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We perform a reanalysis of the BOSS CMASS DR12 galaxy dataset using a simulation-based emulator
for the wavelet scattering transform (WST) coefficients. Moving beyond our previous works, which laid the
foundation for the first galaxy clustering application of this estimator, we construct a neural net-based
emulator for the cosmological dependence of the WST coefficients and the 2-point correlation function
multipoles, trained from the state-of-the-art suite of AbacusSummit simulations combined with a flexible halo
occupation distribution (HOD) galaxy model. In order to confirm the accuracy of our pipeline, we subject it
to a series of thorough internal and external mock parameter recovery tests, before applying it to reanalyze
the CMASS observations in the redshift range 0.46 < z < 0.57. We find that a joint WSTþ 2-point
correlation function likelihood analysis allows us to obtain marginalized 1σ errors on the ΛCDM
parameters that are tighter by a factor of 2.5–6, compared to the 2-point correlation function, and by a factor
of 1.4–2.5 compared to the WST-only results. This corresponds to a competitive 0.9%, 2.3% and 1% level
of determination for parameters ωc, σ8 & ns, respectively, and also to a 0.7% and 2.5% constraint on
derived parameters h and fðzÞσ8ðzÞ, in agreement with the Planck 2018 results. Our results reaffirm the
constraining power of the WST and highlight the exciting prospect of employing higher-order statistics in
order to fully exploit the power of upcoming stage-IV spectroscopic observations.
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I. INTRODUCTION

The advent of precision cosmology, with a large collec-
tion of surveys including the Dark Energy Spectroscopic
Instrument (DESI) [1,2], the Vera C. Rubin Observatory
Legacy Survey of Space and Time (LSST) [3,4], Euclid [5],
and the Nancy Grace Roman Space Telescope [6], that will
accurately probe the 3-dimensional (3D) large-scale struc-
ture (LSS) of the universe, promises to dramatically change
our fundamental understanding of the cosmos. Among the
wealth of valuable information offered by cosmological
observations of this kind, lies the opportunity to tackle
major open questions in modern physics, such as the source
of the accelerated expansion of the universe at late times
[7], the nature of dark matter [8], the large-scale properties
of gravity [9–11], the properties of massive neutrinos
[12,13], as well as the physics of the primordial universe
and other light relics [14–16].

The probability distribution that describes the observed
large-scale structure of the universe at late times is known
to deviate from the familiar Gaussian form characterizing
the primordial density field. The nonlinear process of
gravitational instability, responsible for the formation of
the 3D cosmic web, imparts a non-Gaussian distribution in
the observed large-scale structure of the universe. As a
consequence, the standard compression achieved by the
2-point correlation function of density fluctuations fails to
capture all available information encoded in the clustered
field [17]. Even though working with the 2-point function
statistics has sufficed in traditional applications of cosmo-
logical parameter inference up until recently, such an
approach will be inadequate if the potential of the upcom-
ing generation of cosmological surveys is to be fully
exploited. Accurately modeling structure formation down
to the nonlinear regime in principle requires the inclusion of
higher-order moments as a part of the traditional parameter
inference, a line of research that is currently very actively
pursued [18–26]. Nevertheless, the requirements associated
with handling n-point correlation functions, both in terms
of the necessary computational cost of evaluation, but also
due to the relatively large dimensionality of the final data
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vector, quickly render such an approach intractable when
going to higher n. Even when these challenges can be
tempered using different kinds of techniques, the total
information encoded in a non-Guassian field has been
shown to escape the entire correlation hierarchy, with the
magnitude of loss getting progressively more pronounced
with increasing degree of non-Gaussianity [17].
The obstacles mentioned above motivate developing

novel ways of accessing the additional information that
lies beyond the linear regime, using summary statistics
that are sensitive to higher-order information, but yet
impose minimal additional computational burden com-
pared to a standard power spectrum evaluation. Among
the long list of estimators of this kind that have been
considered in the literature,1 this active subfield involves
proxy estimators [28–33], efforts to isolate the informa-
tion encoded in the cosmic voids of the LSS [34–41],
nonlinear transformations that partly restore the
Gaussianity of the density field [17,42–47], splitting
the density field into different environments [48–52],
working with k-nearest neighbors [53,54] and a variety
of other beyond 2-point statistics, such as Minkowski
functionals [55–59], the minimum spanning tree [60] or
1-point statistics [61,62]. The recent rapid evolution of
artificial intelligence (AI) has motivated efforts to extract
cosmological non-Gaussianities using convolutional neu-
ral networks (CNNs) [63], demonstrating great promise
in idealized settings [64–67]. Whether and how this
simulation-based performance can be extended to reliable
interpretations of actual galaxy data is still a matter of
study; for example see Ref. [68].
Another path toward harnessing the nonlinear informa-

tion encoded in the LSS, can be carved by seeking for a
balanced trade-off between performance and interpretabil-
ity, working in the middle-ground between traditional
clustering estimators and CNNs. Such a trade-off is
attempted by the wavelet scattering transform (WST),
[63,69], which was first proposed in the context of
computer vision. In direct analogy to the architecture of
a CNN, a scattering network is constructed by successively
performing two operations to an input field: wavelet
convolution and modulus. After averaging over all pixels,
the resulting outcome is a basis of interpretable WST
coefficients, which can quantify the clustering information
in the input field [70–72], while avoiding the previously
discussed limitations of the standard moment expansion
[17]. Motivated by these attractive properties, the WST has
recently seen successful applications across the spectrum of
natural sciences [73], including astrophysics [74–76],
cosmology [77–85] and molecular chemistry [86,87].
As far as 3D clustering explorations are concerned, the

first WSTapplication was performed by Ref. [79], working

with the fractional matter overdensity field obtained
by N-body simulations [88] as input. Through a Fisher
forecast, the basis of WST coefficients up to 2nd order was
found to predict a substantial improvement on the 1-σ
errors obtained on 6 cosmological parameters, exceeding
the performance of both the standard and also the marked
power spectrum. Another application was subsequently
performed by Ref. [83], finding similar levels of improve-
ment. Building upon these encouraging results, the sub-
sequent work of Ref. [80] developed the first application
of the WST to actual galaxy data, analyzing observations
from the CMASS sample of the Baryon Oscillation
Spectroscopic Survey (BOSS) [89,90] (under some
approximations, however, as we explain in the next
paragraph.) The WST, once again, was found to deliver
a notable improvement to the errors obtained on 4
cosmological parameters, which were 3–6 times tighter
compared to the ones from the galaxy power spectrum.
This analysis demonstrated the great promise held in the
use of the WST as a means of parameter inference in the
context of spectroscopic surveys and precision cosmology
in general.
Even though Ref. [80] laid out all the necessary steps to

account for the complexities related to a WSTapplication to
spectroscopic galaxy data, combined with a set of high-
fidelity galaxy mocks, it adopted a Taylor expansion
approximation to model the cosmological dependence of
the WST coefficients, which in principle could fail to
capture non-Gaussianities present in the parameter like-
lihood. As a result, the accuracy of this approach was not
tested in recovery tests against other simulations. In this
work, we move beyond these approximations, and revisit
our previous analysis with a full emulator predicting the
cosmological dependence of the WST estimator. We take
advantage of the full extent of the state-of-the-art suite of
AbacusSummit simulations [91], which consists of a broad
grid exploring variations in 8 cosmological parameters, in
combination with a semianalytic model to parametrize the
physics of galaxy formation for each cosmology. This
extended suite enables the training of a neural net-based
emulator that predicts the cosmological dependence of the
WST coefficients in a 15-dimensional parameter space. In
order to quantify the accuracy of this emulator, we subject it
to a series of thorough parameter recovery tests against
hold-out simulations, as well as against simulations using
different models to capture small-scale galaxy physics.
After we confirm that our model satisfies the necessary
levels of accuracy for a reliable cosmological application,
we use it to reanalyze the BOSS CMASS galaxy dataset,
and obtain the marginalized 1-σ errors on 4 ΛCDM
cosmological parameters, as well as on extended scenarios.
We contrast our results against the ones obtained by the
standard analysis performed using the multipoles of the
anisotropic correlation function of galaxies, and discuss
how our analysis compares to our previous work and prior
ones in the literature.

1For a recent exploration of higher-order statistics in the
particular context of weak lensing, also see Ref. [27].
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Our paper is structured as follows: in Sec. II we introduce
the wavelet scattering transform and in Sec. III we describe
the BOSS dataset. We then proceed to lay out all the
ingredients used to construct our simulation-based forward
model in Sec. IV, as well as the details of our analysis
pipeline in Sec. V. Finally, we present our results in Sec. VI,
before concluding in Sec. VII. More technical details are
discussed in Appendices A–D.

II. WAVELET SCATTERING TRANSFORM

The wavelet scattering transform [63,69] is a novel
summary statistic that was proposed as an ideal middle-
ground between a CNN and more traditional statistical
estimators. Defined by a series of well-understood and
interpretable mathematical operations, it can quantify the
degree of clustering of an input field in a manner that not
only matches, but also supersedes the properties of the
standard 2-point correlation function [69].
According to the WST definition, the two fundamental

properties to which an input field, IðxÞ, is subjected, are
wavelet convolution and modulus. Specifically, given a
localized wavelet probing a scale j1 and an orientation l1,
that we will hereafter denote by ψ j1;l1ðxÞ, the WST trans-
forms the input field as follows:

I0ðxÞ ¼ jIðxÞ � ψ j1;l1ðxÞj; ð1Þ

where � indicates the convolution operation. If we further
average over the transformed field in Eq. (1), we can derive
a single number globally characterizing the field, which is
called a WST coefficient. Furthermore, if the above
sequence of elementary operations is successively repeated
n times, and for a range of different j1 scales and l1 angles
covered by a family of localized wavelets, ψ j1;l1ðxÞ, it will
form a scattering network, with WST coefficients, Sn,
given by:

S0 ¼ hjIðxÞji;
S1ðj1; l1Þ ¼ hjIðxÞ � ψ j1;l1ðxÞji;

S2ðj2; l2; j1; l1Þ ¼ hjðjIðxÞ � ψ j1;l1ðxÞjÞ � ψ j2;l2ðxÞji; ð2Þ

explicitly shown up to order n ¼ 2 above. The angular
brackets, h:i, in Eq. (2) and hereafter will denote taking the
average value over the volume of the field.2 Convolving
with a localized wavelet essentially quantifies the strength
of clustering in the input field over the relevant scales,
similar to the 2-point function. The WST coefficients of
order n have been shown to capture information related to
the correlation function of order up to 2n [69,71]. Building
upon this property, it follows that the hierarchy of Eq. (2)
leads to a collection of WST coefficients that can quantify

the higher-order clustering information of the input physi-
cal field, IðxÞ, in analogy to the moment expansion usually
applied to cosmological density fields. Opposite to the
conventional series of correlation functions, however, the
WST has been found to be more efficient at extracting
information out of an input field, especially in highly non-
Gaussian cases which are particularly challenging for
higher-order moments to accurately describe [17,73].
Furthermore, the fact that the input field always enters
Eq. (2) in a linear fashion guarantees a greater degree of
numerical stability and robustness against outliers. In
addition, the generated basis of WST coefficients is
compact, such that the dimensionality of the resulting data
vector can be kept under better control [73]. It is worth
noting that the operations of wavelet (kernel) convolution,
modulus (nonlinearity) and averaging (pooling), all imple-
mented in a hierarchical scattering network, resemble the
architecture and properties of a CNN with fixed kernels
[63,69]. Combining all of the above properties, it becomes
clear how the WST can be viewed as an interpretable
alternative that lies between conventional summary statis-
tics and CNNs, making it a potentially powerful tool to
employ when harnessing higher-order information. In this
work we will focus on the use of the WST for cosmological
parameter inference, but we note that it can also be used in
other applications, such as field synthesis and texture
characterization, further discussed in Ref. [73].
Even though in the standard WST definition the input

field enters Eq. (2) linearly, slightly relaxing this
assumption and allowing for IðxÞ to be raised to a power
q, instead, results in the following variant:

S0 ¼ hjIðxÞjqi;
S1ðj1; l1Þ ¼ hjIðxÞ � ψ j1;l1ðxÞjqi;

S2ðj2; l2; j1; l1Þ ¼ hjðjIðxÞ � ψ j1;l1ðxÞjÞ � ψ j2;l2ðxÞjqi; ð3Þ

which can lead to very interesting implications for cosmol-
ogy, given that values of q > 1 or q < 1 respectively
emphasize overdense or underdense regions of the LSS.
This option was explored in the 3D matter overdensity
WST application of Ref. [79], and was indeed found to
produce more competitive constraints on cosmological
parameters, with an emphasis on the sum of neutrino
masses, when cosmic voids where highlighted using values
of q < 1. In this application we will stay aligned with our
previous work [80] and proceed with the version of WST
given in Eq. (3).
Given that in this work we will focus on a WST

application to 3D galaxy clustering, as we will specify
below, the input field IðxÞwill be taken to be 3-dimensional,
even though the above discussion can in principle be valid
for an arbitrary number of dimensions. Following our
previous works [79,80], we adopt a mother wavelet given
by the solid harmonic expression of2Formally defined as the expectation value.
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ψm
l ðxÞ ¼

1

ð2πÞ3=2 e
−jxj2=2σ2 jxjlYm

l

�
x
jxj

�
; ð4Þ

which was first applied in a 3D molecular chemistry
application [86,87]. In Eq. (4), Ym

l denote the usual
Laplacian spherical harmonics and σ is the Gaussian width
in units of the field grid size. The family of wavelets can then
be generated by dilating the mother wavelet:

ψm
j;lðxÞ ¼ 2−3jψm

l ð2−jxÞ; ð5Þ

spanning different dyadic scales, 2j, combined with varying
values of the spherical harmonic of order l to describe the
angular information of the wavelet family, after we sum over
the remaining indexm. In this case, theWST coefficients are
then given by:

S0¼hjIðxÞjqi;

S1ðj1; l1Þ¼
�� Xm¼l1

m¼−l1

jIðxÞ �ψm
j1;l1

ðxÞj2
�q

2
�
;

S2ðj2;j1; l1Þ¼
�� Xm¼l1

m¼−l1

jU1ðj1; l1ÞðxÞ�ψm
j2;l1

ðxÞj2
�q

2
�
;

ð6Þ

with

U1ðj1; l1ÞðxÞ ¼
� Xm¼l1

m¼−l1

jIðxÞ � ψm
j1;l1

ðxÞj2
�1

2

; ð7Þ

which is obtained using a 3D solid harmonic mother wavelet
(5) in Eq. (3). We briefly note that other wavelets considered
in the literature are Morlet wavelets [77,78], bump-steerable
wavelets [81,83] or the equivariant wavelet construction
of Ref. [75].
The total number of essential WST coefficients can be

further reduced, compared to Eq. (3), if we notice that the
second order scales j2 < j1, that is, scales smaller than
the 1st order convolution scale j1, are practically filtered
out and do not carry any extra information. This fact was
indeed confirmed in the 2D weak lensing (WL) application
by Ref. [77] and was also subsequently adopted in our
previous works [79,80]. We will also work with only one
second order angular scale, that is, for l2 ¼ l1 in Eq. (6),
following the choice originally adopted by the solid
harmonic implementation of Refs. [86,87]. Even though
orientations l2 ≠ l1 are expected to be informative, this
choice has been shown to be a good trade-off [79,80,86,87]
and will be adopted in this work as well.
The above choices determine the final number of

produced WST coefficients, given as follows: for a certain
total number of spatial scales J and harmonic angular
orientations L, we will have:

ðj; lÞ∈ ð½0;…; J − 1; J�; ½0;…; L − 1; L�Þ; ð8Þ

giving rise to a total of

S0 þ S1 þ S2 ¼ 1þ ðLþ 1ÞðJ2 þ 3J þ 2Þ=2 ð9Þ

WST coefficients up to 2nd order. Since the dilations
of the mother wavelet scale are chosen to be dyadic,
J ≤ log2ðNGRIDÞ, where NGRID is the resolution of
the input field on each dimension. Finally, the width, σ,
of the Gaussian in Eq. (4) and the power, q, in Eq. (6) are
free parameters, whose values will be determined in the
next section for our particular galaxy clustering application.
To summarize, for a given choice of J, L, q and σ, an

input field IðxÞ of resolution NGRID3 gives rise to the
WST coefficients (9) evaluated from Eq. (6). We perform
this evaluation using the publicly available package
KYMATIO [92],3 as we will explain in the next section.

III. DATASET

In this section we introduce the dataset that will be
analyzed in thiswork. This consists of luminous red galaxies
(LRGs) obtained from the twelfth data release (DR12) [93]
of the Baryon Oscillation Spectroscopic Survey (BOSS), a
part of Sloan Digital Sky Survey, SDSS-III [89,90], in
particular the CMASS sample.4 Following our previous
application [80], which was in turn aligned with the
original analyses of BOSS data [94,95], we will work with
each of the two subsamples obtained in the Northern
(NGC) and the Southern Galactic Cap (SGC). If XNGC
and XSGC denote the summary statistics evaluated from
the Northern and Southern parts of the BOSS footprint,
with angular area equal to ANGC ¼ 6851 deg2 and ASGC ¼
2525 deg2, respectively, then wewill always work with the
weighted average

XNþS ¼ ðANGCXNGC þ ASGCXSGCÞ
ðANGC þ ASGCÞ

; ð10Þ

where X in our analysis will be the data vector of the WST
coefficients or the multipoles of the anisotropic correlation
function of galaxies, as we will further explain in Secs. IV
and V. Furthermore, we identify and work with the part of
the sample with galaxy number density greater than
3 × 10−4 h3=Mpc3, corresponding to the redshift range
0.4613 < z < 0.5692. In order to generate a sample with a

3Available in https://www.kymat.io/. We clarify that KYMATIO

evaluates the sum over all pixels of the input field, rather than the
mean, which is the same up to a normalization, and thus exactly
equivalent for parameter inference applications. We follow this
version and, strictly speaking, we work with the sum over all
pixels rather than the mean.

4All data are publicly available at https://data.sdss.org/sas/
dr12/boss/lss/.
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constant density profile as a function of redshfit z, we
further bin these galaxies into 50 linearly spaced z bins,
and randomly downsample each bin such that the final
outcome is a sample with a constant galaxy number
density n̄g ¼ 2.9 × 10−4 h3=Mpc3. In Fig. 1, we show
the original varying ngðzÞ of the sample, together with the
final flattened profile that we are going to work with. The
choice of the target density n̄g ¼ 2.9 × 10−4 h3=Mpc3 is
motivated by the mocks we use, and will be further
explained in Sec. IV. We also note that the choice to work
with a flat density profile, which is meant to ensure a more
accurate modeling of our density-dependent WST estima-
tor, is different than our previous analysis [80], in whichwe
worked with the original varying ngðzÞ in the range
0.46 < z < 0.60. A similar choice has been made in other
recent simulation-based reanalyses of BOSS data [96,97].

IV. SIMULATION-BASED FORWARD MODEL

In this section we will describe the various ingredients
used to construct our simulation-based model for the galaxy
clustering and its summary statistics as a function of the
cosmological and galaxy model parameters of interest. We
begin with the suite of the AbacusSummit simulations used for
the nonlinear modeling of the dark matter density and
velocity fields, and then introduce the semi-analytical
AbacusHOD framework for populating the gravitationally
bound dark matter halos with galaxies. Finally, we explain
how we evaluate the WST coefficients and the 2-point

correlation function multipoles of the galaxy mocks, in
order to construct the training set for our emulator.

A. The AbacusSummit simulations

AbacusSummit [91] is a suite of state-of-the-art cosmologi-
cal N-body simulations that were run with the Abacus

N-body code [98,99]. Containing more than 150 high-
accuracy and high-resolution simulations spanning almost
100 different cosmologies, it is capable of not only
matching but also exceeding the simulation requirements
of the Dark Energy Spectroscopic Instrument (DESI)
survey [2,100]. As a result, it is the ideal set to use in
order to produce high-fidelity galaxy mocks for our BOSS
CMASS simulation-based reanalysis. We will exclusively
work with the main (“base”) set of cubic boxes with a side
of length 2 Gpc=h, that evolved 69123 dark matter particles
with an individual mass equal to 2.1 × 109 h−1M⊙.
In order to identify gravitationally bound dark matter

halos in the simulations, the AbacusSummit uses a new efficient
spherical-overdensity (SO) halo finder called CompaSO [101],
which performs this task on-the-fly, and includes a series of
improvements to avoid previously known challenges faced
by halo finders, such as failure to identify structures close to
larger halo centers or the blending of halos. Further details
about Abacus and CompaSO can be found in the corresponding
papers referenced above.

1. The cosmology grid

Our cosmology grid consists of 85 simulations performed
for different variations in the values of 8 cosmological
parameters, which form the basis of our emulator and
parameter inference setup. These parameters are: the baryon
density ωb ¼ Ωbh2, the cold dark matter density ωcdm ¼
Ωcdmh2, the rms amplitude of linear density fluctuations at
8 Mpc=h σ8, the spectral tilt ns, the running of the spectral
tilt αrun, the effective number of relativistic degrees of
freedom Neff , and the dark energy equation of state
parameters w0 and wa (wðaÞ ¼ w0 þ ð1 − aÞwa), where
h ¼ H0=ð100 km s−1Mpc−1Þ is the dimensionless Hubble
constant. Each one of the 85 simulations has been per-
formed for the same fixed initial random phase, and with
the value of the Hubble constant, H0, chosen such that the
comoving angular size of the sound horizon at last
scattering, θ⋆, is fixed to the corresponding value derived
from measurements by the Planck satellite [102],
100θ⋆ ¼ 1.041533.
We refer to the different cosmologies using the naming

scheme cXXX, where XXX ranges from 000 to 181. Details
for each one of them are presented in the AbacusSummit

website,5 with a visualization of the cosmological

FIG. 1. The galaxy number density of the original CMASS
sample as a function of redshift z (blue), shown with the final
downsampled version of constant number density, n̄g ¼ 2.9 ×
10−4 h3=Mpc3 (red), that we work with in order to match the
constant density profile of the AbacusSummit mocks.

5https://abacussummit.readthedocs.io/en/latest/cosmologies
.html.
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parameter grid shown in Fig. 1 of Ref. [103] and its bounds
listed in Table I.
We briefly describe the specifications of some selected

cosmologies contained in the parameter grid. c000 is a
ΛCDM cosmology that corresponds to the parameters
inferred by the Planck 2018 [102] TT;TE;EEþ lowEþ
lensing likelihood analysis, and which we pick as our
fiducial cosmology from now on.
Furthermore, there are four secondary cosmologies

exploring variations around the fiducial, c001-004,
which we will use to validate the accuracy of our emulator
in the next section. c001 corresponds to the WMAP9þ
ACTþ SPT cosmology [104], while c002 is a wCDM
cosmology with w0 ¼ −0.7 and wa ¼ −0.5. Finally, C003
is a cosmology with higher Neff ¼ 3.7, and c004 has a low
clustering amplitude given by σ8 ¼ 0.75.
The AbacusSummit also contains additional simulations that

vary each one of the 8 cosmological parameters, in turn, and
in a step-wise fashion around the fiducial c000, while
keeping the rest fixed, in order to enable the evaluation of
first-order derivatives for summary statistics. This linear
derivative grid consists of cosmologies c100-126, which
were used to construct the Taylor expansion approximation
we adopted in Ref. [80]. Cosmologies c130-181 form a
broad parameter grid that provides a wider coverage of the
8-dimensional target parameter space and enables the train-
ing of emulators. Further details on the motivations behind
the choice of these cosmologies and the parameter ranges
can be found in Ref. [91] and the AbacusSummit website.
Lastly, in order to quantify the effects of sample

variance and potential errors introduced when training
at a single phase, a second set of simulations with the same

specifications has been run for 24 additional random
realizations of the c000 fiducial cosmology. The phase
information is labeled as ph000-024. In the next sections
we will describe how we used both of the above sets in
order to accurately train our emulator for the vector of
WST coefficients and the multipoles of the 2-point
correlation function.

B. The halo occupation distribution (HOD)

The galaxy–halo connectionmodel we use to generate the
galaxy mocks for our forward model is known as the halo
occupation distribution (HOD) (see, e.g., Refs. [105,106]),
which is a probabilistic model that populates dark matter
halos with galaxies through a set of empirical formulas
conditioned on halo properties. For a luminous red galaxy
(LRG) sample such as CMASS, the HOD is well approxi-
mated by a vanilla model given by:

n̄LRGcent ðMÞ ¼ 1

2
erfc

�
log10ðMcut=MÞffiffiffi

2
p

σ

�
; ð11Þ

n̄LRGsat ðMÞ ¼
�
M − κMcut

M1

�
α

n̄LRGcent ðMÞ; ð12Þ

where the five parameters characterizing the model are
Mcut;M1; σ; α; κ. The parameter Mcut defines the minimum
halo mass to host a central galaxy, M1 sets the typical halo
mass that hosts one satellite galaxy, σ characterizes the
steepness of the error function upturn in the number of
central galaxies, α is the power-law index on the number of
satellite galaxies, and κMcut controls the minimummass of a
halo that can host a satellite galaxy. We have also added a
modulation term n̄LRGcent ðMÞ to the satellite occupation func-
tion to disfavor satellites from halos without centrals. This
term represents amodel choice and is inconsequential for the
conclusions of this work.
The HOD model does not only provide predictions for

the number of galaxies populating each halo, but it also
determines the positions and velocities of these galaxies.
In the case of the central galaxies, their positions and
velocities match the ones of the halo center-of-mass (the
L2 subhalo when working with CompaSO), while the
satellites are randomly assigned to halo particles with
uniform weights, each satellite inheriting the position and
velocity of its host particle. Note that we do not impose
any satellite radial profile in this model.
We also include a motivated HOD extension known as

velocity bias, which biases the velocities of the central and
satellite galaxies relative to their host halos and particles.
This is shown to be a necessary ingredient in modeling
BOSS LRG redshift-space clustering on small scales [e.g.
[107,108]]. The velocity bias has also been identified in
hydrodynamical simulations and measured to be consis-
tent with observational constraints [e.g. [109,110]].

TABLE I. Priors bounds used to generate the cosmologyþ
HOD training set of our emulator. Units of mass are in h−1M⊙.
The HOD values are roughly centered on results from Ref. [103].

Parameter Bounds

ωb [0.0207, 0.0243]
ωc [0.1032, 0.14]
σ8 [0.687, 0.938]
ns [0.901, 1.025]
arun ½−0.038; 0.038�
Neff [2.1902, 3.9022]
w0 ½−1.27;−0.70�
wa ½−0.628; 0.621�
log10 Mcut [12.4, 13.3]
log10 M1 [13.0, 15.0]
σ [0.001, 1.0]
α [0.5, 1.5]
κ [0.0, 8]
αc [0.0, 0.8]
αs [0.0, 1.5]
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We parametrize the velocity bias through two additional
HOD parameters:

(i) αvel;c controls the peculiar velocity of a central
galaxy relative to the halo center, and is called the
central velocity bias parameter. For instance, a value
of αvel;c ¼ 0 indicates that centrals perfectly track
the velocity of halo centers.

(ii) αvel;s, the satellite velocity bias, is the equivalent
parameter for the satellite galaxies, modulating how
their peculiar velocities deviate from those of the
local dark matter particles. A value of αvel;s ¼ 1

indicates that satellites perfectly track the velocity of
the underlying dark matter particles.

Furthermore, we do not include the effects of assembly
bias in our analysis, given that they typically manifest in
smaller scales than the oneswe consider, aswe clarify below.
We additionally check our cosmology recovery against a
galaxymock that contains galaxy assembly bias in Sec. V B.
Nevertheless, we acknowledge the lack of robust galaxy
assembly bias modeling as a potential systematic. We
reserve an analysis extending to smaller scales for a
follow-up investigation. For a detailed discussion on the
effects on assembly bias on cosmological analyses of BOSS
CMASS, readers are referred to Ref. [111].
For computational efficiency, we adopt the highly

optimized AbacusHOD implementation, which significantly
speeds up the HOD calculation per HOD parameter
combination [108]. The code is publicly available as a
part of the ABACUSUTILS package at [112]. Example usage
can be found at [113]. In order to match the clustering of
CMASS in the redshift range 0.4613 < z < 0.5692, we
produce cubic galaxy mocks (of side 2 Gpc=h) at red-
shift z ¼ 0.5.
To summarize, the HOD model used in this analysis is

fully parameterized by 7 parameters, Mcut, M1, α, αvel;c,
αvel;s, κ and σ.

C. Survey geometry

The AbacusSummit galaxy mocks that we produce with
AbacusHOD come in a periodic cubic geometry with a side
equal to 2 h−1Gpc, at output redshift z ¼ 0.5, as we
previously discussed. This configuration is different from
the nontrivial survey geometry of the CMASS sample that
we will analyze in this work, which was introduced in
Sec. III. When working with conventional statistics, the
effect of a nontrivial survey geometry can be usually
captured with a model. In the case of the galaxy power
spectrum, for example, the prediction for a periodic
configuration is convolved with the Fourier transform of
the survey mask [94,95,114–116] or, equivalently, the
prediction from the masked data can be de-convolved
[117]. Given that no such model is available for the
WST, which is sensitive to the survey geometry through
the successive wavelet convolutions, we proceed to directly
cut the Abacus cubes into the exact 3D shape of the BOSS

CMASS data, as we did in our previous work [80].6

Specifically, each cubic mock of redshift z ¼ 0.5 is
downsampled to a constant number density n̄g ¼ 2.9×
10−4 h3=Mpc3 and is then fed as input into the public code
MAKE_SURVEY [119].7 Using the real-space Cartesian posi-
tions and velocities for each galaxy at z ¼ 0.5, the CMASS
angular footprint, as well as the parameters for each
cosmology cXXX, MAKE_SURVEY transforms the original
cubic mocks into galaxy catalogs with sky coordinates right
ascension (RA), declination (DEC), and redshift z that
exactly match the 3D geometry of the observed CMASS
sample in the target range 0.4613 < z < 0.5692, with the
redshift-space distortion (RSD) implemented along the radial
direction. The procedure is repeated twice for each mock in
order to produce separate samples for NGC and SGC,
respectively. As in Ref. [80], we confirm the robustness of
this procedure by evaluating the power spectra of both the
original cubic and the final cut-sky mocks and by making
sure they remain unchanged, up to sample variance error.

D. Summary statistic evaluation

Having laid out the procedure to generate realistic galaxy
mocks that resemble the footprint of the CMASS sample as
a function of the cosmological and HOD parameters, we
now proceed to explain how we evaluate the summary
statistics of interest, starting with the WST coefficients.

1. WST

The quantity of interest for the density-dependent WST
estimator is the fractional overdensity field of galaxies,
which we evaluate with the following procedure: the sky
coordinates RA, DEC and z of each galaxy in each sample
(be it either the cut-sky mocks or the CMASS data) are
converted to comovingCartesian coordinates (x,y,z), always
assuming a fiducial flat ΛCDM cosmology with Ωm ¼
0.3152, h ¼ 0.6736 (corresponding to the Abacus cosmology
c000). Each sample is then embedded into the smallest
possible 3D cube for this task, which we determine with the
public package NBODYKIT,8 and which is found to have a
comoving side L ¼ 2700 Mpc=h for the range 0.4613 <
z < 0.5692. When working with spectroscopic data in sky
coordinates, the relevant quantity is the (weighted) fractional
overdensity of galaxies, also known as the Feldman-Kaiser-
Peacock (FKP) field, FðrÞ [114], given by:

FðrÞ ¼ wFKPðrÞ
I1=22

½wcðrÞngðrÞ − αrnsðrÞ�; ð13Þ

6Alternatively, one could consider using modern inpainting
techniques [118].

7Available at https://github.com/mockFactory/make_survey.
8https://nbodykit.readthedocs.io/en/latest/index.html.
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which can be evaluated on a 3D Cartesian grid. The
quantities ngðrÞ and nsðrÞ in Eq. (13) denote the observed
number density of the galaxies compared to the one of a
random, unclustered, catalog, respectively, with the latter
containing αr times more objects. Furthermore, the BOSS
dataset is accompanied by a set of systematic weights given
by Refs. [94,95]:

wcðrÞ ¼ ðwrfðrÞ þ wfcðrÞ − 1.0ÞwsysðrÞ; ð14Þ
in which a fiber collision weight, wfc, a systematics weight,
wsys and a redshift failure weight, wrf , are combined to
account for the various incompletenesses of the observed
sample. Aiming to ensure optimal recovery of small-scale
information from the galaxy power spectrum, we tradition-
ally also define the FKP weight [114]:

wFKPðrÞ ¼ ½1þ n̄gðrÞP0�−1; ð15Þ
where P0 ¼ 10−4 Mpc3=h3, and where the normalization
factor

I2 ¼
Z

d3rw2
FKPðrÞhwcðrÞngðrÞi2 ð16Þ

is defined in Eq. (13), with respect to the amplitude of the
regular galaxy power spectrum of a uniform sample. In
addition to the values of the systematic weights (14) for each
observed galaxy, the public BOSS release also includes
random catalogs matching the same selection function and
footprint of the survey, in order to enable the evaluation of
nsðrÞ in Eq. (13). Out of the various options available, we
choose to work with the random catalog corresponding to
αr ¼ 50, which is the commonly adopted choice in the
literature [94,95].Whenworkingwith a sample that does not
possess incompleteness weights, as is the case for the galaxy
mocks, Eq. (13) merely corresponds to the regular galaxy
overdensity field, but in a nontrivial survey geometry. In
order to evaluate the random density field nsðrÞ in this case,
we similarly generate a random cubic sample with 50 times
higher number density than the original mocks, and then
subject it to the same cut-sky procedure that we described in
the previous subsection.
We should note, at this point, that in order to convert

the sky coordinates of the galaxies in the CMASS sample
into comoving Cartesian ones, we assumed a (potentially
incorrect) flat ΛCDM cosmology corresponding to Ωm ¼
0.3152, h ¼ 0.6736. This assumption introduces an error
usually referred to as the Alcock–Paczynski (AP) distortion
[120]. To account for this effect in our model, we always
assume the above same cosmology when converting the
coordinates RA, DEC and z of the Abacus mocks back into
comoving ones, even though the true cosmological param-
eters for each one of the cXXX boxes is actually known (and
were used to convert the original cubes into cut sky mocks).
The procedure is the equivalent one to the power spectrum

rescalings usually applied in order to account for the AP
effect in traditional BOSS analyses [23,97,121–125], that
we also adopted in Ref. [80].
Finally, Eq. (13) with the corresponding systematic

weights from Eq. (14) (or unweighted) and the FKP weight
(15), can be combined with the random catalogs in order to
enable the evaluation of the final FKP density field from the
CMASSdata (Abacus mocks). Following the choices adopted
in our previous WST BOSS analysis [80], we resolve the
field on a mesh of resolution NGRID ¼ 270, using the
triangular shaped cloud (TSC) mass assignment scheme
[126], and work with a Gaussian width σ ¼ 0.8 in Eq. (6),
such that the smallest density cell corresponds to a scale of
length 8 h−1 Mpc on the side. This FKP field serves as input
into the WST network (6) in order to evaluate the relevant
WST coefficients. Combining the above choices with J ¼ 4
scales, L ¼ 4 orientations, and q ¼ 0.8 (as in Ref. [80]), we
obtain the target data vector of 76 WST coefficients from
Eq. (6). The evaluation is performed with KYMATIO [92],
using our modified version for an application to a masked
galaxy field (as explained further in Appendix A of
Ref. [80]). We note that the overall evaluation of the
WST coefficients out of an original Abacus cubic mock
through the pipeline described above takes about 60 seconds
per core when the WST evaluation is GPU-accelerated.

2. 2-point correlation function

In order to have a benchmark that will allow us to assess
the performance of the WST compared to standard cos-
mological analyses, we also evaluate the 2-point correlation
function of galaxies. In particular, if by ξðs; μsÞ we denote
the 2D anisotropic correlation function of galaxies as a
function of redshift space separation s, then its multipoles,
ξlðsÞ, can be extracted through the usual expansion

ξðs; μsÞ ¼
X
l

ξlðsÞLlðμsÞ ð17Þ

in a basis of Legendre Polynomials LlðμsÞ, which then
gives

ξlðsÞ ¼ ð2lþ 1Þ
Z

1

0

ξðs; μsÞLlðμsÞdμs: ð18Þ

For a sample of galaxies in sky coordinates, which we
are working with in this analysis, μs ¼ ŝ · r̂, where the
radial anisotropy direction r̂ is the line-of-sight (as opposed
to one of the Cartesian axes direction when working with a
periodic box). We choose to work with the two lowest
nonvanishing multipoles, l ¼ f0; 2g, which we evaluate
with the public code Pycorr,9 which is a wrapper for Corrfunc
[127],10 using the Landy-Szalay (LS) estimator [128] with
241 linearly spaced angular bins in −1 < μ < 1. For the

9https://github.com/cosmodesi/pycorr.
10https://corrfunc.readthedocs.io/en/master/index.html.
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spatial separation, we adopt a differential binning strategy,
which is the following: for the monopole, we use 10
linearly spaced bins centered between 10 < s < 56 Mpc=h
followed by 6 bins for scales 67 < s < 142 Mpc=h, while
for the quadrupole we downsample the above binning
scheme by a factor of 2. This choice, which corresponds to
a total of 24 bins, was found to deliver the optimal trade-
off between large-scale noise due to cosmic variance and
the ability to capture the full shape of the correlation
function. We also note that this binning scheme is still
finer that the one chosen for the WST, in order to ensure a
fair comparison between the performance of the two
statistics.
This evaluation can be straightforwardly performed

using the sky positions of the CMASS galaxy sample
(or the simulated mocks), as well as the ones of the
accompanied random catalogs, as input to Corrfunc. For
the conversion of the sky coordinates into comoving ones,
we adopted the same fiducial cosmology as discussed in
Sec. IV D 1 for the WST, in connection to the AP effect.
The choice of smin matches the minimum scale accessed by
the WST, for which we used a cell of grid size 8 Mpc=h as
explained above, in order to ensure a fair comparison.
(Further discussion on the minimum scale cut can be found
in Appendix E).

E. Emulator

After explaining the steps to go from the original
AbacusSummit simulations to realistic galaxy mocks resem-
bling the properties of the CMASS sample, we now lay out
the details of our emulation scheme for the cosmological
dependence of the target summary statistics.
Emulators refer to parametrized surrogate models

for the cosmological dependence of a summary statistic
used to interpolate sparse likelihood evaluations. The
emulator replaces the expensive likelihood calls with
the much cheaper emulator model calls, thus enabling
a much faster sampling at the cost of introducing
additional errors in the model training. Such schemes
have become increasingly popular in simulation-
based cosmological analyses with the advent of fast
yet flexible machine learning models such as neural nets
and Gaussian processes, with a series of successful
cosmology applications in recent years (see e.g.
Refs. [97,103,129–136]).
To generate the training and test set, we forward model

the final summary statistics (WST coefficients and 2-point
correlation function) across 85 cosmologies and 2700 HOD
variations at each cosmology, creating an initial set of
229500 mocks. The cosmology grid is described in Sec. IV
A 1 and spans the wCDMþ Neff þ running space around
Planck 2018 values [102]. We leave out the four secondary
cosmologies C001-004 as out-sample tests. The HODs are
sampled in a Latin Hypercube with flat bounded priors
along each HOD parameter direction. The bounds for

all parameters are summarized in Table I. For each
cosmology and HOD, we generate the periodic galaxy
mocks according to the steps described in Secs. IVA
and IV B, discard the mocks that have number density
lower than 2.9 × 10−4 h3=Mpc3, and randomly down-
sample the galaxies of the other mocks in order to exactly
match the target density n̄g ¼ 2.9 × 10−4 h3=Mpc3. The
value of this density cut-off allows us to retain a
significant portion of the original collection of 229500
mocks, while discarding HOD configurations resulting in
very low number densities, as shown in Fig. 2. We end up
retaining 151474 cubic mocks with number density
n̄g ¼ 2.9 × 10−4 h3=Mpc3, each one of which is cut to
give two independent cut sky galaxy samples for NGC
and SGC, respectively, as explained in Sec. IV C. We
extract the summary statistics (WSTand 2-point function)
out of each one of them, as explained in Sec. IV D, and
finally obtain the corresponding sky-averaged quantities
according to Eq. (10), which form our final emulator
trainingþ test set.
For the emulator, we adopt a fully connected neural

network as our surrogate model. For the emulation of
WST, we adopt a network of 3 layers as our fiducial
model, with 300 nodes in each layer and a Gaussian error
linear unit (GELU) activation function. We train the
network with the Adam optimizer and a mean squared
loss function taking the diagonal terms of the CMASS
WST covariance matrix (the evaluation of which is
explained in Sec. VA) as weights. We follow a minibatch
procedure and conduct cross-validation throughout the
training process.

FIG. 2. A histogram of the distribution of galaxy number
densities of the galaxy mocks forming our original emulator
parameter grid. Mocks with number densities lower than the cut-
off n̄g ¼ 2.9 × 10−4 h3=Mpc3 (red vertical line) are discarded,
while the rest are downsampled to exactly match this value, in
order to ensure a robust modeling of the density-dependent WST
estimator since this is the constant density value used in the
AbacusSummit mocks. The outcome of this procedure forms the
final emulator training set consisting of 151474 mocks, i.e. those
lying on the right of the red vertical line in the histogram.
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We visualize the final WST emulator performance in
Figs. 3 and 4. Specifically, Fig. 3 summarizes the emulator
error relative to the CMASS uncertainty, δemu, as a function
of WST bin indices. The errors are computed on 1000

HODs (sampled from the prior) at the four out-sample test
cosmologies. The bins with the largest relative errors are
the ones probing the largest spatial scales, which are more
susceptible to cosmic variance and thus exhibit a larger
dispersion in their values. We report a mean jδemuj of 0.51,
suggesting that the emulator error is overall sub-dominant
relative to the measurement uncertainties. Figure 4 com-
pares the true WST values and the emulator predicted
values across all test cases for a few selected WST
coefficients of the data vector (i.e. bins). The orange points
show the emulator predictions for the respective coeffi-
cients for each one of the 4000 leave-out test cases, whereas
the blue band shows the measurement uncertainties. The
dashed line shows the Ypred ¼ Y true line. We see no sign of
bias in the emulator prediction. Lastly, we repeat the above
steps for the WST in order to create the corresponding
emulator for the multipoles of the 2-point correlation
function using the same training set.

V. ANALYSIS

In this section, we lay out the details of how we will use
our forward model for the galaxy clustering in order to
perform a likelihood analysis of the BOSS data. We start
with a description of the adopted likelihood we sample

FIG. 4. The bias of the WST emulator tested on the four leave-out cosmologies for six randomly selected coefficients (bins) of the
WST data vector. The legend shows the WST bin indices. The orange scatter points showcase the true and predicted values of the WST
coefficients for each one of the 4000 leave-out tests, whereas the blue band corresponds to the 1σ uncertainty of the CMASS WST
measurement.

FIG. 3. The median WST emulator error tested on the four
leave-out cosmologies as a function of bin index of the WST
coefficients vector. The y-axis denotes the emulator error nor-
malized by the CMASS 1σ uncertainty.
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from and then explain our steps to validate the robustness of
our pipeline.

A. Likelihood modeling

Having laid out our methodology on how to forward
model the cosmological dependence of the WST coeffi-
cients, as well as on how to extract the corresponding
prediction from the data, we now explain our strategy for
combining these necessary ingredients to perform a like-
lihood analysis of the BOSS dataset. Consider X to be the
summary statistic of interest, which in our analysis denotes
either the vector of WST coefficients or the multipoles of
the correlation function (or their combination). Assuming
X is Gaussian-distributed, as we confirm in Appendix A,
its likelihood, LðθjdÞ, will then follow the familiar form:

logLðθjdÞ¼−
1

2
½Xd−XtðθÞ�TC−1½Xd−XtðθÞ�þ const;

ð19Þ
withXd being the value of the estimator evaluated from the
BOSS CMASS dataset d, that we will analyze in order to
infer the set of parameters θ. Furthermore, C in Eq. (19)
denotes the covariance matrix of X, which can be decom-
posed as in Ref. [103]:

C ¼ Cd þ Cemu þ Cphase: ð20Þ
The first term in Eq. (20), Cd, represents the usual
contribution from the sample variance of the CMASS
dataset d, given by:

Cd ¼ 1

Nmocks − 1

XNmocks

k¼1

ðXk
P − X̄PÞðXk

P − X̄PÞT; ð21Þ

which we evaluate using Nmocks ¼ 2048 realizations of the
Patchy mocks (to be described in Sec. VA 1), and with X̄P
being the mean prediction over theNmocks. Furthermore, we
follow Ref. [103] and consider two extra contributions to
the overall error budget, which reflect additional sources of
uncertainty arising from our forward model and are
essential for a reliable interpretation of our analysis. In
particular, Cemu quantifies the residual emulator error
evaluated (at fixed phase ph000) by averaging over the
4 × 1000 ¼ 4000 hold-out test errors, generated from
c001-c004 (as introduced in Sec. IVA). These hold-out
tests and their results will be described in detail in Sec. V B.
Furthermore, Cphase is meant to capture the effect of

training using mocks at a fixed phase, rather than the
average over many random realizations. To mitigate this
effect, we make use of 24 additional simulations initialized
at phases ph001-ph024, for the fiducial c000 cosmology
and a fixed HOD (corresponding to the best-fit values from
[103]). We then apply the following phase correction to the
data vector:

Xsmooth ¼ Xph000

�
X̄

Xph000

�
; ð22Þ

where Xph000 is the original emulator prediction, trained at
fixed phase, and the term inside the brackets denotes the
fractional correction evaluated over the 25 random real-
izations for the cosmology c000. Even though Eq. (22)
assumes that this phase effect is cosmology-independent, it
was found in Ref. [103] to be sufficient for the mitigation of
cosmic variance to the emulator predictions, and we adopt
it here as well. Equivalently, one could explicitly evaluate
an error term, Cphase, using the 25 random phase realiza-
tions, as in Eq. (21). We have tried both approaches and
have found minimal differences between the results of the
corresponding likelihood analyses. It is straightforward to
see that in the limit of perfect emulator accuracy, these two
additional terms would vanish, and Eq. (20) would reduce
to its usual expression capturing only the cosmic variance
(21), but we will find that these effects are not negligible.
Furthermore, upon inversion of the covariance matrix in

Eq. (19), we apply the standard debiasing Hartlap correc-
tion factor [137]:

Ĉ−1 ¼ Nmocks − Nd − 2

Nmocks − 1
C−1; ð23Þ

where Nd is the dimensionality of Xd, which will be Nd ¼
76 for the WST coefficients, Nd ¼ 24 when working with
the l ¼ 0, 2 multipoles of the correlation function (down to
rmin ¼ 10.5 Mpc=h), and Nd ¼ 100 for the joint analysis.
Before inverting, we make sure that the covariance matrices
for both estimators are well conditioned and can thus be
safely inverted in order to be used in the likelihood in
Eq. (19), and also that the number of realizations is
sufficient for them to be well-converged (a very similar
test for this can be found in Appendix B of Ref. [80]). The
correlation matrix, Cij=ðCiiCjjÞ, of the joint statistic con-
sisting of the 2-point function multipoles and the WST
coefficients is shown in Fig. 5, evaluated at the fiducial
cosmology. Focusing on the WST coefficients on the upper
right subplot, and starting with the 1st order group of
wavelets (that is, until index 25), we notice the existence of
strong correlations between nearby scales and angles (close
to the diagonal), which progressively decrease and turn into
anticorrelations between the smallest and the largest wave-
let scales. Similar patterns permeate into the 2nd order
group of wavelets and their correlations with the corre-
sponding 1st order scales. The correlation matrix of the
2-point correlation function multipoles, corresponding to
the lower left corner, exhibits the familiar structure known
in the literature [138]. Lastly, when looking into the joint
covariance between the two statistics in Fig. 5, we observe
the existence of positive correlations between the wavelets
and the 2-point function monopole, which are most
pronounced with the wavelets probing the largest scales.
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There are no significant correlations with the quadrupole of
the correlation function, on the other hand.
The final missing piece needed to evaluate the likelihood

(19) for a given point in the target parameter space is the
theoretical dependence of the summary statistic as a
function of the 8þ 7 ¼ 15 cosmologicalþ HOD parame-
ters, XtðθÞ, which we model using the emulator we trained
(as explained in Sec. IV E), which allows us to obtain
accurate predictions in a fraction of a second.
Combining all of the above ingredients into our model,

we sample the likelihood from Eq. (19) using the
Markov Chain Monte Carlo (MCMC) sampler EMCEE

[139],11 so as to perform the posterior analysis of the
CMASS dataset. Even though our original forward
model spans a 15-dimensional parameter space, as
explained in Secs. IVA and IV B, our main focus is to
obtain constraints on ΛCDM, so we fix w0 ¼ −1, wa ¼ 0,
arun ¼ 0, Neff ¼ 3.046 (i.e. to their ΛCDM values)
and define our baseline analysis to constrain the follow-
ing 4þ 7 ¼ 11 cosmologicalþ HOD ΛCDM parameters:

θ ¼ fωb;ωc; σ8; ns; logMcut; logM1; σ; κ; α; αc; αsg. We
also obtain constraints on extensions to ΛCDM, for which
our analysis will constrain the full 15-d parameter space
consisting of 8 cosmological parameters, θ ¼ fωb;ωc; σ8;
ns; w0; wa; arun; Neffgþ the same 7 HOD nuissance param-
eters as above.We use flat priors bounded by the limits of the
AbacusSummit simulations and the HOD training set, both of
which are showed in Table I. For parameter ωb, our baseline
run is actually performed with a Gaussian prior:

ωb ¼ 0.02268� 0.00038; ð24Þ

as determined from big bang nucleosynthesis (BBN) mea-
surements, which is a choice commonly adopted in analyses
of BOSS data [121–124]. Finally, to confirm the sufficient
convergence of our chains, wemake sure that themeanvalue
of the acceptance fraction falls within the reasonable range
of values, 0.2–0.5, and that the mean integrated auto-
correlation time is at least 2 orders of magnitude lower than
the total number of steps used, as suggested in Ref. [139].
Lastly, wemake use of 8000walkers, which are initialized in
a tight ball around the Planck 2018 values.

FIG. 5. Correlation matrix of the joint data vector consisting of the multipoles of the 2-point correlation function, l ¼ f0; 2g, and the
76 WST coefficients used in our analysis, evaluated from the 2048 realizations of the Patchy mocks for the fiducial cosmology. The
lower left and upper right subplots coincide with the individual correlation matrices of the two statistics, respectively, while the rest
corresponds to the cross-correlations between them. TheWST coefficients populate the data vector in order of increasing values of the j1
and l1 indices, with the l1 index varied faster. The 2 × 2 blocks on the lower left corner correspond to the auto- and cross- correlations of
ξ0 and ξ2, from bottom to top and from left to right, respectively.

11Publicly available at https://emcee.readthedocs.io/en/stable/.
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1. Patchy mocks

The covariance matrix of an estimator can be usually
evaluated either using an analytical model under the
Gaussian approximation or using simulations performed
for multiple realizations at a given cosmology, through
Eq. (21). Simulation-based analyses typically take advan-
tage of covariance mocks, such as the 2048 realizations of
the publicly available Multidark-Patchy mocks12 [138,140],
hereafter referred to as Patchy mocks. We will use this
collection for our BOSS analysis.
The main reference simulation for this run [141] evolved

38403 dark matter particles on a cubic volume of side
2.5 Gpc=h, using the code GADGET-2 [142], and for a
baseline cosmology described by fΩb;Ωm; ns; σ8; hg ¼
f0.0482; ; 0.307; 0.961; 0.829; 0.6778g. It was sub-
sequently combined with an approximate perturbation
theory-based gravity solver in order to produce mocks for
the gravitationally bound halos, which were identified using
the bound density maximum halo finder [143]. Finally, the
galaxy mocks were created by populating the halos, using
the halo abundance matching technique [144] in order to
model the galaxy-halo connection. The Patchy mocks were
also cut into the realistic survey geometry ofBOSSCMASS,
for both the NGC and SGC observed parts of the sky, while
the systematic effects can be captured through a set of
accompanied weights (in analogy to Eq. (14) for the data):

wcðrÞ ¼ wfcðrÞwvetoðrÞ: ð25Þ

Similar to Eq. (13), the above weighting scheme captures
fiber collisions, wfc, and the rest of the associated short-
comings of the dataset through a veto mask, wveto, while the
FKP weights are also assigned through the usual Eq. (15).
To evaluate the summary statistics from this set of mocks,
we repeat the procedure detailed in Sec. IV D for Eq. (13),
but with the weighting scheme in Eq. (25), as opposed to
the one of Eq. (14) that we used for the data. For this
purpose, the Patchy mocks are also accompanied by their
own set of randoms containing ∼50× the number of objects
in the corresponding actual galaxy mock.
Furthermore, we follow the standard procedure of assum-

ing a cosmology-independent covariance matrix [145,146],
and convert the galaxy coordinates of the mocks, RA, DEC,
and z, into comoving Cartesian ones using the fiducial
cosmologyof our forwardmodel,which is thec000 defined
in Sec. IVA. As we also noted in Ref. [80], mixing different
ways of modeling the cosmological dependence of the
estimator and its covariance matrix is common practice in
BOSS analyses (as in, e.g., Refs. [23,94,95,121–123]). We
combine two different sets ofmocks (AbacusSummit and Patchy)
in order to build our final model for the likelihood.

It should be pointed out that, even though the Patchy

mocks were also partly tested for their accuracy in captur-
ing the 3-point correlation function of CMASS [138,140],
in addition to the 2-point function, they have not been tuned
for novel summary statistics such as the WST. This fact,
combined also with their approximate gravity solver and
the assumption of the cosmology-independent covariance
matrix may be sources of error in our analysis, that we are
working to overcome with the next generation of galaxy
mocks designed to match the requirements for DESI
analysis (see such an example in Ref. [147]).

B. Validation

In the previous section we described the detailed steps to
perform a likelihood analysis using our emulator for the
cosmological dependence of the WST coefficients. Before
proceeding to analyze the actual CMASS dataset, we first
test our pipeline to ensure its accuracy in inferring (known)
cosmological parameters from simulated data vectors.

1. Abacus hold-out mock tests

In order to test the accuracy of our inference pipeline,
we begin by randomly selecting 10 HOD configurations
centered around the best-fit values from Ref. [103], for
each one of the hold-out c001-004 AbacusSummit cos-
mologies. We repeat all previously explained steps to
produce synthetic WST data vectors from each test mock,
which are then fed into our likelihood analysis pipeline to
constrain the cosmological parameters of our ΛCDM
baseline case. The corresponding marginalized posterior
distributions obtained on the 4 ΛCDM cosmological
parameters of the baseline analysis are then shown in
Fig. 6, in which we see that we are able to recover the true
values within 1-σ levels of accuracy, for all cases. We note
that we do not show the contours for the wCDM test
cosmology c002 in Fig. 6, for brevity, but the recovery is
successful in this case as well.
The hold-out cosmologies used for the above tests

correspond to the same initial fixed phase, ph000, of the
AbacusSummit simulations as the mocks of our training set,
and as a result do not allow us to detect potential biases
introduced by this approximation. To check for this, we
also attempt to perform parameter inference from the data
vector obtained by averaging over the 24 additional phases,
ph001-024, that are available for the fiducial c000
cosmology. As we also show in Fig. 6, our phase correction
scheme (22) is found sufficient to recover an accurate
cosmology from a different phase. We add that we con-
firmed the recovery was also successful when we used
these 24 phases individually, as the mock data vector.
Overall, the above tests confirm that our WST emulator,

in combination with the error correction strategies (20) and
(22), is successful in inferring the parameters of the
AbacusSummit simulations within 1-σ levels of accuracy, over
a wide range of cosmologies. We should also note, at this

12Available at https://data.sdss.org/sas/dr12/boss/lss/dr12_
multidark_patchy_mocks/.
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point, that we confirmed the same to be true for the
corresponding emulator for the multipoles of the galaxy
correlation function.

2. Uchuu mock tests

Even though our simulation-based model was found to
be successful at recovering the true cosmological

parameters over a broad range of tests, as reported in the
previous Sec. V B, the corresponding hold-out mocks that
we used were produced from the same set of the
AbacusSummit simulations, using, more importantly, the same
assumptions for the galaxy-halo connection through the
specific HOD model we adopted (described in Sec. IV B).
As a result, before our pipeline can be trusted for a reliable
interpretation of the actual observations, it should be first

FIG. 6. ΛCDM recovery tests using our WST emulator to analyze 10 HOD configurations of the c001 (upper left), c003 (upper
right) and c004 (lower left) hold-out cosmologies of our test set. We also show the marginalized 1-σ and 2-σ posteriors obtained by
analyzing the mean data vector of the 24 additional realizations available for the fiducial c000 cosmology (lower right). The horizontal
and vertical black dashed lines indicate the true values of the cosmological parameters in each case.
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tested against an independent simulation with different
gravity and halo codes, with a different strategy for the
population of dark matter halos with galaxies.
To achieve this goal, we additionally make use of the

Uchuu simulations [148–152], which were run using the
GreeM N-body code [153]. It evolved 2.1 × 1012 dark
matter particles, in a simulation volume ð2 Gpc=hÞ3, which
matches the one of Abacus, and it is large enough to fit the
entire footprint of BOSS. Their underlying cosmology
corresponds to the following values: Ωm ¼ 0.3089,
Ωb¼0.0486, h ¼ 0.6774, σ8 ¼ 0.8159, and ns ¼ 0.9667,
while dark matter halos were identified with the Rockstar

halo finder [154], in contrast to Abacus’s CompaSO.
More crucially, the corresponding galaxy mocks were

produced with UniverseMachine [UM; [155]], a model that is
considerably more sophisticated than the HOD. UM is an
empirical galaxy–halo connection model that predicts
galaxy star formation rates from halo mass and halo
assembly histories. It is a flexible framework that models
the full evolution histories of galaxies anchored on dark
matter halo merger trees from cosmological simulations,
and it is simultaneously constrained by observed galaxy
stellar mass functions, UV luminosity functions, quenched
fractions, cosmic star formation history, and galaxy clus-
tering over a wide range of galaxy mass and redshifts (up to
z ∼ 8). We refer the readers to [151] for detailed descrip-
tions of the mock. It is also worth highlighting that UM
naturally includes a motivated yet flexible prescription of
galaxy assembly bias, as the galaxy properties are directly
computed from the halo merger trees. Thus, this test also
checks against potential systematic biases due to galaxy
assembly bias.
For the covariance matrix needed for the Uchuu likelihood

analysis we use the same suite of Patchy mocks described in
Sec. VA 1, since both types of simulations are tuned to
match the clustering properties of the BOSS CMASS
sample, with a same volume and number density and a
similar Planck-like cosmology.
In Fig. 7, we plot the marginalized constraints obtained

on the 4 ΛCDM parameters after analyzing the Uchuu
mock using the multipoles of the galaxy correlation
function, the WST coefficients and a joint combination
of both. As in the previous case of the Abacus hold-out tests,
we find that the true values always lie within 1-σ away from
the mean, for all 3 cases. We note that ns is prior-dominated
in the case of the 2-point correlation function, as the
contour hits the upper prior bound of the AbacusSummit

grid.13 This is not the case, however, for the WST and
the joint combination, which are the main focus of this
analysis, despite the significantly tighter 1-σ errors they
predict. These results confirm our ability to trust that
our forward model can recover unbiased cosmological

constraints which are robust against the various assump-
tions made by the simulations used for its training.

VI. RESULTS

Having validated our pipeline against a series of
internal and external mock recovery tests, described in
Sec. V B, we now proceed to use it in order to analyze the
BOSS CMASS dataset. Specifically, in Fig. 8 we plot the
2-dimensional marginalized posterior probability distri-
butions of the 4 ΛCDM parameters of our baseline
CMASS analysis, as they were obtained using the multi-
poles of the galaxy 2-point correlation function, the
WST coefficients and their joint combination. We also
show the constraints on the dimensionless Hubble con-
stant, h, that we obtain by treating it as a derived
parameter from our MCMC chains, resulting from the
fixed value of the comoving angular size of the sound
horizon at last scattering, 100θ⋆ ¼ 1.041533, imposed in
the AbacusSummit simulations. We note that, even though
this parameter is very well-constrained by the Planck
satellite [102], this choice implies that h is not varied
independently in our inference, so the corresponding
result should be interpreted with caution. In addition,
the mean and 1σ error values obtained on the cosmologi-
cal parameters (marginalized over HOD) are listed in
Table II, while the corresponding constraints on the HOD
nuisance parameters are presented in Appendix B.

FIG. 7. Recovery test using the Uchuu galaxy mock for the
ΛCDM cosmological parameters obtained using the monopole
and quadrupole of the galaxy correlation function (red), the WST
coefficients (blue) and their joint combination (black). The
horizontal and vertical black dashed lines indicate the true values
of the cosmological parameters.

13A similar finding was recently reported by Ref. [52].
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We begin with the standard analysis using the galaxy
correlation function, the results of which are broadly
consistent with Planck 2018 [102]. Even though the mean
values obtained for ns and σ8 are somewhat lower than the
ones of Planck, the magnitude of these differences is not
statistically significant (∼1σ), unlike the results of some
previous BOSS analyses (e.g. [23,103,124]).
Moving on to discuss the results of the WST reanalysis,

we first notice the relative consistency between the corre-
sponding mean values for the parameters extracted from the
two estimators, the differences of which never exceed the
respective 1-σ values obtained from the correlation func-
tion. We do, however, notice different degeneracy direc-
tions exhibited by the WST contours projected on the
various individual 2-d parameter planes, the importance of
which will become apparent below. More importantly, the
1-σ errors obtained on parameters ωc and ns are found to be
4.2 and 1.6× tighter than the corresponding predictions
from the correlation function, as seen in Table II. The

dimensionless Hubble constant is consistent with Planck in
this case as well, with an error that is 3.7× tighter than from
the correlation function, tracing the respective results for
ωc, on which it depends through the fixed θ⋆. We note
again that this finding should be interpreted with caution. if
it were not for the strong prior on θ⋆ in our model, the
coarse logarithmic binning used by our wavelets would
likely not be able to fully capture the BAO information,
resulting in a less accurate determination of h. Last but not
least, we do not find any noticeable improvement (with
respect to the 2-point function) in our ability to constrain
σ8, while the mean value predicted by the WST analysis is
also consistent with Planck. Even though counterintuitive,
at face value, this result is attributed to the inclusion of the
residual emulator error, Cemu, in Eq. (20), a fact that we
have tested and confirmed, as shown in Appendix C. In
particular, we find that, even though the intrinsic errors
predicted by the WST in the limit of zero emulation error
are substantially tighter for all parameters, our actual error

FIG. 8. Marginalized constraints on the ΛCDM cosmological parameters obtained using the monopole and quadrupole of the galaxy
correlation function (red), the WST coefficients (blue) and their joint combination (black) in order to analyze the BOSS CMASS
observations. The results shown above were obtained after imposing a BBN Gaussian prior on the value of ωb ¼ 0.02268� 0.00038.
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budget is also much larger for the WST, such that the
addition of Cemu in Eq. (20) partially or completely (in the
case of σ8) masks the net improvements. We nevertheless
choose to include this term, in order to ensure a reliable and
robust analysis.
We have already seen that, despite the fact that the WST

and correlation function contours are consistent with each
other at the 1σ level, they exhibit different degeneracy
orientations. This is not as surprising if we consider that the
two statistics do not capture the exact same information.
Indeed, we remind that, even at the lowest (1st) order, the
WST raises the modulus of the input galaxy density field to
the power q ¼ 0.8, closer to the properties of other higher-
order statistics such as the marked power spectrum, as we
also found in Ref. [79]. The localized solid harmonic
wavelet (4) is also different than the Fourier kernel of the
power spectrum/correlation function, with all the additional
known benefits associated with this choice [70–73]. As a
consequence, analyzing the data with the joint combination
of the two statistics allows us to break degeneracies and
further improve upon the results obtained from each
individual analysis, as we can see in Fig. 8 and Table II.
In particular, the 1σ error obtained on σ8, which previously
did not improve by a WST application alone, now shrinks
by a factor of 2.5, while the corresponding constraints on
the rest of the parameters are further tightened by a factor of
3–6 compared to the 2-point correlation function and by a
factor of 1.4–2.5 compared to the WST-only results.
Overall, the joint analysis allows us to constrain the
parameters ωc, σ8, ns, and h with 0.9%, 2.3%, 1% and
0.7% levels of accuracy, respectively. This result, which
can be considered to be the main one of our work,
highlights the value held in a complementary analysis
employing both the WST coefficients and the standard
correlation function.
In addition to the above parameters, and in order to align

our analysis with a standard practice adopted by many RSD
studies in the literature, we further quote results on the

product fðzÞσ8ðzÞ, with fðzÞ ¼ d lnDðaÞ
da and DðaÞ being

the linear growth rate and growth factor, respectively. This

is also a derived parameter that we obtain from the samples
in our chains. In particular, at the effective redshift,
zeff ¼ 0.515, of our sample, the joint analysis gives:

fσ8ðzeff ¼ 0.515Þ ¼ 0.469� 0.012; ð26Þ

which corresponds to a determination at a 2.5% level of
accuracy. Furthermore, in Fig. 9 we plot our result together
with the corresponding one from Planck 2018 [102] and
from a selected sample of other recent BOSS reanalyses in
the literature (which we will further discuss shortly). Our
prediction is consistent with Planck well within the 1σ
levels, driven by the corresponding consistency in our
inferred value of σ8, and despite our relatively higher value
of ωc. In the context of lensing studies, this can be
alternatively examined in terms of the parameter combi-
nation S8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΩm=0.30Þ
p

σ8, for which we get

S8 ¼ 0.833� 0.023; ð27Þ

in almost perfect agreement with the fiducial Planck
result, S8 ¼ 0.832� 0.013.
As far as the values of ωc and ns are concerned, they are

found to be statistically higher and lower, respectively,
relative to the Planck result, driven by the very tight
constraints of our joint analysis. It is interesting to notice
that a similar trend has been found in some recent large-
scale BOSS analyses, when ns is left free [23]. The
magnitude of the tension was smaller in these studies,
however, due to the larger error bars produced by such
perturbation theory-based models. Reference [103] also
found a preference for a lower ns at the 1.5σ level.
We also note that, even though all above results were

produced assuming a tight BBN prior (24) on ωb, we found
that our joint analysis is actually able to constrain this value
reasonably well even with a flat, uninformative prior, as
shown in Appendix D.
Furthermore, in the left sub-panels of Table II we list the

best-fit values obtained for each one of the 3 types of
analyses considered in this work, which are always found to

TABLE II. Best-fit values, mean values and 68% confidence intervals for all cosmological parameters resulting from the likelihood
analysis of the 2-point correlation function multipoles (left), the WST coefficients (middle) and a joint analysis of the two (right). The
mean values are presented in the format meanþ1σ

−1σ , after marginalization over all HOD parameters.

2-point c.f. WST Joint 2-point c:f:þWST

Best-fit Mean� σ Best-fit Mean� σ Best-fit Mean� σ

ωb 0.02261 0.02270þ0.00037
−0.00037 0.02274 0.02277þ0.00038

−0.00038 0.0225 0.02262þ0.00029
−0.00029

ωc 0.1201 0.1222þ0.0040
−0.0063 0.1239 0.1244þ0.0015

−0.0015 0.1238 0.1241þ0.0011
−0.0011

ns 0.925 0.922þ0.037
−0.037 0.961 0.951þ0.023

−0.023 0.927 0.924þ0.01
−0.01

σ8 0.742 0.746þ0.051
−0.051 0.860 0.834þ0.058

−0.039 0.793 0.795þ0.019
−0.019

h 0.677 0.677þ0.022
−0.015 0.67 0.669þ0.0059

−0.0059 0.668 0.669þ0.0049
−0.0049

PRECISE COSMOLOGICAL CONSTRAINTS FROM BOSS GALAXY … PHYS. REV. D 109, 103503 (2024)

103503-17



lie within a standard deviation away from the corresponding
means. To assess the goodness-of-fit, we also evaluate the
χ2 per degrees of freedom (d.o.f.), χ2ν ≡ χ2=d:o:f:, which is
found to be equal to 1.11, 1.36 and 1.37 for the correlation
function, the WST and the joint analysis, respectively. The
result for the 2-point function is very similar to the one
reported by the Abacus-based small-scale CMASS analysis
of [103]. Even though the value for theWST is a bit higher, it
is still reasonable and within the same range and/or lower
than the corresponding results reported by recent analyses
using other higher-order statistics, such as k-nearest neigh-
bors [163] and density-split statistics [51]. The goodness of
the fit is also visually evident in Fig. 10, in which we plot
the best-fit prediction for the WST together with the
corresponding CMASS measurement.
We should comment, at this point, on how our new

results compare with the ones of our previous WST BOSS
analysis [80], which relied on a simple Taylor expansion
approximation to model the cosmological dependence of
the WST coefficients. Starting with the 1-σ errors, the main
difference for parameters σ8 and ns is caused by the
inclusion of the WST emulator error, Cemu, in Eq. (20),
as we also pointed out above and show in Appendix C. In
fact, we note that, if we omit this contribution, the WST
errors on σ8 and ns become 0.027 and 0.02, respectively,
which are not that far off from what we previously reported,
as seen in Table II of Ref. [80]. Even after neglecting the
emulator error, the constraint on ωc was still found to be

∼2.5× tighter in Ref. [80], a fact that is most likely
attributed to the simplified Taylor expansion approxima-
tion. This fact is also most likely responsible for the
relatively low value of σ8 that we reported in that work.

FIG. 9. Marginalized constraints on the structure growth rate, fðzÞσ8ðzÞ, of our joint analysis in blue alongside other clustering
constraints in the literature. We show the Planck 2018 [102] CMB constraints in black, with the corresponding 68% and 95% limits in
shaded bands, together with the results from two other recent Abacus-based CMASS reanalyses using the small-scale 2-point correlation
function [103] and the density split clustering statistic [51,52]. Additionally, we show clustering constraints from BOSS LOWZ small-
scale RSD [97], BOSS full-shape power spectrum [135], BOSS large-scale RSDþ BAO [156], BOSS small-scale RSD [157] eBOSS
small-scale RSD [158], eBOSS large-scale RSDþ BAO [159,160], BOSS DR12 large-scale power spectrum [161] and the 6dF Galaxy
Survey [162].

FIG. 10. All 76 WST coefficients evaluated from the BOSS
CMASS dataset (black circles) plotted together with the best-fit
prediction obtained from our likelihood analysis (solid blue line).
The WST coefficients populate the data vector in order of
increasing values of the j1 and l1 indices, with the l1 index
varied faster.
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Finally, we briefly discuss how our work compares
against other analyses of BOSS clustering in the literature,
starting with the two other recent applications of the
AbacusSummit. Reference [103] built an Abacus-based emu-
lator of the anisotropic 2-d correlation function to analyze
the CMASS dataset, while Refs. [51,52] worked with the
density-split clustering statistic. Given that they relied on
the same suite of simulations for their forward model, these
applications share the same cosmology grid and priors as
our analysis (including the fixed value of sound horizon
θ�). All three analyses also used the same HOD framework.
However, there are several key differences between the

above works and ours, that need to be pointed out: given the
unique sensitivity of the WST to the survey geometry,
through the successive wavelet convolutions in Eq. (2), we
trained our emulator using the cut-sky mocks matching the
exact CMASS footprint, rather than the original cubic
boxes used by [51,52,103]. For similar reasons, we worked
with a flattened density profile, nðzÞ, and in a slightly
narrower redshift cut, as we showed in Fig. 1. Furthermore,
both of the other works included smaller scales down to
1 Mpc=h and thus accounted for the necessary effects of
assembly bias in their HOD parametrization, which we
neglected given that our analysis stopped at a minimum

FIG. 11. Marginalized constraints on extensions to ΛCDM obtained using the joint WSTþ correlation function combination in order
to analyze the BOSS CMASS observations. The results shown above were obtained after imposing a BBN Gaussian prior on the value of
ωb ¼ 0.02268� 0.00038.
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scale of ∼10 Mpc=h. Reference [103] also used Jackknife
resampling in order to compute the covariance matrix (as
opposed to our Patchy mocks) and included only small
scales, < × 30 Mpc=h, in their analysis, while Ref. [51]
only analyzed the NGC part of the BOSS survey. Due to all
the above differences, a direct “apples to apples” compari-
son is still hard. Nevertheless, we notice the relative 1σ
consistency between our results for σ8 and fσ8 and those of
[51] (and Planck), as also seen in Fig. 9. The analysis of
Ref. [103], on the other hand, found a relatively lower value
of the clustering amplitude, which, combined with their
tighter errors, leads to a disagreement at the level of 1.5σ. In
addition to the previously mentioned differences, other
analysis choices that might be driving this difference are the
use of Gaussian priors by Ref. [103] and the fact that their
emulator error was evaluated drawing from from the
posterior, rather than the prior. In preparation for the
analysis of the next stage of spectroscopic observations,
we plan to revisit these comparisons through a commonly
adopted set of uniform analysis choices.
A plethora of other studies in the literature have analyzed

the BOSS and extended BOSS (eBOSS) [164] observations,
including, but not limited to, the ones plotted in Fig. 9
alongside our result. All of them used the standard 2-point
correlation function or the power spectrum, and can be
grouped into large-scale [156,159–162] and small-scale
studies [97,135,157,158]. Despite the large variance in
the modeling and analysis choices among the members
of this list, we notice that our analysis joins the ones that are
statistically consistent with the Planck curve, including the
official BOSS result [156]. On the other hand, a number of
studies is found to systematically underpredict the growth
rate, related to the known LSS tension that has emerged in
the last few years. Given that the true origin of this
discrepancy is not yet known, we hope that novel techniques
such as the WST will help shed light on this issue. We
highlight that our constraint is found to be the tightest
reported among all these studies. Similar considerations
apply for the comparison to other BOSS analyses, e.g.,
[23,121–125,165].

A. Constraints on ΛCDM extensions

Our main focus for the present analysis has been to
obtain constraints on ΛCDM. However, as we explained in
Sec. IVA, our emulator was originally trained on the
AbacusSummit cosmology grid, which also includes 4 addi-
tional parameters describing extensions to ΛCDM:
farun; Neff ; w0; wag. As a result, and in order to further
explore the constraining capabilities of the WST, here we
briefly present constraints from the base joint WSTþ
correlation function likelihood analysis on all 8 cosmologi-
cal parameters (marginalized over the 7 HOD parameters),
shown in Fig. 11 and Table III. We find that our analysis is
able to clearly constrain all parameters simultaneously,
without any signs of statistically significant deviations away

from the known ΛCDM limits, w0 ¼ −1, wa ¼ 0, arun ¼ 0,
Neff ¼ 3.046. Given the increased number of parameters in
this case, it is not surprising that the constraints on the
ΛCDM parameters are looser compared to the correspond-
ing values found in the base analysis. As a consequence of
the same fact, the previously reported tensions forωc and ns
are alleviated in this case, and all ΛCDM parameters are
found to be consistent with the Planck 2018 results [102]
(and also with the ones of the base analysis). The reduced
χ2=d:o:f is found to be χ2ν ¼ 1.31, confirming that the fit is
equally good as the one of the joint base analysis.
We note that our pipeline has been more thoroughly

tested for ΛCDM applications, and these results are
exploratory in nature, while we reserve a more detailed
WST application to extended scenarios for future work.
Nevertheless, they serve as an additional example that
showcases the promise held in the use of the WST in the
context of parameter inference applications.

VII. CONCLUSIONS

In this work, we perform a thorough reanalysis of the
BOSS CMASS DR12 dataset, using a simulation-based
emulator for the wavelet scattering transform, a novel
statistic that promises to capture non-Gaussian information
in a clustered field by subjecting it to a series of successive
wavelet-convolutions.
In our series of previous works [79,80], we laid the

foundation for a WST application to spectroscopic galaxy
data, including the methodology to capture all necessary
associated layers of realism to achieve this task, such as the
effects of nontrivial survey geometry, the shortcomings of
the dataset through a set of systematic weights or the
Alcock-Paczynski effect. However, in order to reduce the

TABLE III. Best-fit values, mean values and 68% confidence
intervals for all cosmological parameters resulting from the joint
WSTþ correlation function likelihood analysis in the case of the
extended cosmological scenario. The mean values are presented
in the format meanþ1σ

−1σ , after marginalization over all HOD
parameters.

Joint 2-point c:f:þWST

Best-fit Mean� σ

ωb 0.02280 0.02273þ0.00036
−0.00036

ωc 0.1227 0.1239þ0.0056
−0.0056

σ8 0.748 0.751þ0.034
−0.040

ns 0.928 0.953þ0.022
−0.030

h 0.675 0.671þ0.021
−0.021

arun 0.002 0.004þ0.019
−0.012

Neff 3.048 3.23þ0.26
−0.26

w0 −1.039 −0.995þ0.061
−0.073

wa 0.29 0.17þ0.24
−0.21
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related computational cost, in Ref. [80] we used a linear
Taylor expansion to approximate the cosmological depend-
ence of the WST estimator.
Having the full suite of the state-of-the-art AbacusSummit

simulations at our disposal, we now revisit our previous
analysis after constructing an accurate neural net-based
emulator for the cosmological dependence of the WST
coefficients. Our forward model is trained using a total of
151,474 mocks that span a 15-dimensional parameter
space, capturing variations in 8 cosmological parameters
and 7 Halo Occupation Distribution (HOD) nuisance
parameters to model the galaxy-halo connection. We repeat
these steps to create a corresponding emulator for the
standard multipoles of the galaxy 2-point correlation
function, which serves as our benchmark to evaluate the
performance of the WST.
In order to ensure that our likelihood analysis pipeline

achieves the necessary levels of accuracy for a reliable and
robust cosmological analysis, we subject it to a series of
internal and external parameter recovery tests. For the
internal tests, we use 40 hold-out mocks that span a broad
range of cosmological parameters within our training set.
We then test and confirm that we can accurately infer the
parameters of an external simulation, that used different
assumptions to capture the complicated physics of galaxy
formation.
After confirming the accuracy of our forward model, we

use it to reanalyze the BOSS CMASS DR12 dataset in the
redshift range 0.4613 < z < 0.5692, in order to constrain
the ΛCDM parameters using the WST coefficients and the
multipoles of the galaxy correlation function. We find that a
joint analysis using the WST and the correlation function
allows us to constrain the ΛCDM parameters with 1σ errors
that are tighter by a factor of 2.5–6, compared to the 2-point
correlation function, and by a factor of 1.4–2.5 compared to
the WST-only results. This corresponds to a competitive
0.9%, 2.3%, 1% and 0.7% level of determination for
parameters ωc, σ8, ns, and h, respectively. Furthermore,
the joint analysis allows us to obtain a tight 2.5% constraint
on the parameter combination fðzÞσ8ðzÞ, in agreement with
the 2018 results of the Planck satellite. We discuss how our
new results compare against our previous analysis and prior
ones in the literature, reaffirming the constraining power of
the WST.
We also obtained constraints on extended cosmological

scenarios, parametrized through 4 additional parameters,
farun; Neff ; w0; wag, finding no statistically significant
deviations from the ΛCDM limit.
Our emulator for the cosmological dependence of the

WST coefficients (and the correlation function) has allowed
us to overcome the main limitation behind our previous
application [80]. There is, however, room for further
improvement in certain components of our forward model,
which we plan to achieve in future work. First of all, and as
we already pointed out above, the AbacusSummit simulations

impose a fixed value of the angular scale θ⋆. Even though
this quantity is very well constrained by CMB observations
[102], such a prior implies that the Hubble constant is not
independently varied in our chains, but can only be
obtained as a derived parameter. Given, however, that
our framework is flexible enough to be applied to any
set of simulated mocks, this limitation can be easily
overcome using a different training set. In a similar manner,
our use of simulations produced at a fixed redshift, z ¼ 0.5,
implies that clustering evolution along the CMASS light
cone is currently neglected. With the capability to produce
Abacus light cones already in place [136,166], we plan to
incorporate this effect in future revisions of our pipeline.
Furthermore, our current HOD parametrization for the
galaxy-halo connection neglected assembly bias, given
the more conservative scale-cut we adopted. It would be
very interesting, in future work, to explore the full small-
scale constraining power of the WST, for which a more
general HOD model including assembly bias would be
necessary. Such an endeavor will also require a more
careful treatment of systematic effects, such as fiber
collisions, which we currently corrected using the recipe
designed for the standard correlation function analysis (for
an example, see Ref. [136]).
The culmination of this series of works opens up an

avenue of potentially exciting cosmological applications of
the WST, with the advent of the first stage-IV spectroscopic
observations by DESI. As we had also pointed out in
Ref. [80], the basis of solid harmonic wavelets that we have
been using is not optimized for a spectroscopic dataset, as it
was designed in the context of isotropic 3-d applications of
molecular chemistry. A suitably tailored new basis of
wavelets could potentially fully leverage the anisotropic
RSD information in the observed galaxy field, by treating a
given direction as special [167]. Higher-order statistics, as
we have discussed before [45,79], also exhibit tremendous
potential for constraining fundamental physics such as
massive neutrinos, theories of gravity or primordial non-
Gaussianity, through their unique ability to break degen-
eracies that are present at the power spectrum level. All of
these are very interesting avenues that we would like to
explore, alongside the first WSTapplication to the first year
of DESI data.
Our application serves as a prime example of how novel

estimators, such as the wavelet scattering transform, can
hopefully allow us to fully exploit the vast amount of
information that will be accessed by the next generation of
cosmological surveys, giving us the opportunity to poten-
tially revolutionize our fundamental understanding of the
universe.
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APPENDIX A: GAUSSIANITY OF THE WST
LIKELIHOOD

Our posterior analysis in Sec. V has been performed by
sampling from a likelihood that we assumed to follow a
Gaussian form, as given by Eq. (19). In the standard
power spectrum case, and despite the non-Gaussianity of
the cosmic density field at late times, this is known to be
an accurate approximation thanks to the central limit
theorem, when a sufficiently large number of modes
contribute to the value evaluated at a given spatial bin.
For the WST, in our previous applications [79,80] we
also adopted this approximation, motivated by supportive
findings in the 2D weak-lensing (WL) applications of
Ref. [78]. We now proceed to explicitly test and confirm
the validity of this assumption for the present WST
application to 3D clustering, using the 2048 realizations
of the Patchy mocks for the fiducial cosmology. Following
Refs. [49,168], the 2048 realizations will have a χ2

distribution, given by:

χ2i ¼ ½Xdi − X̄d�TC−1½Xdi − X̄d�; ðA1Þ

where Xdi is the prediction for the ith Patchy mock
realization, X̄d the mean value over the distribution,
and C the covariance matrix from Eq. (21).
If the likelihood of a summary statistic is indeed

Gaussian, then the probability density function (pdf) from
Eq. (A1) should closely track the theoretical χ2 distribution
with degrees of freedom equal to the dimensionality of the
data vector (i.e. Nd ¼ 76 for our WST implementation). It
should also closely match the pdf of samples randomly
drawn from a Gaussian distribution with the same mean
and covariance as the sample of realizations. This com-
parison is demonstrated in Fig. 12 for the WST, which is
observed to satisfy a high level of consistency between the
3 curves, confirming thus a high degree of Gaussianity for
the likelihood of the WST estimator. The equivalent
comparison for the 2-point correlation function multipoles
is shown in Fig. 13 for reference, which reproduces the
known result of Gaussianity of the correlation function.
This result for the Gaussianity of the WST is aligned with
the one of Ref. [78] in the context of weak lensing and also
with the results of Refs. [49,136,168] for other higher-order
statistics explored in the literature.
We also note that a quantification of the Gaussianity of

various summary statistics was performed in Ref. [169], in
which the probability distribution of the WST coefficients
evaluated from the simulated 3D matter density field was
found to exhibit a certain degree of non-Gaussianity.

FIG. 12. Probability density function of the χ2 distribution of
the WST coefficients as measured from the 2048 realizations of
the Patchy mocks (blue) plotted together with a theoretical χ2

distribution with Nd ¼ 76 degrees of freedom (black line) and a
Gaussian distribution with the same mean and covariance
(orange). The WST estimator does not exhibit any significant
deviations from a Gaussian distribution.
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However, this work used a different basis of wavelets, that
performed a much finer sampling of the spatial domain,
which can lead to a breakdown of the central limit theorem.
As a result, their findings are not inconsistent with ours.

APPENDIX B: CONSTRAINTS ON HOD
PARAMETERS

In this section, we present the constraints obtained on
the full set of HOD parameters of our WST and joint
WSTþ correlation function analyses, shown in Fig. 14 and
Table IV. We find that the WST alone is capable of
constraining all HOD parameters of our model, with only

modest additional improvements delivered after the inclu-
sion of the 2-point correlation function. Our analysis hints
at a preference for nonzero velocity biases both for the
central and also for the satellite galaxies, through the
corresponding inferred values for parameters αc and αs.
Even though the former result is in agreement with the
small-scale CMASS reanalysis of Ref. [103], it is interest-
ing that the same work did not find a preference for a
satellite bias. We defer a more detailed investigation of this
matter to future work, which will extend our analysis to
equally small scales.

APPENDIX C: WST CONSTRAINTS WITHOUT
EMULATOR ERROR

In Sec. VA, we explained how the residual emulator
error, Cemu, was treated as an additional covariance con-
tribution that we added to the overall error budget, through
Eq. (20). In order to illustrate the impact of this factor to the
WST constraints, and also to better facilitate the compari-
son with our previous work [80] (which did not account for
the emulator error), we repeat the WST analysis using the
contribution from the Patchy mocks only [that is, the first
term in Eq. (20)] and contrast it against the full result, in
Fig. 15. We notice that the inclusion of the emulator error
Cemu leads to a substantial increase in the 1σ errors for
parameters σ8 and ns, in particular, with the corresponding
impact being much less significant for ωc. When we neglect
this term, on the other hand, and as we also pointed out in
the main text, the constraints become much tighter and
comparable to the ones of our previous analysis [80] in the
case of σ8 and ns. We stress that this result should be
interpreted with caution, given that the emulator error has
not been accounted for. It does serve, nevertheless, as an
indication of the intrinsic constraining power of the WST in
the limit of zero emulation error. In order for this potential
to actually be exploited by the next stage of precise
spectroscopic observations, however, higher accuracy emu-
lators and more precise characterization of the emulator
error will be necessary. Whether and how these goals can be
achieved is a matter of intense study.

APPENDIX D: IMPACT OF PRIORS ON ωb

Our main analysis used a tight BBN prior on the value of
ωb, from Eq. (24). In this appendix we repeat our joint
WSTþ correlation function analysis using a flat ωb prior,
instead, and demonstrate the comparison between the two
results in Fig. 16. Remarkably, we find that the joint
analysis is also able to accurately constrain ωb, as well as
the rest of the parameters, using completely uninformative
priors. The corresponding increase in the 1σ errors is 90%
for ωb and no more than 10% for the rest of the 3
parameters.

FIG. 13. The same χ2 analysis as in Fig. 12 is repeated for the
multipoles of the 2-point correlation function that we use as the
benchmark in our analysis.

TABLE IV. Best-fit values, mean values and 68% confidence
intervals for the 7 nuisance HOD parameters of our base like-
lihood analysis using the WST coefficients (left) and the joint
analysis of the 2-point correlation functionþWST (right). The
mean values are presented in the format meanþ1σ

−1σ .

WST Joint 2-point c:f:þWST

Best-fit Mean� σ Best-fit Mean� σ

logMcut 12.681 12.668þ0.068
−0.068 12.608 12.613þ0.045

−0.060
logM1 13.34 13.33þ0.13

−0.13 13.252 13.25þ0.11
−0.11

log σ −0.783 −0.823þ0.11
−0.097 −0.829 −0.87þ0.25

−0.25
α 0.921 0.934þ0.064

−0.054 0.943 0.944þ0.077
−0.049

κ 1.336 1.36þ0.32
−0.32 1.236 1.22þ0.28

−0.28
αc 0.322 0.34þ0.17

−0.20 0.367 0.32þ0.16
−0.22

αs 0.306 0.32þ0.12
−0.11 0.411 0.408þ0.099

−0.049
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APPENDIX E: SENSITIVITY TO SMALL SCALES

In principle, the solid harmonic wavelets that we use in
this analysis do not have a finite support neither in real or
Fourier space. The Fourier transform of the radial part of
Eq. (4) is aGaussian forl ¼ 0, that can extend to higher k for
l > 0 values. Even though in practice this can be controlled
through a sufficiently conservative combination of the

Gaussian width and grid size, as we did in this application,
we need to explicitly make sure that our WSTanalysis does
not extract information from smaller scales than originally
intended.We confirm this fact through the following test: we
first apply a sharp top-hat filter in k-space to our galaxy field
and, after going to real space, use this filtered field instead as
the input into theWST scattering network (6). This addition
imposes a sharp k-space cutoff, which would remove any

FIG. 14. Marginalized constraints on the full set of cosmologicalþ HOD parameters obtained using the WST coefficients (blue) and
the joint combination of WSTþ correlation function multipoles (black) in order to analyze the BOSS CMASS observations. The results
shown above were obtained after imposing a BBN Gaussian prior on the value of ωb ¼ 0.02268� 0.00038.
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potential undesired contributions from higher frequencies
(smaller scales). In Fig. 17, we plot the fractional change to
theWST data vector obtained from theBOSSNGCdatawhen
this filtering is applied for various cutoffs, compared to the
original prediction using just the Gaussian-like smoothing
from Eq. (4), with σ ¼ 0.80 and Ngrid ¼ 270. Our 2-point
correlation function benchmark analysis includes scales down
to 8 Mpc=h, corresponding to a kmax ¼ 0.8 h=Mpc in the
Fourier space.Aswe see in Fig. 17, imposing this sharp cut-off
leads to no measurable changes in the WST data vector
compared to the original one, indicating no sensitivity to
k > 0.8 h=Mpc. Imposing progressively stricter cutoff values
leads to growing differences in the data vector, as we remove
scales that our wavelets were originally sensitive to. If we
restrict our focus on wavemodes k ≤ 0.25 h=Mpc, the
changes in the data vector are the most pronounced, as
expected, since thatwould discard themajority of the nonlinear
information contained in the galaxy field. Different combina-
tions of the Gaussian width and/or grid size lead to a different
spatial support, which can similarly be further contained with
the sharp k-space filter.We also confirmed that the behavior in
Fig. 17 holds not just for the BOSS data, but also for our
simulation-based model predictions across the prior space.
These findings confirm that our specific choices of Gaussian
width, grid size and harmonic order for the wavelet analysis
were conservative enough and did not access scales smaller
than the ones of the correlation function benchmark analysis.
We also note that wavelets which are explicitly designed

to have a finite support in Fourier space, such as e.g. the ones
used in [83,84], are a natural next improvement to the above
approach, that we are actively working on implementing in
advance of the application to the next generation of
spectroscopic data.

FIG. 15. Marginalized constraints on the ΛCDM cosmological
parameters obtained using the WST coefficients without the
inclusion of the emulator error, Cemu, in Eq. (20), shown in the
blue contours. The result of the main WST analysis using the full
covariance (originally shown in Fig. 8) is also plotted in red, for
comparison.

FIG. 16. Marginalized constraints on the ΛCDM cosmological
parameters obtained from the joint WSTþ correlation function
analysis using a flat prior on the value of ωb (red), as opposed to
the main analysis that used a Gaussian prior (24), in blue (and
originally presented in Fig. 8).

FIG. 17. Fractional changes to the WST data vector when a
sharp top-hat filter with various kmax cutoff values is applied to
the galaxy field before the evaluation in Eq. (6), with respect to
the original evaluation of our main analysis. This example
evaluation corresponds to the NGC part of the BOSS dataset.
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