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We present an analytic model of nonlinear correlators of galaxy/halo ellipticities in redshift space.
The three-dimensional ellipticity field is not affected by the redshift-space distortion (RSD) at linear order,
but by the nonlinear one, known as the Finger-of-God effect, caused by the coordinate transformation
from real to redshift space. Adopting a simple Gaussian damping function to describe the nonlinear
RSD effect and the nonlinear alignment model for the relation between the observed ellipticity and
underlying tidal fields, we derive analytic formulas for the multipole moments of the power spectra of the
ellipticity field in redshift space expanded in not only the associated Legendre basis, a natural basis for the
projected galaxy shape field, but also the standard Legendre basis, conventionally used in literature. The
multipoles of the corresponding correlation functions of the galaxy shape field are shown to be expressed
by a simple Hankel transform, as is the case for those of the conventional galaxy density correlations.
We measure these multipoles of the power spectra and correlation functions of the halo ellipticity field
using large-volume N-body simulations. We then show that the measured alignment signals can be
better predicted by our nonlinear model than the existing linear alignment model. The formulas derived
here have already been used to place cosmological constraints using from the redshift-space correlation
functions of the galaxy shape field measured from the Sloan Digital Sky Survey [T. Okumura and
A. Taruya, Astrophys. J. Lett. 945, L30 (2023).].

DOI: 10.1103/PhysRevD.109.103501

I. INTRODUCTION

Intrinsic alignments (IAs) of orientations of galaxies
with the surrounding large-scale structure are considered a
main source of systematics in cosmological gravitational
lensing surveys [1–17] (see also [18–22] for reviews). The
IA effect has also been attracting attention as a cosmo-
logical probe complimentary to the conventional galaxy
clustering. It was pointed out that measurements of IAs in
three dimensions can be used as dynamical and geometric
probes of cosmology, with redshift-space distortions and
baryon acoustic oscillations (BAO) [23–27]. Further theo-
retical studies have shown that the measurements can be
also used as probes of primordial non-Gaussianity [28–30],
gravitational waves [31–34], neutrino masses [35], statis-
tical isotropy [36] and gravitational redshifts [37,38].

Recently, observational constraints on cosmological mod-
els have been placed by measuring IAs of galaxies from
the Sloan Digital Sky Survey (SDSS) [39,40,110]. More
significant contributions on the cosmological constraints
are expected by observations of the IA of galaxies in
ongoing and upcoming galaxy redshift surveys with a
better imaging quality [41–43].
In order to maximize the cosmological information

encoded in the IA of galaxies, one needs to develop
accurate nonlinear models of IA statistics in full three
dimensions. While modeling of the nonlinear power
spectrum in redshift has been extensively performed for
the galaxy density field [e.g., [44–50]], there are fewer
studies for the galaxy ellipticity field. The simplest model
for the IA statistics is the linear alignment (LA) model,
which linearly relates the ellipticity field to the tidal
gravitational field [5,8,24,51]. The model beyond the LA
model, nonlinear alignment (NLA) model as well as the
nonlinear shape bias model have been studied [52–62].*tokumura@asiaa.sinica.edu.tw
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However, the modeling of the IA statistics in three
dimensions requires an understanding of the nonlinear
redshift-space distortion (RSD) effect on them [63,64],
which is not as trivial as the nonlinearities above:
Refs. [23,65] had included the linear Kaiser factor into
the redshift-space ellipticity field but later Ref. [15] pointed
out that the ellipticity field is not affected by the linear
RSD. This argument is no longer valid once nonlinearities
of IA are taken into account. It has been shown by
Refs. [58,66] in their analytical models that the ellipticity
field is indeed affected by the nonlinear RSD effect. The
accuracy of the models including the nonlinear RSD effect
is still unclear because they have not been tested against
the measurements from N-body simulations (but see
Ref. [110] which provided the direct comparison with
the observed result).
In this paper, we derive formulas of nonlinear intrinsic

alignment statistics in redshift space where the nonlinear
RSD effect is taken into account as a Gaussian damping
function.Weprovide phenomenological formulas of both the
IA power spectra and correlation functions. Conventionally,
the IA correlations are expanded in terms of the (standard)
Legendre polynomials [51,67,68]. However, it was pointed
out by Ref. [69] that the IA statistics which contain the
geometric factor due to the projection of the intrinsic shape
along the line of sight aremore naturally expanded in termsof
the associated Legendre polynomials rather than the standard
Legendre ones (see also Ref. [38,70,71]). Thus, we provide
our formulas expanded by both standard and associated
Legendre polynomials. Note that the formulas derived here
have already been used to place cosmological constraints
from the Sloan Digital Sky Survey in Ref. [110].
Before proceeding to the next section, we note that we

assume the linear and scale-independent bias for both
the density and shape fields throughout the paper. The
nonlinear shape bias has been investigated in real space
(e.g., [53,60,61,72]). Incorporating the nonlinear bias effect
into theoretical predictions of redshift-space IA statistics
will be presented in the future work (but see Ref. [56] for
the impacts of nonlinear bias on the supersample effects).
The rest of this paper is organized as follows. In Sec. II

we describe general forms of the nonlinear power spectra of
the ellipticity field in redshift space. Sections III and IV
present the analytical model for the multipole moments of
the IA power spectra and correlation functions, taking into
account the nonlinear RSD and alignment effects. In Sec. V
we presents the results of numerical calculations for the
nonlinear RSD model of IA statistics. Our models for the
IA statistics are tested against the measurements from
N-body simulations in Sec. VI. Our conclusions are given
in Sec. VII. In Appendix A, we provide alternative ways to
derive the model of the IA correlation functions by using
the spherical harmonic expansion. The higher-order terms
that do not contain linear contributions are provided in
Appendix B. The expressions at the linear theory limit are
provided in Appendix C.

Throughout the paper, we assume the spatially flatΛCDM
model as our fiducial model [73]; Ωm ¼ 1 −ΩDE ¼ 0.315,
ΩK ¼ 0,w0 ¼ −1,wa ¼ 0,H0 ¼ 67.3 ½km=s=Mpc� and the
present-day value of σ8 to be σ8 ¼ 0.8309.

II. GALAXY DENSITY AND ELLIPTICITY POWER
SPECTRA IN REDSHIFT SPACE

In this paper, we consider redshift-space correlators of
the galaxy/halo ellipticity field with itself as well as with
the density field. The positions of objects in three-dimen-
sional galaxy surveys are sampled by their redshifts and are
therefore displaced along the line of sight by their peculiar
velocities, known as RSDs. The position of distant objects
in real space, x, is mapped to the one in redshift space, s, as
s ¼ xþ vzðxÞ

aHðzÞ ẑ, where vzðxÞ ¼ vðxÞ · ẑ, vðxÞ is the peculiar
velocity, HðzÞ is the Hubble parameter at redshift z, a ¼
ð1þ zÞ−1 is the scale factor, and hat denotes a unit
vector and ẑ is pointing the observer’s line of sight, namely,
ẑ ¼ ŝ ¼ x̂.1

A. Galaxy density field

Density perturbations of galaxies/halos are defined by
the density contract from the mean ρ̄g,

δgðxÞ≡ ρgðxÞ=ρ̄g − 1: ð1Þ

Through the real-to-redshift space mapping, the redshift-
space density field of galaxies is given by [46,48,49]

1þ δSgðsÞ ¼
Z

d3x
Z

d3k
ð2πÞ3 e

ik·½s−xþfuzðxÞẑ�½1þ δgðxÞ�; ð2Þ

where uzðxÞ ¼ −vzðxÞ=ðfaHÞ and the superscript S
denotes a quantity defined in redshift space. The quantity
f is the growth-rate parameter to characterize the evolution
of the density perturbation, defined as

fðzÞ ¼ −
d lnDðzÞ
d lnð1þ zÞ ¼

d lnDðaÞ
d ln a

; ð3Þ

where DðzÞ is the linear growth factor of the perturbation,
DðzÞ ¼ δmðx; zÞ=δmðx; 0Þ. Via the Fourier transform,

δSgðkÞ ¼
Z

d3se−ik·sδSgðsÞ

¼
Z

d3xe−ik·½x−fuzðxÞẑ�½δgðxÞ þ f∇zuzðxÞ�: ð4Þ

1While properly taking into account thewide-angle effect [74,75]
provides additional cosmological constraints (see, Refs. [38,76]
for the studies of the wide-angle effects on ellipticity fields),
throughout this paper, we assume a plane-parallel approxima-
tion because we mainly focus on the correlations at small
separations.
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The galaxy autopower spectrum, PS
ggðkÞ, with the most

general form under the plane-parallel approximation can be
written as [46,77]

PS
ggðkÞ ¼

Z
d3re−ik·rheifkμkΔuz

× ½δgðxÞ þ f∇zuzðxÞ�½δgðx0Þ þ f∇zuzðx0Þ�i; ð5Þ

where r ¼ x − x0, Δuz ¼ uzðxÞ − uzðx0Þ and μk ¼ k̂ · x̂ is
the directional cosine between the wave vector and line-of-
sight direction.

B. Galaxy intrinsic ellipticity field

We use ellipticities of galaxies as a tracer of the three-
dimensional tidal field. Similarly to the density field, the
redshift-space ellipticity field is described as (See Ref. [78]
for a similar equation for the redshift-space velocity field)

γSijðsÞ ¼
Z

d3x
Z

d3k
ð2πÞ3 e

ik·½s−xþfuzðxÞẑ�γijðxÞ; ð6Þ

which is translated into Fourier space as

γSijðkÞ ¼
Z

d3se−ik·sγSijðsÞ

¼
Z

d3xe−ik·½x−fuzðxÞẑ�γijðxÞ: ð7Þ

The autocorrelation of the ellipticity field and its cross-
correlation with the density field are, respectively,

PS
γγ;ijklðkÞ ¼

Z
d3re−ik·rheifkμkΔuzγijðxÞγklðx0Þi; ð8Þ

PS
gγ;ijðkÞ ¼

Z
d3re−ik·rheifkμkΔuz

× ½δgðxÞ þ f∇zuzðxÞ�γijðx0Þi: ð9Þ

Note that γSij in Eq. (6) can be interpreted as either the
volume-weighted or number-weighted ellipticity field.
Accordingly, Eqs. (8) and (9) are the power spectra for
the volume-weighted or number-weighted ellipticity field.
Since the observed galaxy/halo shapes are projected onto

the celestial sphere (x–y plane), we consider the two
traceless components as the observed shape field,

�
γSþðkÞ
γS×ðkÞ

�
¼

�
γSxxðkÞ − γSyyðkÞ

2γSxyðkÞ

�
: ð10Þ

All the power spectra with this projected shape field can be
expressed in terms of PS

γγ;ijkl [Eq. (8)] and P
S
gγ;ij [Eq. (9)], as

PS
gþðkÞ ¼ PS

gγ;xxðkÞ − PS
gγ;yyðkÞ; ð11Þ

PS
g×ðkÞ ¼ 2PS

gγ;xyðkÞ; ð12Þ

PSþþðkÞ ¼ PS
γγ;xxxxðkÞ − 2PS

γγ;xxyyðkÞ þ PS
γγ;yyyyðkÞ; ð13Þ

PS
××ðkÞ ¼ 4PS

γγ;xyxyðkÞ; ð14Þ

PSþ×ðkÞ ¼ PS
×þðkÞ

¼ 2½PS
γγ;xxxyðkÞ − PS

γγ;yyxyðkÞ�; ð15Þ

PS
�ðkÞ ¼ PSþþðkÞ � PS

××ðkÞ; ð16Þ

We also define E-/B-modes, γðE;BÞ, which are the
rotation-invariant decomposition of the ellipticity field [6],

γSEðkÞ þ iγSBðkÞ ¼ e−2iϕk ½γSþðkÞ þ iγS×ðkÞ�; ð17Þ
where ϕk is the azimuthal angle of the wave vector
projected on the celestial sphere. Then the power spectra
of the E-=B-modes are expressed using those of γSðþ;×ÞðkÞ
[Eqs. (11)–(15)]:

PS
gEðkÞ ¼ cos ð2ϕkÞPS

gþðkÞ þ sin ð2ϕkÞPS
g×ðkÞ; ð18Þ

PS
gBðkÞ ¼ − sin ð2ϕkÞPS

gþðkÞ þ cos ð2ϕkÞPS
g×ðkÞ; ð19Þ

PS
EEðkÞ ¼ cos2 ð2ϕkÞPSþþðkÞ þ sin2 ð2ϕkÞPS

××ðkÞ
þ 2 cos ð2ϕkÞ sin ð2ϕkÞPSþ×ðkÞ; ð20Þ

PS
BBðkÞ ¼ sin2 ð2ϕkÞPSþþðkÞ þ cos2 ð2ϕkÞPS

××ðkÞ
− 2 cos ð2ϕkÞ sin ð2ϕkÞPSþ×ðkÞ: ð21Þ

Comparison of Eqs. (8) and (9) with Eq. (5) implies that
the power spectra of the shape field in redshift space is
affected by the Finger-of-God effect in the same way as
those of the density field. We investigate the effect in the
next section.

III. ANALYTICAL MODEL OF NONLINEAR
REDSHIFT-SPACE DISTORTION

A. Nonlinear alignment model

To relate the observed galaxy/halo shape field to the
underlying tidal gravitational field, we use the LA model,
which assumes a linear relation between the intrinsic
ellipticity and tidal field at the true three-dimensional
position, namely without the line-of-sight displacement
due to RSDs [5,8]. In Fourier space, the ellipticity field
projected along the line of sight, ẑ, is given by

�
γþðkÞ
γ×ðkÞ

�
¼ bK

�
k2x − k2y
2kxky

�
δmðkÞ
k2

; ð22Þ

where bK represents the redshift-dependent coefficient
of the intrinsic alignments which we refer to as the
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shape bias.2 We adopt the NLA model, which replaces the
linear matter density field δm by the nonlinear one [79].
Furthermore, the redshift-space ellipticity field is multi-
plied by the damping function due to the nonlinear RSD
effect as we will see below.

B. Phenomenological RSD model

To accurately describe the observed and simulated
results of galaxy/halo ellipticity correlations in redshift
space, the nonlinear RSD effect, known as the Finger-of-
God (FoG), needs to be taken into account in the theoretical
predictions. In Sec. II, we see that the expressions of power
spectra involve the exponential factor in the ensemble
average [see Eqs. (5), (8) and (9)], which is responsible
for suppressing the power spectrum amplitude due to
the randomness of the pairwise velocity contributions.
Although the impact of this exponential factor, coupled
with the density and ellipticity fields, needs to be carefully
treated in the statistical calculations, a dominant effect of
this is phenomenologically but quantitatively described by
imposing the factorized ansatz, i.e., he−ifkμkΔuzf� � �gi →
he−ifkμkΔuzih� � �i. Then, writing all the redshift-space power
spectra in the previous subsection as PS

XðkÞ, this ansatz
leads to the following separable expression of the power
spectra [46] (see also [44,45,80,81]):

PS
XðkÞ ¼ P̂S

XðkÞD2
FoGðfkμkσvÞ; ð23Þ

where k ¼ jkj, μk ¼ k̂ · ẑ ¼ kz=k is the directional cosine
between the observer’s line of sight and thewave vector k. In
this expression, the exponential factor he−ifkμkΔuzi is iden-
tified with the functionD2

FoG, andwemodel it as the zero-lag
correlation characterized by the velocity dispersion, σv.
Equation (23) includes the redshift-space galaxy power

spectrum proposed by Ref. [46] (X ¼ gg). In this case, the
function P̂S

gg is given by

P̂S
ggðkÞ ¼ b2PδδðkÞ þ 2bfμ2kPδθðkÞ þ f2μ4kPθθðkÞ; ð24Þ

where b is the linear galaxy bias [82], Pδδ and Pθθ are
the nonlinear autopower spectra of density and velocity
divergence, respectively, and Pδθ is the their cross-power
spectrum. In the linear theory limit, Pδδ ¼ Pδθ ¼ Pθθ and
DFoG ¼ 1, and hence Eq. (24) converges to the original
Kaiser formula [64]. The parameter f quantifies the cosmo-
logical velocity field and the speed of structure growth, and
thus is useful for testing a possible deviation of the gravity
law from general relativity [83,84]. Under modified gravity

models, even though the background evolution is the
same as the ΛCDM model, the density perturbations
would evolve differently (See, e.g., Ref. [85] for degener-
acies between the expansion and growth rates for various
gravity models). The relation of this phenomenological
form with the general one in Eq. (5) was made in Ref. [48].
Adopting the NLA model, the cross-power spectra of the

galaxy density and E-=B-mode fields and the autopower
spectra of the E-=B-mode fields are given by

P̂S
gEðkÞ ¼ bKð1 − μ2kÞ½bPδδðkÞ þ fμ2kPδθðkÞ�; ð25Þ

P̂S
EEðkÞ ¼ b2Kð1 − μ2kÞ2PδδðkÞ; ð26Þ

P̂S
gBðkÞ ¼ P̂S

BBðkÞ ¼ 0: ð27Þ

The power spectra of the E-mode, namely PS
gE and PS

EE, are
the main statistics to be tested in this paper. Our model for
these statistics contain free parameters of θ ¼ ðf; b; bK; σvÞ.
When we analyze power spectra that are anisotropic

along the line of sight and thus have μk dependences, we
commonly use the multipole expansion in terms of the
Legendre polynomials, LlðμkÞ, as [51,86]

PS
XðkÞ ¼

X
l

PS
X;lðkÞLlðμkÞ; ð28Þ

where the coefficients PS
X;lðkÞ are given by

PS
X;lðkÞ ¼

2lþ 1

2

Z
1

−1
dμkPS

Xðk; μkÞLlðμkÞ: ð29Þ

In this paper, we adopt a simple Gaussian func-
tion for the nonlinear RSD term, DFoGðfkμkσvÞ ¼
exp ½−ðfkμkσvÞ2=2�≡ exp ð−αμ2k=2Þ, where α ¼ ðfkσvÞ2.
With this Gaussian function, all the multipole moments of
the power spectra, i.e., PS

X;lðkÞ, are expressed in a factor-
ized form with the angular dependence encoded by

pðnÞðαÞ≡
Z

1

−1
dμkμ2nk e−αμ

2
k : ð30Þ

This function has a maximum at α ¼ 0 and decreases
monotonically. The integral can be performed analytically

as pðnÞðαÞ ¼ γð1=2þn;αÞ
α1=2þn , where γðn; αÞ ¼ R

α
0 dt tn−1e−t is the

incomplete gamma function of the first kind. All the
formulas derived below are, thus, expressed in terms of
the function pðnÞðαÞ. The linear-theory limits of the for-
mulas are derived by setting α ¼ 0, pðnÞð0Þ ¼ 2

2nþ1
.

The expression of the multipole expansions for the
nonlinear galaxy power spectra with the Gaussian damping
function were derived by Refs. [80,87]. They are expressed
in terms of pðnÞðαÞ as

2The shape bias parameter is related to C̃1 in Ref. [51] by
bK ¼ −C̃1. Some references use bK for the shape bias in the
three-dimensional tidal field, Kij, as γij ¼ bKKij (e.g., [28]).
However, this bK differs from that we introduced in Eq. (22) by a
factor of two.
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PS
gg;lðkÞ ¼ b2Qð0Þ

gg;lðαÞPδδðkÞ þ 2bfQð1Þ
gg;lðαÞPδθðkÞ

þ f2Qð2Þ
gg;lðαÞPθθðkÞ: ð31Þ

The multipoles with l ¼ 0, 2, 4 contain nonzero contri-

butions at linear scales. The functionsQðnÞ
gg;lðαÞ up to l ¼ 4

are given by

QðnÞ
gg;0ðαÞ ¼

1

2
pðnÞðαÞ; ð32Þ

QðnÞ
gg;2ðαÞ ¼

5

4
½3pðnþ1ÞðαÞ − pðnÞðαÞ�; ð33Þ

QðnÞ
gg;4ðαÞ ¼

9

16
½35pðnþ2ÞðαÞ − 30pðnþ1ÞðαÞ þ 3pðnÞðαÞ�:

ð34Þ

By taking the α → 0 limit, Qgg;lð0Þ ¼ 0 for l > 4 and the
linear RSD formulas are obtained [64].

C. E-mode cross-power and autopower spectra

Due to the geometric factor, ð1 − μ2kÞ, arising from the
projection of the shape field along the line of sight in
Eqs. (25) and (26), the cross-power spectra of the galaxy
density and E-mode shape fields (gE power) and autopower
spectra of the E-mode shape field (EE power) are more
naturally expressed in the associated Legendre basis rather
than in the standard Legendre basis,

PS
XðkÞ ¼

X
L≥m

P̃S
X;LðkÞΘm

L ðμkÞ; ð35Þ

where X ¼ fgE; EEg, Θm
L ðμÞ is the normalized associated

Legendre function related to the unnormalized one by

Θm
L ðμÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ1
2

ðL−mÞ!
ðLþmÞ!

q
Lm
L ðμkÞ, so that it satisfies a simple

orthonormal relation,
R
1
−1 dμΘm

L ðμÞΘm
L0 ðμÞ ¼ δLL0 , with

δLL0 being the Kronecker’s delta. We added tilde to
PS
X;LðkÞ to emphasize that they are the expansion coef-

ficients of the normalized polynomials Θm
L ðμkÞ. While the

choice of m in Eq. (35) is arbitrary, the expressions of the
gE and EE power spectra become the simplest if one
chooses m ¼ 2 and 4, respectively [69]. Thus, in the
following, P̃S

gE;LðkÞ and P̃S
EE;LðkÞ stand for the coefficients

expanded byΘm¼2
L andΘm¼4

L , respectively. We also provide
the expression of the multipoles of the gE and EE power
spectra expanded in terms of the standard Legendre
polynomials, which used to be commonly considered
theoretically but were found to be not direct observables
in real surveys [69].
All the multipoles of the power spectra considered in

this subsection are summarized in Table I. We present
only the multipoles P̃S

X;L and PS
X;l that contain linear-order

contributions here, and the higher-order terms are provided
in Appendix B up to L ¼ 12 and l ¼ 12, respectively.
We can obtain the linear theory expressions by taking the
α → 0 limit, and they are shown in Appendix C.
Using the function pðnÞðαÞ [Eq. (30)], the gE power

spectrum, P̃S
gE;LðkÞ, is explicitly described as

P̃S
gE;LðkÞ ¼

Z
1

−1
dμkPS

gEðk; μkÞΘm¼2
L ðμkÞ

¼ bbKQ̃
ð0Þ
gE;LðαÞPδδðkÞ þ fbKQ̃

ð1Þ
gE;LðαÞPδθðkÞ;

ð36Þ
where L ≥ m ¼ 2. The two lowest multipoles, P̃S

gE;LðkÞ
with L ¼ 2 and 4, contain linear-order contributions, and

QðnÞ
gE;LðαÞ are given by

Q̃ðnÞ
gE;2ðαÞ ¼

ffiffiffiffiffi
15

p

4
½pðnÞðαÞ − 2pðnþ1ÞðαÞ þ pðnþ2ÞðαÞ�; ð37Þ

Q̃ðnÞ
gE;4ðαÞ ¼

3
ffiffiffi
5

p

8
½−pðnÞðαÞ þ 9pðnþ1ÞðαÞ

− 15pðnþ2ÞðαÞ þ 7pðnþ3ÞðαÞ�: ð38Þ

When the gE power spectrum is expanded by the
standard Legendre basis [Eq. (28)] instead of the associated
Legendre basis, they are shown to be

PS
gE;lðkÞ ¼ bbKQ

ð0Þ
gE;lðαÞPδδðkÞ þ fbKQ

ð1Þ
gE;lðαÞPδθðkÞ;

ð39Þ

where QðnÞ
gE;l which contain the linear contributions are

given by

QðnÞ
gE;0ðαÞ ¼

1

2
½pðnÞðαÞ − pðnþ1ÞðαÞ�; ð40Þ

QðnÞ
gE;2ðαÞ ¼ −

5

4
½pðnÞðαÞ − 4pðnþ1ÞðαÞ þ 3pðnþ2ÞðαÞ�; ð41Þ

TABLE I. Summary of the coordinate-independent alignment
power spectra derived in Sec. III. The functions P̃S

X;L and PS
X;l are

coefficients expanded in terms of the normalized associated
Legendre polynomial ΘL and standard Legendre polynomial
Ll, respectively.

Definition
(Equation)

Fourier-space Result (Figure)

Statistics Multipole (Equation) Theory Simulation

gE PS
gEðkÞ (25) P̃S

gE;L (36) 1 6

PS
gE;l (39) 2 7

EE PS
EEðkÞ (26) P̃S

EE;L (43) 1 6

PS
EE;l (45) 2 7
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QðnÞ
gE;4ðαÞ ¼

9

16
½3pðnÞðαÞ − 33pðnþ1ÞðαÞ

þ 65pðnþ2ÞðαÞ − 35pðnþ3ÞðαÞ�: ð42Þ

Similarly to the gE power spectrum in Eq. (36), the EE
autopower spectrum expanded in terms of the associated
Legendre polynomials, P̃S

EE;LðkÞ, is concisely described as

P̃S
EE;LðkÞ ¼

Z
1

−1
dμkPS

EEðk; μkÞΘm¼4
L ðμkÞ

¼ b2KQ̃EE;LðαÞPδδðkÞ; ð43Þ

where L ≥ m ¼ 4. Only the lowest-order coefficient with
L ¼ 4, Q̃EE;4, contains the contribution in linear theory.
The term is given by

Q̃EE;4ðαÞ ¼
3

ffiffiffiffiffi
35

p

16
½pð0ÞðαÞ − 4pð1ÞðαÞ þ 6pð2ÞðαÞ

− 4pð3ÞðαÞ þ pð4ÞðαÞ�: ð44Þ

The multipole expansions of the EE power in terms of
the standard Legendre polynomials are expressed as

PS
EE;lðkÞ ¼ b2KQEE;lðαÞPδδðkÞ; ð45Þ

where

QEE;0ðkÞ ¼
1

2
½pð0ÞðαÞ − 2pð1ÞðαÞ þ pð2ÞðαÞ�; ð46Þ

QEE;2ðkÞ ¼ −
5

4
½pð0ÞðαÞ− 5pð1ÞðαÞ þ 7pð2ÞðαÞ− 3pð3ÞðαÞ�;

ð47Þ

QEE;4ðαÞ ¼
9

16
½3pð0ÞðαÞ − 36pð1ÞðαÞ þ 98pð2ÞðαÞ

− 100pð3ÞðαÞ þ 35pð4ÞðαÞ�: ð48Þ

Note that, which basis is preferred in the actual cosmo-
logical analysis of the alignment statistics depends on
which aspects one considers more important. As presented
above, we can express the IA power spectra using the
minimum set of the multipoles in the associated Legendre
basis. However, cosmological information encoded at
linear level in the standard Legendre basis is propagated
into the higher-order multipoles that have no linear-level
contribution in the associated one to some extent due to
the off-diagonal components of the covariance matrix for
the power spectra. It is demonstrated in our upcoming
paper [88].
Numerical results of these nonlinear formulas are given

in Sec. V and compared to the measurements from N-body
simulations in Sec. VI.

IV. ELLIPTICITY CORRELATION FUNCTIONS

In this section, we present multipole moments of the
correlation functions of the projected galaxy/halo ellipticity
field in redshift space. First, the model for the IIðþÞ
correlation multipoles in terms of the standard Legendre
polynomials, ξSþ;l, is given. Second, we provide the models
for the GI and IIð−Þ multipoles in terms of the associated
Legendre polynomials, ξ̃Sgþ;L and ξ̃S−;L, respectively, and
then those of the standard Legendre polynomials, ξSgþ;l and
ξS−;l. Table II summarizes all the power spectra
and correlation functions of the shape field considered in
this section.
A two-point correlation function is related to the power

spectrum by a Fourier transform,

ξSXðrÞ ¼
Z

d3k
ð2πÞ3 P

S
XðkÞeik·r

¼
Z

d3k
ð2πÞ3 P̂

S
XðkÞD2

FoGðfkμkσvÞeik·r: ð49Þ

We start by considering the power spectra of the shape
field, namely Eqs. (11)–(16). Following the model devel-
oped in Sec. III B, the part P̂S

XðkÞ in Eq. (23) are given by

P̂S
gþðkÞ ¼ bKk−2ðk2x − k2yÞ½bPδδðkÞ þ fμ2kPδθðkÞ�; ð50Þ

P̂S
�ðkÞ ¼ b2Kk

−4½ðk2x − k2yÞ2 � ð2kxkyÞ2�PδδðkÞ; ð51Þ

P̂S
g×ðkÞ ¼ P̂Sþ×ðkÞ ¼ P̂S

×þðkÞ ¼ 0: ð52Þ

In the following, we derive the multipoles of the nonzero IA
power spectra, PS

gþðkÞ and PS
�ðkÞ, and substitute them into

Eq. (49). Following Ref. [69], we express the inverse
Hankel transform, as

H−1
l ½gðkÞ�ðrÞ≡ il

Z
k2dk
2π2

jlðkrÞgðkÞ: ð53Þ

TABLE II. Same as Table I but for the coordinate-dependent
alignment power spectra derived in Sec. IV. The power spectra are
used to derive the expressions for the corresponding correlation
functions, ξSX;l and ξ̃SX;L.

Definition
(Equation)

Configuration space Result (Figure)

Statistics Multipole (Equation) Theory Simulation

IIðþÞ PSþðkÞ (51) ξSþ;l (56) 9

GI PS
gþðkÞ (50) ξ̃Sgþ;L (59) 1 8

ξSgþ;l (61)–(63) 2 9

IIð−Þ PS
−ðkÞ (51) ξ̃S−;L (60) 1 8

ξS−;l (64)–(66) 2 9
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Using this notation, the commonly-used multipole expan-
sion of an anisotropic power spectrum is described as

ξSXðrÞ ¼
X
l

ξSX;lðrÞLlðμsÞ; ð54Þ

where ξSX;lðrÞ ¼ H−1
l ½PS

X;lðkÞ�. The multipole components
of the conventional galaxy density correlation function with
the FoG Gaussian damping term [Eq. (31)] are given by

ξSgg;lðrÞ ¼ b2Πggð0Þ
δδ;l ðrÞ þ 2bfΠggð1Þ

δΘ;l ðrÞ þ f2Πggð2Þ
ΘΘ;lðrÞ; ð55Þ

where ΠYðnÞ
X;l ðrÞ ¼ H−1

l ½QðnÞ
Y;lðkÞPXðkÞ�. In the linear theory

limit (σv → 0), the equation is reduced to the Kaiser
formula [64,86,89].
The IIðþÞ power spectrum, PSþðkÞ, is equivalent to the

EE power spectrum in our model, PSþðkÞ ¼ PEEðkÞ
[Eqs. (45)–(48)]. The expression for the IIðþÞ spectrum
is expanded in terms of the standard Legendre polynomials,
PS
þ;lðkÞ ¼ PS

EE;lðkÞ, where l ¼ 0, 2 and 4 multipoles
contain the linear contributions. The IIðþÞ multipoles
are given in a similar manner to the GG multipoles,

ξSþ;lðrÞ ¼ H−1
l ½PS

EE;lðkÞ�ðrÞ
¼ b2KH

−1
l ½Qþ;lðkÞPδδðkÞ�; ð56Þ

where taking σv → 0 limit again leads to the linear theory
formula of Ref. [51].
Next, let us derive the expressions of the GI and IIð−Þ

correlation functions, ξSgþðrÞ and ξS−ðrÞ, respectively. Unlike
the IIðþÞ correlation function, they are naturally expanded
by the associated Legendre polynomials with m ¼ 2 and
m ¼ 4, respectively. Using the normalized associated
Legendre polynomials, they are expressed as

ξSgþðrÞ ¼
X
L≥2

ξ̃Sgþ;LðrÞΘm¼2
L ðμrÞ cosð2ϕrÞ; ð57Þ

ξS−ðrÞ ¼
X
L≥4

ξ̃S−;LðrÞΘm¼4
L ðμrÞ cosð4ϕrÞ; ð58Þ

where ϕr is the azimuthal angle of the separation vector
projected along the line-of-sight direction (z-axis) and
μr ¼ rz=r. Note that the definitions of ξSgþ and ξS− in this
paper are different from those in Ref. [69] by the factors of
the azimuthal angle [see their Eqs. (25) and (27)]. To
predict the multipoles of the GI and IIð−Þ correlation
functions measured from simulations or observations, we
make them coordinate invariant by setting ϕr ¼ 0, as

ξ̃Sgþ;LðrÞ ¼
Z

1

−1
dμrΘm¼2

L ðμrÞξSgþðrÞ
����
ϕr¼0

¼ H−1
L ½P̃S

gE;LðkÞ�ðrÞ; ð59Þ

ξ̃S−;LðrÞ ¼
Z

1

−1
dμrΘm¼4

L ðμrÞξS−ðrÞ
����
ϕr¼0

¼ H−1
L ½P̃S

EE;LðkÞ�ðrÞ: ð60Þ
The correlation functions with ϕr ¼ 0 are equivalent with
those defined in Ref. [69]. In Appendix A, we provide
alternative ways to derive the above equations by using the
spherical harmonic expansion.
While correlation functions of the projected shape field

are naturally expanded in the associated Legendre basis,
those in the standard Legendre basis is commonly adopted.
In the following we provide the nonlinear formulas for the
multipoles of the IA correlation functions in redshift space
expanded in the standard Legendre basis.
Setting the angle ϕr to zero, the multipole expansion of

ξSgþðrÞ in Eq. (57) is analytically given by

ξSgþ;0ðrÞ ¼ −
ffiffiffiffiffi
5

12

r
ξ̃Sgþ;2ðrÞ þ

1ffiffiffiffiffi
20

p ξ̃Sgþ;4ðrÞ

−
1

2

ffiffiffiffiffiffiffiffi
13

210

r
ξ̃Sgþ;6ðrÞ þ

1

6

ffiffiffiffiffi
17

70

r
ξ̃Sgþ;8ðrÞ

−
1

6

ffiffiffiffiffi
7

55

r
ξ̃Sgþ;10ðrÞ þ

5ffiffiffiffiffiffiffiffiffiffiffiffiffi
12012

p ξ̃Sgþ;12ðrÞ þ � � � ;

ð61Þ

ξSgþ;2ðrÞ ¼
ffiffiffiffiffi
5

12

r
ξ̃Sgþ;2ðrÞ þ

ffiffiffi
5

4

r
ξ̃Sgþ;4ðrÞ −

1

2

ffiffiffiffiffi
65

42

r
ξ̃Sgþ;6ðrÞ

þ 1

6

ffiffiffiffiffi
85

14

r
ξ̃Sgþ;8ðrÞ −

1

6

ffiffiffiffiffi
35

11

r
ξ̃Sgþ;10ðrÞ

þ 25ffiffiffiffiffiffiffiffiffiffiffiffiffi
12012

p ξ̃Sgþ;12ðrÞ þ � � � ; ð62Þ

ξSgþ;4ðrÞ ¼ −
3ffiffiffi
5

p ξ̃Sgþ;4ðrÞ−
3

2

ffiffiffiffiffi
39

70

r
ξ̃Sgþ;6ðrÞ þ

3

2

ffiffiffiffiffi
17

70

r
ξ̃Sgþ;8ðrÞ

− 3

ffiffiffiffiffiffiffiffi
7

220

r
ξ̃Sgþ;10ðrÞ þ 15

ffiffiffiffiffiffiffiffiffiffi
3

4004

r
ξ̃Sgþ;12ðrÞ þ � � � ;

ð63Þ
and that of ξS−ðrÞ in Eq. (58) is given by

ξS−;0ðrÞ ¼
ffiffiffiffiffi
7

20

r
ξ̃S−;4ðrÞ −

1

5

ffiffiffiffiffi
13

7

r
ξ̃S−;6ðrÞ þ

1

15

ffiffiffiffiffiffiffiffi
187

28

r
ξ̃S−;8ðrÞ

−
2

3

ffiffiffiffiffiffiffiffi
13

385

r
ξ̃S−;10ðrÞ þ

25

6
ffiffiffiffiffiffiffiffiffiffi
2002

p ξ̃S−;12ðrÞ þ � � � ;

ð64Þ

ξS−;2ðrÞ ¼ −
ffiffiffi
5

7

r
ξ̃S−;4ðrÞ −

ffiffiffiffiffi
13

28

r
ξ̃S−;6ðrÞ þ

4

3

ffiffiffiffiffiffiffiffi
34

154

r
ξ̃S−;8ðrÞ

−
43

3

ffiffiffiffiffiffiffiffiffiffi
5

4004

r
ξ̃S−;10ðrÞ þ

5

3

ffiffiffiffiffiffiffiffi
11

182

r
ξ̃S−;12ðrÞ þ � � � ;

ð65Þ
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ξS−;4ðrÞ ¼
3ffiffiffiffiffiffiffiffi
140

p ξ̃S−;4ðrÞ þ
6

5

ffiffiffiffiffi
13

7

r
ξ̃S−;6ðrÞ þ

3

5

ffiffiffiffiffiffiffiffi
17

308

r
ξ̃S−;8ðrÞ

− 3

ffiffiffiffiffiffiffiffi
11

455

r
ξ̃S−;10ðrÞ þ

45

2
ffiffiffiffiffiffiffiffiffiffi
2002

p ξ̃S−;12ðrÞ þ � � � :

ð66Þ

Each multipole moment of the GI and IIð−Þ correlation
functions involving the nonlinear RSD damping factor is
expressed by infinite terms in the standard Legendre basis,
unlike in the associated Legendre basis [see Eqs. (59)
and (60)]. These are the equations used to extract cosmo-
logical information from the IA statistics of the SDSS
galaxies in Ref. [110].

V. NUMERICAL RESULTS

In this section, we present numerical results of the
phenomenological model of the redshift-space IA statis-
tics derived in the previous sections. We present the
matter-density halo-shape cross-correlations (P̃S

δE;L and
ξ̃Sδþ;L) and halo shape autocorrelations (P̃S

EE;L and ξ̃S−;L)
computed in the associated Legendre basis, and these in the
standard Legendre basis. Since we consider for the cross-
correlations the matter density field, not the biased object
field, we use the symbols P̃S

δE;L and ξ̃Sδþ;L, rather than P̃
S
gE;L

and ξ̃Sgþ;L, respectively (they are equivalent if we set b ¼ 1).
We use the publicly available CLASS code [90] to com-
pute the linear-matter power spectrum PδδðkÞ, and adopt
the revised Halofit model to obtain the nonlinear

FIG. 1. Multipoles of IA statistics expanded in terms of the associated Legendre polynomials, the cross-power spectra between matter
density and halo E-mode ellipticity P̃S

δE;L (upper left), autopower spectra of halo E-mode ellipticity P̃S
EE;L (lower left), cross correlation

functions between matter density and halo ellipticity ξ̃Sδþ;L (upper right), and autocorrelation functions of halo ellipticity ξ
S
−;l (lower left).

The prediction of linear theory is adopted for the FoG damping parameter σv. The solid and dotted curves represent positive and negative
values, respectively. The linear theory predictions are shown by the dashed gray curves.
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correction [91]. We then use the fitting formulas derived by
[92] to obtain PδθðkÞ and PθθðkÞ.
The function DFoG is a damping function due to the

nonlinear RSD effect characterized by the one-dimensional
velocity dispersion, σv. We use the linear theory prediction
for σv, as

σ2v;lin ¼
1

3

Z
d3q
ð2πÞ3

PθθðqÞ
q2

: ð67Þ

The density E-mode cross-power spectra P̃S
δE;LðkÞ and

E-mode autopower spectra P̃S
EE;LðkÞ computed in the

associated Legendre basis, are shown in the upper-left and
lower-left panels of Fig. 1, respectively. Since they are
respectively scaled by bK and b2K , only the free parameter
for these statistics is σv for which we adopt the linear theory
prediction, σv;lin [Eq. (67)]. For P̃S

δE;L, only the L ¼ 2 and

L ¼ 4 spectra have linear-order contributions, as shown by
the gray dashed curves where we set σv ¼ 0 and Pδδ ¼
Pδθ ¼ Pθθ. The effect of the nonlinearRSDdamping appears
prominently in the L ¼ 4 multipole. Since the multipoles
withL ≥ 6 donot contain the linear-order contributions, they
become nonzero only at small and hence nonlinear scales.
The FoG effect does not have significant contributions to the
E-mode autopower, P̃S

EE;LðkÞ, than to the cross power.
The corresponding configuration-space statistics, GI and

IIð−Þ correlation functions, are respectively shown in the
upper-right and lower-right panels of Fig. 1. The overall
trend is the same as the case for the power spectra. Once
again, the nonlinear RSD effect does not impact the
quadrupole moment but the hexadecapole in the associated
Legendre basis, ξ̃Sδþ;4.
The multipoles of the E-mode cross-power and auto-

power spectra expanded in the standard Legendre basis,

FIG. 2. Similar to Fig. 1, but multipoles of IA statistics are expanded in terms of the standard Legendre polynomials. Since the models
of the GI and IIð−Þ correlation functions of this basis are expressed by the infinite sums of those of the associated Legendre polynomials,
the upper-right and lower-right panels show the results of the convergence test, the summation up to L ¼ 4, 8, 10 and 12 shown by the
dot-dashed, short-dashed, dotted and solid curves, respectively.
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PS
δE;lðkÞ and PS

EE;lðkÞ, are respectively shown in the upper-
left and lower-left panels of Fig. 2. Unlike P̃S

δE;L, the
nonlinear RSD effect contributes significantly to not only
the hexadecapole but also the quadrupole for PS

δE;l.
The GI and IIð−Þ correlation functions expanded in the

standard Legendre basis are shown in the upper-right and
lower-right panels of Fig. 2, respectively. Unlike the other
statistics we discussed above, the nonlinear RSD model of
the GI and IIð−Þ correlation functions expanded by the
standard Legendre polynomials have infinite terms as we
saw in Sec. IV. The figure demonstrates that adding the
terms up to ξ̃SX;L with L ¼ 12 makes the multipoles ξSX;l
(l ¼ 0, 2, 4) converged even at small scales of interest. As
is the case with the power spectra, while the nonlinear RSD
effect in the GI correlation functions is prominent in the
hexadecapole in the associated Legendre basis, it is in
the quadrupole in the standard Legendre basis. However,
the nonlinear RSD effect contributes to the gE power
spectrum and GI correlation function quite differently in the
standard Legendre basis.

VI. COMPARISON TO N-BODY SIMULATIONS

A. N-body simulations and subhalo catalogs

As in a series of our papers [24,93–95], we use N-body
simulations run as a part of the DARK QUEST project [96].
We employ np ¼ 20483 particles of mass mp ¼ 8.15875 ×
1010 h−1M⊙ in a cubic box of side Lbox ¼ 2 h−1 Gpc.
In total, we have the data set from eight independent
realizations and we specifically analyze the snapshots
at z ¼ 0.306.
Halos are identified using the ROCKSTAR algorithm [97].

Their velocities and positions are determined by the
average of the member particles within the innermost
10% of the subhalo radius (see Ref. [97] for detail). The
halo mass is defined by a sphere with a radius R200 m within
which the enclosed average density is 200 times the
mean matter density, as Mh ≡M200 m. We create two halo
catalogs, one with Mh ≥ 1013 h−1M⊙ and another with
Mh ≥ 1014 h−1M⊙, referred to as groups and clusters. Note
that we remove subhalos, whose center is included within
the sphere of R200 m of a more massive neighbor, from these
samples. To see the effect of the satellite galaxies on the IA
statistics, we also create mock galaxy catalogs using a halo

occupation distribution (HOD) model [98] applied for the
LOWZ galaxy sample of the SDSS-III Baryon Oscillation
Spectroscopic Survey obtained by Ref. [99]. We populate
(sub)halos with galaxies according to the best-fitting HOD
NðMhÞ. After assigning a central galaxy at the center of a
host halo, we randomly draw NðMhÞ − 1member subhalos
within its R200 m to mimic the positions and velocities of the
satellites. We use a random selection of subhalos rather
than the largest subhalos because a satellite subhalo under-
goes tidal disruption in the host halo and its mass decreases
as it goes toward the center of the gravitational potential.
We call this subhalo catalog “HOD luminous red galaxies
(LRGs)”. Properties of the three subhalo samples con-
structed above are summarized in Table III.
Due to the limited hard disk space, the information of

dark matter particles could have been stored partially and
thus was lost for four realizations out of eight. Hence,
we could not measure some of the statistics for which
the information of dark matter particles is needed, while
the information of the halos including the direction of the
major axis traced by the dark matter particles was available
for all eight realizations. Thus, when the presented statistics
include the density field of dark matter in the following
analysis, the result is obtained from four realizations;
otherwise it is out of the entire eight realizations.
We assume subhalos to have triaxial shapes [100] and

estimate the orientations of their major axes using the
second moments of the distribution of member particles
projected onto the celestial plane. The two-component
ellipticity of galaxies is defined as

γðþ;×ÞðxÞ ¼
1 − q2

1þ q2
ðcos ð2ϕxÞ; sin ð2ϕxÞÞ; ð68Þ

where ϕx is the position angle of the major axis relative to
the reference axis, defined on the plane normal to the line-
of-sight direction, and q is the minor-to-major axis ratio of
a galaxy shape. We set q to zero for simplicity, which
corresponds to the assumption that a galaxy shape is a line
along its major axis [12,101].

B. Estimators

Here, we present estimators to measure from N-body
simulations the power spectra and correlation functions of
intrinsic halo shapes in redshift space.

TABLE III. Properties of mock subhalo samples at z ¼ 0.306. The quantity fsat is the number fraction of satellite
subhalos,Mmin and M̄ are the minimum and average halo mass, respectively, n̄ is the number density, and b and bK
are, respectively, the halo density and shape biases computed in the large-scale limit.

Types fsat 10−12Mmin ½h−1M⊙� 104n̄ ½h3 Mpc−3� b bK 10−12M̄ ½h−1M⊙�
Groups 0 10 4.34 1.66 0.528 32.2
Clusters 0 100 0.205 3.24 0.839 188
HOD

0.137 1.63 5.27 1.72 0.453 25.2
LRGs
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1. Power spectra

Multipole moments of the three-dimensional power
spectra of the E-mode field of halo shapes with the
matter/halo distribution, PS

gE;lðkÞ, and of the autopower
spectra of the E-mode field, PS

EE;lðkÞ, have been measured
in the Legendre basis from simulations in Refs. [68,102].
These measurements have been extended to the multipole
moments expanded in the associated Legendre basis in
Ref. [69], P̃S

gE;LðkÞ and P̃S
EE;LðkÞ, respectively.

The density and E-mode shape fields are obtained by
assigning the mass/ellipticity elements of subhalos to a
10243 uniform Cartesian mesh using the Cloud-In-Cell
(CIC) scheme. We then apply the fast Fourier transform to
estimate the density and E-mode autopower spectra, PggðkÞ
and PEEðkÞ, respectively, and their cross-power spectrum
PgEðkÞ. Note that we employ the interlacing technique to
reduce the aliasing effect in addition to the deconvolution
of the CIC kernel in Fourier space [103]. The measured
autopower spectra are affected by the shot noise. The
Poisson distribution is assumed to estimate the shot noise
for PS

gg and it is subtracted from the monopole moment in
the standard Legendre basis, Pgg;0ðkÞ. To estimate the shot
noise for the E-mode autopower spectrum, PS

EE, we
measure the B-mode autopower spectrum, PS

BB, and sub-
tract its constant value at the large-scale limit from PS

EE to
take the non-Poisson shot noise into account [68]. Note that
even the Poisson shot noise is not orthogonal to any
multipole expanded in terms of the associated Legendre
polynomials, unlike the case of the standard Legendre
polynomials [

R
1
−1 dμLlðμÞ ¼ 2δ0l]. Thus, the B-mode

autopower spectra in the associated Legendre basis,
P̃S
BB;L, need to be subtracted from P̃S

EE;L with L being
arbitrary.

2. Correlation functions

Multipole moments of the correlation functions of
galaxy/halo shape fields have been measured by
Refs. [67,95]. We use estimators for the multipole cor-
relation functions proposed in Ref. [95], ξSX;lðrÞ
(X ¼ fgþ;þ;−g), expressed as

ξSX;lðrÞ ¼
2lþ 1

2

1

RRðrÞ
X

j;kjr¼jrjkj
WX;jkLlðμjkÞ; ð69Þ

where rjk ¼ sk − sj with sj the redshift-space position of
jth halo, μjk ¼ r̂jk · ẑ,

3 and RR is the pair counts from the
random distribution, which can be analytically and exactly
computed because we place the periodic boundary con-
dition on the simulation box. For the GI and II correlation

functions, Wgþ;jk ¼ γþðsjÞ and W�;jk ¼ γþðsjÞγþðskÞ �
γ×ðsjÞγ×ðskÞ, respectively, where γðþ;×Þ is redefined relative
to the separation vector rjk projected on the plane
perpendicular to the line of sight, making the estimated
correlation functions coordinate-independent.
By analogy with Eq. (69), the multipoles of the GI

and IIð−Þ correlation functions expanded in terms of the
associated Legendre polynomials are estimated as

ξ̃SX;LðrÞ ¼
1

RRðrÞ
X

j;kjr¼jrjkj
WX;jkΘm

L ðμjkÞ; ð70Þ

where X ¼ fgþ;−g and m ¼ 2, 4, respectively.

C. Determining density and shape bias parameters

The linear density field in redshift space contains b and f
as parameters, while the linear ellipticity field bK . The
nonlinear RSD induces the Finger-of-God-type damping
parameter, σv, to both of the fields. We thus have four
parameters, ðf; b; bK; σvÞ, with f being a cosmologically
important parameter and the others nuisance parameters.
Let us determine the bias parameters, b and bK , using the

real-space statistics. The density bias parameter can be
determined by the matter-halo cross-power or halo auto-
power spectra,

bðkÞ ¼ PδgðkÞ
PδδðkÞ

; bðkÞ ¼
�
PggðkÞ
PδδðkÞ

�1
2

: ð71Þ

The parameter can be similarly determined by the corre-
sponding configuration-space statistics,

bðrÞ ¼ ξδgðrÞ
ξδδðrÞ

; bðrÞ ¼
�
ξggðrÞ
ξδδðrÞ

�1
2

: ð72Þ

The values of bK for our halo samples had already been
determined in Refs. [24,95]. Here we remeasure them using
the correlators of the halo ellipticity field expanded in the
associated Legendre basis. In Fourier space, using the
cross-power spectra of the matter density and halo E-mode
and the autopower spectra of the halo E-mode, respectively,
the shape bias is measured as

bKðkÞ ¼ −
ffiffiffiffiffi
15

p

4

P̃δE;2ðkÞ
PδδðkÞ

; ð73Þ

bKðkÞ ¼ −
� ffiffiffiffiffi

35
p

5

P̃EE;4ðkÞ
PδδðkÞ

�1
2

: ð74Þ

Similarly in configuration space, using the cross-correla-
tion and autocorrelation functions, the shape biasis, respec-
tively estimated as

bKðrÞ ¼
ffiffiffiffiffi
15

p

4

ξ̃δþ;2ðrÞ
ξδδ;2ðrÞ

; ð75Þ3Here ẑ ¼ ŝj ¼ ŝk because the plane-parallel approximation is
assumed.
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bKðrÞ ¼ −
�
3

ffiffiffiffiffi
35

p

16

ξ̃−;4ðrÞ
ξδδ;4ðrÞ

�1
2

; ð76Þ

where unlike the multipoles ξ̃δþ;2ðrÞ and ξ̃−;4ðrÞ, ξδδðrÞ is
isotropic and ξδδ;lðrÞ is the Hankel transform of PδδðkÞ,
ξδδ;lðrÞ ¼ H−1

l ½PδδðkÞ�ðrÞ [Eq. (53)]. Since ξδδ;lðrÞ with
l ≠ 0 cannot be measured from simulations directly in
configuration space, we compute them from the nonlinear-
matter power spectra PδδðkÞ.
Figure 3 shows the halo biases defined above and

determined from simulations. The density bias parameters,
b, are shown in the upper panels. The shot noise was
corrected for the bias determined from the autopower
spectrum assuming the Poisson distribution. On the other
hand the bias obtained from the cross-power spectrum
tends to have larger values at high-k, particularly for more
massive halos. The discrepancy is due to the deviation of
the shot noise from the Poisson distribution. Thus the
discrepancy is severer for massive halos and the bias
determined from the autopower spectrum is suppressed
at high-k. They are common features seen in earlier studies
(see e.g., Fig. 2 of Ref. [104]). The density bias parameters
determined from cross-correlation and autocorrelation
functions in configuration space for such massive halos
also tend to be scale dependent and deviate from the correct
values due to the non-linearity. The matter-halo cross-
power spectrum thus provides the most reliable estimate of
the density bias for massive halos and we use the large-
scale limit of the bðkÞ values from the cross spectrum to
determine the linear bias. The resultant bias values are
shown in Table III.
The measured shape bias parameters, bK, are shown in

the lower panels of Fig. 3. The shape bias parameters from
auto and cross-power spectra, P̃EE;4 and P̃δE;2, respectively,
behave very similarly, except for the massive halos. The
shape field is more severely affected by the non-Poisson
shot noise than the density field [68], and it cannot be
properly subtracted even though we use the large-scale
limit of P̃BB;4. The shape-bias parameters determined from
the cross-power spectra are well-consistent with those from
both the autocorrelation and cross-correlation functions,
ξ̃þ;4 and ξ̃gþ;2, respectively. The parameter determined from
ξ̃þ;4 starts to deviate from the constant at larger scales than
that from ξ̃δþ;2, since the shape field is density-weighted
and thus the shape autocorrelation is more severely affected
by it. Similarly to the case of the density bias, the linear
shape bias parameter is determined by the large-scale
values of bKðkÞ from the cross-power spectrum and shown
in Table III. Note that, as we set q ¼ 0 in Eq. (68), the
definition of bK here is different from literature and one
cannot directly compare the values. It is interesting to note
that the HOD LRG sample has a lower bK value than the
group sample though they have similar density bias b
values. It is because the existence of satellite galaxies/

subhalos tends to increase the density bias b but decrease
the shape bias bK due to the misalignment between the
major axes of satellites and their host halos.
The left panels of Fig. 4 show the cross-power and

autopower spectra of the shape field in real space, P̃δE;2 and
P̃EE;4, respectively. The right panels of Fig. 4 are similar to
the left panels but show the cross- and autocorrelation
functions of the shape field, ξ̃δþ;2 and ξ̃−;4, respectively.
Both in Fourier space and configuration space, the cross-
and autocorrelations are divided by the best-fitting value of
bK and its square obtained above, respectively, in the
figure. Except for the case of the clusters, both the real-
space cross-power spectra and cross-correlation functions
between the matter density and halo shape fields are well-
described by NLA model predictions with the linear shape
bias. Similar results are obtained for the shape autopower
spectra and autocorrelation functions, but discrepancies
with the model predictions start to appear at larger scales.

D. Model comparison with N-body results

Using the bias parameters, b and bK , determined in
the previous subsection, here we compare our model

FIG. 3. Halo density (upper-left) and shape (lower-left) biases
determined in Fourier space. The right panes are the same as the
left ones but the biases determined in configuration space. The
full and open points are the biases from the cross-correlations
with the matter field and autocorrelation with the halo field,
respectively. The blue, red and yellow points are the results for
clusters, groups and HOD LRGs, respectively. Since the groups
and HOD LRGs have very similar density bias parameters, we do
not show the results for HOD LRGs in the upper panels for
clarity.
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FIG. 4. (Left set) IA statistics in real space, the quadrupole moment of the matter density—E-mode cross power spectrum (upper left),
the quadrupole moment of the matter density—shape cross correlation function (upper right), the hexadecapole moment of the halo
E-mode autopower spectrum (lower left), and the hexadecapole moment of the halo shape autocorrelation function (lower right). The
solid and dashed curves are the predictions of NLA and LA models, respectively.

FIG. 5. Redshift-space GG power spectra (upper set) and correlation functions (lower set). From the left to right, we show the results
for dark matter, groups, clusters and HOD LRGs. The red and blue points are the measurements of the monopole and quadrupole
moments, respectively. The solid curves are the nonlinear RSD model with the velocity dispersion predicted by linear theory, σlinv . The
shaded regions indicate the model with the values of σv of 0.8 × σv;lin ≤ σv ≤ σv;lin. The dashed gray curves are the linear theory
prediction.
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predictions of galaxy ellipticity correlations in redshift
space with N-body measurements. There is another nui-
sance parameter, the velocity dispersion parameter σv. The
best-fitting parameter of σv strongly depends on RSD

models selected as well as the choice of the biased density
field [105]; the value slightly larger and smaller than the
linear theory prediction, σv;lin, is preferred for the dark
matter and biased objects, respectively. The deviation of the

FIG. 6. Multipoles of redshift-space IA power spectra expanded in terms of associated Legendre polynomials; gE power between
matter density and halo E-mode ellipticity P̃S

δE;L (first row), gE power between halo density and halo E-mode ellipticity P̃S
gE;L (second

row), and EE power of halo E-mode ellipticity P̃S
EE;L (third row). The solid curves are the nonlinear RSD model with the velocity

dispersion predicted by linear theory, σv;lin. The shaded regions indicate the model with the values of σv of 0.8σv;lin ≤ σv ≤ σv;lin. Linear
theory predictions for the multipoles P̃S

X;L with L ≤ 4 are shown by the gray curves.
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best-fitting value from σv;lin gets larger for incorrect models
of RSD and a broader fitting range, as indicated by a higher
value of kmax. In the following, we thus do not fit the σv
value with N-body results but rather conservatively show
the results for a range of 0.8 × σv;lin ≤ σv ≤ σv;lin to indicate
the typical level of theoretical uncertainties due to the FoG
effect. Figure 5 shows the comparison of the nonlinear

model predictions for the redshift-space power spectra,
PS
gg;l, and correlation functions, ξSgg;l, with the measure-

ments from N-body simulations. The redshift-space power
spectrum and correlation function for dark matter are well-
predicted by the RSD model with the damping factor with
σv;lin. Since the group and cluster samples do not contain
subhalos, the measurements are consistent with the linear

FIG. 7. Similar to Fig. 6 but multipoles of redshift-space IA power spectra expanded in terms of standard Legendre polynomials; gE
power between matter density and halo E-mode ellipticity PS

δE;l (first row), gE power between halo density and halo E-mode ellipticity
PS
gE;l (second row), and EE power of halo E-mode ellipticity PS

EE;l (third row).
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Kaiser model but not with the nonlinear RSD model with
the damping function, as expected.
Figures 6–9 provide comparisons of our nonlinear RSD

model predictions of IA statistics to the N-body results. In
these figures results are shown for the group, cluster and
HODLRG samples from left to right, respectively. Figures 6

and 7 show the results for the power spectra of the halo shape
field expanded in terms of the associated and standard
Legendre polynomials, respectively. Figures 8 and 9 are
similar with Figs. 6 and 8, respectively, but show the results
for the Fourier-counterparts, correlation functions. We will
discuss in detail the results in the rest of this subsection.

FIG. 8. Similar to Fig. 6 but for multipoles of redshift-space IA correlation functions expanded in terms of associated Legendre
polynomials; GI correlation between matter density and halo ellipticity ξ̃Sδþ;L (first row), GI correlation between halo density and
ellipticity ξ̃Sgþ;L (second row), and IIð−Þ correlation of halo ellipticity ξ̃S−;L (third row).
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1. IA power spectra

The first row of Fig. 6 shows the cross-power spectra of
matter density and halo E-mode fields, P̃S

δE;LðkÞ. The ratio
P̃S
δE;LðkÞ=bK does not depend on the bias parameters, b

and bK . We thus show measured P̃S
δE;L divided by the best-

fitting value of bK determined in Sec. VI C. The measured
quadrupole moments P̃S

δE;2, the lowest-order multipoles, are
well-predicted for groups and HOD LRGs by our nonlinear

FIG. 9. Similar to Fig. 8 but for multipoles of redshift-space IA correlation functions expanded in terms of standard Legendre
polynomials: GI correlation between matter density and halo ellipticity ξSδþ;l (first row), GI correlation between halo density and
ellipticity ξSgþ;l (second row), and IIð∓Þ correlations of halo ellipticity ξS∓;l (third and fourth rows). Our model of the GI and IIð−Þ
correlation functions in the standard Legendre basis contains infinite series of terms, and here we show the modeling results summed up
to the twelfth order (see the text).
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RSD model with the velocity dispersion predicted by linear
theory, σv;lin. On the other hand, there is a large discrepancy
for clusters at k > 0.1 hMpc−1. Interestingly, our model
for the hexadecapole moment, P̃S

δE;4, well-explains the
measured ones not only for groups and HOD LRGs but
also for clusters. The hexadecapole is severely affected by
the nonlinear RSD effect, and its sign flips at around
k ∼ 0.2 hMpc−1, the scale depending on the typical value
of σv, and thus the LA model fails to predict the measured
hexadecapole. Furthermore, our model provides qualita-
tively good agreement with the fully nonlinear, higher-
order moment, P̃S

δE;6, measured for all the shape samples.
The second row of Fig. 6 shows the cross-power spectra

of halo density and E-mode fields, P̃S
gE;L. While the overall

trend is similar with P̃S
δE;L in the first row, here we see the

extra contribution of the halo density bias. Since we assume
the simplest linear bias, the discrepancy between the model
and measurement starts to appear at lower k, and gets more
significant for more massive halos, as seen in the result for
clusters (halos with masses of Mh ≥ 1014h−1M⊙).
The third row of Fig. 6 shows the autopower spectra of

the halo E-mode field, P̃S
EE;L. While this quantity is not

affected by the halo density bias at linear order, it is by the
shot noise. We measure the B-mode power spectra in the
same basis, P̃S

BB;L, and subtract their large-scale limits
from P̃S

EE;L. This estimation of the shot noise becomes
more incorrect for more massive, thus rarer halos. Our
model therefore fails to predict the measurements of P̃EE;4

at k > 0.1 h−1 Mpc and P̃EE;6 at all the scales for clusters.
On the other hand, the model works reasonably well at
k < 0.2 h−1Mpc for less massive halos, namely groups and
HOD LRGs.
As seen in Fig. 7, the agreement between the models

and measurements of the IA power spectra expanded in
terms of the standard Legendre polynomials is similar with
that in Fig. 6. It is expected because they are equivalent
quantities but expanded by the different basis. However,
unlike the EE power spectrum in the associated Legendre
basis, P̃S

EE;L, only the monopole of that in the standard
Legendre basis, PS

EE;0, is affected by the shot noise and
thus suppressed significantly at high-k due to the non-
Poissonian shot noise contribution. It is interesting to note
that PS

EE;l (l ¼ 0, 2, 4) are noisier than P̃S
EE;4 because the

linear information encoded in the latter is split into the three
multipoles in the standard Legendre basis.

2. IA correlation functions

Figure 8 shows the results similar to Fig. 6 but for the
correlation functions. The first, second and third rows are
respectively multipoles of the GI correlation for matter
density and halo shape fields, ξ̃Sδþ;L, GI correlation for
halo density and halo shape fields, ξ̃Sgþ;L, and IIð−Þ

autocorrelation for halo shape field, ξ̃S−;L, expanded in
the associated Legendre basis. The comparison of our
model predictions to the N-body measurements shows a
very similar tendency with the Fourier-space results: the
measurements of ξ̃Sδþ;L are in good agreement with our
models, and the agreement gets worse for ξ̃Sgþ;L, particularly
for the cluster shape field. One exception is that the
autocorrelation in configuration space is not affected by
the shot noise as severely as in Fourier space. Thus, one
can see a reasonable agreement between the predictions
and measurements for ξ̃S−;L, and even the hexadecapole
of clusters is correctly predicted at the large-scale limit,
unlike P̃EE;4.
Unlike the power spectra, the nonlinear redshift-space

correlation functions expanded in terms of the standard
Legendre polynomials behave differently from those of the
associated Legendre polynomials, as shown in Fig. 9. Our
nonlinear RSD model of the GI and IIð−Þ correlation
functions expanded in terms of the standard Legendre
polynomials contains infinite series of the associated
Legendre polynomials. As shown in Fig. 2, the model
converges by adding the term up to sufficiently higher
order. We computed the expansion up to the twelfth order
and confirmed the convergence of the formula. We thus
show the modeling results summed up to the twelfth order.
The first row shows the GI correlation functions between
matter density and halo shape fields, ξSδþ;l. The results for
the quadrupole moments for all the halo samples are well-
explained by our nonlinear RSD model. The second row
shows the GI correlation functions between halo density
and shape fields, ξSgþ;l. Agreement between the predictions
and measurements gets worse than the case of ξSδþ;l, due to
the nonlinear-density bias effect. The third and fourth rows
show the IIð∓Þ correlation functions, ξS−;l and ξSþ;l,
respectively. The standard Legendre coefficients of the
IIð−Þ correlations, ξS−;l, are noisier than the associated
Legendre coefficients, ξ̃S−;L, since for the latter the linear
contribution is compressed to only one, hexadecapole
moment ξ̃S−;L.
The model constructed for the HOD LRG sample is very

close to the one used to constrain the growth rate from the
SDSS survey [110]. In Ref. [110], we used the monopole
and quadrupole moments of the GI and II correlation
functions at r ≥ 10 h−1Mpc for the cosmological analysis.
The right column in Fig. 9 demonstrates that our formulas
were qualitatively accurate enough for the analysis except
for the II correlation functions, particularly the quadrupole
of the IIðþÞ function. The II correlation functions measured
from the SDSS galaxy samples were so noisy that their
imperfect models would not have affect the cosmological
constraints. If one wants to use larger shape samples in
future galaxy surveys to constrain cosmological models
with precision, the more accurate modeling of the align-
ment statistics needs to be developed [106].
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VII. CONCLUSIONS

In this paper, we have presented analytic model for
nonlinear correlators of galaxy ellipticities in redshift
space. Adopting a simple Gaussian damping function to
describe the nonlinear RSD effect, known as the
Finger-of-God, we have derived formulas for the multi-
pole moments of the power spectra of galaxy ellipticity
field in redshift space, expanded in not only the asso-
ciated Legendre basis, a natural basis for the projected
galaxy shape field, but also the standard Legendre basis,
conventionally used in literature. The model had been
derived for the redshift-space galaxy power spectra by
Ref. [46,48], and our model for the intrinsic alignment
(IA) statistics have been derived by analogy with it. The
multipoles of the correlation functions of the galaxy
shape field are expressed simply by a Hankel transform
of those of the power spectra.
We compared our model with the IA statistics for halos

and mock galaxies measured from N-body simulations.
The measured statistics were found to be in a better
agreement with our nonlinear RSD model than the existing
linear alignment model. It is the first test for the accuracy of
nonlinear RSD models of the IA, though the model had
already been used to place cosmological constraints using
from the redshift-space correlation functions of the galaxy
shape field measured from the Sloan Digital Sky Survey
in Ref. [110].
A series of papers [57–59] used integrated perturbation

theory and presented a nonlinear model of the tidal field
tensor, which naturally includes nonlinear RSD (see also
Ref. [66]). However, the models had not been tested against
N-body simulation measurements. Other perturbation
theory approaches, such as the TNS model [48,105,107]
and distribution function approach [49,81,104,108,109],
can also be used to model the nonlinear RSD effect of
galaxy shape fields. These modelings will be investigated
for various halo samples and redshifts in simulations in
future work.
We presented the formulas of IA statistics in red-

shift space expanded in terms of different bases. While
they should be equivalent, the speed of the convergence
at higher-order multipoles would be different (see
Refs. [81,104] for different bases for the multipole red-
shift-space power spectra). The investigation of this effect
based on the Fisher-matrix approach will be presented in
our future work.
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APPENDIX A: ALTERNATIVE DERIVATIONS
OF GI AND IIð− Þ CORRELATION FUNCTIONS

In Sec. IV we derived the models for the GI and IIð−Þ
correlation functions with the nonlinear RSD effect in terms
of the associated Legendre polynomials. In this appendix,
we provide the derivations of the same models but using the
spherical harmonic expansion.
We begin by considering the spherical harmonic expan-

sion of the GI and IIð−Þ power spectra, PS
XðkÞ, where

X ¼ fgþ;−g respectively,

PS
XðkÞ ¼

X
l;m

PX
lmðkÞY�

lmðk̂Þ: ðA1Þ

The coefficients of the spherical harmonic expansion,
PX
lmðkÞ, are given by

PX
lmðkÞ ¼

Z
d2Ω̂kPS

XðkÞYlmðk̂Þ: ðA2Þ

To compute PX
lmðkÞ explicitly, we first write the geometric

factors in PS
gþðkÞ and PS

−ðkÞ due to the projection in terms
of the spherical harmonics, respectively, as

k−2ðk2x − k2yÞ ¼
ffiffiffiffiffiffi
8π

15

r
½Y2;2ðk̂Þ þ Y2;−2ðk̂Þ�; ðA3Þ

k−4½ðk2x − k2yÞ2 − ð2kxkyÞ2� ¼
ffiffiffiffiffiffiffiffiffiffi
128π

315

r
½Y4;4ðk̂Þ þ Y4;−4ðk̂Þ�:

ðA4Þ

Next, we also express the RSD factor, the integrand of
Eq. (30), in terms of the spherical harmonics,

μ2nk e−αμ
2
k ¼

X∞
q¼0

FðnÞ
2q ðαÞY2q;0ðk̂Þ: ðA5Þ

Using the orthogonality of the spherical harmonics, the

coefficient FðnÞ
q ðαÞ is written as

FðnÞ
q ðαÞ ¼ 2π

Z
1

−1
dμkμ2nk e−αμ

2
kYq;0ðk̂Þ: ðA6Þ

It is related to pðnÞðαÞ [Eq. (30)] as FðnÞ
0 ¼ ffiffiffi

π
p

pðnÞ.
Substituting these equations into Eq. (23) with Eqs. (50)

and (51) and then using Eq. (A2), the functions Pgþ
lmðkÞ and

P−
lmðkÞ are given by
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Pgþ
lmðkÞ ¼ bK

ffiffiffiffiffiffi
8π

15

r X
q¼0

½bFð0Þ
2q PδδðkÞ þ fFð1Þ

2q PδθðkÞ�

×
Z

d2Ω̂k½Y2;2ðk̂Þ þ Y2;−2ðk̂Þ�

× Y2q;0ðk̂ÞY�
lmðk̂Þ; ðA7Þ

P−
lmðkÞ ¼ b2K

ffiffiffiffiffiffiffiffiffiffi
128π

315

r X
q¼0

Fð0Þ
2q PδδðkÞ

×
Z

d2Ω̂k½Y4;4ðk̂Þ þ Y4;−4ðk̂Þ�

× Y2q;0ðk̂ÞY�
lmðk̂Þ: ðA8Þ

Utilizing the Wigner 3j symbols, these expressions read,

Pgþ
lmðkÞ ¼ bK

X
n¼0

½bFð0Þ
2n PδδðkÞ þ fFð1Þ

2n PδθðkÞ�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2lþ 1Þð4nþ 1Þ

3

r �
l 2 2n

0 0 0

�

×
��

l 2 2n

m 2 0

�
þ
�
l 2 2n

m −2 0

��
; ðA9Þ

P−
lmðkÞ ¼ b2K

X
n¼0

Fð0Þ
2n PδθðkÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32ð2lþ 1Þð4nþ 1Þ

35

r �
l 4 2n

0 0 0

�

×

��
l 4 2n

m 4 0

�
þ
�
l 4 2n

m −4 0

��
; ðA10Þ

where we used the following formula:

Z
d2Ω̂kYl1m1

ðk̂ÞYl2m2
ðk̂ÞYl3m3

ðk̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

0 0 0

��
l1 l2 l3

m1 m2 m3

�
: ðA11Þ

Among the coefficients Pgþ
lm, the only non-vanishing ones

are even multipoles with m ¼ �2, Pgþ
l;2 ¼ Pgþ

l;−2. Similarly,
the nonvanishing coefficients P−

lm are even multipoles
with m ¼ �4, P−

l;4 ¼ P−
l;−4. The explicit expressions of

the nonzero coefficients that contain linear information are
respectively given as follows:

Pgþ
l;2ðkÞ ¼ bbKQ

ð0Þ
gþ;lðαÞPδδðkÞ þ fbKQ

ð1Þ
gþ;lðαÞPδθðkÞ;

ðA12Þ

where

QðnÞ
gþ;2ðαÞ ¼

ffiffiffiffiffi
30

p

105
ð7FðnÞ

0 − 2
ffiffiffi
5

p
FðnÞ
2 þ FðnÞ

4 Þ; ðA13Þ

QðnÞ
gþ;4ðαÞ ¼

ffiffiffi
2

p

1001
ð143FðnÞ

2 − 78
ffiffiffi
5

p
FðnÞ
4 þ 7

ffiffiffiffiffi
65

p
FðnÞ
6 Þ;
ðA14Þ

and

P−
l;4ðkÞ ¼ b2KQ−;lðαÞPδδðkÞ; ðA15Þ

where

Q−;4ðαÞ ¼
4

ffiffiffiffiffi
14

p

255255
ð2431

ffiffiffi
5

p
Fð0Þ
0 − 4420Fð0Þ

2 þ 918
ffiffiffi
5

p
Fð0Þ
4

− 68
ffiffiffiffiffi
65

p
Fð0Þ
6 þ 7

ffiffiffiffiffi
85

p
Fð0Þ
8 Þ: ðA16Þ

We show the coefficients FðnÞ
q up to q ¼ 8 below, which are

required to compute the power spectra which contain linear
information:

FðnÞ
0 ðαÞ ¼ A0pðnÞ; ðA17Þ

FðnÞ
2 ðαÞ ¼ A2

2
½3pðnþ1Þ − pðnÞ�; ðA18Þ

FðnÞ
4 ðαÞ ¼ A4

8
½35pðnþ2Þ − 30pðnþ1Þ þ 3pðnÞ�; ðA19Þ

FðnÞ
6 ðαÞ ¼ A6

16
½231pðnþ3Þ −315pðnþ2Þ þ 105pðnþ1Þ − 5pðnÞ�;

ðA20Þ

FðnÞ
8 ðαÞ ¼ A8

128
½6435pðnþ4Þ − 12012pðnþ3Þ þ 6930pðnþ2Þ

− 1260pðnþ1Þ þ 35pðnÞ�; ðA21Þ

with Aq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πð2qþ 1Þp

. The coefficients QðnÞ
X;l and FðnÞ

q

required to compute the higher-order multipoles are given
in Appendix B 3.
Next, using the above equations we derive the formulas

of nonlinear GI and IIð−Þ correlation functions of the
galaxy/halo shape field in redshift space, ξSgþðrÞ and ξS−ðrÞ.
By substituting Eq. (A1) into Eq. (49), with the Rayleigh
formula, eik·r ¼ P

l;m 4πiljlðkrÞYlmðk̂ÞY�
lmðr̂Þ, we have

ξSXðrÞ ¼
X
l;m

ΞX
lmðrÞYlmðr̂Þ; ðA22Þ

where the function ΞX
lm is related to PX

lm defined in the
previous section via the Hankel transform, ΞX

lmðrÞ ¼
H−1

l ½PX
lmðkÞ�ðrÞ. Since the non-vanishing GI and IIð−Þ
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multipoles are restricted to m ¼ �2 and m ¼ �4, respec-
tively, and Θm

l ðμÞ ¼
ffiffiffiffiffiffi
2π

p
Ylmðμ;ϕ ¼ 0Þ, the expansion of

the correlation functions with the normalized associated
Legendre polynomials is given by

ξ̃Sgþ;LðrÞ ¼
ffiffiffi
2

π

r
Ξgþ
L;2ðrÞ ¼

ffiffiffi
2

π

r
H−1

L ½Pgþ
L;2ðkÞ�ðrÞ; ðA23Þ

ξ̃S−;LðrÞ ¼
ffiffiffi
2

π

r
Ξ−
L;4ðrÞ ¼

ffiffiffi
2

π

r
H−1

L ½Pgþ
L;4ðkÞ�ðrÞ: ðA24Þ

These equations are equivalent with the final expressions of
the GI and IIð−Þ correlation multipoles in terms of the
associated Legendre basis, given by Eqs. (60) and (60)
in Sec. IV.

APPENDIX B: HIGHER-ORDER MULTIPOLES

In this paper, we provided the formulas of IA statistics
expanded in terms of the associated and standard Legendre
polynomials and in the body text we explicitly wrote
down the formulas that contain contributions of linear
theory, L ≤ 4 and l ≤ 4, respectively. In this appendix, we
provide our formulas for the higher-order multipoles, up to
L ¼ 12 and l ¼ 12.

1. gE power spectra

The gE power spectra expanded in terms of the asso-
ciated Legendre polynomials, P̃S

gE;L, are given in Eq. (36).
To compute the nonlinear contributions up to L ¼ 12, we

need to have Q̃ðnÞ
gE;L for 4 < L ≤ 12, which are given as

Q̃ðnÞ
gE;6ðαÞ ¼

ffiffiffiffiffiffiffiffiffiffi
2730

p

64
½pðnÞðαÞ − 20pðnþ1ÞðαÞ þ 70pðnþ2ÞðαÞ − 84pðnþ3ÞðαÞ þ 33pðnþ4ÞðαÞ�; ðB1Þ

Q̃ðnÞ
gE;8ðαÞ ¼

3
ffiffiffiffiffiffiffiffiffiffi
1190

p

128
½−pðnÞðαÞ þ 35pðnþ1ÞðαÞ − 210pðnþ2ÞðαÞ þ 462pðnþ3ÞðαÞ − 429pðnþ4ÞðαÞ þ 143pðnþ5ÞðαÞ�; ðB2Þ

Q̃ðnÞ
gE;10ðαÞ ¼

3
ffiffiffiffiffiffiffiffi
385

p

512
½7pðnÞðαÞ − 378pðnþ1ÞðαÞ þ 3465pðnþ2ÞðαÞ − 12012pðnþ3ÞðαÞ þ 19305pðnþ4ÞðαÞ

− 14586pðnþ5ÞðαÞ þ 4199pðnþ6ÞðαÞ�; ðB3Þ

Q̃ðnÞ
gE;12ðαÞ ¼

5
ffiffiffiffiffiffiffiffiffiffi
3003

p

1024
½−3pðnÞðαÞ þ 231pðnþ1ÞðαÞ − 3003pðnþ2ÞðαÞ þ 15015pðnþ3ÞðαÞ

− 36465pðnþ4ÞðαÞ þ 46189pðnþ5ÞðαÞ − 29393pðnþ6ÞðαÞ þ 7429pðnþ7ÞðαÞ�: ðB4Þ

Those expanded in terms of the standard Legendre polynomials, PS
gE;l, are given in Eq. (39). To obtain the nonlinear

contributions up to l ¼ 12, we need to have QðnÞ
gE;l for 4 < l ≤ 12, which are given as

QðnÞ
gE;6ðαÞ ¼ −

13

32
½5pðnÞðαÞ − 110pðnþ1ÞðαÞ þ 420pðnþ2ÞðαÞ − 546pðnþ3ÞðαÞ þ 231pðnþ4ÞðαÞ�; ðB5Þ

QðnÞ
gE;8ðαÞ ¼

17

256
½35pðnÞðαÞ − 1295pðnþ1ÞðαÞ þ 8190pðnþ2ÞðαÞ − 18942pðnþ3ÞðαÞ þ 18447pðnþ4ÞðαÞ − 6435pðnþ5ÞðαÞ�;

ðB6Þ

QðnÞ
gE;10ðαÞ ¼

21

512
½−63pðnÞðαÞ þ 3528pðnþ1ÞðαÞ − 33495pðnþ2ÞðαÞ þ 120120pðnþ3ÞðαÞ − 199485pðnþ4ÞðαÞ

þ 155584pðnþ5ÞðαÞ − 46189pðnþ6ÞðαÞ�; ðB7Þ

QðnÞ
gE;12ðαÞ ¼

25

2048
½231pðnÞðαÞ − 18249pðnþ1ÞðαÞ þ 243243pðnþ2ÞðαÞ − 1246245pðnþ3ÞðαÞ

þ 3099525pðnþ4ÞðαÞ − 4018443pðnþ5ÞðαÞ þ 2615977pðnþ6ÞðαÞ − 676039pðnþ7ÞðαÞ�: ðB8Þ
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2. EE power spectra

Similarly to the gE power spectra, the EE spectra expanded in terms of the associated Legendre polynomials, P̃S
EE;L, are

given in Eq. (43). To compute the nonlinear contributions up to L ¼ 12, we need to have Q̃EE;L for 4 < L ≤ 12, which are
given as

Q̃EE;6ðαÞ ¼
3

ffiffiffiffiffi
91

p

32
½−pð0ÞðαÞ þ 15pð1ÞðαÞ − 50pð2ÞðαÞ þ 70pð3ÞðαÞ − 45pð4ÞðαÞ þ 11pð5ÞðαÞ�; ðB9Þ

Q̃EE;8ðαÞ ¼
3

ffiffiffiffiffiffiffiffiffiffi
1309

p

128
½pð0ÞðαÞ − 30pð1ÞðαÞ þ 175pð2ÞðαÞ − 420pð3ÞðαÞ þ 495pð4ÞðαÞ − 286pð5ÞðαÞ þ 65pð6ÞðαÞ�; ðB10Þ

Q̃EE;10ðαÞ ¼
3

ffiffiffiffiffiffiffiffiffiffi
5005

p

256
½−pð0ÞðαÞ þ 49pð1ÞðαÞ − 441pð2ÞðαÞ þ 1617pð3ÞðαÞ − 3003pð4ÞðαÞ þ 3003pð5ÞðαÞ

− 1547pð6ÞðαÞ þ 323pð7ÞðαÞ�; ðB11Þ

Q̃EE;12ðαÞ ¼
15

ffiffiffiffiffiffiffiffiffiffi
1001

p

4096
½5pð0ÞðαÞ − 360pð1ÞðαÞ þ 4620pð2ÞðαÞ − 24024pð3ÞðαÞ þ 64350pð4ÞðαÞ − 97240pð5ÞðαÞ

þ 83980pð6ÞðαÞ − 38760pð7ÞðαÞ þ 7429pð8ÞðαÞ�: ðB12Þ

Those expanded in terms of the standard Legendre polynomials, PS
EE;l, are given in Eq. (45), andQEE;l for 4 < l ≤ 12 are

given as

QEE;6ðαÞ ¼
13

32
½−5pð0ÞðαÞ þ 115pð1ÞðαÞ − 530pð2ÞðαÞ þ 966pð3ÞðαÞ − 777pð4ÞðαÞ þ 231pð5ÞðαÞ�; ðB13Þ

QEE;8ðαÞ¼
17

256
½35pð0ÞðαÞ−1330pð1ÞðαÞþ9485pð2ÞðαÞ−27132pð3ÞðαÞþ37389pð4ÞðαÞ−24882pð5ÞðαÞþ6435pð6ÞðαÞ�;

ðB14Þ

QEE;10ðαÞ ¼
21

512
½−63pð0ÞðαÞ þ 3591pð1ÞðαÞ − 37023pð2ÞðαÞ þ 153615pð3ÞðαÞ − 319605pð4ÞðαÞ þ 355069pð5ÞðαÞ

− 201773pð6ÞðαÞ þ 46189pð7ÞðαÞ�; ðB15Þ

QEE;12ðαÞ ¼
25

2048
½231pð0ÞðαÞ − 18480pð1ÞðαÞ þ 261492pð2ÞðαÞ − 1489488pð3ÞðαÞ þ 4345770pð4ÞðαÞ

− 7117968pð5ÞðαÞ þ 6634420pð6ÞðαÞ − 3292016pð7ÞðαÞ þ 676039pð8ÞðαÞ�: ðB16Þ

3. GI and IIð − Þ power spectra

We showed the GI and IIð−Þ power spectra expanded in terms of the spherical harmonics, Pgþ
l;2 [Eq. (A12)] and P−

l;4

[Eq. (A15)], respectively. To compute the them with nonlinear contributions up to l ¼ 12, we need to have the termsQðnÞ
gþ;l

and Q−;l for 4 < l ≤ 12, which are given as

QðnÞ
gþ;6ðαÞ ¼

2
ffiffiffiffiffiffiffiffi
105

p

36465
ð85

ffiffiffiffiffi
13

p
FðnÞ
4 − 442FðnÞ

6 þ 11
ffiffiffiffiffiffiffiffi
221

p
FðnÞ
8 Þ; ðB17Þ

QðnÞ
gþ;8ðαÞ ¼

2
ffiffiffiffiffiffiffiffiffiffi
1105

p

20995
ð19

ffiffiffi
7

p
FðnÞ
6 − 2

ffiffiffiffiffiffiffiffiffiffi
1547

p
FðnÞ
8 þ

ffiffiffiffiffiffiffiffi
975

p
FðnÞ
10 Þ; ðB18Þ

QðnÞ
gþ;10ðαÞ ¼

3
ffiffiffiffiffiffiffiffi
110

p

260015
ð115

ffiffiffiffiffiffiffiffi
119

p
FðnÞ
8 − 1190

ffiffiffi
3

p
FðnÞ
10 þ 323

ffiffiffi
7

p
FðnÞ
12 Þ; ðB19Þ

QðnÞ
gþ;12ðαÞ ¼

ffiffiffiffiffiffiffiffi
286

p

90045
ð783FðnÞ

10 − 290
ffiffiffiffiffi
21

p
FðnÞ
12 þ 23

ffiffiffiffiffiffiffiffi
609

p
FðnÞ
14 Þ; ðB20Þ
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and

Q−;6ðαÞ ¼
4

ffiffiffi
2

p

323323
ð323

ffiffiffiffiffiffiffiffi
455

p
Fð0Þ
2 − 1292

ffiffiffiffiffi
91

p
Fð0Þ
4 þ 3458

ffiffiffi
7

p
Fð0Þ
6 − 84

ffiffiffiffiffiffiffiffiffiffi
1547

p
Fð0Þ
8 þ 77

ffiffiffiffiffi
39

p
Fð0Þ
10 Þ; ðB21Þ

Q−;8ðαÞ ¼
4

ffiffiffiffiffi
22

p

7436429
ð3059

ffiffiffiffiffiffiffiffi
119

p
Fð0Þ
4 − 1932

ffiffiffiffiffiffiffiffiffiffi
1547

p
Fð0Þ
6 þ 25806

ffiffiffi
7

p
Fð0Þ
8 − 4004

ffiffiffiffiffi
51

p
Fð0Þ
10 þ 429

ffiffiffiffiffiffiffiffi
119

p
Fð0Þ
12 Þ; ðB22Þ

Q−;10ðαÞ ¼
4

ffiffiffiffiffiffiffiffi
110

p

48474225
ð30015

ffiffiffi
7

p
Fð0Þ
6 − 5220

ffiffiffiffiffiffiffiffiffiffi
1547

p
Fð0Þ
8 þ 32886

ffiffiffiffiffi
39

p
Fð0Þ
10 − 9860

ffiffiffiffiffi
91

p
Fð0Þ
12 þ 323

ffiffiffiffiffiffiffiffiffiffi
2639

p
Fð0Þ
14 Þ; ðB23Þ

Q−;12ðαÞ ¼
8

420756273
ð24273

ffiffiffiffiffiffiffiffiffiffiffiffiffi
17017

p
Fð0Þ
8 − 427924

ffiffiffiffiffiffiffiffi
429

p
Fð0Þ
10 þ 300390

ffiffiffiffiffiffiffiffiffiffi
1001

p
Fð0Þ
12

− 27132
ffiffiffiffiffiffiffiffiffiffiffiffiffi
29029

p
Fð0Þ
14 þ 52003

ffiffiffiffiffiffiffiffi
273

p
Fð0Þ
16 Þ: ðB24Þ

To obtain then, we need to compute FðnÞ
q with q ≤ 16. These quantities for 0 ≤ q ≤ 8 are shown in Eqs. (A17)–(A21). These

with 8 < q ≤ 16 are obtained as

FðnÞ
10 ðαÞ ¼

A10

256
ð46189pðnþ5Þ − 109395pðnþ4Þ þ 90090pðnþ3Þ − 30030pðnþ2Þ þ 3465pðnþ1Þ − 63pðnÞÞ; ðB25Þ

FðnÞ
12 ðαÞ ¼

A12

1024
ð676039pðnþ6Þ − 1939938pðnþ5Þ þ 2078505pðnþ4Þ − 1021020pðnþ3Þ þ 225225pðnþ2Þ

− 18018pðnþ1Þ þ 231pðnÞÞ; ðB26Þ

FðnÞ
14 ðαÞ ¼

A14

2048
ð5014575pðnþ7Þ − 16900975pðnþ6Þ þ 22309287pðnþ5Þ − 14549535pðnþ4Þ þ 4849845pðnþ3Þ

− 765765pðnþ2Þ þ 45045pðnþ1Þ − 429pðnÞÞ; ðB27Þ

FðnÞ
16 ðαÞ ¼

A16

32768
ð300540195pðnþ8Þ − 1163381400pðnþ7Þ þ 1825305300pðnþ6Þ − 1487285800pðnþ5Þ

þ 669278610pðnþ4Þ − 162954792pðnþ3Þ þ 19399380pðnþ2Þ − 875160pðnþ1Þ þ 6435pðnÞÞ: ðB28Þ

As we showed in Sec. IV, each multipole of the IA
correlation functions in the standard Legendre basis are
expressed by infinite terms expanded in terms of the
associated Legendre polynomials. Computing the above
quantities is necessary to obtain the converged predictions
for the correlation function multipoles in the standard
Legendre basis as shown in the body text.

APPENDIX C: LINEAR THEORY LIMIT

The model developed in this paper has a form that is a
combination of the nonlinear alignment model (NLA)
multiplied by the Gaussian damping function due to
the nonlinear RSD effect. As introduced in Sec. III B,
the damping function is given by DFoGðfkμkσvÞ ¼
exp ð−αμ2k=2Þ, where α ¼ ðfσvkÞ2. We can remove the
effect of the nonlinear RSD by taking the σv → 0 limit.
In this appendix we provide the formulas with this
limit, though they were already given in our previous
work [38,51].

Note again that the multipoles in the associated
Legendre basis in this paper are expanded by the normal-
ized associated Legendre function Θm

L [Eq. (35)] and thus
denoted by tilde.

1. Power spectra

The gE power spectra expanded in terms of the asso-
ciated Legendre polynomials in the linear theory limit are
given by

P̃S
gE;2ðkÞ ¼

4ffiffiffiffiffi
15

p bK

�
bPδδðkÞ þ

1

7
fPδθðkÞ

�
; ðC1Þ

P̃S
gE;4ðkÞ ¼

8

21
ffiffiffi
5

p bKfPδθðkÞ: ðC2Þ

Those expanded in terms of the standard Legendre poly-
nomials are by
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PS
gE;0ðkÞ ¼

2

3
bK

�
bPδδðkÞ þ

1

5
fPδθðkÞ

�
; ðC3Þ

PS
gE;2ðkÞ ¼ −

2

3
bK

�
bPδδðkÞ −

1

7
fPδθðkÞ

�
; ðC4Þ

PS
gE;4ðkÞ ¼ −

8

35
bKfPδθðkÞ; ðC5Þ

The EE power spectrum expanded in terms of the
associated Legendre polynomials in the linear theory limit
is only P̃S

EE;4, given by

P̃S
EE;4ðkÞ ¼

16

3
ffiffiffiffiffi
35

p b2KPδδðkÞ; ðC6Þ

and those in the standard Legendre basis are by

PS
EE;0ðkÞ ¼

8

15
b2KPδδðkÞ; ðC7Þ

PS
EE;2ðkÞ ¼ −

16

21
b2KPδδðkÞ; ðC8Þ

PS
EE;4ðkÞ ¼

8

35
b2KPδδðkÞ: ðC9Þ

2. Correlation functions

The GI correlation functions expanded in terms of the
associated Legendre polynomials ξ̃Sgþ;L in the linear theory
limit (L ¼ 2, 4) are given by

ξ̃Sgþ;2ðrÞ ¼ −
4

7

ffiffiffiffiffi
1

15

r
bK½7bξδδ;2ðrÞ þ fξδθ;2ðrÞ�;

ξ̃Sgþ;4ðrÞ ¼
8

21

ffiffiffi
1

5

r
bKfξδθ;4ðrÞ; ðC10Þ

and similarly, the nonvanishing coefficient for the IIð−Þ
correlation ξ̃S−;L appears only for L ¼ 4,

ξ̃S−;4ðrÞ ¼
16

3

ffiffiffiffiffi
1

35

r
b2Kξδδ;4ðrÞ; ðC11Þ

where the functions ξδδ;L and ξδθ;L are defined by
ξδδ;LðrÞ ¼ H−1

L ½PδδðkÞ�ðrÞ and ξδθ;LðrÞ ¼ H−1
L ½PδθðkÞ�ðrÞ,

respectively.
Finally, those expressions in terms of the standard

Legendre basis have l ¼ 0, 2, and 4 components. The
multipoles of the GI correlation functions are given by

ξSgþ;0ðrÞ ¼ −
2

3
bKbξδδ;2ðrÞ

þ bKf

�
−

2

21
ξδθ;2ðrÞ þ

4

105
ξδθ;4ðrÞ

	
; ðC12Þ

ξSgþ;2ðrÞ ¼
2

3
bKbξδδ;2ðrÞþbKf

�
2

21
ξδθ;2ðrÞþ

4

21
ξδθ;4ðrÞ

	
;

ðC13Þ

ξSgþ;4ðrÞ ¼ −
8

35
bKfξδδ;4ðrÞ: ðC14Þ

The II correlation functions in redshift space are equivalent
with those in real space in the linear theory limit [51]. The
multipoles of the IIðþÞ and IIð−Þ correlation functions in
the standard Legendre basis are respectively given by

ξSþ;0ðrÞ ¼
8

15
b2Kξδδ;0ðrÞ; ðC15Þ

ξSþ;2ðrÞ ¼
16

21
b2Kξδδ;2ðrÞ; ðC16Þ

ξSþ;4ðrÞ ¼
8

35
b2Kξδδ;4ðrÞ; ðC17Þ

and

ξS−;0ðrÞ ¼
8

15
b2Kξδδ;4ðrÞ; ðC18Þ

ξS−;2ðrÞ ¼ −
16

21
b2Kξδδ;4ðrÞ; ðC19Þ

ξS−;4ðrÞ ¼
8

35
b2Kξδδ;4ðrÞ: ðC20Þ
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