harmonics and the angular part of the window function.
Using the form of δg;ð1Þlm ðkÞ in Eq. (10), the terms contributing to the tree-level 3-point correlation function of the SFB

modes are

hδg;ð2Þlm ðkÞδg;ð1Þl0m0 ðk0Þδg;ð1Þl00m00 ðk00Þi ¼
Z

dk1

Z
dk2

X
L1M1

X
L2M2

VlL1L2

mM1M2
ðk; k1; k2Þ

Z
dq0

X
L0M0

WL0M0
l0m0 ðk0; q0Þ

Z
dq00

X
L00M00

WL00M00
l00m00 ðk00; q00Þ

× hδð1ÞL1M1
ðk1Þδð1ÞL2M2

ðk2Þδð1ÞL0M0 ðq0Þδð1ÞL00M00 ðq00Þi; ðD19Þ

along with the two other terms with cyclically permuted superscript indices. Noting that the SFB power spectrum for the
constant-time slice matter density contrast is homogeneous and isotropic, i.e.,

hδð1ÞL1M1
ðk1Þδð1ÞL2M2

ðk2Þi ¼ δKL1L2
δKM1−M2

ð−1ÞM2δDðk1 − k2ÞPðk1Þ; ðD20Þ

we may apply Wick’s theorem,

hδg;ð2Þlm ðkÞδg;ð1Þl0m0 ðk0Þδg;ð1Þl00m00 ðk00Þi

¼
Z

dk1
X
L1M1

ð−1ÞM1VlL1L1

mM1−M1
ðk; k1; k1ÞPðk1Þ

Z
dq0

X
L0M0

ð−1ÞM0
WL0M0

l0m0 ðk0; q0ÞWL0−M0
l00m00 ðk00; q0ÞPðq0Þ

þ
Z

dq0
Z

dq00
X
L0M0

X
L00M00

ð−1ÞM0þM00
VlL0L00
m−M0−M00 ðk; q0; q00ÞWL0M0

l0m0 ðk0; q0ÞWL00M00
l00m00 ðk00; q00ÞPðq0ÞPðq00Þ

þ
Z

dq0
Z

dq00
X
L00M00

X
L0M0

ð−1ÞM0þM00
VlL00L0
m−M00−M0 ðk; q00; q0ÞWL0M0

l0m0 ðk0; q0ÞWL00M00
l00m00 ðk00; q00ÞPðq0ÞPðq00Þ: ðD21Þ

From here on we assume a spherically symmetric window WðrÞ ¼ WðrÞ. Then we have WLM
lm ðk; qÞ ¼

δKlLδ
K
mMWlðk; qÞ. Hence,
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hδg;ð2Þlm ðkÞδg;ð1Þl0m0 ðk0Þδg;ð1Þl00m00 ðk00Þi ¼ δKl0l00δ
K
m0−m00 ð−1Þm0

Cl0 ðk0; k00Þ
Z

dk1
X
L1M1

ð−1ÞM1VlL1L1

mM1−M1
ðk; k1; k1ÞPðk1Þ

þ
Z

dq0Wl0 ðk0; q0ÞPðq0Þ
Z

dq00Wl00 ðk00; q00ÞPðq00Þð−1Þm0þm00

× ½Vll0l00
m−m0−m00 ðk; q0; q00Þ þ Vll00l0

m−m00−m0 ðk; q00; q0Þ�: ðD22Þ

In Eq. (D15) swapping L1 ↔ L2; k1 ↔ k2;M1 ↔ M2

gives VlL1L2

mM1M2
ðk; k1; k2Þ ¼ VlL2L1

mM2M1
ðk; k2; k1Þ; thus the two

terms in brackets in Eq. (D22) are equal. In Appendix D 3
we simplify Vll0l00

m−m0−m00 and show that it is proportional to the
Gaunt factor Gll0l00

mm0m00. Hence we define the angle-averaged
quantity,

Vll0l00 ðk;k0;k00Þ≡ X
mm0m00

�
l l0 l00

m m0 m00

�
×ð−1Þm0þm00

Vll0l00
m−m0−m00 ðk;k0;k00Þ; ðD23Þ

whose simplified expression is given by Eq. (D33).
In fact, the first line of Eq. (D22) always vanishes when

l > 0, which we may see by the following quick argument.
By the remarks at the beginning of Sec. II C on observa-
tional isotropy, Eq. (D22) must be proportional to the Gaunt
factor Gll0l00

mm0m00, such that Eq. (D22) is nonzero only if
l;l0;l00 form a triangle. This condition is already imposed
by the second line of Eq. (D22). Let l > 0 and set l0 ¼
l00 ¼ 0 such that the triangle condition is violated. As
C0ðk0; k00Þ ≠ 0, the integral in the first line of Eq. (D22)
must vanish, and consequently the first line must vanish for
any ðl;l0;l00Þ with l > 0. The authors of Ref. [37]
demonstrate this directly with a lengthy derivation.
Finally, after angle-averaging with Eq. (45) and reindex-

ing for clarity, the SFB bispectrum, ignoring contributions
from the fNL and G2 terms, is given by

BSFB;Z̃2

l1l2l3
ðk1; k2; k3Þ ¼ 2

Z
dq2Wl2ðk2; q2ÞPðq2Þ

×
Z

dq3Wl3ðk3; q3ÞPðq3Þ

× Vl1l2l3ðk1; q2; q3Þ þ 2 cyc perm

ðD24Þ

The contribution from the fNL and G2 terms is given in
Appendix D 4 [Eq. (D46)]. It is of a similar form to the
contribution from the terms in Z̃2.
In principle, it is possible to repeat the above derivation

while relaxing the assumption that WðrÞ is spherically
symmetric (but keeping the assumption that the radial and
angular dependencies are separable) by decomposingWðr̂Þ
into spherical harmonics. However, as in this case we can
no longer leverage observational isotropy of the signal, the

calculation is significantly more complicated (and expen-
sive), so we leave the details to a future work.
Lastly, it is useful to verify that we retrieve Eq. (55) in the

limit of an isotropic and homogeneous Universe, i.e. by
setting D ¼ b1 ¼ W ¼ 1 and f ¼ 0. In this case, the
second term in Eq. (67) vanishes, and we may take
Wlðk; qÞ ¼ δDðk − qÞ, such that

BSFB
l1l2l3

ðk1; k2; k3Þ ¼ 2Pðk2ÞPðk3ÞVl1l2l3ðk1; k2; k3Þ
þ 2 cyc perm ðD25Þ

As it is somewhat tedious to demonstrate equivalence with
Eq. (55) analytically, we omit the details here7; as a test of
our code, we verify numerically that Eq. (D25) and Eq. (55)
are identical in the considered limit.

3. Simplification of the kernel VL1L2l
M1M2m

ðk; k1; k2Þ
We now show that, under the assumption of a spherically

symmetric window WðrÞ ¼ WðrÞ, the kernel VlL1L2

mM1M2
is

proportional to the Gaunt factor GL1L2l
M1M2−m, and compute its

angle-averaged expression, defined by Eq. (D23). For
compactness, we will denote the Wigner coefficient	 l1 l2 l3

m1 m2 m3



by Kl1l2l3

m1m2m3
and the coefficient of

proportionality between Gaunt factors and Wigner coef-
ficients by

fl1l2l3 ≡
�ð2l1þ1Þð2l2þ1Þð2l3þ1Þ

4π

�1
2

�
l1 l2 l3

0 0 0

�
;

ðD26Þ
such that Gl1l2l3

m1m2m3
¼ fl1l2l3K

l1l2l3
m1m2m3

.
First, we use the identity Eq. (A23) to evaluate the

integral over four spherical harmonics Eq. (D18), such that
we may express Eq. (D17) in terms of Gaunt factors.8 We
also use that the sum of the lower indices of the Gaunt
factor must vanish, to write

7For a lengthy proof along these lines see Ref. [37].
8Note that if we allow for a generic angular dependence of the

windowWðr̂Þ, it is still possible to evaluate the integral Eq. (A23)
by decomposing Wðr̂Þ into spherical harmonics and using the
generalization of the integral Eq. (D17) to a product of five
spherical harmonics. However this leads to an explosion in the
number of terms needed to compute the kernel VlL1L2

mM1M2
, so in

practice only spherically symmetric windows are currently
computationally feasible.
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CL1

M1

L2

M2

l
m

;L3L4

;l1l2l3
¼ i−L1−L2þL3þL4

X
L;H1;H2;H3

X
m1;m2;m3;M3;M4;M

ð−1Þmþm1þm2þm3

× GL3L4L
M3M4M

GLlH1

−Mm−N1
GH1l2l3
N1m2m3

Gl1l2H2

m1m2−N2
GH2L3L1

N2M3M1
Gl1l3H3

−m1m3−N3
GH3L4L2

N3M4M2
; ðD27Þ

where the sums over N1, N2, and N3 have only one term each, and are thus not explicitly written. With Eq. (A25), and
changing signs on the summation variables, we can use Eq. (A26) to simplify the inner sum,X

m1m2m3

ð−1Þm1þm2þm3GH1l2l3
N1m2m3

Gl1l2H2

m1m2−N2
Gl1l3H3

−m1m3−N3

¼ fH1l2l3fH2l1l2fH3l1l3ð−1ÞH1þl2þl3þH3þl1þl3
X

m1m2m3

ð−1Þm1þm2þm3KH1l2l3
−N1m2−m3

Kl1H3l3
−m1−N3m3

Kl1l2H2

m1−m2−N2

¼ fH1l2l3fH2l1l2fH3l1l3ð−1Þl1þl2þl3KH1H2H3

−N1−N2−N3

�
H1 H2 H3

l1 l2 l3

�
; ðD28Þ

where we also used that l1 þ l2 þH2 must be even. Then, after expressing all Gaunt factors in terms of Wigner coefficients,
Eq. (D27) becomes

CL1

M1

L2

M2

l
m

;L3L4

;l1l2l3
¼ i−L1−L2þL3þL4

X
L;H1;H2;H3

fH1l2l3fH2l1l2fH3l1l3ð−1Þl1þl2þl3

�
H1 H2 H3

l1 l2 l3

�
ð−1Þm

× fL3L4LfLlH1
fH2L3L1

fH3L4L2

X
M3;M4;M

KL3L4L
M3M4M

KLlH1

−Mm−N1
KH2L3L1

N2M3M1
KH3L4L2

N3M4M2
KH1H2H3

−N1−N2−N3

¼ i−L1−L2þL3þL4KL1L2l
M1M2−mð−1Þmð−1Þl1þl2þl3

×
X

L;H1;H2;H3

fH1l2l3fH2l1l2fH3l1l3fL3L4LfLlH1
fH2L3L1

fH3L4L2
ð−1ÞH1þH2þH3

×

�
H1 H2 H3

l1 l2 l3

�8><>:
H2 L3 L1

H3 L4 L2

H1 L l

9>=>;; ðD29Þ

where we used Eq. (A27) to obtain the last line.
Finally, substituting Eq. (D29) in Eq. (D16) and collecting constant factors, we obtain

VlL1L2

mM1M2
ðk; k1; k2Þ≡ ð32πÞ32kk1k2

�
L1 L2 l

M1 M2 −m

�
ð−1Þm

X
l1l2l3L3L4

gL1L2l
l1l2l3L3L4

JlL3L4

l1l2l3
ðk; k1; k2Þ; ðD30Þ

where we have defined

JlL3L4

l1l2l3
ðk; k1; k2Þ≡

Z
drr2jlðkrÞjL3

ðk1rÞjL4
ðk2rÞWðrÞD2ðrÞZl1l2l3ðk1; k2; rÞ; ðD31Þ

and

gL1L2l
l1l2l3L3L4

≡ ð−1Þl1þl2þl3

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ i
−L1−L2þL3þL4

X
L;H1;H2;H3

fH1l2l3fH2l1l2fH3l1l3fL3L4LfLlH1
fH2L3L1

fH3L4L2

×

�
H1 H2 H3

l1 l2 l3

�8><>:
H2 L3 L1

H3 L4 L2

H1 L l

9>=>;; ðD32Þ
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which is real. There are nine triplets ðl1; l2; l3Þ in the
Legendre decomposition of the kernel Z2, excluding
contributions from the kernel G2 and from terms propor-
tional to fNL. As a result, for fixed L1; L2;l there are at
most 49 terms in the sum of Eq. (D30). Finally, angle-
averaging with Eq. (D23), we obtain

VlL1L2ðk; k1; k2Þ≡ ð32πÞ32kk1k2
×

X
l1l2l3L3L4

gL1L2l
l1l2l3L3L4

JlL3L4

l1l2l3
ðk; k1; k2Þ:

ðD33Þ

4. Contribution from the fNL and G2 terms

Here we address the terms in the kernel Z2 [Eq. (28)] that
were left out when decomposing Z2 as polynomial in
k̂1 · k̂2, k̂1 · r̂, and k̂2 · r̂ [Eq. (66)]. These terms are

fNL
αðk; rÞ

αðk1; rÞαðk2; rÞ
ðbE10 þ fðrÞμ2Þ; ðD34Þ

and

fðrÞμ2G2ðk1; k2Þ: ðD35Þ

To account for them, it will be advantageous to first write
the SFB bispectrum in an alternate form [Eq. (D37)], which
makes clear the relation of the observed bispectrum to the
bispectrum of an isotropic and homogeneous Universe.

a. Relation between position-dependent bispectrum
and SFB bispectrum

The SFB bispectrum is obtained from the position-
dependent Fourier-space bispectrum by first transforming
Eq. (31) to configuration space using Eq. (61), and then
transforming into SFB space using Eq. (1). We get

hδobsg;l1m1
ðk1Þδobsg;l2m2

ðk2Þδobsg;l3m3
ðk3Þi ¼

�
2

π

�3
2

k1k2k3

Z �Y
i

1

ð2πÞ3 r
2
i driq

2
i dqid

2r̂id2q̂iWðriÞeiqi·ri jliðkiriÞY�
li;mi

ðr̂iÞ
�

× Bsðq1; q2; q3; r1; r2; r3Þð2πÞ3δDðq1 þ q2 þ q3Þ: ðD36Þ

In the absence of RSD, linear growth, galaxy bias, and window, the observed SFB bispectrum [Eq. (D36)] reduces to the
SFB bispectrum in an isotropic and homogeneous Universe [Eq. (50)], using Eq. (A6). Unlike in the isotropic and
homogeneous case, however, fixing the lengths qi and imposing q1 þ q2 þ q3 ¼ 0 fixes the angles q̂i · q̂j but does not
determine Bsðq1; q2; q3; r1; r2; r3Þ, which depends on the 9 angles μij ≡ q̂i · r̂j to the three lines of sight r̂j.
Assuming a radial window WðrÞ ¼ WðrÞ, the angle-averaged bispectrum is given by

BSFB;obs
l1l2l3

ðk1; k2; k3Þ ¼
1

ð2πÞ6
�
2

π

�3
2

k1k2k3

Z �Y
i

r2i driq
2
i dqiWðriÞjliðkiriÞ

�
I ang
l1l2l3

ðq1; q2; q3; r1; r2; r3Þ; ðD37Þ

where we have defined the angle-averaged angular integral,

I ang
l1l2l3

ðq1; q2; q3; r1; r2; r3Þ≡
X

m1m2m3

�
l1 l2 l3
m1 m2 m3

�Z �Y
i

d2r̂id2q̂ieiqi·riY�
li;mi

ðr̂iÞ
�

× Bsðq1; q2; q3; r1; r2; r3ÞδDðq1 þ q2 þ q3Þ: ðD38Þ

The integral Iang
l1l2l3

is closely related to the TSH bispectrum
and would be the same if we were to integrate over the qi.
However, we use the above definition for clarity later in this
appendix.

b. G2 contribution

The contribution from the velocity kernel G2 in the
bispectrum Bs [Eq. (32)] is given by

Bs ⊃D1D2D2
3ð2Pðq1ÞPðq2ÞÞ½b1þf1μ211�

× ½b2þf2μ222�½f3G2ðq1;q2Þμ233�þ2cyc perm; ðD39Þ

where we write for brevity in this section
bi ¼ bE10ðriÞ þ bE01ðriÞ=αðki; riÞ, fi ¼ fðriÞ, Di ¼ DðriÞ.
We perform the integrals over r̂i in Eq. (D38) using

the identity Eq. (A16). As G2ðq1; q2Þ is rotationally
invariant, when q1 þ q2 þ q3 ¼ 0 we may write it as
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G2ðq1; q2Þ ¼ G2ðq1; q2; q3Þ, evaluated with q̂j · q̂k ¼ ϑðqj; qk; qlÞ. The G2 contribution to Eq. (D38) is thus

Iang
l1l2l3

⊃
X

m1m2m3

�
l1 l2 l3
m1 m2 m3

�Z �Y
j

d2q̂j

�
δDðq1 þ q2 þ q3Þ

��
2
Y
i¼1;2

DiPðqiÞ4πiliY�
li;mi

ðq̂iÞðbijliðqiriÞ − fij00liðqiriÞÞ
�

×D2
3½−4πil3Y�

l3;m3
ðq̂3Þf3G2ðq1; q2Þj00l3ðq3r3Þ� þ 2 cyc perm

�
¼ ð4πÞ3il1þl2þl3

�
2
Y
i¼1;2

PðqiÞDiðbijliðqiriÞ − fij00liðqiriÞÞ
�
D2

3ð−f3G2ðq1; q2; q3Þj00l3ðq3r3ÞÞ

×
X

m1m2m3

�
l1 l2 l3
m1 m2 m3

�Z
d2q̂1d2q̂2d2q̂3Y�

l1;m1
ðq̂1ÞY�

l2;m2
ðq̂2ÞY�

l3;m3
ðq̂3ÞδDðq1 þ q2 þ q3Þ þ 2 cyc perm ðD40Þ

We recognize the integral in the last line of Eq. (D40) as the integral defined in Eq. (C1), which is proportional to a Wigner-
3j symbol. Thus, the sum simplifies with the identity Eq. (A24), and we can express the last line as the integral
Il1l2l3ðq1; q2; q3Þ of Eq. (C2). We obtain the G2 contribution to the SFB bispectrum by inserting Eq. (D40) into Eq. (D37).
The integrals over r1 and r2 can be written compactly in terms of the kernels Wlðk; qÞ [Eq. (17)] as

BSFB;G2

l1l2l3
ðk1;k2;k3Þ¼

1

ð2πÞ6
�
2

π

�3
2

k1k2k3ð4πÞ3il1þl2þl3

Z �Y
i

dqiq2i

�
2Pðq1ÞPðq2Þ

�
π

2k1q1
Wl1ðk1;q1Þ

��
π

2k2q2
Wl2ðk2;q2Þ

�
× G2ðq1;q2;q3Þ

�Z
dr3r23Wðr3Þjl3ðk3r3ÞD2ðr3Þð−fðr3Þj00l3ðq3r3ÞÞ

�
Il1l2l3ðq1;q2;q3Þþ2cyc perm

ðD41Þ

c. Total contribution from fNL and G2 terms

The contribution from the fNL term Eq. (D34) is analogous to Eq. (D41). Noting that we may factorize αðk; rÞ ¼
γðkÞDðrÞ with

γðkÞ≡ 2k2c2TðkÞ
3ΩmH2

0

; ðD42Þ

we may define, in analogy to the derivation in IVA, the kernels,9

WG2

l ðk; qÞ≡ 2kq
π

Z
dr r2WðrÞjlðkrÞD2ðrÞð−fðrÞj00lðqrÞÞ ðD43Þ

WfNL
l ðk; qÞ≡ 2kq

π

Z
dr r2WðrÞjlðkrÞDðrÞðbE10ðrÞjlðqrÞ − fðrÞj00lðqrÞÞ ðD44Þ

Vl3l1l2
fNL;G2

ðk3; q1; q2Þ≡ 1

ð2πÞ32 i
l1þl2þl3

Z
dq3ðq1q2q3ÞIl1l2l3ðq1; q2; q3Þ

×

�
G2ðq1; q2; q3ÞWG2

l3
ðk3; q3Þ þ

�
fNL

γðq3Þ
γðq1Þγðq2Þ

�
WfNL

l3
ðk3; q3Þ

�
: ðD45Þ

Finally, after reordering the cyclic permutations to match the ordering in the main text, the combined contribution to the
bispectrum signal from the fNL and G2 terms is

BSFB;fNL;G2

l1l2l3
ðk1; k2; k3Þ ¼ 2

Z
dq2Wl2ðk2; q2ÞPðq2Þ

Z
dq3Wl3ðk3; q3ÞPðq3ÞVl1l2l3

fNL;G2
ðk1; q2; q3Þ þ 2 cyc perm: ðD46Þ

9Note that Wlðk; qÞ [Eq. (17)] differs from Eq. (D44) in that the scale-dependent bias bðr; qÞ is replaced by bE10ðrÞ.
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The advantage of expressing Eq. (D45) in the above form is that the integral Il1l2l3 can be rapidly (pre)computed without
numerical integration via the identity Eq. (C2).

5. Resolving the radial integrals Eq. (70)

In Fig. 7 we plot the integrand of the triple Bessel function integral Eq. (70). Here we wish to highlight that at large
distances the oscillations have a mode whose angular frequency is the sum of the wave numbers.
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