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Transverse-diffeomorphism invariant gauge fields in cosmology

Antonio L. Maroto®" and Alfredo D. Miravet®’

Departamento de Fisica Teorica and Instituto de Fisica de Particulas y del Cosmos (IPARCOS-UCM),
Universidad Complutense de Madrid, 28040 Madrid, Spain

® (Received 6 March 2024; accepted 7 April 2024; published 2 May 2024;
corrected 31 May 2024 and 31 July 2024)

We study the dynamics of Abelian gauge fields invariant under transverse diffeomorphisms (TDiff) in
cosmological contexts. We show that in the geometric optics approximation, very much as for Diff invariant
theories, the corresponding massless gauge bosons propagate along null geodesics and particle number is
conserved. In addition, the polarization vectors are orthogonal to the propagation direction and the physical
(transverse projection) polarization is parallel transported along the geodesics. We also consider TDiff
invariant Dirac spinors, study the coupling to the gauge fields, and analyze the conditions in order to avoid
violations of Einstein’s equivalence principle. The contributions to the energy-momentum tensor of the
gauge field are also analyzed. We find that, in general, the breaking of Diff invariance makes the electric
and magnetic parts of the vector field to gravitate in a different way. In the sub-Hubble regime we recover
the standard radiationlike behavior of the energy density; however, in the super-Hubble regime the behavior
is totally different to the Diff case, thus opening up a wide range of possibilities for cosmological model
building. In particular, possible effects on the evolution of large-scale primordial magnetic fields are

discussed.
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I. INTRODUCTION

Einstein’s general relativity (GR) is the best description
of gravity we have to date. It has performed exceptionally
well in multiple tests ranging from the Solar System orbits
to gravitational lensing and has been able to describe purely
gravitational phenomena such as black holes and gravita-
tional waves. It also serves as a theoretical framework for
the standard Lambda-cold dark matter (ACDM) cosmol-
ogy, which is a phenomenological model that accurately
describes the large-scale structure and evolution of the
Universe with only a handful of parameters. GR relies on
invariance under general coordinate transformations, i.e.,
invariance under diffeomorphisms (Diff) and Einstein’s
equivalence principle [1], which is equivalent to the weak
equivalence principle, local Lorentz invariance, and local
position invariance. GR comes with its shortcomings
though: Its lack of description of quantum gravity and
the unknown fundamental nature of the dark sector of
cosmology have motivated the search for alternatives to
GR. Generally, these modifications of GR consist of
additional degrees of freedom, implemented in multiple
ways, that alter the behavior of gravity in a certain regime,
typically at very long or very short distances.

Over the last decade, there has been a growing interest in
theories that break Diff invariance down to invariance under
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transverse diffeomorphisms (TDiff), a subgroup restricted
to volume-preserving general transformations. Early
works include [2,3], in which a stability analysis of
TDiff-invariant theories is performed at classical and
one-loop levels. Here it was found that by enhancing the
symmetry group with local Weyl invariance (dubbed
WTDiff), the additional scalar degree of freedom is
removed, thus propagating the same degrees of freedom
as GR and preventing possible ghost instabilities.
Unimodular gravity [4-11], the most popular TDiff-
invariant theory for gravity, falls into this category and
features the metric determinant treated as a nondynamical
scalar, so only the traceless part of Einstein’s equations
contribute to the dynamics. As a matter of fact, unimodular
gravity has been proposed as a simple solution to the
vacuum energy problem [12]. TDiff models beyond unim-
odular gravity have also been considered in [2,13-16]. In
these models, the metric determinant is a dynamical field
and the corresponding spectrum includes a scalar graviton
in addition to the standard massless spin-2 graviton. Also,
the cosmological evolution in TDiff-invariant theories
propagating a scalar graviton mode was recently inves-
tigated in [17].

Breaking down to TDiff was also considered in the
coupling to matter in the case of scalar fields in [18,19] and
possible violations of the Einstein equivalence principle
were found. However, in [20], it was shown that, in the
geometric optics approximation, when breaking down to
TDiff invariance by a global factor in the matter action, the
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three types of masses (inertial, active, and passive) agree
with those of standard Diff-invariant theories thus avoiding
the mentioned conflicts. In addition, it was found that in
cosmological contexts on super-Hubble scales, these mod-
els exhibit a completely different behavior of the energy-
momentum tensor, making them very useful tools for the
description of the dark sector. Thus in particular in [21] a
unified model of the dark sector with a single TDiff scalar
field and the same number of free parameters as ACDM
was presented. TDiff-invariant scalar fields in arbitrary
backgrounds have been considered in [22] and Diff
symmetry restoration in [23]. There it was shown that in
the kinetic regime, these models behave as perfect adiabatic
fluids and the corresponding speed of sound can be
explicitly obtained.

This work aims to study the dynamics of TDiff-invariant
Abelian gauge fields in a cosmological context, following
the novelties in scalar field dynamics found in [20]. Vectors
have been a topic in Cosmology since the pioneering works
on vector-driven inflation [24-26], and since then, they
have been proposed on multiple occasions as candidates for
the dark sector, chiefly for dark energy [27-30] or dark
matter in the form of coherently oscillating ultralight vector
fields [31-33].

The paper is organized as follows. In Sec. II, we present
our TDiff-invariant gauge field model and obtain the basic
equations. In Sec. III, we examine the geometric optics
approximation for the vector field. In Sec. IV we couple the
field to an external current, and obtain the Lorentz force law
by analyzing the semiclassical limit of the coupling to a
Dirac field. In Sec. V, we perform the canonical covariant
quantization of the gauge field. In Sec. VI, we turn our
attention to an expanding universe and explore configura-
tions of homogeneous electric and magnetic fields, as well
as the conditions imposed by the conservation of the stress-
energy tensor. In Sec. VI B, we consider a general electro-
magnetic field in an expanding universe and analyze the
sub-Hubble regime. Finally, in Sec. VII, we draw the main
conclusions of the work. We will work in natural units
h = ¢ = 1, with metric signature (4, —, —, —).

II. GENERAL DYNAMICS

Let us consider the most general action for an Abelian
vector field A,(x) which is gauge invariant and invariant
under transverse diffeomorphisms, to lowest order in
field and metric derivatives and without parity violating
terms [34],

1
Sy = _Z/d4xf(g)F;¢uFﬂy’ (1)

where F,, = 9,A, —d,A, is the field strength and f(g) is
an arbitrary positive function of the metric determinant
g = | det(g,,)|. The condition f(g) > 0 ensures the action
is free from ghosts or gradient instabilities [34,35].

This action is invariant under a smaller group than full
diffeomorphisms, which is the group of transverse diffeo-
morphisms. In terms of infinitesimal coordinate trans-
formations, these are implemented by

W=, 0,8 =0, 2)
so there is one less gauge degree of freedom. Restricting the
symmetry group in this way allows us to write the action for

any type of field (to the lowest order in metric derivatives)
with a general f(g). Indeed, the variation of a general action

s— [aror, 3)

under diffeomorphisms, with £ a scalar function of the
fields and their derivatives and the metric, can be shown to
be [20]

5S = / d*x 9, (g) - 207" (9)]L. ()

where the prime in f'(g) denotes derivative with respect to
its argument. This variation vanishes by either setting
f(9) = /g, which grants invariance under the full group
of diffeomorphisms, or by restricting ourselves to TDiff
transformations 9,&* = 0. The Diff-invariant case can
always be recovered by taking the limit f(g) — /9.
Notice that under TDiff transformations, scalar densities
(such as g) behave as pure scalars.

Note that we break Diff invariance down to TDiff
invariance only in this sector, while preserving full Diff-
invariant actions in every other sector, in particular, in the
Einstein-Hilbert action, so that the total action for the TDiff
vector field coupled to gravity would be

1 1
S:SEH+SA:_@ d4x\/§R—4/d4xf(g)FﬂDF””.
(5)

We can obtain the equations of motion for the vector field
by varying the action (5) with respect to it,

9ulf (9)F*] = 0. (6)
Variations of the total action (5) with respect to the metric
tensor yields the corresponding Einstein equation
1
RH — 3 ¢*R = 8xGT" (7)
where the stress-energy tensor, appearing on the right-hand

side of the equation, is obtained from the usual definition

o _ 2 35
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(8)
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For the action (1), it is given by

1
Taﬂ = L\/g; (EleﬂvF’w&Xﬂ - FaﬂFﬂﬂ) ’ (9)

where we define

fo= (i) e (o) (10)

and in particular, up to second-order derivatives, which will
be extensively used in this work,

flzgf}, (1)
f2:f1—f%+92f?7 (12)

so that in the Diff case f(g) = /g we have f, = 1/2 and
fn =0 for n > 1. Because of the breaking of Diff invari-
ance, the stress-energy tensor defined in (9) is not neces-
sarily conserved under solutions of the field equations
of motion, i.e., V,T* # 0 and does not reduce to the
canonical one in flat spacetime (see [18,19] for a dis-
cussion). However, since Diff invariance is not broken in
the gravity sector, Bianchi identities V,G*” = 0 ensure
V, " =0, ie., the energy-momentum is conserved on
solutions of the Einstein equations. Speaking in practical
terms, the conservation of the stress-energy tensor will
impose constraints between the different functions in the
metric tensor, which cannot be fixed a priori with a
coordinate transformation due to having one less gauge
degree of freedom in TDiff models.

III. GEOMETRIC OPTICS APPROXIMATION

The breaking of diffeomorphism invariance could
have important implications for the consistency of the
theory [19,20]. The presence of the space-time dependent
function f(g) could violate the equivalence principle
since it is not guaranteed that vector field particles follow
the geodesics of the space-time geometry. In order to
analyze this problem, and following the same approach
as done in [19,20] for scalar fields, we will consider the
geometric optics approximation [20,36]. Geometric optics
works as long as the typical variation length of the field,
i.e., the wavelength 4, is much shorter than any other
relevant length L, such as the length at which the amplitude
of the field varies or the typical variation length of the
space-time.

In this approximation, a mode of the vector potential can
be written as a product of an exponential, which is rapidly
changing, and a slowly evolving complex amplitude that is
expanded perturbatively in powers of 1/L

A#(x)::Re[04l+—wge—%.“)em&V€], (13)

where 6(x) is a real function, € is a dummy power-counting
parameter, and the wave vector is kﬂ = 6#6’. Note that the
amplitude functions V,, W,,... are allowed to depend both
on position and on k. Terms of order O(1/¢€"), n > 0 are
valid in the geometric optics approximation, whereas terms
of order O(1), O(e), etc. are said to belong to postgeo-
metric optics. As a result, only the functions V, and € have
no postgeometric optics corrections.

With all of this established, let us delve into the equations
of motion. Firstly, the action (1) is invariant under a gauge
transformation of the field

A (x) = Al (x) = A, (x) + 0,0 (x), (14)

with ¢(x) a smooth function, as it leaves the field strength
tensor unchanged. This allows us to use the Lorentz gauge
condition, which can be written as

VAl = ékﬂ(vﬂ +Whe+ .. )+ (VF+Wre+...),, | €°
—0. (15)

At leading order O(1/¢), this yields
k, V¥ =0, (16)

which means that the amplitude of the field (or the
polarization vector) is perpendicular to the direction of
propagation. The next order

VA, + ik, WF = 0, (17)

already belongs to the postgeometric regime O(1), and in
fact shows a deviation from this perpendicularity for the
second term in the expansion of the amplitude.

The equation of motion for the vector field (6) at leading

order O(1/¢?) yields
K, VK — k VY =0, (18)

which after applying the gauge condition (16) gives us the
null condition of the rays

k,k* = 0. (19)
From this equation, we can write
(k, k)., = 0, (20)

and since k, is the gradient of a scalar, we can commute
covariant derivatives k,., = k., to find

Ky = KKy, = 0. (1)

ap
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This is nothing but the geodesic equation. Thus, we confirm
that very much as in standard Diff-invariant electromag-
netism, in TDiff theories, massless gauge bosons propagate
along the space-time geodesics in the geometric optics
approximation.

The next-to-leading-order equation of motion gives us
the following expression:

f UV _ LUYU L uyv (YK
aﬂ<ﬁ>(kv kV)+\/§[(kV);M (k*VH).,

+ k, V¥ — K, VI ik, kWY — ik, k" WH] = 0. (22)
After using the gauge condition (16) and the previous
order equation (19), this expression can be simplified to

\/756;4 (%) (KVY = KYVH) + VVE-, 42KV, =0, (23)
where we have also used the commutation of covariant
derivatives k., = k..

By decomposing the amplitude into a (real) magnitude V
and a (complex) polarization vector v*, i.e., V¥ = Vo* with
v, = —1 and V¥V, = —V?2, this expression allows us to
obtain the equation for the propagation of the magnitude
and polarization. Thus, if we contract this equation with V;
(and add the corresponding complex conjugate) we can
further simplify the expression and find a conserved current

v, (% V2kﬂ> =0. (24)

Thus, very much as in the Diff-invariant case, we can write
an adiabatic invariant which can be identified with the
conserved particle number. Notice however that the con-
served current is modified by a f(g)/,/g factor which is a
typical feature of TDiff-invariant theories, and it was
already found in the scalar case in [20]. This is simply
due to the fact that the action is changed by a factor f/,/g,
which also appears naturally in the derivation of Noether
currents.

Finally, introducing the decomposition in magnitude and
polarization in (23) and using (24) we get the propagation
equation for the polarization vector

kb, = ;*J/Fa <§_>k I (25)

We see that, unlike the Diff-invariant case, in which the
polarization vector is parallel transported along the geo-
desic (k*v%, = 0), in the TDiff case, the polarization vector
changes. However, the change takes place along the
(unphysical) longitudinal k* direction so that the conditions
k,0# =0 and o*v;, =—1 will be satisfied along the
entire ray. In particular, for any vector field /, which is

parallel-transported along the geodesic (k*1,., = 0) and is
orthogonal to k,, (k,l* =0), the projected polarization
remains constant along the geodesic since

K (v°1,), = (Ko, + k'L, 07

-7

In conclusion, in TDiff theories in the geometric optics
approximation, massless vector bosons propagate along
null geodesics, the polarization vectors are orthogonal to
the propagation direction, particle number is conserved,
and the physical (transverse projection) polarization is
parallel transported along the geodesic.

)sz =0. (26

IV. COUPLING TO AN EXTERNAL CURRENT

So far we have considered the free gauge field; let us now
consider a general coupling to an external source j*,

s=- [ ax( s gFur* + oloa,). @)

with fp(g) an arbitrary function of the metric determinant
and j* an external Diff vector current that we assume does
not depend on the vector field A,. Imposing gauge
invariance of the full action requires the external current
to satisfy the conservation equation given by

v, (fD—(g) jﬂ) = 0. (28)

V9

Thus we see that, as we have already seen in Sec. III,
conserved currents are modified by a factor f5(g)/\/g
when breaking Diff invariance down to TDiff invariance.

The equation of motion for the vector field is then
modified to

which can be rewritten as
v \/§ ( f ) v fD(g) .y
\Y) ~= e =
I+ 7 Oy NG F* 7(9) J (30)

Notice that in the adiabatic approximation in which terms
involving metric derivatives are negligible compared to
those involving derivatives of the field strength, the
equations of motion reduce to

I 61)

which agree with the standard Diftf expression for the
Maxwell equations but only if f(g) = f(g). In general,

V, P o
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fp(g) # f(g) could induce a space-time dependence of the
fermionic charges in contradiction with local position
invariance. In the following, we will present the explicit
construction of the conserved current from TDiff invariant
Dirac spinors.

A. TDiff Dirac spinors and the Lorentz force

Let us now consider the particular case of a Dirac field ¥
that couples to the gauge field, which will allow us to obtain
the Lorentz force law by analyzing its semiclassical limit.
The Dirac action can be written in an explicitly self-adjoint
way [37] as

%Mz/&ﬁﬂ@b%@ﬂ—@%@%m%ﬁ
(32)

where ¥ = Wy0 (this 7 is the usual gamma matrix used in
flat spacetime) is the Dirac adjoint and the covariant
derivatives are

DY =9,Y¥+igA,Y, (33)
DY =93,V —igA,Y, (34)

and we are not worrying about the details of the gamma
matrices y* or the covariant derivative ®, yet. We can
easily identify the current that couples to the electromag-
netic field as

7 = qPyy. (35)

As shown before if the gauge function f(g) agrees with
the fermion function f,(g) = f(g), the Dirac current
sources the gauge field exactly as in the Diff-invariant
case, so we make this choice from now onwards.

Before obtaining the TDiff version of Dirac’s equation,
we need to take care of the details related to how fermions
behave in curved spacetime. It is convenient to introduce
the vierbein €’ [38], which allows us to use a noncoordinate
basis {¢,} = {el0,} defined so that it is orthogonal with
respect to the spacetime metric g,,, i.e.,

eZeZguy = Nab> I = eﬁef”ab’ (36)

with 7,, = diag(4,—,—, =) the flat metric and ej the
inverse of the vierbein (with respect to both types of
indices)

Hoa — g Wb sb

el el i eae, = 0,, (37)
where we use Latin indices a, b for local Lorentz tensors
and Greek indices y, v, ... for generally covariant tensors.
Let {y*} be the Dirac matrices in flat spacetime, which

satisfy the anticommutation relations {y%,y"} = 27*. We
can generalize these matrices to curved spacetime by
defining y* = efy“, which can be found to satisfy

v’y =2g". (38)

The full covariant derivative of a spinor field, including
the gauge connection term, can be written as

DY =9,% +T,¥ +igA,Y, (39)

where I, is the spin connection [38-40], which implements
the covariant derivative ® for objects which are defined on
the Lorentz frame (those with flat indices)

DW= 09,¥ +,W. (40)

The specific form of the spin connection can be found by
imposing the proper transformation laws under a local
Lorentz transformation, which is

i
F,“ - —Eraﬂbi“ab, (41)
where %, = £[y,.7,] is the spinor representation of the
generators of the Lorentz transformations. We have also
chosen the connection to be metric and torsion-free, so it is
given by the Christoffel symbols. The connection with flat
indices is defined by

Vaéb = Fcabéc’ (42)

and it relates to the connection with curved indices as
follows:

I, = egeaV, el = efeq(d el + eil“; ), (43)

and it can also be shown that metricity imposes
Fahc = _Fcba'

Finally, let us note that it is possible to define a covariant
derivative which acts in a covariant way both with respect
to curved spacetime (as V does) and to the Lorentz frame
(as D does), which we denote &. This naturally involves
the connections both with curved and flat indices. For
instance, it acts on the vierbein as

D,¢y = elo,eh + T et — T, ek, (44)

which can be shown to vanish Z,¢, = Z,e5 =0 due to
metricity of the connections.

With all of this set, we can now tackle the derivation of
the TDiff version of the Dirac equation in curved spacetime
from the action (32). Let us start by integrating by parts the
term with Dﬂ‘i‘, as one usually does in flat spacetime. After
expanding it, it has the following form:

103504-5
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S¢ = —%/d“Xf(g)(Dﬂ‘i’)y"‘P

We now integrate the first term by parts, expand
derivatives, and collect the terms in a convenient way to
write the following:

S =3 [ BIDY + H,) ~ fir L))
(46)

In the Diff case with f = /g the second term vanishes.
However, we show in what follows that this is no longer the
case in the TDiff case. Let us compute the commutator of
the connection with the curved gamma

[},u’ yh“ (47)

1
[yﬂvrﬂ] - 8 eéra b[

By expanding the commutator, applying the Chisholm
identity to the three-gamma products

yayb},c — l,labyc + ’,]bc},a _ nac b + leabcdydyS (48)

where y° = iy’y'y?y3, and performing some Dirac algebra,
one can get the following compact expression:

[7M7F/4] = _Facanbya = V,ﬁ’”, (49)

and with this result

1)~ i) = Pauf =il = vira, (L),
(50)

where we have used the identity I =75 6 11/9- This term
obviously vanishes in the Diff-invariant case f(g) = /g
but does not otherwise, so the action, written in its most

common form, acquires an additional term
g f
S :/d4xfg |:l]/”D —&——i ) (—) —m}‘l‘.
’ ¥ 219" " \Va
(51)

The Dirac equation is easily obtained by performing
variations of this action with respect to ¥

{Ly D +§% " (%) —m}‘P:O. (52)

The equation of motion for the Dirac conjugate can be
obtained by integrating by parts the other term in the action,

or equivalently, by taking the adjoint of this equation of
motion. Taking into account that y** = yOy#y" and
¥’y = 1, where these y° feature a Lorentz index, one
can calculate

1
rj=-Ta

2 L)t =T (53)

With this, it is immediate to take the conjugate and write

i H _ﬁ f " 4m
D, Py YL (f)quJr P=0. (54)

The new term contains derivatives of the metric, which
do not affect the dynamics at leading order of the adiabatic
expansion. In other words, our Dirac equation is equivalent
to the usual one in the geometric optics approximation,
which we will see in what follows.

Before doing so, one can easily check that the Dirac
action is invariant under global U(1) transformations of the
spinor field ¥ — ¢/*¥, which as expected implies that the
Noether current

i =L (59)

is a vector under TDiff transformations that satisfies

v, {%ww} _g, [L\/%)‘i‘y’“{’] —0. (56)

where in the first step we have used that the term in square
brackets is a scalar with respect to the covariant derivative
D. Using Leibniz’s rule, the equations of motion and
changing 2,'¥ = D,¥ when necessary, it is immediate to
check the conservation of this current.

Let us examine the Dirac equation in the geometric
optics approximation. We write the Dirac field as a rapidly
oscillating exponential times a slowly varying amplitude

W(x) = (wo +wie+...)ee, (57)
where € is a dummy power-counting parameter. We also
define k, = 9,0(x), so that the amplitudes depend both on
this momentum and spatial position v, = w,,(x, 00).

Following an analogy with a semiclassical analysis [41],
where the parameter € would play the role of 7, every term
originating from the purely kinetic part of the action must
carry an additional e. Thus, we write

%%7”0,, <%) - m} w=0, (58)

and similarly for its Dirac conjugate. Now it is immediate to
realize that the new term, coming from breaking down to

{iy” (€D, +iqA,) +

103504-6
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TDiff invariance, does not contribute at leading order, as
one would expect. The equations of motion and conserva-
tion equation at leading order O(e°) are given by

(r*pu +m)yo =0, (59)
wo(r"pu +m) =0, (60)
9, (fwor'w,) =0, (61)

with p, =k, + qA,. With the aid of the equations of
motion, we can write the current as

_ 1
Por'vo = —— Py, (62)

where we have used the anticommutation relations of the
gamma matrices as well. With this, the conservation
equation can be written

v, (Liowr) =0 (63)

which features the usual f/,/g factor that goes along
currents. On the other hand, by multiplying both equations
of motion together, we can write

wol(pur*)* + 2mp,y* + m*y = 0. (64)

Using the equations of motion and the fact that
(pur*)* = pup", we obtain

pupt = m?, (65)

which is the usual dispersion relation for a particle under
the effect of an electromagnetic field. Let us note that, since
k, is the gradient of a scalar, then V,k, =V k,, so

vﬂpl/ - vbp}t = q(vﬂAIJ - vuAy) = qF;w' (66)

This allows us to differentiate the dispersion relation and
obtain

P'V,up, = qp"F . (67)

which is the standard Lorentz-Dirac equation. In this
equation, we observe that the Lorentz force in the TDiff
case is unchanged with respect to the Diff expression
provided fp(g) = f(g). In the Appendix, we present an
alternative derivation of the TDiff-invariant Lorentz force
law, in which the starting point is the action of a massive
point particle coupled to the electromagnetic field.

V. COVARIANT QUANTIZATION

We consider the quantization of the gauge field by
extending the usual covariant quantization approach
[42-44] to the TDiff case. It is well known that the
Lorentz gauge condition V,A# =0 cannot be imposed
consistently at the operator level but only by restricting the
physical Hilbert space of the theory by means of the so-
called Gupta-Bleuler condition. This formalism requires
one to modify the action for the vector field as

Sy = / d*xf(g) (—%FWF/‘” —g(vﬂAﬂV). (68)

The corresponding equations of motion in vacuum now
read

f(g)

Vﬂ{@

We need to find a complete set of modes that solve these
equations of motion, so we proceed as usual, performing an
expansion of the vector field in modes, in terms of creation
and annihilation operators

F””] +EV [f\(f?vﬂAﬂ} =0. (69

3
1) = [ i 3w + a0 ()
A

where the sum in polarizations spans four polarizations
A=0,1, 2, 3, only two of which are physical and the field
satisfies the Gupta-Bleuler condition

VEAL ) =0, (71)

where |y) is a physical state and AE,H is the positive
frequency part of the field operator. This condition ensures
that on physical states (y|V¥A,|y) = 0.

The modes of the vector field are chosen to be ortho-
normal with respect to the inner product, which is defined
the usual way [44]:

(Ao Apy) = i /E A5, (A7 ST, — TTA, )

= —(272)*n 6% (k = K), (72)

where d¥, = n,dX = n, \/Ed% is the volume element on
the spatial Cauchy hypersurface X, with n, a unit vector
normal to the hypersurface X and gy the (absolute value of
the) determinant of the metric induced on X and
my = diag(1,—1,-1,-1). In particular, if n, is purely
timelike, then n, = ((¢°°)~"/2,0), and if the metric tensor
is diagonal, then n, = (,/goo. 0) and dZ, = ,/g(d’x,0).

103504-7
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The generalized conjugate momentum IT# is defined as

55, = / dhxy/gII8(0,A,), (73)
which for our action (68), takes the following form:
f(g)
" = — (FM 4 Eg''V ,A%). (74)
NG

The inner product (72) does not depend on the particular
choice of hypersurface X, as the current

T = AT T — T A,, (75)

is conserved V,J# = 0 under the equations of motion, with
A1, and A,, solutions of the free equations of motion (69)
and I and IT;” the corresponding momenta. By defining
|

the momentum projected onto the normal direction n, to
the spatial hypersurface X,

ot = n,lnl”, (76)

we can now use the equal-time commutation relations

[A/t (T7 X)?Av(fﬂ X/)] = Oa (773)
[7#(z,x), 7 (7,X")] = 0, (77b)
[A,(r.x),7(7.x")] =i O’ s (x=x)  (77c)

N

to obtain the commutation relations between creation and
annihilation operators.

Inserting the expansion of the vector field (70) into the
first commutation relation (77), we have

d’kd? 1
[A,(7.x), A, (7.X')] = / 3 Z( ag apy)Au Ay + [ag;. Q|G A

(27)° 47

+ [ak/{» aj{"ﬂ/](All,kﬂAz,k’ﬁ/ - A;k%’AD.kﬂ)> = 0 (78)

This, and the same can be obtained through (77b), necessarily implies

[au, ak’ﬂ =

as well as [ay,;, al,,] = f(k, )50

[ab, a-,:/l,] =0, (79)

(k k’)8,, so that the term multiplying this commutator can vanish after using both

deltas to eliminate a sum and an integral. The expression for f(k,1) can be obtained from (77c), which reads

d*kd’k’
/ A3 an[akb azw] (AM I —

(27) Y

v

U
V9

H/IVA* ) =

We now multiply by ,/gs, integrate over space and contract the free indices to find

d3kd3 3 w2
3 Z akx,ak%/ dxy/gsny | A, uIlh —

AN

Finally, by using the normalization condition (72) to
replace the spatial integral, the commutator needs to be

. al,] = —npdP(k —=K'), with 2,4 =0,1,2,3

(82)

A. Geometric optics limit

Let us now use the inner product we have just defined to
find the normalization of the vector field modes in the
geometric optics approximation. In order not to overcrowd

A A .
H”Aﬂk,ﬂ,> = 4i. (81)

the equations, allow us to write the modes of the field
now as

Ay (x) = Uy a(x)e B (x), (83)

where we have dropped the dummy expansion parameter and
gathered the whole amplitude into a single object. In terms of
the field strength, the scalar product can be written as

: I "
(A Apy) = =i / d’x gsny, 7§ [Ay o % - F kl,{DAu,k’/l’

+ 869 (A; VAL, — Vo AGA k)] (84)
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The field strength in terms of the modes is

F’IZ{ = gﬂpgyo(ikp Usia = iksUp iz +0,Us 7+ aaUp‘kﬁ)gieu.
(85)

At leading order, terms involving derivatives of the
amplitude d,U, do not contribute Introducing these two
expressions into the inner product (72), with KA’ = kA, we
get the following expression at leading order:

(Agzs Apa) = 2@\%(2”)35(3)(0)”/4[]‘”];.101[]2/1
+ (&= 1)Re(k°U, 1, Uy 1)) (86)

In the Feynman gauge ¢ = 1, the last term vanishes, and
we can impose (72) to obtain the normalization of the

vector field
M g
us U, = (= 87
p.kA ™ kA 2fnﬂkﬂ Js ( )

As a result, the vector field mode at leading order in
geometric optics can be finally written as

1/4 1 )
Ayia(x) = (9) L e, (8g)

9] \/2f IR

. L . uo

with u,;; a polarization vector that satisfies k,u;, =0
* Ho_

and Uy k3 Wy = Mia-

VI. TDIFF VECTOR FIELDS
IN COSMOLOGICAL BACKGROUNDS

Let us turn our attention to a cosmological scenario by
examining the dynamics of vector fields in a homogeneous
and isotropic expanding universe. The line element is given
by the flat Robertson-Walker (RW) metric

ds? = b*(z)de? — a?(7)dx>, (89)

where b(7), a(z) are the lapse function and scale factor,
respectively. Note that due to not having Diff invariance,
we cannot start by changing the time coordinate to the usual
cosmological time dt = b(z)dz [20].

A. Homogeneous fields

Let us start by considering the simple case of homo-
geneous vector fields A,(z) = (Ay(z),A(r)). The equa-
tions of motion (6) are given in this case by

/ /

A"+ (6f1—2)%+(2f1—2)% A'=0, (90)

with Ay(7) unconstrained, as it does not appear in the field
strength tensor, so it can be determined via gauge fixing.

Here and everywhere except on the function f(g), the
primes represent derivatives with respect to the time
coordinate / = d/dz. In principle, this equation cannot
be integrated unless we can solve Einstein’s equations
for a(z) and b(z), even if we assume a specific f(g).

The stress-energy tensor components for this configu-
ration (the energy density p and pressure in each direction
p;) are given by

f A/2
P:Tooz%(l—fﬁ'az;z’ o1
—p, =T, = %#(A? - f1|A’]*)  (no sum overi),

(92)

with the off-diagonal elements T°; = Ty = T" (i # j) = 0.
Due to the nature of the vector field, we have a configu-
ration with anisotropic pressures, which in general do not
need to be equal. However, we can compute a mean
equation of state as

_ D3 ‘_fl_%
W=== = ;
p p 1-fi

which in the Diff case f, =1/2 equals w=1/3, as
expected for a free vector field, which behaves as radiation.

One of the main differences of TDiff-invariant field
theories is that the stress-energy conservation equations are
not automatically fulfilled under solutions to the field’s
equations of motion. Although the stress-energy tensor is
conserved on solutions of the Einstein equations, the
nonlinearity and complexity of Einstein’s equations make
it more practical to use conservation equations in order to
obtain constraints involving the metric components and
their derivatives. This allows us to determine some func-
tions in the metric that we have not been able to fix
previously, due to having one less gauge degree of freedom
as a result of having a reduced symmetry group. In
particular, this is the case of the lapse function b(z) in
the TDiff-invariant RW metric, as time dilations are
not TDiff.

Let us examine now the conservation equations.
Explicitly, they are given by

(93)

a a .
aﬂTM0+3ETOO_ngi :0, (943)

/ b/ ! )
9,T"; + (2% + —) 70, - 22 Tig=0.  (94b)

b b?

In the case of a homogeneous vector field, the second
conservation equation is identically zero, whereas the first
one yields the following equation:
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/

227N A+ NP3 11, -6 - 67
b/

We can eliminate the dependence on the vector field
by taking the scalar product of the field equation of
motion (90) with A’ and substituting it into (95), so we have

a b

(1=5f1+6f1=6f2)—+ (1 =31 +2f1 =2f2) - =0.

(96)

We will refer to this constraint as the “electric condition”
since, as we will show below, it is the constraint that having
an electric field imposes onto the spacetime. In particular, it
allows to obtain b(7) from a(z) for a given f(g). Notice
that, as expected, in the Diff case with f{ = 1/2and f, =0
the equation is trivially satisfied for any b(z). This con-
straint can be inserted into the equations of motion (90),
which now become

8/ a0, (97)

A —
1=3f1+2f1-2f2a

Note that, for a f(g) so that f, = 0, such as a power law,
the equation of motion is simply A” =0, so the vector
potential evolves linearly with time A « 7 and F;; = const.
If we think in terms of electric E and magnetic B fields,
defined as

1
E; = Fy;, B; = Eeiijjk’ (98)
this particular configuration of a homogeneous vector field
corresponds to a constant electric field, as we had
anticipated.

In particular, for a power-law f(g) = ¢° the explicit
dependence between a and b can be extracted by integrat-
ing (96), yielding

b(7) « aer (), (99)
which implies

g a*/1=a), (100)

If we insert (99) into the equation of motion (90), the
term in square brackets vanishes, as expected, since as
mentioned before in this case the equation reduces to
A" = 0. Taking into account this time dependence, both the
energy density and pressure evolve with the scale factor as

2/(1-a)

p.pixa” 3 (101)

which in the Diff-invariant case (@ = 1/2) reads p «x a™,

as expected for a radiation component.

1. Homogeneous magnetic field

We work on a configuration with a constant magnetic
field now. Taking into account the definition of the
magnetic field (98), we need a vector potential that takes
the following form in order to obtain a homogeneous
configuration:

Ai = %GiijJBk, (102)
with a constant B, because in any other case, a nonhomo-
geneous electric field would arise as well. As such, in order
to have only a magnetic field, it is forced to be constant by
construction. Since the field strength F;; = const, with all
other components zero, it is easy to see that it satisfies the
equations of motion (6).

The nonzero components of the stress-energy tensor
now are

p=T% _f9h B?

/7 B (103)
—p; =T, :&gg)%[(fl —1)B?+ B?] (no sum overi),
(104)
. 1 .
T —]%F((f1 —-1)B%*§'; + B;B;),  (105)

where we have used that F;;F;; = 2B%. The average
equation of state is

_ P _ Si
AT LT (109

which again yields w = 1/3 for the Diff-invariant case.

The conservation of the stress-energy tensor together
with the field equations of motion impose now the
“magnetic condition,” namely

/ /

b
S (@-Tf1+6f1+65)+

E(—f1+2f%+2f2):0-

(107)

Notice once more that in the Diff case f{ = 1/2and f, =0
the condition is trivially satisfied. In the particular case
of a power-law f(g) = g% this condition is solved by the
following relation between b and a:

2-3a

b(r) x a« (1), (108)
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which implies
g o a*e, (109)

Interestingly, both the condition and the relationship
between b and a are different from those in the purely
electric case (96), (99), which translates into a different
spacetime depending on the vector field configuration that
it hosts. Notice however that these conditions approach the
same values as a — 1/2.

The energy density and pressures now scale as

p.pi x a=le, (110)

with the same radiationlike behavior p o< a™* in the Diff-
invariant case. Notice however that for a > 1/2 the
magnetic energy density dilutes more slowly than standard
radiation, which could provide a mechanism for amplifi-
cation of primordial magnetic fields [45,46]. As a matter of
fact, unlike other amplification mechanisms, it could
operate on intergalactic magnetic fields as well, which
would allow one to have sizable magnetic fields today
without requiring a large primordial seed.

Following these different results, we wonder whether it is
possible to have both TDiff-invariant electric and magnetic
fields in a Robertson-Walker background while satisfying
the corresponding conservation equations. In that case,
we should be able to find a more general solution to the
conservation equation b(a) that interpolates between the
two we have already obtained.

2. General homogenous field

Let us look back at the individual electric and magnetic
conditions separately for a general f(g). Since the various
[, that appear in these equations are in general a function
of the metric determinant g, it is useful to substitute
b = b(g, a), which for our matter the expression

b 1g 3a’
b 2g a

(111)

will suffice. Inserting this into the electric condition (96),
we obtain

a/ /

1
= (<2+4f) +§%(1 —3f1+2f-2f2)=0.  (112)

By making ¢t =log g, F =log f and integrating we
get to

1 1 —2F +2F?-2F
loga:Z/dt i , (113)

1-2F

where the overdots denote derivatives with respect to t.
After performing the integration it becomes the following
condition:

CEa4 =

(1=2f1), (114)

~l

with Cg a constant.
Working in a similar manner, the magnetic condition
(107) can be written as

al

1 /
TU=2R) 450 A2k 2n) =0 (119)
which can be solved to

Cpa* = f(1-2f). (116)
with Cp a constant.

Again, note how the electric and magnetic conditions are
different. It is also easy to realize that these constraints are
automatically fulfilled when f = /g, as well as equivalent
to (99), (108) when introducing f(g) = ¢*.

In order to examine whether a consistent conservation
equation with an electromagnetic configuration can be
obtained, we can write, without loss of generality, the
following expression for the vector potential:

AW =) +yepdBe (117)

which gives the most general homogeneous configuration,
with electric field E;(7) = ¢/(r) and magnetic field B;. The
magnetic field needs to be constant because otherwise a
nonhomogeneous electric field is invoked, as discussed in
the previous section.

Unfortunately, unlike in the purely electric or magnetic
case, the conservation equation cannot be obtained for a
general f(g), so throughout the rest of this section, we
assume a power-law f(g) = g% The time evolution of the
electric field can easily be obtained thanks to the equation
of motion (90), which solves to

E(7) = Ega?%(1)b*2(z), (118)

where E, is the value of the electric field whena = b = 1.
In this case, the conservation of the stress-energy tensor
imposes the following constraint:

E2 ! b
B—g (abh?)!=2a {a_ (1=5a+ 6a%) + > (1 —-3a+ ZaZ)]
a

a 7 ) b a L\| _

where E, = |Ey| and B = |B|. Making the substitution
b = b(g,a) as in the previous cases, we obtain
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a [ E?
(1-2(1);(23—291_211—1)
g (11— aEO a
= (1 =2a)< 1-2a _ = .
(1-20)° :

2 B?
Notice that the condition is automatically satisfied in the
Diff case @ = 1/2 as expected. For a # 1/2, we can divide
this expression by 1 — 2« and it can be easily integrated to
obtain the following relation:

(120)

2

Ej
Cpma® = g* — 29" (121)

B

This expression generalizes the electric and magnetic
conditions for a power-law f(g). As one could have
predicted, it depends on the values of the electric and
magnetic fields, and it is compatible with the electric (96)
and magnetic (107) conditions in the E, > B and Ey, < B
limits, respectively. Note that this relation works only for
homogeneous fields which, speaking in practical terms,
means that we will be able to use it for modes in the
|

super-Hubble regime. Sub-Hubble modes, as we will
explore in future sections, fall into the geometric optics
approximation and behave as in a Diff-invariant theory.

B. Inhomogeneous fields

In order to study more general configurations, we need to
consider a vector field A,(z,x) that depends both on time
coordinate and spatial position. The equations of motion (6)
now read, in terms of the field strength
a,-FO,- - 0, (1223.)
b b?

Fo = —0F
>b 0i

- i
Cl2 J5J

(122b)

9o Fo;i + <6f1—2) +(2f1

These equations cannot be solved unless we invoke a
particular ansatz for either the field strength or the vector
field, which we have already done in the previous section.

The stress-energy tensor has the following components:

f1=-h fi
TOO :p :% a2b2 FOiFOi +2—a4FUFl] 5 (1233)
f 1
70, = %WFOJ-FU, (123b)
oS
'y = - Jid Fo;Fij, (123¢)
T, = S 2 ForFo |6 FoF 1F F 123d
j \/— fl pe FuFy — 2p2 okt ok j+ﬁ iof'jo = g Fikljk |- ( )
i i = f 3f fl
Ti:tr(Tj):—3p:7_ 2b21F01F0,+2 FIJFU . (1236)
With these, we can write the conservation equations
b? b?
2(1 = f1)F0i00Fo; +;f1FijaoFij —?51'(170/1:1']')
a b
+FOiFOi|:Z(_3+11f1_6f2 6/2) + ( 3+5f1— 2f%—2f2)]
b? a 14
+ 2 FiyFy [;(—3+ 11f) = 6f7 = 6f3) + S (F3+51) -2f1 - 2f2)] =0, (124a)
b? b?
0o (Fo;Fij) + ;leklaiFkl = 2f1F;0;Fo; + 0;(FioFjo) — ;aj(Fiijk)
a 4
s EyFy[ -2 k60 -2 (2420 =0 (1241)
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After inserting the equations of motion into the conservation equations, we get

2 2
(1-21) 2

/

b
Fo;0,F;; + 2f1FijaOFij -

2
FijaiFOj

/

b
+F0,Fo,{ (1=5f1+6f1—6f>) + (1 —=3f1+2f1 - Zfz)}
1b2 / b/
+5- — FF; [ (2—7f1+6f%+6f2)+3(—f1+2f%+2f2)] =0, (125a)
b2 2
[
V-E =0, (126a)

In these equations, the terms in square brackets vanish if
we set f = /g, whereas the rest of the terms cancel out
with the aid of the Bianchi identities J;F ) =0, as
expected since the conservation of the stress-energy tensor
is identical in the Diff-invariant case.

Note that the term in square brackets that multiplies
FyiFy; in (125a) is what we dubbed the electric condition
(96). As Fy;F; = E2, this is the only term that survives
when we have a homogeneous electric field. Similarly,
FijF;i; = 2B?, so we easily identify the term in square
brackets that multiplies this combination as the magnetic
condition (107).

We can also observe in (123a) that the electric and
magnetic parts of TDiff fields gravitate differently. Thus,
the electric energy density is proportional to 1 — f| whereas
the magnetic energy density is proportional to f;, so
that they only gravitate in the same proportion in the
Diff-invariant case.

1. Maxwell’s equations

In this section, we take a look at the equations of
motion of a free electromagnetic field (122) written in
terms of the electric and magnetic fields (98). These read as
follows:

|

a2

(1-2f1)[E

/

+Bz[ (2=7f1+6f1+6f2) + b(—f1+2f%+2f2)}20’

(1 —2f1)V<E2 —2—232) = 0.

-(VxB)+B-(VxE)}+b EZ{ C 1 =5f, +6£2—6f2)+

!/

P osB=t |65 0%+ -2 g (126
ZUxB-E+ (6~ %+ @ -2 5 B (26

which correspond to the well-known Gauss’s law for the
electric field and Ampere’s law, respectively, with a slight
change due to the Diff-invariance breaking. On top of these,
the Bianchi identities are also satisfied by definition of the

field strength
0, F op + 04 Fp, + 0gF 0 = 0. (127)

By substituting (u, a, f) =
€;jk» We obtain Faraday’s law

(0,14, j) and contracting with

B’ +VxE =0, (128)

whereas doing (u,a,f) = (i, j, k) and contracting with
€jk» we complete our set of Maxwell equations in vacuum
with Gauss’s law for the magnetic field

V-B=0. (129)

For the sake of completeness, we also have the con-
servation equations, which after substituting the equations
of motion into them [see Eq. (125)] acquire the follow-
ing form:

b/
5 (1=3f +2f1=2f2)
(130a)

(130b)

Working with the equations in this form is rather complicated, so we might seek to eliminate the electric field from the
equations of motion. We can easily do so by taking the curl of Ampere’s law (126b) and using Faraday’s law (128) in it,
which leads us to an equation of motion for the magnetic field

b2
B’ —?WB + [(6f; -

/ /

+(2f1-2) B =0. (131)
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Working in Fourier modes, we can analyze the super-
Hubble regime (k(b/a) < da'/a, b'/b), with k = |k| which
features a straightforward general solution for the magnetic
field derivative provided a power-law f(g) = ¢%

B/ (7) «x a*=%(7)b*2%(z). (132)
Note, however, that if we require the electric field to have a
super-Hubble behavior as well, Faraday’s law (128) nec-
essarily implies B} = 0, as we already noted in Sec. VI A 2.

2. Sub-Hubble regime

In order to analyze the sub-Hubble limit, we cannot
neglect the first derivative term in Eq. (131) straight away.
Working with a power-law f(g) = g% we perform a change
of function By (z) = a73%(z)b*(z) B, (z) that eliminates
the first derivative term. We also perform a change of
variable to conformal time 7, dz = §dn, which leaves the
equation of motion as

N 1 (DY 2
B + <k2 +7 {3(20: —1)(6a - 5) (“a)
aMp a<2>)

a

+6Q2a—1) ((Za —1)

+ (a2 — )= 3) <b;)1)>2 +2(1-2a) ”:)Dfsk =0.
(133)

where the superscript in parenthesis ¢ denotes the nth
derivative with respect to conformal time 7. In the sub-
Hubble limit, the term in square brackets can be ignored
and this function admits an easy solution in terms of
complex exponentials

A

Bi(n) = cje ™ + ¢iekn, (134)
where we have imposed that the field is real.
Reverting to the original variables, we get
. 4 T b(s)
B — 4(1-2a)/4 —ikn ® ,ikn ) — / d ,
(@) = g e g ejel), = [TasTS
(135)

and if we introduce this behavior into the magnetic part of
the energy density (the remaining exponentials can be
integrated out thanks to rapid oscillation), we obtain

_ 2alc, |2

I p @
= 2 (F.F. V=g /2 (B2)="""_,
\/§2a4< ij l.]> g{ a4< > a4
which scales with the expansion exactly as in the Diff-

invariant case. Thus, sub-Hubble modes behave as if the
Diff invariance had not been broken down to TDiff, a result

{pB) (136)

that we revisit with the geometric optics approximation in
what follows.

The same analysis can be performed in terms of the
electric field instead of the magnetic field. If we take the
curl of Faraday’s law (128) and insert it into the time
derivative of Ampere’s law (126b), we obtain the following
equation of motion for the electric field:

b2 / b/
E" - = V°E + [6fl a—+2(f1 -2) —] E’
a a b

a/2 b/2
+ [2(3]”1 + 181, — 1)?—#-2(3 -3f1 —|—2f2)?

/b/ " b//
=80/ =3/2) % 260 - ) +2(f - l)b}E
~0. (137)

By working in Fourier space, performing a change of
function Ey(7) = a3%"3(¢)b~2"3(¢)Ey(r) and changing
variable to conformal time 7, the equation of motion has
the following expression:

N 1 b\ ?

1)

2 (1) p(1)
—3(1 - 8a + 1222 (a—> —6(a-124-7
a

a

a® PN .
+6(2a—1)—+2(2a- 1)7])Ek =0. (138)
a

Again, we can neglect the whole term in square brackets
in the sub-Hubble regime (k > a'") /a, b(")/b), and obtain
a solution for the electric field in terms of complex
exponentials

Ei(n) = cye™™ + e5e. (139)
In terms of the original variables, we get
b ~ ; T b(s
Ek<’[) = 9(1—2(1)/45 (cze—lkn + c;e’k”), n= / ds aES; ’
(140)

which implies a typical radiation behavior for the average
energy density

fl-f nl-a
</’E> = 7§ a2b21 <F0iF0i> =g 172 a2b? <E2>
e, |?
=2(1 —a)—;4 ) (141)

which again scales with the expansion as in the Diff case.
One last thing to note about these expressions is that, while
the scaling is exactly as in the Diff-invariant case, the
electric and magnetic fields have different shares of the
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total energy density, as they are weighed by factors 1 — «
and a, respectively. However, Faraday’s law (128) imposes

¢ =kxec, (142)
on the solutions we have just obtained for the electric and
magnetic fields, with k = k/|k| a unit vector in the
propagation direction. Since the electric field is transverse,

this implies |¢;| = |c,|, so when computing the total
electromagnetic energy density

|C2|2 0‘|C1|2 2|C1\2
= =2(1- 2 = ,
<pEM> <pE> + <pB> ( a) a4 + a4 a4
(143)

the dependence on a cancels out and it does not depend on
the TDiff function at all.

3. Geometric optics approximation

In an expanding universe, the sub-Hubble regime cor-
responds in practice to the geometric optics approximation.
The ansatz for the field is slightly less general, doing a pure
plane wave expansion for the spatial part and separating
spatial and temporal dependencies in the rapidly oscillating
exponential

Aﬂ’]d(x) — U’u.kl(x)eik.x_i fr Cl)k(‘l'/)d‘r" (144)

We can now use every result we obtained in Sec. III by
identifying

0u(x) =K - x — /Ta)k(T')dT, (145)
and
k, = 0,0 = (—w. k). (146)
The Lorentz gauge condition (16) now reads
a*o U, + b’k - U = 0, (147)

and the equation of motion (18) gives us the usual
dispersion relation of a massless field

(148)

The normalization of the amplitude U, can be obtained
either from the next-to-leading order equation or the inner
product normalization condition. We use the later method,
as we already have a final expression in Eq. (88). With a
RW background, the normal vector has to be n, = (b,0),
so we easily obtain

A kj(x) _ b_zu eik»x—iffwk(‘r’)dfl’ (149)
K, szk H

with u,k* = 0 and u,u* = —1. Using these expressions for
the modes of the vector field in computing the expectation
value of the energy density (123), one can find (p) o< a=*.
Again, the dynamics in the geometric optics approximation
are equivalent to those in a Diff-invariant scenario, so
breaking down to TDiff invariance does not disturb the

well-settled dynamics on short scales.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have studied the dynamics of Abelian
gauge fields which break diffeomorphism invariance down
to transverse diffeomorphisms. We have shown that in the
geometric optics approximation, very much as for Diff-
invariant theories, the corresponding massless gauge
bosons propagate along null geodesics and particle number
is conserved. In addition, the polarization vectors are
orthogonal to the propagation direction and the physical
(transverse projection) polarization is parallel transported
along the geodesics. We have also studied the coupling to
TDiff-invariant Dirac spinors. We conclude that in order to
avoid violations of Einstein’s equivalence principle i.e.,
either weak equivalence principle violations or violations of
local position invariance, the breaking of Diff invariance
should be introduced by the same global f(g) function for
all the different fields. In this case, the standard expressions
for the Maxwell and Lorentz-Dirac equations are recovered
at leading order in the geometric optics approximation.

We have also analyzed the contributions to the energy-
momentum tensor of the gauge fields. We find that, in
general, the breaking of Diff invariance makes the electric
and magnetic parts of the vector field gravitate in a different
way. In the sub-Hubble regime, we recover the standard
radiationlike behavior of the energy density. However, in
the super-Hubble regime, the behavior is totally different to
the Diff case, thus opening up a wide range of possibilities
for cosmological model building. In particular, for certain
f(g), the magnetic energy density could scale more slowly
with the expansion, thus effectively amplifying the mag-
netic fields compared to the standard Diff evolution. This
can be understood because breaking down to TDiff
invariance also breaks conformal invariance for the gauge
field. In fact, breaking the conformal triviality of Maxwell’s
equations in a RW background is necessary for the
production and amplification of cosmological magnetic
fields. As a result, the amplification mechanism arises
naturally in a TDiff-invariant gauge model. This will be
explored in detail in a future work. On the other hand, very
much as in the scalar case, the wide range of possibilities
for the evolution of the homogeneous vector fields makes
these models a useful tool for the construction of models of
the dark or the inflationary sectors.
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APPENDIX: LORENTZ FORCE

In this appendix we examine a different derivation of the
Lorentz force law for TDiff theories to that presented in
Sec. IVA. In the following derivation, we mostly follow
that of [42].

In the Diff case, the current of a charged pointlike
particle with charge ¢ following a trajectory z#(s), where s
is the length of arc parameter, can be written as

By — 2(s
jﬂ("’f):q/dsuﬂw’

7 (A1)

where u* = dz#/ds is the four-velocity and we have
weighed the Dirac delta to make it a scalar. The total
action in a Diff-invariant theory, including the mass action,
would read

S = / d4xf< F F* + j”Aﬂ> —-m / ds. (A2)

In turn, the action for the pointlike particle of mass m can be
written as the four-velocity coupled to a mass current. Since

the four-velocity is a unit vector u,u = 1, one can write

/ds—/dsu u"—/d4x gu, /dsu/t(s( [\/_Z(S)]

(A3)

so the action (A2) can be written as

S = / d*x\/g < F, F* + j*A, + ji‘nu,,>, (Ad)

with the mass current

]ﬁ,l :m/dsu/‘éj(ét)[x_z(s)]'

7 (A5)

From (A4), we can translate this action into a
TDiff-invariant action for a charged massive particle
subject to an electromagnetic field, just by replacing /g

by f(g), namely

S = / d*x f(g)( F, F" + jrA, + j’fnuﬂ). (A6)

In order to obtain the Lorentz force for this TDiff-
invariant setup, we can consider the electromagnetic field to
be external, ignoring possible backreaction, so the potential
A, (x) is fixed and we can ignore the electromagnetic part of
the action. The rest of the action, after integrating the deltas
out and changing the integration measure to coordinate
time dz, can be written as

= —/d’[L\/g‘; <qv/‘AM + m%)

where v* =9 = (1,v) is the coordinate four-velocity,

and £ = /g, 0"0".
Variations of this action along the trajectory 6z¢ yield the
following:

(A7)

I e (C) e _ V94 (flg)
oS = dr NG 0z [qv”daAﬂ qf(g) o < /i Aa>
T (aaguzz)v”vy _ \/§ i <f(g) ga/ﬂ]/ >
N NV

(A8)

)

At leading order in the adiabatic expansion, i.e., neglect-
ing terms involving metric derivatives, this yields the
equation of motion

dut dA,
M Gy E =49 <vﬂaaAﬂ - ),

A9
% (A9)
which, as we could expect, does not depend on the TDiff
function f(g). The four-velocity, at the leading adiabatic
order, can be written in a way that reminds one of the
Lorentz factor

d# _dzf/dr o
ds ds/dt  /1—+2’

while the total derivative of the vector field can be
expanded as

dA, 0A, 0A,
= I —2 = 110,A,,
dr or St ox/ v
which allows us to write the equation of motion in a

compact manner

ut =

(A10)

(A1)

du? "
m— = quﬂF "

o (A12)

which is nothing but the Lorentz-Dirac equation.
Setting a = i, one finds the following equation of motion
for the RW background:

d mo

dty/1—v2

q . .
= ? (00Al- - al’AQ + /Ujain —_ Ujal'Aj). (A13)

103504-16



TRANSVERSE-DIFFEOMORPHISM INVARIANT GAUGE FIELDS ...

PHYS. REV. D 109, 103504 (2024)

After applying some vector identities and identifying the
electric and magnetic fields (98), this equation can be
rewritten as

d
—L:i(E+VXB),

G (A14)

which is the Lorentz force law for a relativistic particle. On
the other hand, if we set @ = 0, we can obtain the equation
for the variation of energy

d m q

I (A15)
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