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We study the dynamics of Abelian gauge fields invariant under transverse diffeomorphisms (TDiff) in
cosmological contexts. We show that in the geometric optics approximation, very much as for Diff invariant
theories, the corresponding massless gauge bosons propagate along null geodesics and particle number is
conserved. In addition, the polarization vectors are orthogonal to the propagation direction and the physical
(transverse projection) polarization is parallel transported along the geodesics. We also consider TDiff
invariant Dirac spinors, study the coupling to the gauge fields, and analyze the conditions in order to avoid
violations of Einstein’s equivalence principle. The contributions to the energy-momentum tensor of the
gauge field are also analyzed. We find that, in general, the breaking of Diff invariance makes the electric
and magnetic parts of the vector field to gravitate in a different way. In the sub-Hubble regime we recover
the standard radiationlike behavior of the energy density; however, in the super-Hubble regime the behavior
is totally different to the Diff case, thus opening up a wide range of possibilities for cosmological model
building. In particular, possible effects on the evolution of large-scale primordial magnetic fields are
discussed.
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I. INTRODUCTION

Einstein’s general relativity (GR) is the best description
of gravity we have to date. It has performed exceptionally
well in multiple tests ranging from the Solar System orbits
to gravitational lensing and has been able to describe purely
gravitational phenomena such as black holes and gravita-
tional waves. It also serves as a theoretical framework for
the standard Lambda-cold dark matter (ΛCDM) cosmol-
ogy, which is a phenomenological model that accurately
describes the large-scale structure and evolution of the
Universe with only a handful of parameters. GR relies on
invariance under general coordinate transformations, i.e.,
invariance under diffeomorphisms (Diff) and Einstein’s
equivalence principle [1], which is equivalent to the weak
equivalence principle, local Lorentz invariance, and local
position invariance. GR comes with its shortcomings
though: Its lack of description of quantum gravity and
the unknown fundamental nature of the dark sector of
cosmology have motivated the search for alternatives to
GR. Generally, these modifications of GR consist of
additional degrees of freedom, implemented in multiple
ways, that alter the behavior of gravity in a certain regime,
typically at very long or very short distances.
Over the last decade, there has been a growing interest in

theories that break Diff invariance down to invariance under

transverse diffeomorphisms (TDiff), a subgroup restricted
to volume-preserving general transformations. Early
works include [2,3], in which a stability analysis of
TDiff-invariant theories is performed at classical and
one-loop levels. Here it was found that by enhancing the
symmetry group with local Weyl invariance (dubbed
WTDiff), the additional scalar degree of freedom is
removed, thus propagating the same degrees of freedom
as GR and preventing possible ghost instabilities.
Unimodular gravity [4–11], the most popular TDiff-
invariant theory for gravity, falls into this category and
features the metric determinant treated as a nondynamical
scalar, so only the traceless part of Einstein’s equations
contribute to the dynamics. As a matter of fact, unimodular
gravity has been proposed as a simple solution to the
vacuum energy problem [12]. TDiff models beyond unim-
odular gravity have also been considered in [2,13–16]. In
these models, the metric determinant is a dynamical field
and the corresponding spectrum includes a scalar graviton
in addition to the standard massless spin-2 graviton. Also,
the cosmological evolution in TDiff-invariant theories
propagating a scalar graviton mode was recently inves-
tigated in [17].
Breaking down to TDiff was also considered in the

coupling to matter in the case of scalar fields in [18,19] and
possible violations of the Einstein equivalence principle
were found. However, in [20], it was shown that, in the
geometric optics approximation, when breaking down to
TDiff invariance by a global factor in the matter action, the
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three types of masses (inertial, active, and passive) agree
with those of standard Diff-invariant theories thus avoiding
the mentioned conflicts. In addition, it was found that in
cosmological contexts on super-Hubble scales, these mod-
els exhibit a completely different behavior of the energy-
momentum tensor, making them very useful tools for the
description of the dark sector. Thus in particular in [21] a
unified model of the dark sector with a single TDiff scalar
field and the same number of free parameters as ΛCDM
was presented. TDiff-invariant scalar fields in arbitrary
backgrounds have been considered in [22] and Diff
symmetry restoration in [23]. There it was shown that in
the kinetic regime, these models behave as perfect adiabatic
fluids and the corresponding speed of sound can be
explicitly obtained.
This work aims to study the dynamics of TDiff-invariant

Abelian gauge fields in a cosmological context, following
the novelties in scalar field dynamics found in [20]. Vectors
have been a topic in Cosmology since the pioneering works
on vector-driven inflation [24–26], and since then, they
have been proposed on multiple occasions as candidates for
the dark sector, chiefly for dark energy [27–30] or dark
matter in the form of coherently oscillating ultralight vector
fields [31–33].
The paper is organized as follows. In Sec. II, we present

our TDiff-invariant gauge field model and obtain the basic
equations. In Sec. III, we examine the geometric optics
approximation for the vector field. In Sec. IV we couple the
field to an external current, and obtain the Lorentz force law
by analyzing the semiclassical limit of the coupling to a
Dirac field. In Sec. V, we perform the canonical covariant
quantization of the gauge field. In Sec. VI, we turn our
attention to an expanding universe and explore configura-
tions of homogeneous electric and magnetic fields, as well
as the conditions imposed by the conservation of the stress-
energy tensor. In Sec. VI B, we consider a general electro-
magnetic field in an expanding universe and analyze the
sub-Hubble regime. Finally, in Sec. VII, we draw the main
conclusions of the work. We will work in natural units
ℏ ¼ c ¼ 1, with metric signature ðþ;−;−;−Þ.

II. GENERAL DYNAMICS

Let us consider the most general action for an Abelian
vector field AμðxÞ which is gauge invariant and invariant
under transverse diffeomorphisms, to lowest order in
field and metric derivatives and without parity violating
terms [34],

SA ¼ −
1

4

Z
d4x fðgÞFμνFμν; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength and fðgÞ is
an arbitrary positive function of the metric determinant
g ¼ j detðgμνÞj. The condition fðgÞ > 0 ensures the action
is free from ghosts or gradient instabilities [34,35].

This action is invariant under a smaller group than full
diffeomorphisms, which is the group of transverse diffeo-
morphisms. In terms of infinitesimal coordinate trans-
formations, these are implemented by

xμ → x̃μ ¼ xμ þ ξμ; ∂μξ
μ ¼ 0; ð2Þ

so there is one less gauge degree of freedom. Restricting the
symmetry group in this way allows us to write the action for
any type of field (to the lowest order in metric derivatives)
with a general fðgÞ. Indeed, the variation of a general action

S ¼
Z

d4x fðgÞL; ð3Þ

under diffeomorphisms, with L a scalar function of the
fields and their derivatives and the metric, can be shown to
be [20]

δS ¼
Z

d4x ∂μξμ½fðgÞ − 2gf0ðgÞ�L; ð4Þ

where the prime in f0ðgÞ denotes derivative with respect to
its argument. This variation vanishes by either setting
fðgÞ ¼ ffiffiffi

g
p

, which grants invariance under the full group
of diffeomorphisms, or by restricting ourselves to TDiff
transformations ∂μξ

μ ¼ 0. The Diff-invariant case can
always be recovered by taking the limit fðgÞ → ffiffiffi

g
p

.
Notice that under TDiff transformations, scalar densities
(such as g) behave as pure scalars.
Note that we break Diff invariance down to TDiff

invariance only in this sector, while preserving full Diff-
invariant actions in every other sector, in particular, in the
Einstein-Hilbert action, so that the total action for the TDiff
vector field coupled to gravity would be

S¼ SEHþSA ¼−
1

16πG

Z
d4x

ffiffiffi
g

p
R−

1

4

Z
d4xfðgÞFμνFμν.

ð5Þ
We can obtain the equations of motion for the vector field
by varying the action (5) with respect to it,

∂μ½fðgÞFμν� ¼ 0: ð6Þ

Variations of the total action (5) with respect to the metric
tensor yields the corresponding Einstein equation

Rμν −
1

2
gμνR ¼ 8πGTμν ð7Þ

where the stress-energy tensor, appearing on the right-hand
side of the equation, is obtained from the usual definition

Tμν ¼ −
2ffiffiffi
g

p δSA
δgμν

: ð8Þ
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For the action (1), it is given by

Tα
β ¼

fðgÞffiffiffi
g

p
�
1

2
f1FμνFμνδαβ − FαμFβμ

�
; ð9Þ

where we define

fn ¼
�

d
d log g

�
n
log fðgÞ; ð10Þ

and in particular, up to second-order derivatives, which will
be extensively used in this work,

f1 ¼ g
f0

f
; ð11Þ

f2 ¼ f1 − f21 þ g2
f00

f
; ð12Þ

so that in the Diff case fðgÞ ¼ ffiffiffi
g

p
we have f1 ¼ 1=2 and

fn ¼ 0 for n > 1. Because of the breaking of Diff invari-
ance, the stress-energy tensor defined in (9) is not neces-
sarily conserved under solutions of the field equations
of motion, i.e., ∇μTμν ≠ 0 and does not reduce to the
canonical one in flat spacetime (see [18,19] for a dis-
cussion). However, since Diff invariance is not broken in
the gravity sector, Bianchi identities ∇μGμν ¼ 0 ensure
∇μTμν ¼ 0, i.e., the energy-momentum is conserved on
solutions of the Einstein equations. Speaking in practical
terms, the conservation of the stress-energy tensor will
impose constraints between the different functions in the
metric tensor, which cannot be fixed a priori with a
coordinate transformation due to having one less gauge
degree of freedom in TDiff models.

III. GEOMETRIC OPTICS APPROXIMATION

The breaking of diffeomorphism invariance could
have important implications for the consistency of the
theory [19,20]. The presence of the space-time dependent
function fðgÞ could violate the equivalence principle
since it is not guaranteed that vector field particles follow
the geodesics of the space-time geometry. In order to
analyze this problem, and following the same approach
as done in [19,20] for scalar fields, we will consider the
geometric optics approximation [20,36]. Geometric optics
works as long as the typical variation length of the field,
i.e., the wavelength λ, is much shorter than any other
relevant length L, such as the length at which the amplitude
of the field varies or the typical variation length of the
space-time.
In this approximation, a mode of the vector potential can

be written as a product of an exponential, which is rapidly
changing, and a slowly evolving complex amplitude that is
expanded perturbatively in powers of λ=L

AμðxÞ ¼ Re
h
ðVμ þWμϵþ…ÞeiθðxÞ=ϵ

i
; ð13Þ

where θðxÞ is a real function, ϵ is a dummy power-counting
parameter, and the wave vector is kμ ¼ ∂μθ. Note that the
amplitude functions Vμ, Wμ��� are allowed to depend both
on position and on kμ. Terms of order Oð1=ϵnÞ, n > 0 are
valid in the geometric optics approximation, whereas terms
of order Oð1Þ, OðϵÞ, etc. are said to belong to postgeo-
metric optics. As a result, only the functions Vμ and θ have
no postgeometric optics corrections.
With all of this established, let us delve into the equations

of motion. Firstly, the action (1) is invariant under a gauge
transformation of the field

AμðxÞ → A0
μðxÞ ¼ AμðxÞ þ ∂μϕðxÞ; ð14Þ

with ϕðxÞ a smooth function, as it leaves the field strength
tensor unchanged. This allows us to use the Lorentz gauge
condition, which can be written as

∇μAμ ¼
�
i
ϵ
kμðVμþWμϵþ…Þþ ðVμþWμϵþ…Þ;μ

�
eiθ=ϵ

¼ 0: ð15Þ
At leading order Oð1=ϵÞ, this yields

kμVμ ¼ 0; ð16Þ

which means that the amplitude of the field (or the
polarization vector) is perpendicular to the direction of
propagation. The next order

Vμ
;μ þ ikμWμ ¼ 0; ð17Þ

already belongs to the postgeometric regime Oð1Þ, and in
fact shows a deviation from this perpendicularity for the
second term in the expansion of the amplitude.
The equation of motion for the vector field (6) at leading

order Oð1=ϵ2Þ yields

kμVμkν − kμkμVν ¼ 0; ð18Þ

which after applying the gauge condition (16) gives us the
null condition of the rays

kμkμ ¼ 0: ð19Þ
From this equation, we can write

ðkμkμÞ;α ¼ 0; ð20Þ

and since kμ is the gradient of a scalar, we can commute
covariant derivatives kμ;ν ¼ kν;μ to find

kμkμ;α ¼ kμkα;μ ¼ 0: ð21Þ
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This is nothing but the geodesic equation. Thus, we confirm
that very much as in standard Diff-invariant electromag-
netism, in TDiff theories, massless gauge bosons propagate
along the space-time geodesics in the geometric optics
approximation.
The next-to-leading-order equation of motion gives us

the following expression:

∂μ

�
fffiffiffi
g

p
�
ðkμVν − kνVμÞ þ fffiffiffi

g
p ½ðkμVνÞ;μ − ðkνVμÞ;μ

þ kμVν;μ − kμVμ;ν þ ikμkμWν − ikμkνWμ� ¼ 0: ð22Þ

After using the gauge condition (16) and the previous
order equation (19), this expression can be simplified to

ffiffiffi
g

p
f

∂μ

�
fffiffiffi
g

p
�
ðkμVν − kνVμÞ þVνkμ;μ þ 2kμVν

;μ ¼ 0; ð23Þ

where we have also used the commutation of covariant
derivatives kμ;ν ¼ kν;μ.
By decomposing the amplitude into a (real) magnitude V

and a (complex) polarization vector vμ, i.e., Vμ ¼ Vvμ with
vμv�μ ¼ −1 and VμV�

μ ¼ −V2, this expression allows us to
obtain the equation for the propagation of the magnitude
and polarization. Thus, if we contract this equation with V�

ν

(and add the corresponding complex conjugate) we can
further simplify the expression and find a conserved current

∇μ

�
fffiffiffi
g

p V2kμ
�

¼ 0: ð24Þ

Thus, very much as in the Diff-invariant case, we can write
an adiabatic invariant which can be identified with the
conserved particle number. Notice however that the con-
served current is modified by a fðgÞ= ffiffiffi

g
p

factor which is a
typical feature of TDiff-invariant theories, and it was
already found in the scalar case in [20]. This is simply
due to the fact that the action is changed by a factor f=

ffiffiffi
g

p
,

which also appears naturally in the derivation of Noether
currents.
Finally, introducing the decomposition in magnitude and

polarization in (23) and using (24) we get the propagation
equation for the polarization vector

kμvν;μ ¼
1

2

ffiffiffi
g

p
f

∂μ

�
fffiffiffi
g

p
�
kνvμ: ð25Þ

We see that, unlike the Diff-invariant case, in which the
polarization vector is parallel transported along the geo-
desic ðkμvν;μ ¼ 0Þ, in the TDiff case, the polarization vector
changes. However, the change takes place along the
(unphysical) longitudinal kμ direction so that the conditions
kμvμ ¼ 0 and vμv�μ ¼ −1 will be satisfied along the
entire ray. In particular, for any vector field lμ which is

parallel-transported along the geodesic (kμlν;μ ¼ 0) and is
orthogonal to kμ, (kμlμ ¼ 0), the projected polarization
remains constant along the geodesic since

kμðvνlνÞ;μ ¼ ðkμvν;μÞlν þ kμlν;μvν

¼ 1

2

ffiffiffi
g

p
f

∂μ

�
fffiffiffi
g

p
�
kνvμlν ¼ 0: ð26Þ

In conclusion, in TDiff theories in the geometric optics
approximation, massless vector bosons propagate along
null geodesics, the polarization vectors are orthogonal to
the propagation direction, particle number is conserved,
and the physical (transverse projection) polarization is
parallel transported along the geodesic.

IV. COUPLING TO AN EXTERNAL CURRENT

So far we have considered the free gauge field; let us now
consider a general coupling to an external source jμ,

S ¼ −
Z

d4x

�
fðgÞ 1

4
FμνFμν þ fDðgÞjμAμ

�
; ð27Þ

with fDðgÞ an arbitrary function of the metric determinant
and jμ an external Diff vector current that we assume does
not depend on the vector field Aμ. Imposing gauge
invariance of the full action requires the external current
to satisfy the conservation equation given by

∇μ

�
fDðgÞffiffiffi

g
p jμ

�
¼ 0: ð28Þ

Thus we see that, as we have already seen in Sec. III,
conserved currents are modified by a factor fDðgÞ= ffiffiffi

g
p

when breaking Diff invariance down to TDiff invariance.
The equation of motion for the vector field is then

modified to

∇μ

�
fðgÞffiffiffi

g
p Fμν

�
¼ fDðgÞffiffiffi

g
p jν; ð29Þ

which can be rewritten as

∇μFμν þ
ffiffiffi
g

p
f

∂μ

�
fffiffiffi
g

p
�
Fμν ¼ fDðgÞ

fðgÞ jν: ð30Þ

Notice that in the adiabatic approximation in which terms
involving metric derivatives are negligible compared to
those involving derivatives of the field strength, the
equations of motion reduce to

∇μFμν ≃
fDðgÞ
fðgÞ jν; ð31Þ

which agree with the standard Diff expression for the
Maxwell equations but only if fDðgÞ ¼ fðgÞ. In general,
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fDðgÞ ≠ fðgÞ could induce a space-time dependence of the
fermionic charges in contradiction with local position
invariance. In the following, we will present the explicit
construction of the conserved current from TDiff invariant
Dirac spinors.

A. TDiff Dirac spinors and the Lorentz force

Let us now consider the particular case of a Dirac field Ψ
that couples to the gauge field, which will allow us to obtain
the Lorentz force law by analyzing its semiclassical limit.
The Dirac action can be written in an explicitly self-adjoint
way [37] as

SD½Ψ� ¼
Z

d4x fDðgÞ
�
i
2
ðΨ̄γμDμΨ −DμΨ̄γμΨÞ −mΨ̄Ψ

�
;

ð32Þ

where Ψ̄ ¼ Ψ†γ0 (this γ0 is the usual gamma matrix used in
flat spacetime) is the Dirac adjoint and the covariant
derivatives are

DμΨ ¼ DμΨþ iqAμΨ; ð33Þ

DμΨ̄ ¼ DμΨ̄ − iqAμΨ; ð34Þ

and we are not worrying about the details of the gamma
matrices γμ or the covariant derivative Dμ yet. We can
easily identify the current that couples to the electromag-
netic field as

jμ ¼ qΨ̄γμΨ: ð35Þ

As shown before if the gauge function fðgÞ agrees with
the fermion function fDðgÞ ¼ fðgÞ, the Dirac current
sources the gauge field exactly as in the Diff-invariant
case, so we make this choice from now onwards.
Before obtaining the TDiff version of Dirac’s equation,

we need to take care of the details related to how fermions
behave in curved spacetime. It is convenient to introduce
the vierbein eμa [38], which allows us to use a noncoordinate
basis fêag ¼ feμa∂μg defined so that it is orthogonal with
respect to the spacetime metric gμν, i.e.,

eμaeνbgμν ¼ ηab; gμν ¼ eaμebνηab; ð36Þ

with ηab ¼ diagðþ;−;−;−Þ the flat metric and eaμ the
inverse of the vierbein (with respect to both types of
indices)

eμaeaν ¼ δμν ; eμaebμ ¼ δba; ð37Þ

where we use Latin indices a, b for local Lorentz tensors
and Greek indices μ; ν;… for generally covariant tensors.
Let fγag be the Dirac matrices in flat spacetime, which

satisfy the anticommutation relations fγa; γbg ¼ 2ηab. We
can generalize these matrices to curved spacetime by
defining γμ ¼ eμaγa, which can be found to satisfy

fγμ; γνg ¼ 2gμν: ð38Þ

The full covariant derivative of a spinor field, including
the gauge connection term, can be written as

DμΨ ¼ ∂μΨþ ΓμΨþ iqAμΨ; ð39Þ

where Γμ is the spin connection [38–40], which implements
the covariant derivativeD for objects which are defined on
the Lorentz frame (those with flat indices)

DμΨ ¼ ∂μΨþ ΓμΨ: ð40Þ

The specific form of the spin connection can be found by
imposing the proper transformation laws under a local
Lorentz transformation, which is

Γμ ¼ −
i
2
Γa

μ
bΣab; ð41Þ

where Σab ¼ i
4
½γa; γb� is the spinor representation of the

generators of the Lorentz transformations. We have also
chosen the connection to be metric and torsion-free, so it is
given by the Christoffel symbols. The connection with flat
indices is defined by

∇aêb ¼ Γc
abêc; ð42Þ

and it relates to the connection with curved indices as
follows:

Γc
ab ¼ ecνe

μ
a∇μeνb ¼ ecνe

μ
að∂μeνb þ eλbΓν

μλÞ; ð43Þ

and it can also be shown that metricity imposes
Γabc ¼ −Γcba.
Finally, let us note that it is possible to define a covariant

derivative which acts in a covariant way both with respect
to curved spacetime (as ∇ does) and to the Lorentz frame
(as D does), which we denote D . This naturally involves
the connections both with curved and flat indices. For
instance, it acts on the vierbein as

Dνe
μ
b ¼ eaν∂ae

μ
b þ Γμ

λνe
λ
b − Γc

νbe
μ
c; ð44Þ

which can be shown to vanish Dνe
μ
b ¼ Dνebμ ¼ 0 due to

metricity of the connections.
With all of this set, we can now tackle the derivation of

the TDiff version of the Dirac equation in curved spacetime
from the action (32). Let us start by integrating by parts the
term with DμΨ̄, as one usually does in flat spacetime. After
expanding it, it has the following form:
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SΨ̄ ¼ −
i
2

Z
d4x fðgÞðDμΨ̄ÞγμΨ

¼ −
i
2

Z
d4x fðgÞð∂μΨ̄ − Ψ̄Γμ − iqAμΨ̄ÞγμΨ: ð45Þ

We now integrate the first term by parts, expand
derivatives, and collect the terms in a convenient way to
write the following:

SΨ̄ ¼ i
2

Z
d4xðfΨ̄γμDμΨþ Ψ̄ð∂μðfγμÞ − f½γμ;Γμ�ÞΨÞ:

ð46Þ

In the Diff case with f ¼ ffiffiffi
g

p
the second term vanishes.

However, we show in what follows that this is no longer the
case in the TDiff case. Let us compute the commutator of
the connection with the curved gamma

½γμ;Γμ� ¼
1

8
eμcΓa

μ
b½γc; ½γa; γb��: ð47Þ

By expanding the commutator, applying the Chisholm
identity to the three-gamma products

γaγbγc ¼ ηabγc þ ηbcγa − ηacγb þ iϵabcdγdγ5; ð48Þ

where γ5 ¼ iγ0γ1γ2γ3, and performing some Dirac algebra,
one can get the following compact expression:

½γμ;Γμ� ¼ −Γa
cbη

cbγa ¼ ∇μγ
μ; ð49Þ

and with this result

∂μðfγμÞ − f½γμ;Γμ� ¼ γμ∂μf − fΓμ
μλγ

λ ¼ ffiffiffi
g

p
γμ∂μ

�
fffiffiffi
g

p
�
;

ð50Þ

where we have used the identity Γμ
μλ ¼ 1ffiffi

g
p ∂λ

ffiffiffi
g

p
. This term

obviously vanishes in the Diff-invariant case fðgÞ ¼ ffiffiffi
g

p
but does not otherwise, so the action, written in its most
common form, acquires an additional term

SD ¼
Z

d4x fðgÞΨ̄
�
iγμDμ þ

i
2

ffiffiffi
g

p
fðgÞ γ

μ
∂μ

�
fffiffiffi
g

p
�
−m

�
Ψ:

ð51Þ
The Dirac equation is easily obtained by performing

variations of this action with respect to Ψ̄�
iγμDμ þ

i
2

ffiffiffi
g

p
fðgÞ γ

μ
∂μ

�
fffiffiffi
g

p
�
−m

�
Ψ ¼ 0: ð52Þ

The equation of motion for the Dirac conjugate can be
obtained by integrating by parts the other term in the action,

or equivalently, by taking the adjoint of this equation of
motion. Taking into account that γμ† ¼ γ0γμγ0 and
γ0γ0 ¼ 1, where these γ0 feature a Lorentz index, one
can calculate

Γ†
μ ¼ 1

8
Γa

μ
b½γa; γb�† ¼ −γ0Γμγ

0: ð53Þ

With this, it is immediate to take the conjugate and write

iDμΨ̄γμ þ
i
2

ffiffiffi
g

p
fðgÞ ∂μ

�
fffiffiffi
g

p
�
Ψ̄γμ þmΨ̄ ¼ 0: ð54Þ

The new term contains derivatives of the metric, which
do not affect the dynamics at leading order of the adiabatic
expansion. In other words, our Dirac equation is equivalent
to the usual one in the geometric optics approximation,
which we will see in what follows.
Before doing so, one can easily check that the Dirac

action is invariant under global U(1) transformations of the
spinor field Ψ → eiαΨ, which as expected implies that the
Noether current

jμN ¼ fðgÞffiffiffi
g

p Ψ̄γμΨ ð55Þ

is a vector under TDiff transformations that satisfies

∇μ

�
fðgÞffiffiffi

g
p Ψ̄γμΨ

�
¼ Dμ

�
fðgÞffiffiffi

g
p Ψ̄γμΨ

�
¼ 0; ð56Þ

where in the first step we have used that the term in square
brackets is a scalar with respect to the covariant derivative
D. Using Leibniz’s rule, the equations of motion and
changing DμΨ ¼ DμΨ when necessary, it is immediate to
check the conservation of this current.
Let us examine the Dirac equation in the geometric

optics approximation. We write the Dirac field as a rapidly
oscillating exponential times a slowly varying amplitude

ΨðxÞ ¼ ðψ0 þ ψ1ϵþ…ÞeiθðxÞ=ϵ; ð57Þ

where ϵ is a dummy power-counting parameter. We also
define kμ ¼ ∂μθðxÞ, so that the amplitudes depend both on
this momentum and spatial position ψn ¼ ψnðx; ∂θÞ.
Following an analogy with a semiclassical analysis [41],

where the parameter ϵ would play the role of ℏ, every term
originating from the purely kinetic part of the action must
carry an additional ϵ. Thus, we write�
iγμðϵDμ þ iqAμÞ þ

iϵ
2

ffiffiffi
g

p
fðgÞ γ

μ
∂μ

�
fffiffiffi
g

p
�
−m

�
Ψ¼ 0; ð58Þ

and similarly for its Dirac conjugate. Now it is immediate to
realize that the new term, coming from breaking down to
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TDiff invariance, does not contribute at leading order, as
one would expect. The equations of motion and conserva-
tion equation at leading order Oðϵ0Þ are given by

ðγμpμ þmÞψ0 ¼ 0; ð59Þ

ψ̄0ðγμpμ þmÞ ¼ 0; ð60Þ

∂μðfψ̄0γ
μψ0Þ ¼ 0; ð61Þ

with pμ ¼ kμ þ qAμ. With the aid of the equations of
motion, we can write the current as

ψ̄0γ
μψ0 ¼ −

1

m
pμψ̄0ψ0; ð62Þ

where we have used the anticommutation relations of the
gamma matrices as well. With this, the conservation
equation can be written

∇μ

�
fffiffiffi
g

p ψ̄0ψ0pμ

�
¼ 0; ð63Þ

which features the usual f=
ffiffiffi
g

p
factor that goes along

currents. On the other hand, by multiplying both equations
of motion together, we can write

ψ̄0½ðpμγ
μÞ2 þ 2mpμγ

μ þm2�ψ0 ¼ 0: ð64Þ

Using the equations of motion and the fact that
ðpμγ

μÞ2 ¼ pμpμ, we obtain

pμpμ ¼ m2; ð65Þ

which is the usual dispersion relation for a particle under
the effect of an electromagnetic field. Let us note that, since
kμ is the gradient of a scalar, then ∇μkν ¼ ∇νkμ, so

∇μpν −∇νpμ ¼ qð∇μAν −∇νAμÞ ¼ qFμν: ð66Þ

This allows us to differentiate the dispersion relation and
obtain

pμ∇μpν ¼ qpμFμν; ð67Þ

which is the standard Lorentz-Dirac equation. In this
equation, we observe that the Lorentz force in the TDiff
case is unchanged with respect to the Diff expression
provided fDðgÞ ¼ fðgÞ. In the Appendix, we present an
alternative derivation of the TDiff-invariant Lorentz force
law, in which the starting point is the action of a massive
point particle coupled to the electromagnetic field.

V. COVARIANT QUANTIZATION

We consider the quantization of the gauge field by
extending the usual covariant quantization approach
[42–44] to the TDiff case. It is well known that the
Lorentz gauge condition ∇μAμ ¼ 0 cannot be imposed
consistently at the operator level but only by restricting the
physical Hilbert space of the theory by means of the so-
called Gupta-Bleuler condition. This formalism requires
one to modify the action for the vector field as

SA ¼
Z

d4xfðgÞ
�
−
1

4
FμνFμν −

ξ

2
ð∇μAμÞ2

�
: ð68Þ

The corresponding equations of motion in vacuum now
read

∇μ

�
fðgÞffiffiffi

g
p Fμν

�
þ ξ∇ν

�
fðgÞffiffiffi

g
p ∇μAμ

�
¼ 0: ð69Þ

We need to find a complete set of modes that solve these
equations of motion, so we proceed as usual, performing an
expansion of the vector field in modes, in terms of creation
and annihilation operators

AμðxÞ ¼
Z

d3k

ð2πÞ3=2
X
λ

�
akλAμ;kλðxÞ þ a†kλA

�
μ;kλðxÞ

�
; ð70Þ

where the sum in polarizations spans four polarizations
λ ¼ 0, 1, 2, 3, only two of which are physical and the field
satisfies the Gupta-Bleuler condition

∇μAðþÞ
μ jψi ¼ 0; ð71Þ

where jψi is a physical state and AðþÞ
μ is the positive

frequency part of the field operator. This condition ensures
that on physical states hψ j∇μAμjψi ¼ 0.
The modes of the vector field are chosen to be ortho-

normal with respect to the inner product, which is defined
the usual way [44]:

ðAkλ; Ak0λ0 Þ ¼ i
Z
Σ
dΣμ½A�

ν;kλΠ
μν
k0λ0 − Π�μν

kλ Aν;k0λ0 �

¼ −ð2πÞ3ηλλ0δð3Þðk − k0Þ; ð72Þ

where dΣμ ¼ nμdΣ ¼ nμ
ffiffiffiffiffi
gΣ

p
d3x is the volume element on

the spatial Cauchy hypersurface Σ, with nμ a unit vector
normal to the hypersurface Σ and gΣ the (absolute value of
the) determinant of the metric induced on Σ and
ηλλ0 ¼ diagð1;−1;−1;−1Þ. In particular, if nμ is purely
timelike, then nμ ¼ ððg00Þ−1=2; 0Þ, and if the metric tensor
is diagonal, then nμ ¼ ð ffiffiffiffiffiffi

g00
p

; 0Þ and dΣμ ¼ ffiffiffi
g

p ðd3x; 0Þ.
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The generalized conjugate momentum Πμν is defined as

δSA ¼
Z

d4x
ffiffiffi
g

p
Πμνδð∂μAνÞ; ð73Þ

which for our action (68), takes the following form:

Πμν ¼ −
fðgÞffiffiffi

g
p ðFμν þ ξgμν∇αAαÞ: ð74Þ

The inner product (72) does not depend on the particular
choice of hypersurface Σ, as the current

Jμ ¼ A�
1νΠ

μν
2 − Π�μν

1 A2ν ð75Þ

is conserved ∇μJμ ¼ 0 under the equations of motion, with
A1ν and A2ν solutions of the free equations of motion (69)
and Πμν

1 and Πμν
2 the corresponding momenta. By defining

the momentum projected onto the normal direction nμ to
the spatial hypersurface Σ,

πμ ¼ nλΠλμ; ð76Þ
we can now use the equal-time commutation relations

½Aμðτ;xÞ; Aνðτ;x0Þ� ¼ 0; ð77aÞ

½πμðτ;xÞ; πνðτ;x0Þ� ¼ 0; ð77bÞ

½Aμðτ;xÞ; πνðτ;x0Þ� ¼ i
δμ

νffiffiffiffiffi
gΣ

p δð3Þðx − x0Þ ð77cÞ

to obtain the commutation relations between creation and
annihilation operators.
Inserting the expansion of the vector field (70) into the

first commutation relation (77), we have

½Aμðτ;xÞ; Aνðτ;x0Þ� ¼
Z

d3kd3k0

ð2πÞ3
X
λλ0

�
½akλ; ak0λ0 �Aμ;kλAν;k0λ0 þ ½a†kλ; a†k0λ0 �A�

μ;kλA
�
ν;k0λ0

þ ½akλ; a†k0λ0 �ðAμ;kλA�
ν;k0λ0 − A�

μ;k0λ0Aν;kλÞ
�

¼ 0: ð78Þ

This, and the same can be obtained through (77b), necessarily implies

½akλ; ak0λ0 � ¼ ½a†kλ; a†k0λ0 � ¼ 0; ð79Þ

as well as ½akλ; a†k0λ0 � ¼ fðk; λÞδð3Þðk − k0Þδλλ0 , so that the term multiplying this commutator can vanish after using both
deltas to eliminate a sum and an integral. The expression for fðk; λÞ can be obtained from (77c), which reads

Z
d3kd3k0

ð2πÞ3 nλ
X
λλ0

½akλ; a†k0λ0 �ðAμ;kλΠ�λν
k0λ0 − Πλν

kλA
�
μ;k0λ0 Þ ¼ i

δμ
νffiffiffiffiffi
gΣ

p δð3Þðx − x0Þ: ð80Þ

We now multiply by
ffiffiffiffiffi
gΣ

p
, integrate over space and contract the free indices to find

Z
d3kd3k0

ð2πÞ3
X
λλ0

½akλ; a†k0λ0 �
Z

d3x
ffiffiffiffiffi
gΣ

p
nλ

�
Aμ;kλΠ

�λμ
k0λ0 − Πλμ

kλA
�
μ;k0λ0

�
¼ 4i: ð81Þ

Finally, by using the normalization condition (72) to
replace the spatial integral, the commutator needs to be

½akλ; a†k0λ0 � ¼ −ηλλ0δð3Þðk − k0Þ; with λ; λ0 ¼ 0; 1; 2; 3

ð82Þ

A. Geometric optics limit

Let us now use the inner product we have just defined to
find the normalization of the vector field modes in the
geometric optics approximation. In order not to overcrowd

the equations, allow us to write the modes of the field
now as

Aμ;kλðxÞ ¼ Uμ;kλðxÞeiθkλðxÞ; ð83Þ
wherewe have dropped the dummyexpansion parameter and
gathered thewhole amplitude into a single object. In terms of
the field strength, the scalar product can be written as

ðAkλ; Ak0λ0 Þ ¼ −i
Z

d3x
ffiffiffiffiffi
gΣ

p
nμ

fffiffiffi
g

p ½A�
ν;kλF

μν
k0λ0 − F�μν

kλ Aν;k0λ0

þ ξgμνðA�
ν;kλ∇αAα

k0λ0 −∇αA�α
kλAν;k0λ0 Þ�: ð84Þ
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The field strength in terms of the modes is

Fμν
kλ ¼ gμρgνσðikρUσ;kλ − ikσUρ;kλ þ ∂ρUσ;kλ þ ∂σUρ;kλÞeiθkλ :

ð85Þ

At leading order, terms involving derivatives of the
amplitude ∂μUν do not contribute Introducing these two
expressions into the inner product (72), with k0λ0 ¼ kλ, we
get the following expression at leading order:

ðAkλ; AkλÞ ¼ 2
ffiffiffiffiffi
gΣ

p fffiffiffi
g

p ð2πÞ3δð3Þð0Þnμ½kμU�
σ;kλU

σ
kλ

þ ðξ − 1ÞReðkσUμ;kλU�
σ;kλÞ�: ð86Þ

In the Feynman gauge ξ ¼ 1, the last term vanishes, and
we can impose (72) to obtain the normalization of the
vector field

U�
ρ;kλU

ρ
kλ ¼

−ηλλ
2fnμkμ

ffiffiffiffiffi
g
gΣ

r
: ð87Þ

As a result, the vector field mode at leading order in
geometric optics can be finally written as

Aμ;kλðxÞ ¼
�
g
gΣ

�
1=4 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2fjnμkμj
p uμ;kλeiθðxÞ; ð88Þ

with uμ;kλ a polarization vector that satisfies kμu
μ
kλ ¼ 0

and u�μ;kλu
μ
kλ ¼ ηλλ.

VI. TDIFF VECTOR FIELDS
IN COSMOLOGICAL BACKGROUNDS

Let us turn our attention to a cosmological scenario by
examining the dynamics of vector fields in a homogeneous
and isotropic expanding universe. The line element is given
by the flat Robertson-Walker (RW) metric

ds2 ¼ b2ðτÞdτ2 − a2ðτÞdx2; ð89Þ

where bðτÞ, aðτÞ are the lapse function and scale factor,
respectively. Note that due to not having Diff invariance,
we cannot start by changing the time coordinate to the usual
cosmological time dt ¼ bðτÞdτ [20].

A. Homogeneous fields

Let us start by considering the simple case of homo-
geneous vector fields AμðτÞ ¼ ðA0ðτÞ;AðτÞÞ. The equa-
tions of motion (6) are given in this case by

A00 þ
�
ð6f1 − 2Þ a

0

a
þ ð2f1 − 2Þ b

0

b

�
A0 ¼ 0; ð90Þ

with A0ðτÞ unconstrained, as it does not appear in the field
strength tensor, so it can be determined via gauge fixing.

Here and everywhere except on the function fðgÞ, the
primes represent derivatives with respect to the time
coordinate 0 ¼ d=dτ. In principle, this equation cannot
be integrated unless we can solve Einstein’s equations
for aðτÞ and bðτÞ, even if we assume a specific fðgÞ.
The stress-energy tensor components for this configu-

ration (the energy density ρ and pressure in each direction
pi) are given by

ρ ¼ T0
0 ¼

fðgÞffiffiffi
g

p ð1 − f1Þ
jA0j2
a2b2

; ð91Þ

−pi ¼ Ti
i ¼

fðgÞffiffiffi
g

p 1

a2b2
ðA02

i − f1jA0j2Þ ðno sum over iÞ;

ð92Þ

with the off-diagonal elements T0
i ¼ Ti

0 ¼ Ti
jði ≠ jÞ ¼ 0.

Due to the nature of the vector field, we have a configu-
ration with anisotropic pressures, which in general do not
need to be equal. However, we can compute a mean
equation of state as

w̄ ¼ p̄
ρ
¼

1
3

P
ipi

ρ
¼ f1 − 1

3

1 − f1
; ð93Þ

which in the Diff case f1 ¼ 1=2 equals w̄ ¼ 1=3, as
expected for a free vector field, which behaves as radiation.
One of the main differences of TDiff-invariant field

theories is that the stress-energy conservation equations are
not automatically fulfilled under solutions to the field’s
equations of motion. Although the stress-energy tensor is
conserved on solutions of the Einstein equations, the
nonlinearity and complexity of Einstein’s equations make
it more practical to use conservation equations in order to
obtain constraints involving the metric components and
their derivatives. This allows us to determine some func-
tions in the metric that we have not been able to fix
previously, due to having one less gauge degree of freedom
as a result of having a reduced symmetry group. In
particular, this is the case of the lapse function bðτÞ in
the TDiff-invariant RW metric, as time dilations are
not TDiff.
Let us examine now the conservation equations.

Explicitly, they are given by

∂μTμ
0 þ 3

a0

a
T0

0 −
a0

a
Ti

i ¼ 0; ð94aÞ

∂μTμ
i þ

�
2
a0

a
þ b0

b

�
T0

i −
aa0

b2
Ti

0 ¼ 0: ð94bÞ

In the case of a homogeneous vector field, the second
conservation equation is identically zero, whereas the first
one yields the following equation:
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ð2 − 2f1ÞA00 ·A0 þ jA0j2
�
ð−3þ 11f1 − 6f21 − 6f2Þ

a0

a

þ ð−3þ 5f1 − 2f21 − 2f2Þ
b0

b

�
¼ 0: ð95Þ

We can eliminate the dependence on the vector field
by taking the scalar product of the field equation of
motion (90) withA0 and substituting it into (95), so we have

ð1 − 5f1 þ 6f21 − 6f2Þ
a0

a
þ ð1 − 3f1 þ 2f21 − 2f2Þ

b0

b
¼ 0:

ð96Þ

We will refer to this constraint as the “electric condition”
since, as we will show below, it is the constraint that having
an electric field imposes onto the spacetime. In particular, it
allows to obtain bðτÞ from aðτÞ for a given fðgÞ. Notice
that, as expected, in the Diff case with f1 ¼ 1=2 and f2 ¼ 0
the equation is trivially satisfied for any bðτÞ. This con-
straint can be inserted into the equations of motion (90),
which now become

A00 −
8f2

1 − 3f1 þ 2f21 − 2f2

a0

a
A0 ¼ 0: ð97Þ

Note that, for a fðgÞ so that f2 ¼ 0, such as a power law,
the equation of motion is simply A00 ¼ 0, so the vector
potential evolves linearly with timeA ∝ τ and F0i ¼ const.
If we think in terms of electric E and magnetic B fields,
defined as

Ei ¼ F0i; Bi ¼
1

2
ϵijkFjk; ð98Þ

this particular configuration of a homogeneous vector field
corresponds to a constant electric field, as we had
anticipated.
In particular, for a power-law fðgÞ ¼ gα, the explicit

dependence between a and b can be extracted by integrat-
ing (96), yielding

bðτÞ ∝ a
1−3α
α−1 ðτÞ; ð99Þ

which implies

g ∝ a4=ð1−αÞ: ð100Þ

If we insert (99) into the equation of motion (90), the
term in square brackets vanishes, as expected, since as
mentioned before in this case the equation reduces to
A00 ¼ 0. Taking into account this time dependence, both the
energy density and pressure evolve with the scale factor as

ρ; pi ∝ a−2=ð1−αÞ; ð101Þ

which in the Diff-invariant case (α ¼ 1=2) reads ρ ∝ a−4,
as expected for a radiation component.

1. Homogeneous magnetic field

We work on a configuration with a constant magnetic
field now. Taking into account the definition of the
magnetic field (98), we need a vector potential that takes
the following form in order to obtain a homogeneous
configuration:

Ai ¼
1

2
ϵijkxjBk; ð102Þ

with a constant B, because in any other case, a nonhomo-
geneous electric field would arise as well. As such, in order
to have only a magnetic field, it is forced to be constant by
construction. Since the field strength Fij ¼ const, with all
other components zero, it is easy to see that it satisfies the
equations of motion (6).
The nonzero components of the stress-energy tensor

now are

ρ ¼ T0
0 ¼

fðgÞffiffiffi
g

p f1
a4

B2; ð103Þ

−pi ¼ Ti
i ¼

fðgÞffiffiffi
g

p 1

a4
½ðf1 − 1ÞB2 þ B2

i � ðno sum over iÞ;

ð104Þ

Ti
j ¼

fðgÞffiffiffi
g

p 1

a4
ððf1 − 1ÞB2δij þ BiBjÞ; ð105Þ

where we have used that FijFij ¼ 2B2. The average
equation of state is

w̄ ¼ p̄
ρ
¼ f1

3ð2 − 3f1Þ
; ð106Þ

which again yields w̄ ¼ 1=3 for the Diff-invariant case.
The conservation of the stress-energy tensor together

with the field equations of motion impose now the
“magnetic condition,” namely

a0

a
ð2 − 7f1 þ 6f21 þ 6f2Þ þ

b0

b
ð−f1 þ 2f21 þ 2f2Þ ¼ 0:

ð107Þ

Notice once more that in the Diff case f1 ¼ 1=2 and f2 ¼ 0
the condition is trivially satisfied. In the particular case
of a power-law fðgÞ ¼ gα, this condition is solved by the
following relation between b and a:

bðτÞ ∝ a
2−3α
α ðτÞ; ð108Þ
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which implies

g ∝ a4=α: ð109Þ

Interestingly, both the condition and the relationship
between b and a are different from those in the purely
electric case (96), (99), which translates into a different
spacetime depending on the vector field configuration that
it hosts. Notice however that these conditions approach the
same values as α → 1=2.
The energy density and pressures now scale as

ρ; pi ∝ a−2=α; ð110Þ

with the same radiationlike behavior ρ ∝ a−4 in the Diff-
invariant case. Notice however that for α > 1=2 the
magnetic energy density dilutes more slowly than standard
radiation, which could provide a mechanism for amplifi-
cation of primordial magnetic fields [45,46]. As a matter of
fact, unlike other amplification mechanisms, it could
operate on intergalactic magnetic fields as well, which
would allow one to have sizable magnetic fields today
without requiring a large primordial seed.
Following these different results, we wonder whether it is

possible to have both TDiff-invariant electric and magnetic
fields in a Robertson-Walker background while satisfying
the corresponding conservation equations. In that case,
we should be able to find a more general solution to the
conservation equation bðaÞ that interpolates between the
two we have already obtained.

2. General homogenous field

Let us look back at the individual electric and magnetic
conditions separately for a general fðgÞ. Since the various
fn that appear in these equations are in general a function
of the metric determinant g, it is useful to substitute
b ¼ bðg; aÞ, which for our matter the expression

b0

b
¼ 1

2

g0

g
− 3

a0

a
ð111Þ

will suffice. Inserting this into the electric condition (96),
we obtain

a0

a
ð−2þ 4f1Þ þ

1

2

g0

g
ð1 − 3f1 þ 2f21 − 2f2Þ ¼ 0: ð112Þ

By making t ¼ log g, F ¼ log f and integrating we
get to

log a ¼ 1

4

Z
dt
1 − 2Ḟ þ 2Ḟ2 − 2F̈

1 − 2Ḟ
; ð113Þ

where the overdots denote derivatives with respect to t.
After performing the integration it becomes the following
condition:

CEa4 ¼
g
f
ð1 − 2f1Þ; ð114Þ

with CE a constant.
Working in a similar manner, the magnetic condition

(107) can be written as

a0

a
ð1 − 2f1Þ þ

1

4

g0

g
ð−f1 þ 2f21 þ 2f2Þ ¼ 0; ð115Þ

which can be solved to

CBa4 ¼ fð1 − 2f1Þ; ð116Þ

with CB a constant.
Again, note how the electric and magnetic conditions are

different. It is also easy to realize that these constraints are
automatically fulfilled when f ¼ ffiffiffi

g
p

, as well as equivalent
to (99), (108) when introducing fðgÞ ¼ gα.
In order to examine whether a consistent conservation

equation with an electromagnetic configuration can be
obtained, we can write, without loss of generality, the
following expression for the vector potential:

AiðτÞ ¼ ϕiðτÞ þ
1

2
ϵijkxjBk; ð117Þ

which gives the most general homogeneous configuration,
with electric field EiðτÞ ¼ ϕ0

iðτÞ and magnetic field Bi. The
magnetic field needs to be constant because otherwise a
nonhomogeneous electric field is invoked, as discussed in
the previous section.
Unfortunately, unlike in the purely electric or magnetic

case, the conservation equation cannot be obtained for a
general fðgÞ, so throughout the rest of this section, we
assume a power-law fðgÞ ¼ gα. The time evolution of the
electric field can easily be obtained thanks to the equation
of motion (90), which solves to

EðτÞ ¼ E0a2−6αðτÞb2−2αðτÞ; ð118Þ

where E0 is the value of the electric field when a ¼ b ¼ 1.
In this case, the conservation of the stress-energy tensor
imposes the following constraint:

E2
0

B2
ða6b2Þ1−2α

�
a0

a
ð1 − 5αþ 6α2Þ þ b0

b
ð1 − 3αþ 2α2Þ

�

þ
�
a0

a

�
1 −

7

2
αþ 3α2

�
þ b0

b

�
−
α

2
þ α2

��
¼ 0; ð119Þ

where E0 ¼ jE0j and B ¼ jBj. Making the substitution
b ¼ bðg; aÞ as in the previous cases, we obtain
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ð1 − 2αÞ a
0

a

�
2
E2
0

B2
g1−2α − 1

�

¼ ð1 − 2αÞ g
0

g

�
1 − α

2

E2
0

B2
g1−2α −

α

4

�
: ð120Þ

Notice that the condition is automatically satisfied in the
Diff case α ¼ 1=2 as expected. For α ≠ 1=2, we can divide
this expression by 1 − 2α and it can be easily integrated to
obtain the following relation:

CEMa4 ¼ gα − 2g1−α
E2
0

B2
: ð121Þ

This expression generalizes the electric and magnetic
conditions for a power-law fðgÞ. As one could have
predicted, it depends on the values of the electric and
magnetic fields, and it is compatible with the electric (96)
and magnetic (107) conditions in the E0 ≫ B and E0 ≪ B
limits, respectively. Note that this relation works only for
homogeneous fields which, speaking in practical terms,
means that we will be able to use it for modes in the

super-Hubble regime. Sub-Hubble modes, as we will
explore in future sections, fall into the geometric optics
approximation and behave as in a Diff-invariant theory.

B. Inhomogeneous fields

In order to study more general configurations, we need to
consider a vector field Aμðτ;xÞ that depends both on time
coordinate and spatial position. The equations of motion (6)
now read, in terms of the field strength

∂iF0i ¼ 0; ð122aÞ

∂0F0i þ
�
ð6f1 − 2Þ a

0

a
þ ð2f1 − 2Þ b

0

b

�
F0i ¼

b2

a2
∂jFji:

ð122bÞ

These equations cannot be solved unless we invoke a
particular ansatz for either the field strength or the vector
field, which we have already done in the previous section.
The stress-energy tensor has the following components:

T0
0 ¼ ρ ¼ fffiffiffi

g
p

�
1 − f1
a2b2

F0iF0i þ
f1
2a4

FijFij

�
; ð123aÞ

T0
i ¼

fffiffiffi
g

p 1

a2b2
F0jFij; ð123bÞ

Ti
0 ¼ −

fffiffiffi
g

p 1

a4
F0jFij; ð123cÞ

Ti
j ¼

fffiffiffi
g

p
�
1

2
f1

�
1

a4
FklFkl −

2

a2b2
F0kF0k

�
δij þ

1

a2b2
Fi0Fj0 −

1

a4
FikFjk

�
; ð123dÞ

Ti
i ¼ trðTi

jÞ ¼ −3p̄ ¼ fffiffiffi
g

p
�
1 − 3f1
a2b2

F0iF0i þ
3
2
f1 − 1

a4
FijFij

�
: ð123eÞ

With these, we can write the conservation equations

2ð1 − f1ÞF0i∂0F0i þ
b2

a2
f1Fij∂0Fij −

b2

a2
∂iðF0jFijÞ

þ F0iF0i

�
a0

a
ð−3þ 11f1 − 6f21 − 6f2Þ þ

b0

b
ð−3þ 5f1 − 2f21 − 2f2Þ

�

þ b2

a2
FijFij

�
a0

a
ð−3þ 11f1 − 6f21 − 6f2Þ þ

b0

b
ð−3þ 5f1 − 2f21 − 2f2Þ

�
¼ 0; ð124aÞ

∂0ðF0jFijÞ þ
b2

a2
f1Fkl∂iFkl − 2f1F0j∂iF0j þ ∂jðFi0Fj0Þ −

b2

a2
∂jðFikFjkÞ

þ F0jFij

�
a0

a
ð−2þ 6f1Þ −

b0

b
ð−2þ 2f1Þ

�
¼ 0: ð124bÞ
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After inserting the equations of motion into the conservation equations, we get

ð1 − 2f1Þ
b2

a2
F0j∂iFij þ

b2

a2
f1Fij∂0Fij −

b2

a2
Fij∂iF0j

þ F0iF0i

�
a0

a
ð1 − 5f1 þ 6f21 − 6f2Þ þ

b0

b
ð1 − 3f1 þ 2f21 − 2f2Þ

�

þ 1

2

b2

a2
FijFij

�
a0

a
ð2 − 7f1 þ 6f21 þ 6f2Þ þ

b0

b
ð−f1 þ 2f21 þ 2f2Þ

�
¼ 0; ð125aÞ

F0j∂0Fij − 2f1F0j∂iF0j þ F0j∂jF0i þ
b2

a2
f1Fjk∂iFjk −

b2

a2
Fjk∂jFik ¼ 0: ð125bÞ

In these equations, the terms in square brackets vanish if
we set f ¼ ffiffiffi

g
p

, whereas the rest of the terms cancel out
with the aid of the Bianchi identities ∂ðiFjkÞ ¼ 0, as
expected since the conservation of the stress-energy tensor
is identical in the Diff-invariant case.
Note that the term in square brackets that multiplies

F0iF0i in (125a) is what we dubbed the electric condition
(96). As F0iF0i ¼ E2, this is the only term that survives
when we have a homogeneous electric field. Similarly,
FijFij ¼ 2B2, so we easily identify the term in square
brackets that multiplies this combination as the magnetic
condition (107).
We can also observe in (123a) that the electric and

magnetic parts of TDiff fields gravitate differently. Thus,
the electric energy density is proportional to 1 − f1 whereas
the magnetic energy density is proportional to f1, so
that they only gravitate in the same proportion in the
Diff-invariant case.

1. Maxwell’s equations

In this section, we take a look at the equations of
motion of a free electromagnetic field (122) written in
terms of the electric and magnetic fields (98). These read as
follows:

∇ ·E ¼ 0; ð126aÞ
b2

a2
∇×B¼ E0 þ

�
ð6f1 − 2Þa

0

a
þ ð2f1 − 2Þb

0

b

�
E; ð126bÞ

which correspond to the well-known Gauss’s law for the
electric field and Ampère’s law, respectively, with a slight
change due to the Diff-invariance breaking. On top of these,
the Bianchi identities are also satisfied by definition of the
field strength

∂μFαβ þ ∂αFβμ þ ∂βFμα ¼ 0: ð127Þ
By substituting ðμ; α; βÞ ¼ ð0; i; jÞ and contracting with

ϵijk, we obtain Faraday’s law

B0 þ∇ ×E ¼ 0; ð128Þ
whereas doing ðμ; α; βÞ ¼ ði; j; kÞ and contracting with
ϵijk, we complete our set of Maxwell equations in vacuum
with Gauss’s law for the magnetic field

∇ · B ¼ 0: ð129Þ
For the sake of completeness, we also have the con-

servation equations, which after substituting the equations
of motion into them [see Eq. (125)] acquire the follow-
ing form:

ð1− 2f1Þ½E · ð∇×BÞ þB · ð∇×EÞ� þ a2

b2
E2

�
a0

a
ð1− 5f1 þ 6f21 − 6f2Þ þ

b0

b
ð1− 3f1 þ 2f21 − 2f2Þ

�

þB2

�
a0

a
ð2− 7f1 þ 6f21 þ 6f2Þ þ

b0

b
ð−f1 þ 2f21 þ 2f2Þ

�
¼ 0; ð130aÞ

ð1 − 2f1Þ∇
�
E2 −

b2

a2
B2

�
¼ 0: ð130bÞ

Working with the equations in this form is rather complicated, so we might seek to eliminate the electric field from the
equations of motion. We can easily do so by taking the curl of Ampère’s law (126b) and using Faraday’s law (128) in it,
which leads us to an equation of motion for the magnetic field

B00 −
b2

a2
∇2Bþ

�
ð6f1 − 2Þ a

0

a
þ ð2f1 − 2Þ b

0

b

�
B0 ¼ 0: ð131Þ
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Working in Fourier modes, we can analyze the super-
Hubble regime (kðb=aÞ ≪ a0=a; b0=b), with k ¼ jkj which
features a straightforward general solution for the magnetic
field derivative provided a power-law fðgÞ ¼ gα,

B0
kðτÞ ∝ a2−6αðτÞb2−2αðτÞ: ð132Þ

Note, however, that if we require the electric field to have a
super-Hubble behavior as well, Faraday’s law (128) nec-
essarily impliesB0

k ¼ 0, as we already noted in Sec. VI A 2.

2. Sub-Hubble regime

In order to analyze the sub-Hubble limit, we cannot
neglect the first derivative term in Eq. (131) straight away.
Working with a power-law fðgÞ ¼ gα, we perform a change
of function BkðτÞ ¼ a

3
2
−3αðτÞb1

2
−αðτÞB̂kðτÞ that eliminates

the first derivative term. We also perform a change of
variable to conformal time η, dτ ¼ a

b dη, which leaves the
equation of motion as

B̂ð2Þ
k þ

�
k2 þ 1

4

�
3ð2α − 1Þð6α − 5Þ

�
að1Þ

a

�
2

þ 6ð2α − 1Þ
�
ð2α − 1Þ a

ð1Þbð1Þ

ab
þ að2Þ

a

�

þ ð4αð2 − αÞ − 3Þ
�
bð1Þ

b

�
2

þ 2ð1 − 2αÞ b
ð2Þ

b

��
B̂k ¼ 0;

ð133Þ

where the superscript in parenthesis aðnÞ denotes the nth
derivative with respect to conformal time η. In the sub-
Hubble limit, the term in square brackets can be ignored
and this function admits an easy solution in terms of
complex exponentials

B̂kðηÞ ¼ c1e−ikη þ c�1e
ikη; ð134Þ

where we have imposed that the field is real.
Reverting to the original variables, we get

BkðτÞ ¼ gð1−2αÞ=4ðc1e−ikη þ c�1e
ikηÞ; η ¼

Z
τ
ds

bðsÞ
aðsÞ ;

ð135Þ

and if we introduce this behavior into the magnetic part of
the energy density (the remaining exponentials can be
integrated out thanks to rapid oscillation), we obtain

hρBi¼
fffiffiffi
g

p f1
2a4

hFijFiji¼ gα−1=2
α

a4
hB2i¼ 2αjc1j2

a4
; ð136Þ

which scales with the expansion exactly as in the Diff-
invariant case. Thus, sub-Hubble modes behave as if the
Diff invariance had not been broken down to TDiff, a result

that we revisit with the geometric optics approximation in
what follows.
The same analysis can be performed in terms of the

electric field instead of the magnetic field. If we take the
curl of Faraday’s law (128) and insert it into the time
derivative of Ampère’s law (126b), we obtain the following
equation of motion for the electric field:

E00 −
b2

a2
∇2Eþ

�
6f1

a0

a
þ 2ðf1 − 2Þ b

0

b

�
E0

þ
�
2ð3f1 þ 18f2 − 1Þ a

02

a2
þ 2ð3 − 3f1 þ 2f2Þ

b02

b2

− 8ðf1 − 3f2Þ
a0

a
b0

b
þ 2ð3f1 − 1Þ a

00

a
þ 2ðf1 − 1Þ b

00

b

�
E

¼ 0: ð137Þ
By working in Fourier space, performing a change of

function EkðτÞ ¼ a−3αþ
1
2ðτÞb−αþ3

2ðτÞÊkðτÞ and changing
variable to conformal time η, the equation of motion has
the following expression:

Êð2Þ
k þ

�
k2 þ 1

4

�
ð1 − 4α2Þ

�
bð1Þ

b

�
2

− 3ð1 − 8αþ 12α2Þ
�
að1Þ

a

�
2

− 6ð2α − 1Þ2 a
ð1Þ

a
bð1Þ

b

þ 6ð2α − 1Þ a
ð2Þ

a
þ 2ð2α − 1Þ b

ð2Þ

b

��
Êk ¼ 0: ð138Þ

Again, we can neglect the whole term in square brackets
in the sub-Hubble regime (k ≫ að1Þ=a; bð1Þ=b), and obtain
a solution for the electric field in terms of complex
exponentials

ÊkðηÞ ¼ c2e−ikη þ c�2e
ikη: ð139Þ

In terms of the original variables, we get

EkðτÞ ¼ gð1−2αÞ=4
b
a
ðc2e−ikη þ c�2e

ikηÞ; η ¼
Z

τ
ds

bðsÞ
aðsÞ ;

ð140Þ

which implies a typical radiation behavior for the average
energy density

hρEi ¼
fffiffiffi
g

p 1 − f1
a2b2

hF0iF0ii ¼ gα−1=2
1 − α

a2b2
hE2i

¼ 2ð1 − αÞ jc2j
2

a4
; ð141Þ

which again scales with the expansion as in the Diff case.
One last thing to note about these expressions is that, while
the scaling is exactly as in the Diff-invariant case, the
electric and magnetic fields have different shares of the
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total energy density, as they are weighed by factors 1 − α
and α, respectively. However, Faraday’s law (128) imposes

c1 ¼ k̂ × c2 ð142Þ

on the solutions we have just obtained for the electric and
magnetic fields, with k̂ ¼ k=jkj a unit vector in the
propagation direction. Since the electric field is transverse,
this implies jc1j ¼ jc2j, so when computing the total
electromagnetic energy density

hρEMi ¼ hρEi þ hρBi ¼ 2ð1− αÞ jc2j
2

a4
þ 2

αjc1j2
a4

¼ 2jc1j2
a4

;

ð143Þ

the dependence on α cancels out and it does not depend on
the TDiff function at all.

3. Geometric optics approximation

In an expanding universe, the sub-Hubble regime cor-
responds in practice to the geometric optics approximation.
The ansatz for the field is slightly less general, doing a pure
plane wave expansion for the spatial part and separating
spatial and temporal dependencies in the rapidly oscillating
exponential

Aμ;kλðxÞ ¼ Uμ;kλðxÞeik·x−i
R

τ
ωkðτ0Þdτ0 : ð144Þ

We can now use every result we obtained in Sec. III by
identifying

θkλðxÞ ¼ k · x −
Z

τ
ωkðτ0Þdτ0 ð145Þ

and

kμ ¼ ∂μθ ¼ ð−ωk;kÞ: ð146Þ

The Lorentz gauge condition (16) now reads

a2ωkUτ þ b2k · U ¼ 0; ð147Þ

and the equation of motion (18) gives us the usual
dispersion relation of a massless field

ω2
k ¼

b2

a2
k2: ð148Þ

The normalization of the amplitude Uμ can be obtained
either from the next-to-leading order equation or the inner
product normalization condition. We use the later method,
as we already have a final expression in Eq. (88). With a
RW background, the normal vector has to be nμ ¼ ðb; 0Þ,
so we easily obtain

Aμ;kλðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
b2

2fωk

s
uμe

ik·x−i
R

τ
ωkðτ0Þdτ0 ; ð149Þ

with uμkμ ¼ 0 and u�μuμ ¼ −1. Using these expressions for
the modes of the vector field in computing the expectation
value of the energy density (123), one can find hρi ∝ a−4.
Again, the dynamics in the geometric optics approximation
are equivalent to those in a Diff-invariant scenario, so
breaking down to TDiff invariance does not disturb the
well-settled dynamics on short scales.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have studied the dynamics of Abelian
gauge fields which break diffeomorphism invariance down
to transverse diffeomorphisms. We have shown that in the
geometric optics approximation, very much as for Diff-
invariant theories, the corresponding massless gauge
bosons propagate along null geodesics and particle number
is conserved. In addition, the polarization vectors are
orthogonal to the propagation direction and the physical
(transverse projection) polarization is parallel transported
along the geodesics. We have also studied the coupling to
TDiff-invariant Dirac spinors. We conclude that in order to
avoid violations of Einstein’s equivalence principle i.e.,
either weak equivalence principle violations or violations of
local position invariance, the breaking of Diff invariance
should be introduced by the same global fðgÞ function for
all the different fields. In this case, the standard expressions
for the Maxwell and Lorentz-Dirac equations are recovered
at leading order in the geometric optics approximation.
We have also analyzed the contributions to the energy-

momentum tensor of the gauge fields. We find that, in
general, the breaking of Diff invariance makes the electric
and magnetic parts of the vector field gravitate in a different
way. In the sub-Hubble regime, we recover the standard
radiationlike behavior of the energy density. However, in
the super-Hubble regime, the behavior is totally different to
the Diff case, thus opening up a wide range of possibilities
for cosmological model building. In particular, for certain
fðgÞ, the magnetic energy density could scale more slowly
with the expansion, thus effectively amplifying the mag-
netic fields compared to the standard Diff evolution. This
can be understood because breaking down to TDiff
invariance also breaks conformal invariance for the gauge
field. In fact, breaking the conformal triviality of Maxwell’s
equations in a RW background is necessary for the
production and amplification of cosmological magnetic
fields. As a result, the amplification mechanism arises
naturally in a TDiff-invariant gauge model. This will be
explored in detail in a future work. On the other hand, very
much as in the scalar case, the wide range of possibilities
for the evolution of the homogeneous vector fields makes
these models a useful tool for the construction of models of
the dark or the inflationary sectors.
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APPENDIX: LORENTZ FORCE

In this appendix we examine a different derivation of the
Lorentz force law for TDiff theories to that presented in
Sec. IVA. In the following derivation, we mostly follow
that of [42].
In the Diff case, the current of a charged pointlike

particle with charge q following a trajectory zμðsÞ, where s
is the length of arc parameter, can be written as

jμðx; τÞ ¼ q
Z

ds uμ
δð4Þ½x − zðsÞ�ffiffiffi

g
p ; ðA1Þ

where uμ ¼ dzμ=ds is the four-velocity and we have
weighed the Dirac delta to make it a scalar. The total
action in a Diff-invariant theory, including the mass action,
would read

S ¼ −
Z

d4x
ffiffiffi
g

p �
1

4
FμνFμν þ jμAμ

�
−m

Z
ds: ðA2Þ

In turn, theactionfor thepointlikeparticleofmassmcanbe
written as the four-velocity coupled to a mass current. Since
the four-velocity is a unit vector uμuμ ¼ 1, one can write

Z
ds ¼

Z
ds uμuμ ¼

Z
d4x

ffiffiffi
g

p
uμ

Z
dsuμ

δð4Þ½x − zðsÞ�ffiffiffi
g

p ;

ðA3Þ
so the action (A2) can be written as

S ¼ −
Z

d4x
ffiffiffi
g

p �
1

4
FμνFμν þ jμAμ þ jμmuμ

�
; ðA4Þ

with the mass current

jμm ¼ m
Z

ds uμ
δð4Þ½x − zðsÞ�ffiffiffi

g
p : ðA5Þ

From (A4), we can translate this action into a
TDiff-invariant action for a charged massive particle
subject to an electromagnetic field, just by replacing

ffiffiffi
g

p
by fðgÞ, namely

S ¼ −
Z

d4x fðgÞ
�
1

4
FμνFμν þ jμAμ þ jμmuμ

�
: ðA6Þ

In order to obtain the Lorentz force for this TDiff-
invariant setup, we can consider the electromagnetic field to
be external, ignoring possible backreaction, so the potential
AμðxÞ is fixed and we can ignore the electromagnetic part of
the action. The rest of the action, after integrating the deltas
out and changing the integration measure to coordinate
time dτ, can be written as

S ¼ −
Z

dτ
fðgÞffiffiffi

g
p

�
qvμAμ þm

ds
dτ

�
; ðA7Þ

where vμ ¼ dzμ
dτ ¼ ð1; vÞ is the coordinate four-velocity,

and ds
dτ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνvμvν

p
.

Variations of this action along the trajectory δzα yield the
following:

δS ¼ −
Z

dτ
fðgÞffiffiffi

g
p δzα

�
qvμ∂αAμ − q

ffiffiffi
g

p
fðgÞ

d
dτ

�
fðgÞffiffiffi

g
p Aα

�

þm
2

ð∂αgμνÞvμvνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνvμvν

p −m
ffiffiffi
g

p
fðgÞ

d
dτ

�
fðgÞffiffiffi

g
p gαβvβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνvμvν
p �

þ ∂α

�
fðgÞffiffiffi

g
p

��
vμAμ þm

ds
dτ

��
: ðA8Þ

At leading order in the adiabatic expansion, i.e., neglect-
ing terms involving metric derivatives, this yields the
equation of motion

mgαμ
duμ

dτ
¼ q

�
vμ∂αAμ −

dAα

dτ

�
; ðA9Þ

which, as we could expect, does not depend on the TDiff
function fðgÞ. The four-velocity, at the leading adiabatic
order, can be written in a way that reminds one of the
Lorentz factor

uμ ¼ dzμ

ds
¼ dzμ=dτ

ds=dτ
¼ vμffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ; ðA10Þ

while the total derivative of the vector field can be
expanded as

dAα

dτ
¼ ∂Aα

∂τ
þ vj

∂Aα

∂xj
¼ vμ∂μAα; ðA11Þ

which allows us to write the equation of motion in a
compact manner

m
duα

ds
¼ quμFαμ; ðA12Þ

which is nothing but the Lorentz-Dirac equation.
Setting α ¼ i, one finds the following equation of motion

for the RW background:

d
dτ

mviffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ q
a2

ð∂0Ai − ∂iA0 þ vj∂jAi − vj∂iAjÞ: ðA13Þ
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After applying some vector identities and identifying the
electric and magnetic fields (98), this equation can be
rewritten as

d
dτ

mvffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ q
a2

ðEþ v ×BÞ; ðA14Þ

which is the Lorentz force law for a relativistic particle. On
the other hand, if we set α ¼ 0, we can obtain the equation
for the variation of energy

d
dτ

mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ q
b2

v · E: ðA15Þ
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