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We present an analytic model of nonlinear correlators of galaxy/halo ellipticities in redshift space.
The three-dimensional ellipticity field is not affected by the redshift-space distortion (RSD) at linear order,
but by the nonlinear one, known as the Finger-of-God effect, caused by the coordinate transformation
from real to redshift space. Adopting a simple Gaussian damping function to describe the nonlinear
RSD effect and the nonlinear alignment model for the relation between the observed ellipticity and
underlying tidal fields, we derive analytic formulas for the multipole moments of the power spectra of the
ellipticity field in redshift space expanded in not only the associated Legendre basis, a natural basis for the
projected galaxy shape field, but also the standard Legendre basis, conventionally used in literature. The
multipoles of the corresponding correlation functions of the galaxy shape field are shown to be expressed
by a simple Hankel transform, as is the case for those of the conventional galaxy density correlations.
We measure these multipoles of the power spectra and correlation functions of the halo ellipticity field
using large-volume N-body simulations. We then show that the measured alignment signals can be
better predicted by our nonlinear model than the existing linear alignment model. The formulas derived
here have already been used to place cosmological constraints using from the redshift-space correlation
functions of the galaxy shape field measured from the Sloan Digital Sky Survey [T. Okumura and

A. Taruya, Astrophys. J. Lett. 945, 1.30 (2023).].
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I. INTRODUCTION

Intrinsic alignments (IAs) of orientations of galaxies
with the surrounding large-scale structure are considered a
main source of systematics in cosmological gravitational
lensing surveys [1-17] (see also [18-22] for reviews). The
IA effect has also been attracting attention as a cosmo-
logical probe complimentary to the conventional galaxy
clustering. It was pointed out that measurements of [As in
three dimensions can be used as dynamical and geometric
probes of cosmology, with redshift-space distortions and
baryon acoustic oscillations (BAO) [23-27]. Further theo-
retical studies have shown that the measurements can be
also used as probes of primordial non-Gaussianity [28-30],
gravitational waves [31-34], neutrino masses [35], statis-
tical isotropy [36] and gravitational redshifts [37,38].
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Recently, observational constraints on cosmological mod-
els have been placed by measuring IAs of galaxies from
the Sloan Digital Sky Survey (SDSS) [39,40,110]. More
significant contributions on the cosmological constraints
are expected by observations of the IA of galaxies in
ongoing and upcoming galaxy redshift surveys with a
better imaging quality [41-43].

In order to maximize the cosmological information
encoded in the IA of galaxies, one needs to develop
accurate nonlinear models of IA statistics in full three
dimensions. While modeling of the nonlinear power
spectrum in redshift has been extensively performed for
the galaxy density field [e.g., [44-50]], there are fewer
studies for the galaxy ellipticity field. The simplest model
for the IA statistics is the linear alignment (LA) model,
which linearly relates the ellipticity field to the tidal
gravitational field [5,8,24,51]. The model beyond the LA
model, nonlinear alignment (NLA) model as well as the
nonlinear shape bias model have been studied [52-62].
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However, the modeling of the IA statistics in three
dimensions requires an understanding of the nonlinear
redshift-space distortion (RSD) effect on them [63,64],
which is not as trivial as the nonlinearities above:
Refs. [23,65] had included the linear Kaiser factor into
the redshift-space ellipticity field but later Ref. [15] pointed
out that the ellipticity field is not affected by the linear
RSD. This argument is no longer valid once nonlinearities
of TA are taken into account. It has been shown by
Refs. [58,66] in their analytical models that the ellipticity
field is indeed affected by the nonlinear RSD effect. The
accuracy of the models including the nonlinear RSD effect
is still unclear because they have not been tested against
the measurements from N-body simulations (but see
Ref. [110] which provided the direct comparison with
the observed result).

In this paper, we derive formulas of nonlinear intrinsic
alignment statistics in redshift space where the nonlinear
RSD effect is taken into account as a Gaussian damping
function. We provide phenomenological formulas of both the
IA power spectra and correlation functions. Conventionally,
the TA correlations are expanded in terms of the (standard)
Legendre polynomials [51,67,68]. However, it was pointed
out by Ref. [69] that the A statistics which contain the
geometric factor due to the projection of the intrinsic shape
along the line of sight are more naturally expanded in terms of
the associated Legendre polynomials rather than the standard
Legendre ones (see also Ref. [38,70,71]). Thus, we provide
our formulas expanded by both standard and associated
Legendre polynomials. Note that the formulas derived here
have already been used to place cosmological constraints
from the Sloan Digital Sky Survey in Ref. [110].

Before proceeding to the next section, we note that we
assume the linear and scale-independent bias for both
the density and shape fields throughout the paper. The
nonlinear shape bias has been investigated in real space
(e.g.,[53,60,61,72]). Incorporating the nonlinear bias effect
into theoretical predictions of redshift-space A statistics
will be presented in the future work (but see Ref. [56] for
the impacts of nonlinear bias on the supersample effects).

The rest of this paper is organized as follows. In Sec. 11
we describe general forms of the nonlinear power spectra of
the ellipticity field in redshift space. Sections III and IV
present the analytical model for the multipole moments of
the IA power spectra and correlation functions, taking into
account the nonlinear RSD and alignment effects. In Sec. V
we presents the results of numerical calculations for the
nonlinear RSD model of IA statistics. Our models for the
IA statistics are tested against the measurements from
N-body simulations in Sec. VI. Our conclusions are given
in Sec. VIL In Appendix A, we provide alternative ways to
derive the model of the IA correlation functions by using
the spherical harmonic expansion. The higher-order terms
that do not contain linear contributions are provided in
Appendix B. The expressions at the linear theory limit are
provided in Appendix C.

Throughout the paper, we assume the spatially flat ACDM
model as our fiducial model [73]; Q,, = 1 — Qpg = 0.315,
Qg =0,wy = —1,w, =0,H, = 67.3 [km/s/Mpc| and the
present-day value of og to be o3 = 0.8309.

II. GALAXY DENSITY AND ELLIPTICITY POWER
SPECTRA IN REDSHIFT SPACE

In this paper, we consider redshift-space correlators of
the galaxy/halo ellipticity field with itself as well as with
the density field. The positions of objects in three-dimen-
sional galaxy surveys are sampled by their redshifts and are
therefore displaced along the line of sight by their peculiar
velocities, known as RSDs. The position of distant objects
in real space, x, is mapped to the one in redshift space, s, as

- (x)

§ =X + Zj5% where v,(x) = v(x) - 2, v(x) is the peculiar

’
a
velocity, H(z) is the Hubble parameter at redshift z, a =
(1+z)7! is the scale factor, and hat denotes a unit
vector and Z is pointing the observer’s line of sight, namely,
s a_ ol

2=§==x

A. Galaxy density field

Density perturbations of galaxies/halos are defined by
the density contract from the mean p,,

5g(x>5pg<x)//_)g_ 1. (1)

Through the real-to-redshift space mapping, the redshift-
space density field of galaxies is given by [46,48,49]

&’k .
14685(s) = / d*x / n? )3e1k'[s—x+f"z<xkl[1 +5,(x)]. (2)
: . .

where u,(x) = —v,(x)/(faH) and the superscript S
denotes a quantity defined in redshift space. The quantity
[ is the growth-rate parameter to characterize the evolution
of the density perturbation, defined as

dinD(z)  dInD(a)

flz) = “din(l+z) dlna

(3)

where D(z) is the linear growth factor of the perturbation,
D(z) = 6,,(x;2)/8,,(x;0). Via the Fourier transform,

55 (k) = /d3se‘ik'35§(s)

:/d3xe—ik~[x—fu;(x)ﬁ][59(3;)+fvzuz(x)]. (4)

'"While properly taking into account the wide-angle effect [74,75]
provides additional cosmological constraints (see, Refs. [38,76]
for the studies of the wide-angle effects on ellipticity fields),
throughout this paper, we assume a plane-parallel approxima-
tion because we mainly focus on the correlations at small
separations.
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The galaxy autopower spectrum, P35, (k), with the most

general form under the plane-parallel approximation can be
written as [46,77]

P, (k) = / Bre=kr (i
X [6,(6) + fVou (0)][8,(x) + fVou(x)]), (5)

where r =x —x', Au, = u,(x) — u,(x') and y; = k- % is
the directional cosine between the wave vector and line-of-
sight direction.

B. Galaxy intrinsic ellipticity field

We use ellipticities of galaxies as a tracer of the three-
dimensional tidal field. Similarly to the density field, the
redshift-space ellipticity field is described as (See Ref. [78]
for a similar equation for the redshift-space velocity field)

}/S(s) = /d3x/ﬁeik'[s_x*’fuz(x)z]y..(x)’ (6)
ij (271_)3 1
which is translated into Fourier space as
) = [ dsetols
— /d3xe—ik-[x—fuz(x)2]},ij(x)' (7)

The autocorrelation of the ellipticity field and its cross-
correlation with the density field are, respectively,

Pfy.ijkl(k) _/d3"€_ik'r<€ifk”"A“27ij(x)}’kz(xl»v (8)

ng,ij(k) — / d3’.e—ik-r<eifk;4kAuZ
X [8y(x) + fVou (X)) (9)

Note that yisj in Eq. (6) can be interpreted as either the
volume-weighted or number-weighted ellipticity field.
Accordingly, Eqs. (8) and (9) are the power spectra for
the volume-weighted or number-weighted ellipticity field.
Since the observed galaxy/halo shapes are projected onto
the celestial sphere (x—y plane), we consider the two
traceless components as the observed shape field,

()= (5") o

All the power spectra with this projected shape field can be
expressed in terms of Pfy‘,. ju [Eq. (8)] and ng’,- ; [Eq. (9)], as

PS (k) = PSy (k) = PS,., (k). (11)

qr.xx

Py, (k) = 2Pg, (k). (12)
Pi+(k) = Pfr,xxxx(k) - pry,xxyy(k) + Pfy-yyyy(k)’ (13)
Pl (k) = 4P, 1y (K), (14)
PS (k) = P3. (k)
=2[P}) vy (k) = P}y (K)]. (15)
PS(k) = PS., (k) + PS, (k). (16)

We also define E-/B-modes, yp), which are the
rotation-invariant decomposition of the ellipticity field [6],

vie(k) + irj(k) = e[yl (k) + irz (k)] (17)

where ¢, is the azimuthal angle of the wave vector
projected on the celestial sphere. Then the power spectra
of the E-/B-modes are expressed using those of yf +’X)(k)

[Egs. (11)—(15)]:
Pyp(k) = cos (2¢y) Py, (k) + sin (2¢ ) Py (k). (18)
Pl (k) = —sin (2¢) Py, (k) + cos (2¢y ) Py (k). (19)

Py (k) = cos® (2¢p) P3. (k) + sin? (2¢b) PS.x (k)
+2cos (2¢y) sin (2¢y ) P (k), (20)

PS(k) = sin® (2 PS., (k) + cos? (2) S, (k)
— 2.cos (2 sin (23 PS.. (k). 1)

Comparison of Egs. (8) and (9) with Eq. (5) implies that
the power spectra of the shape field in redshift space is
affected by the Finger-of-God effect in the same way as
those of the density field. We investigate the effect in the
next section.

III. ANALYTICAL MODEL OF NONLINEAR
REDSHIFT-SPACE DISTORTION

A. Nonlinear alignment model

To relate the observed galaxy/halo shape field to the
underlying tidal gravitational field, we use the LA model,
which assumes a linear relation between the intrinsic
ellipticity and tidal field at the true three-dimensional
position, namely without the line-of-sight displacement
due to RSDs [5,8]. In Fourier space, the ellipticity field
projected along the line of sight, Z, is given by

(i) (G5 e

where by represents the redshift-dependent coefficient
of the intrinsic alignments which we refer to as the
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shape bias.” We adopt the NLA model, which replaces the
linear matter density field §,, by the nonlinear one [79].
Furthermore, the redshift-space ellipticity field is multi-
plied by the damping function due to the nonlinear RSD
effect as we will see below.

B. Phenomenological RSD model

To accurately describe the observed and simulated
results of galaxy/halo ellipticity correlations in redshift
space, the nonlinear RSD effect, known as the Finger-of-
God (FoG), needs to be taken into account in the theoretical
predictions. In Sec. II, we see that the expressions of power
spectra involve the exponential factor in the ensemble
average [see Egs. (5), (8) and (9)], which is responsible
for suppressing the power spectrum amplitude due to
the randomness of the pairwise velocity contributions.
Although the impact of this exponential factor, coupled
with the density and ellipticity fields, needs to be carefully
treated in the statistical calculations, a dominant effect of
this is phenomenologically but quantitatively described by
imposing the factorized ansatz, i.e., (e #/kuAuf...1) —
(e~ifkmAu)(...) Then, writing all the redshift-space power
spectra in the previous subsection as Py(k), this ansatz
leads to the following separable expression of the power
spectra [46] (see also [44,45,80,81]):

P§(k) = P (k) Do (fhuo), (23)

where k = |k|, yx = k-2 = k,/k is the directional cosine
between the observer’s line of sight and the wave vector k. In
this expression, the exponential factor (e~"/kuAu:) i iden-
tified with the function D, and we model it as the zero-lag
correlation characterized by the velocity dispersion, o,.

Equation (23) includes the redshift-space galaxy power
spectrum proposed by Ref. [46] (X = gg). In this case, the
function ng is given by

f’ﬁg(k) = b?Pss(k) + 2bfugPso(k) + fugPog(k),  (24)

where b is the linear galaxy bias [82], Pss and Pgyy are
the nonlinear autopower spectra of density and velocity
divergence, respectively, and Py is the their cross-power
spectrum. In the linear theory limit, Ps5 = Psy = Pyy and
Dgog = 1, and hence Eq. (24) converges to the original
Kaiser formula [64]. The parameter f quantifies the cosmo-
logical velocity field and the speed of structure growth, and
thus is useful for testing a possible deviation of the gravity
law from general relativity [83,84]. Under modified gravity

*The shape bias parameter is related to C; in Ref. [51] by
by = —C,. Some references use by for the shape bias in the
three-dimensional tidal field, K;;, as y;; = bgK;; (e.g., [28]).
However, this b differs from that we introduced in Eq. (22) by a
factor of two.

models, even though the background evolution is the
same as the ACDM model, the density perturbations
would evolve differently (See, e.g., Ref. [85] for degener-
acies between the expansion and growth rates for various
gravity models). The relation of this phenomenological
form with the general one in Eq. (5) was made in Ref. [48].

Adopting the NLA model, the cross-power spectra of the
galaxy density and E-/B-mode fields and the autopower
spectra of the E-/B-mode fields are given by

P3p(k) = b (1 — p2)[bPss(k) + fuiPs(k)], (25)
Pig(k) = b} (1 — p3)*Pys(k). (26)
P3y(k) = Pyp(k) = 0. (27)

The power spectra of the E-mode, namely P5; and Py, are
the main statistics to be tested in this paper. Our model for
these statistics contain free parameters of @ = (f, b, by, o).

When we analyze power spectra that are anisotropic
along the line of sight and thus have y; dependences, we
commonly use the multipole expansion in terms of the
Legendre polynomials, £,(py), as [51,86]

Pi(k) = Zpi,f(k)‘cf(ﬂk)» (28)
¢

where the coefficients P ,(k) are given by

20+1 [1
P5 (k) = 5 ldﬂkp§((k’ﬂk)£f(ﬂk)- (29)

In this paper, we adopt a simple Gaussian func-
tion for the nonlinear RSD term, Dgyg(fkugo,) =
exp [~ (Fkina,)2/2) = exp (~au}/2), where @ = (fka,)>.
With this Gaussian function, all the multipole moments of
the power spectra, i.e., P)S(f(k), are expressed in a factor-
ized form with the angular dependence encoded by

1
P = [ dure (30)

This function has a maximum at ¢« = 0 and decreases

monotonically. The integral can be performed analytically

as p(a) = % where y(n,a) = [¢dti"'e™" is the

incomplete gamma function of the first kind. All the
formulas derived below are, thus, expressed in terms of
the function p(™ (). The linear-theory limits of the for-
mulas are derived by setting a = 0, p(0) = 52+

The expression of the multipole expansions for the
nonlinear galaxy power spectra with the Gaussian damping
function were derived by Refs. [80,87]. They are expressed

in terms of p(a) as
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ng k) = szgg (@) Pss(k) + 2be(y;),f(a)P59(k)
+f? ggf( a)Poy(k). (31)

The multipoles with £ = 0, 2, 4 contain nonzero contri-

butions at linear scales. The functions Q" 0 b,( JuptoZ =4
are given by
n L
Qh(@) =3 p(@), (32
(n) 5 (n+1) (n)
Qga(@) =7 B V() = p™(a)], (33)

2 (35p04) ()

Q;Z)4 (0() = 16

=30p"* W (a) +3p)(a)].
(34)

By taking the & — 0 limit, @, ,(0) = O for # > 4 and the
linear RSD formulas are obtained [64].

C. E-mode cross-power and autopower spectra

Due to the geometric factor, (1 — 4Z), arising from the
projection of the shape field along the line of sight in
Egs. (25) and (26), the cross-power spectra of the galaxy
density and E-mode shape fields (gE power) and autopower
spectra of the E-mode shape field (EE power) are more
naturally expressed in the associated Legendre basis rather
than in the standard Legendre basis,

Y(k) = " PY L (K)OF (). (35)

L>m

where X = {gE, EE}, ©]'(u) is the normalized associated
Legendre function related to the unnormalized one by

2L+1 (
6() 2+ L+m

orthonormal relation, [, du®} (1)®7, (u) = 6,1/, with
orp being the Kronecker’s delta. We added tilde to
P% (k) to emphasize that they are the expansion coef-
ficients of the normalized polynomials ®/" (4 ). While the
choice of m in Eq. (35) is arbitrary, the expressions of the
gE and EE power spectra become the simplest if one
chooses m =2 and 4, respectively [69]. Thus, in the
following, P35, (k) and P§ ; (k) stand for the coefficients

E’" (4x ), so that it satisfies a simple

expanded by ©7=2 and ®”"=*, respectively. We also provide
the expression of the multipoles of the gE and EE power
spectra expanded in terms of the standard Legendre
polynomials, which used to be commonly considered
theoretically but were found to be not direct observables
in real surveys [69].

All the multipoles of the power spectra considered in
this subsection are summarized in Table I. We present
only the multipoles PX , and P , that contain linear-order

TABLE I. Summary of the coordinate-independent alignment
power spectra derived in Sec. III. The functions PY ; and P§ , are
coefficients expanded in terms of the normalized associated
Legendre polynomial ®; and standard Legendre polynomial
L., respectively.

Fourier-space Result (Figure)

Definition
Statistics (Equation) Multipole (Equation) Theory Simulation

gE PS(k) 25)  P5;, (36) 1 6
P, (39) 2 7
EE Pip(k) (26) P3p, (43) 1 6
P, (45) 2 7

contributions here, and the higher-order terms are provided
in Appendix B up to L =12 and £ = 12, respectively.
We can obtain the linear theory expressions by taking the
a — 0 limit, and they are shown in Appendix C.

Using the function p(a) [Eq. (30)], the gE power
spectrum, P5;; (k), is explicitly described as

Phes®) = [ aupielh u)or ()

= bb Q) (@)Pss(k) + fbx QY (o) Py(k),
(36)

where L > m = 2. The two lowest multipoles, PSE’L(k)
with L = 2 and 4, contain linear-order contributions, and

Qé’g . (a) are given by

0jpale) :@W)(“) = 2p" (@) + p I (@), (37)
QE’?"‘(O{) - ¥ [—p™(a) +9p"*+1)(a)

—15p" 2 (a) + 7p" (). (38)

When the gE power spectrum is expanded by the
standard Legendre basis [Eq. (28)] instead of the associated
Legendre basis, they are shown to be

P8, (k) = bb QW) (@) Pss(k) + fbi QL o () Pg(k),
(39)

where Qg'gf which contain the linear contributions are
given by

Qlfo(a) = 3 [P (@) = pr* V(@] (40)
Q1 (@) = 2 [p" (@) - 4p"* (@) + 3p" ()], (41)

4
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_2
16
+65p"2) (@) = 35p" ) ()], (42)

Q_E]nE>4 (a) [3p<") (a) — 33p(n+1) ((l)

Similarly to the gE power spectrum in Eq. (36), the EE
autopower spectrum expanded in terms of the associated
Legendre polynomials, 3, (k), is concisely described as

1
S, (k) = / P (k. ) O~ )
= b3 Qpp (@) Pss(k), (43)

where L > m = 4. Only the lowest-order coefficient with
L =4, Qggy, contains the contribution in linear theory.
The term is given by

Qprala) = %63_5 [P (a) = 4pW(a) + 6p?)(a)
~ap(@) + p(a)]. (44)

The multipole expansions of the EE power in terms of
the standard Legendre polynomials are expressed as

Pip (k) = by Qpr.r(@)Pss(k), (45)
where
Qrro(k) = 3 [P(@) ~2p(e) + PO (a)]. ~(46)
Qpea(k) =~ [p@) = 5p(e) +7p (@) ~ 3p) (@),
@)
Qe a(e) = 12 [3p(@) — 3691 (@) + 985 ()
—100p®) (a) +35p@(a)]. (48)

Note that, which basis is preferred in the actual cosmo-
logical analysis of the alignment statistics depends on
which aspects one considers more important. As presented
above, we can express the IA power spectra using the
minimum set of the multipoles in the associated Legendre
basis. However, cosmological information encoded at
linear level in the standard Legendre basis is propagated
into the higher-order multipoles that have no linear-level
contribution in the associated one to some extent due to
the off-diagonal components of the covariance matrix for
the power spectra. It is demonstrated in our upcoming
paper [88].

Numerical results of these nonlinear formulas are given
in Sec. V and compared to the measurements from N-body
simulations in Sec. VI.

IV. ELLIPTICITY CORRELATION FUNCTIONS

In this section, we present multipole moments of the
correlation functions of the projected galaxy/halo ellipticity
field in redshift space. First, the model for the II(+)
correlation multipoles in terms of the standard Legendre
polynomials, éif, is given. Second, we provide the models
for the GI and II(—) multipoles in terms of the associated
Legendre polynomials, ;“3 1 and Ef’L, respectively, and
then those of the standard Legendre polynomials, ég . o and
& ,. Table II summarizes all the power spectra
and correlation functions of the shape field considered in
this section.

A two-point correlation function is related to the power
spectrum by a Fourier transform,

E(r) = / (;Z’; PS(k)er

&Ik .

:/ Ty H0DEg (Tl ). (49)

We start by considering the power spectra of the shape
field, namely Egs. (11)-(16). Following the model devel-

oped in Sec. III B, the part P (k) in Eq. (23) are given by
P§+ (k) = bk (k% — k3)[bPss(k) + fuiPs(k)], (50)

P (k) = bk [(ki = 3)* £ (2k,k,)*Pss (k). (51)
PS5 (k) = P (k) = P, (k) = 0. (52)

In the following, we derive the multipoles of the nonzero [A
power spectra, P35, (k) and P (k), and substitute them into

Eq. (49). Following Ref. [69], we express the inverse
Hankel transform, as

2
M o)) =1 [ S5 kg, (53

TABLE II. Same as Table I but for the coordinate-dependent
alignment power spectra derived in Sec. ['V. The power spectra are
used to derive the expressions for the corresponding correlation
functions, & , and & ;.

Configuration space Result (Figure)

Definition
Statistics  (Equation) Multipole (Equation) Theory Simulation
II(+) PS (k) (51) i, (56) 9
GI P§+(k) (50) ~§+_L (59) 1 8
§+f (61)—(63) 2 9
I(-) PS5 (k) (51) EE,L (60) 1 8
&, (64)—(66) 2 9
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Using this notation, the commonly-used multipole expan-
sion of an anisotropic power spectrum is described as

r) =Y &(NLeln), (54)
4

where & ,(r) = H;'[P} ,(k)]. The multipole components
of the conventional galaxy density correlation function with
the FoG Gaussian damping term [Eq. (31)] are given by

S o(r) = 0PTIEO (r) + 20 TS (r) + PTG (7). (55)

where Hx ” '(r) = H! [QY f(k)PX(k)}. In the linear theory
limit (o, — 0), the equation is reduced to the Kaiser
formula [64,86,89].

The 1I(+) power spectrum, PS (k), is equivalent to the
EE power spectrum in our model, PS5 (k)= Pgg(k)
[Egs. (45)—(48)]. The expression for the II(4) spectrum
is expanded in terms of the standard Legendre polynomials,
PS (k) = P}y ,(k), where # =0, 2 and 4 multipoles
contain the linear contributions. The II(+) multipoles
are given in a similar manner to the GG multipoles,

if( r) = Hf [P EEf(k)](’”)

= bKHf [Q+,t’(k)P55(k)]’ (56)

where taking ¢, — 0 limit again leads to the linear theory
formula of Ref. [51].

Next, let us derive the expressions of the GI and II(—)
correlation functions, &, (r) and &5 (r), respectively. Unlike
the II(+) correlation function, they are naturally expanded
by the associated Legendre polynomials with m = 2 and
m =4, respectively. Using the normalized associated
Legendre polynomials, they are expressed as

=> & .(ne

L>2

=y,

L>4

“(ur) cos(2,),  (57)

(NP~ (uy) cos(de,).  (38)

where ¢, is the azimuthal angle of the separation vector
projected along the line-of-sight direction (z-axis) and
u, = r./r. Note that the definitions of 53 . and &5 in this
paper are different from those in Ref. [69] by the factors of
the azimuthal angle [see their Egs. (25) and (27)]. To
predict the multipoles of the GI and II(—) correlation
functions measured from simulations or observations, we
make them coordinate invariant by setting ¢, = 0, as

B () = / O E )]

= HL [P (K)](r). (59)

£S _ ! m=4 S
5—,L(r) - / dﬂr®L (Mr)g—(r)
-1 ¢=0

= H; [Pie . (K)](r). (60)

The correlation functions with ¢, = 0 are equivalent with
those defined in Ref. [69]. In Appendix A, we provide
alternative ways to derive the above equations by using the
spherical harmonic expansion.

While correlation functions of the projected shape field
are naturally expanded in the associated Legendre basis,
those in the standard Legendre basis is commonly adopted.
In the following we provide the nonlinear formulas for the
multipoles of the A correlation functions in redshift space
expanded in the standard Legendre basis.

Setting the angle ¢, to zero, the multipole expansion of
&, (r) in Eq. (57) is analytically given by

g+0 V1 fq+2 §+4( )
13 -
Y 21 (]+6 g+8
\/ g+10 g+12(r)+""

1201
(61)
1 /65-
=3 - [5;+,6<r>
\/7g+8

\/ g+ 1()

+ mé;l 1p(r) + - 62)
§§+-4(r) = g+4 \/7 Eoro(r \/7 Sors(r
7 -~ 3
-3 220 g+,10(’”)+15 2004 Ij+ )+,
(63)
and that of £5(r) in Eq. (58) is given by
187-
ﬁs [ g
2B o)+ e () +
385 10( 6 200012
(64)
Sis s ZS
f B4
1004 fs 10 )"' \/18 E
(65)
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55,4(’”) = _fs

_3\/45 & 10(r)

Each multipole moment of the GI and II(—) correlation
functions involving the nonlinear RSD damping factor is
expressed by infinite terms in the standard Legendre basis,
unlike in the associated Legendre basis [see Egs. (59)
and (60)]. These are the equations used to extract cosmo-
logical information from the TA statistics of the SDSS
galaxies in Ref. [110].

s § 7 5
\/i’: *s 3085‘8()

2\/200 )+

(66)
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FIG. 1.

V. NUMERICAL RESULTS

In this section, we present numerical results of the
phenomenological model of the redshift-space IA statis-
tics derived in the previous sections. We present the
matter-density halo-shape cross-correlations (P*gE’ ; and
Eng’L) and halo shape autocorrelations (P%E‘L and &5 )
computed in the associated Legendre basis, and these in the
standard Legendre basis. Since we consider for the cross-
correlations the matter density field, not the biased object
field, we use the symbols P§ sp.. and & ;. rather than PSE, I

and (fg . .1» respectively (they are equivalent if we set b = 1).
We use the publicly available CLASS code [90] to com-
pute the linear-matter power spectrum Pgss(k), and adopt
the revised Halofit model to obtain the nonlinear

- . ———
60 - GI correlation _ i
40
X |
=<
~ 20
= 10!
~ 100k
= E * '-...
3 i
10_1 E ’0...3
E L =14 3
e I —56
72 ]
107k L—28 ...
N L=10 h ‘e,
1079 bt . MR i
101 102
——r . —
60 | II(—) correlation =\ 4
L P .
40 - - ” -
L 7 ]
S —
= 2? ....-..,)‘... | i
10 -
C\I& 100 §_ 00." ......... . _§
2 i . W
10_1 §_ "0’ ’."..2
1072 E "0' E
10—3-....| . . . .’to...l
10! 102
r [h~Mpc]

Multipoles of TA statistics expanded in terms of the associated Legendre polynomials, the cross-power spectra between matter

density and halo E-mode ellipticity P3 sg.z (upper left), autopower spectra of halo E-mode ellipticity P,S;E ;. (lower left), cross correlation
functions between matter density and halo ellipticity &5 . (upper right), and autocorrelation functions of halo ellipticity & » (lower left).
The prediction of linear theory is adopted for the FoG damping parameter o,. The solid and dotted curves represent positive and negative
values, respectively. The linear theory predictions are shown by the dashed gray curves.
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correction [91]. We then use the fitting formulas derived by
[92] to obtain Pgsy(k) and Pyy(k).

The function Dg.g is a damping function due to the
nonlinear RSD effect characterized by the one-dimensional
velocity dispersion, ¢,. We use the linear theory prediction
for o, as

1 [ d’°q Pg(q)
2 —_ [ 22 "0 67
Gv,lm 3/ (271.)3 q2 : ( )

The density E-mode cross-power spectra INJgE,L(k) and
E-mode autopower spectra Py, (k) computed in the
associated Legendre basis, are shown in the upper-left and
lower-left panels of Fig. 1, respectively. Since they are
respectively scaled by by and b%, only the free parameter
for these statistics is o, for which we adopt the linear theory
prediction, 6, 5, [Eq. (67)]. For P§;,, only the L =2 and

[ T T T
120; gE power
X
=)
~
=
U)EF —
A ) T -
b 101 3 NI;,:i'@-'{f-,lln
:& F=—— (=0
B [—— (=2
oL ! =4
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I € == 10 ’o"
101 e
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120 |
o [
= 80
55 L
25 [
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100k
101 i
1072 107!
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L = 4 spectra have linear-order contributions, as shown by
the gray dashed curves where we set o, =0 and Ps5 =
Psy = Pyy. The effect of the nonlinear RSD damping appears
prominently in the L = 4 multipole. Since the multipoles
with L > 6 do not contain the linear-order contributions, they
become nonzero only at small and hence nonlinear scales.
The FoG effect does not have significant contributions to the
E-mode autopower, P%E’ 1 (k), than to the cross power.

The corresponding configuration-space statistics, GI and
II(—) correlation functions, are respectively shown in the
upper-right and lower-right panels of Fig. 1. The overall
trend is the same as the case for the power spectra. Once
again, the nonlinear RSD effect does not impact the
quadrupole moment but the hexadecapole in the associated
Legendre basis, &, ,.

The multipoles of the E-mode cross-power and auto-
power spectra expanded in the standard Legendre basis,

- GI correlation

e =D ]
NL+oy tin Linear -
= (=0 — = =0
_— =2 —_—— =2 |
/=14 — = =4 |

102

2
K

,e(T)/b

i“r2s

r [h~1Mpc]

FIG. 2. Similar to Fig. 1, but multipoles of IA statistics are expanded in terms of the standard Legendre polynomials. Since the models
of the GI and II(—) correlation functions of this basis are expressed by the infinite sums of those of the associated Legendre polynomials,
the upper-right and lower-right panels show the results of the convergence test, the summation up to L = 4, 8, 10 and 12 shown by the
dot-dashed, short-dashed, dotted and solid curves, respectively.
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P35y, ,(k) and P} ,(k), are respectively shown in the upper-
left and lower-left panels of Fig. 2. Unlike Pj;,, the
nonlinear RSD effect contributes significantly to not only
the hexadecapole but also the quadrupole for P, ,.

The GI and II(—) correlation functions expanded in the
standard Legendre basis are shown in the upper-right and
lower-right panels of Fig. 2, respectively. Unlike the other
statistics we discussed above, the nonlinear RSD model of
the GI and II(—) correlation functions expanded by the
standard Legendre polynomials have infinite terms as we
saw in Sec. IV. The figure demonstrates that adding the
terms up to &, with L = 12 makes the multipoles &5 ,
(¢ =0, 2, 4) converged even at small scales of interest. As
is the case with the power spectra, while the nonlinear RSD
effect in the GI correlation functions is prominent in the
hexadecapole in the associated Legendre basis, it is in
the quadrupole in the standard Legendre basis. However,
the nonlinear RSD effect contributes to the gE power
spectrum and GI correlation function quite differently in the
standard Legendre basis.

VI. COMPARISON TO N-BODY SIMULATIONS

A. N-body simulations and subhalo catalogs

As in a series of our papers [24,93-95], we use N-body
simulations run as a part of the DARK QUEST project [96].
We employ n, = 20483 particles of mass m, = 8.15875 x
10" h='My in a cubic box of side Ly, =2 h™!' Gpc.
In total, we have the data set from eight independent
realizations and we specifically analyze the snapshots
at z = 0.306.

Halos are identified using the ROCKSTAR algorithm [97].
Their velocities and positions are determined by the
average of the member particles within the innermost
10% of the subhalo radius (see Ref. [97] for detail). The
halo mass is defined by a sphere with a radius Ry ,, within
which the enclosed average density is 200 times the
mean matter density, as M, = M, ,,- We create two halo
catalogs, one with M, > 10"* h™'M, and another with
M, > 10" h='M,,, referred to as groups and clusters. Note
that we remove subhalos, whose center is included within
the sphere of R, ,, of a more massive neighbor, from these
samples. To see the effect of the satellite galaxies on the IA
statistics, we also create mock galaxy catalogs using a halo

TABLE III.

occupation distribution (HOD) model [98] applied for the
LOWZ galaxy sample of the SDSS-III Baryon Oscillation
Spectroscopic Survey obtained by Ref. [99]. We populate
(sub)halos with galaxies according to the best-fitting HOD
N(M,). After assigning a central galaxy at the center of a
host halo, we randomly draw N (M) — 1 member subhalos
within its R, ,, to mimic the positions and velocities of the
satellites. We use a random selection of subhalos rather
than the largest subhalos because a satellite subhalo under-
goes tidal disruption in the host halo and its mass decreases
as it goes toward the center of the gravitational potential.
We call this subhalo catalog “HOD luminous red galaxies
(LRGs)”. Properties of the three subhalo samples con-
structed above are summarized in Table III.

Due to the limited hard disk space, the information of
dark matter particles could have been stored partially and
thus was lost for four realizations out of eight. Hence,
we could not measure some of the statistics for which
the information of dark matter particles is needed, while
the information of the halos including the direction of the
major axis traced by the dark matter particles was available
for all eight realizations. Thus, when the presented statistics
include the density field of dark matter in the following
analysis, the result is obtained from four realizations;
otherwise it is out of the entire eight realizations.

We assume subhalos to have triaxial shapes [100] and
estimate the orientations of their major axes using the
second moments of the distribution of member particles
projected onto the celestial plane. The two-component
ellipticity of galaxies is defined as

2
= T (s (2050 (24). (68)
where ¢, is the position angle of the major axis relative to
the reference axis, defined on the plane normal to the line-
of-sight direction, and ¢ is the minor-to-major axis ratio of
a galaxy shape. We set g to zero for simplicity, which
corresponds to the assumption that a galaxy shape is a line
along its major axis [12,101].

7(+,><)(x>

B. Estimators

Here, we present estimators to measure from N-body
simulations the power spectra and correlation functions of
intrinsic halo shapes in redshift space.

Properties of mock subhalo samples at z = 0.306. The quantity f, is the number fraction of satellite

subhalos, M,;, and M are the minimum and average halo mass, respectively, 7 is the number density, and b and by
are, respectively, the halo density and shape biases computed in the large-scale limit.

Types Feat 102M;, [h™1M) 10472 [h3 Mpc3)] b bk 1071231 [h~'My)
Groups 0 10 4.34 1.66  0.528 322
Clusters 0 100 0.205 324 0.839 188

HOD 0.137 1.63 5.27 172 0453 25.2
LRGs . . . . . .
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1. Power spectra

Multipole moments of the three-dimensional power
spectra of the E-mode field of halo shapes with the
matter/halo distribution, P;jEf(k), and of the autopower
spectra of the E-mode field, P}, ,(k), have been measured
in the Legendre basis from simulations in Refs. [68,102].
These measurements have been extended to the multipole
moments expanded in the associated Legendre basis in
Ref. [69], PS5, (k) and P}, (k), respectively.

The density and E-mode shape fields are obtained by
assigning the mass/ellipticity elements of subhalos to a
10243 uniform Cartesian mesh using the Cloud-In-Cell
(CIC) scheme. We then apply the fast Fourier transform to
estimate the density and E-mode autopower spectra, P, (k)
and Pgg(k), respectively, and their cross-power spectrum
P (k). Note that we employ the interlacing technique to
reduce the aliasing effect in addition to the deconvolution
of the CIC kernel in Fourier space [103]. The measured
autopower spectra are affected by the shot noise. The
Poisson distribution is assumed to estimate the shot noise
for ng and it is subtracted from the monopole moment in
the standard Legendre basis, P, (k). To estimate the shot
noise for the E-mode autopower spectrum, Pyp, we
measure the B-mode autopower spectrum, P,SgB, and sub-
tract its constant value at the large-scale limit from P} to
take the non-Poisson shot noise into account [68]. Note that
even the Poisson shot noise is not orthogonal to any
multipole expanded in terms of the associated Legendre
polynomials, unlike the case of the standard Legendre
polynomials [ [1, dul(u) =28,]. Thus, the B-mode
autopower spectra in the associated Legendre basis,
Pjp . need to be subtracted from Pj,, with L being
arbitrary.

2. Correlation functions

Multipole moments of the correlation functions of
galaxy/halo shape fields have been measured by
Refs. [67,95]. We use estimators for the multipole cor-
relation functions proposed in Ref. [95], & ,(r)

(X = {g+,+,—}), expressed as

26041 1
S —
%) =T kR

> Wxale(up),  (69)

Joklr=lrj

where rj; = s, —s; with s; the redshift-space position of
Jjth halo, p; = 7, -2,> and RR is the pair counts from the
random distribution, which can be analytically and exactly
computed because we place the periodic boundary con-
dition on the simulation box. For the GI and II correlation

*Here 5 = §; = §; because the plane-parallel approximation is
assumed.

functions, W, i =y, (s;) and W =y, (s;)r;(s) &
7x(8;)7x(si), respectively, where y . is redefined relative
to the separation vector rj projected on the plane
perpendicular to the line of sight, making the estimated
correlation functions coordinate-independent.

By analogy with Eq. (69), the multipoles of the GI
and II(—) correlation functions expanded in terms of the
associated Legendre polynomials are estimated as

1
RR(r)

Ei,L(”) = Z Wi ik ®F (1) (70)

Joklr=lr|
where X = {g+, —} and m = 2, 4, respectively.

C. Determining density and shape bias parameters

The linear density field in redshift space contains b and f
as parameters, while the linear ellipticity field bg. The
nonlinear RSD induces the Finger-of-God-type damping
parameter, o,, to both of the fields. We thus have four
parameters, (f, b, bg,o,), with f being a cosmologically
important parameter and the others nuisance parameters.

Let us determine the bias parameters, b and b, using the
real-space statistics. The density bias parameter can be
determined by the matter-halo cross-power or halo auto-

power spectra,
_P(;g(k) B ng(k) 3
The W= [Paa(k)] - b

The parameter can be similarly determined by the corre-
sponding configuration-space statistics,

o éég(r) ) = ggg(r> %
B Ess(r)’ )= [555(’”)] ' 72)

The values of by for our halo samples had already been
determined in Refs. [24,95]. Here we remeasure them using
the correlators of the halo ellipticity field expanded in the
associated Legendre basis. In Fourier space, using the
cross-power spectra of the matter density and halo E-mode
and the autopower spectra of the halo E-mode, respectively,
the shape bias is measured as

b(k)

b(r)

V15 P (k)

bi(k) = === ;55(k) , (73)
(V35 Prea(k)]

brlk) = _[ 5 Paa?k) ] . 7

Similarly in configuration space, using the cross-correla-
tion and autocorrelation functions, the shape biasis, respec-
tively estimated as

_ @éﬁi(’”)

Pk = ) (73)
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3\/3_5 g—,4(r):|2’ (76)

b(r) == [T Exa(r)

where unlike the multipoles &;, ,(r) and &_4(r), &s5(r) is
isotropic and s .(r) is the Hankel transform of Pgss(k),
Ess.0(r) = H7 [Pss(k)](r) [Eq. (53)]. Since &ss.(r) with
¢ # 0 cannot be measured from simulations directly in
configuration space, we compute them from the nonlinear-
matter power spectra Pgsz(k).

Figure 3 shows the halo biases defined above and
determined from simulations. The density bias parameters,
b, are shown in the upper panels. The shot noise was
corrected for the bias determined from the autopower
spectrum assuming the Poisson distribution. On the other
hand the bias obtained from the cross-power spectrum
tends to have larger values at high-k, particularly for more
massive halos. The discrepancy is due to the deviation of
the shot noise from the Poisson distribution. Thus the
discrepancy is severer for massive halos and the bias
determined from the autopower spectrum is suppressed
at high-k. They are common features seen in earlier studies
(see e.g., Fig. 2 of Ref. [104]). The density bias parameters
determined from cross-correlation and autocorrelation
functions in configuration space for such massive halos
also tend to be scale dependent and deviate from the correct
values due to the non-linearity. The matter-halo cross-
power spectrum thus provides the most reliable estimate of
the density bias for massive halos and we use the large-
scale limit of the b(k) values from the cross spectrum to
determine the linear bias. The resultant bias values are
shown in Table III.

The measured shape bias parameters, bg, are shown in
the lower panels of Fig. 3. The shape bias parameters from
auto and cross-power spectra, P rE.4 and P(SE,Z’ respectively,
behave very similarly, except for the massive halos. The
shape field is more severely affected by the non-Poisson
shot noise than the density field [68], and it cannot be
properly subtracted even though we use the large-scale
limit of 1333’4. The shape-bias parameters determined from
the cross-power spectra are well-consistent with those from
both the autocorrelation and cross-correlation functions,
E+’4 and Z’g+72, respectively. The parameter determined from
E+’4 starts to deviate from the constant at larger scales than
that from E(;Jﬁz, since the shape field is density-weighted
and thus the shape autocorrelation is more severely affected
by it. Similarly to the case of the density bias, the linear
shape bias parameter is determined by the large-scale
values of b (k) from the cross-power spectrum and shown
in Table III. Note that, as we set ¢ = 0 in Eq. (68), the
definition of bg here is different from literature and one
cannot directly compare the values. It is interesting to note
that the HOD LRG sample has a lower bg value than the
group sample though they have similar density bias b
values. It is because the existence of satellite galaxies/
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FIG. 3. Halo density (upper-left) and shape (lower-left) biases

determined in Fourier space. The right panes are the same as the
left ones but the biases determined in configuration space. The
full and open points are the biases from the cross-correlations
with the matter field and autocorrelation with the halo field,
respectively. The blue, red and yellow points are the results for
clusters, groups and HOD LRGs, respectively. Since the groups
and HOD LRGs have very similar density bias parameters, we do
not show the results for HOD LRGs in the upper panels for
clarity.

subhalos tends to increase the density bias b but decrease
the shape bias bx due to the misalignment between the
major axes of satellites and their host halos.

The left panels of Fig. 4 show the cross-power and
autopower spectra of the shape field in real space, P , and
P £E.4» Tespectively. The right panels of Fig. 4 are similar to
the left panels but show the cross- and autocorrelation
functions of the shape field, &; 1o and 5_74, respectively.
Both in Fourier space and configuration space, the cross-
and autocorrelations are divided by the best-fitting value of
byx and its square obtained above, respectively, in the
figure. Except for the case of the clusters, both the real-
space cross-power spectra and cross-correlation functions
between the matter density and halo shape fields are well-
described by NLA model predictions with the linear shape
bias. Similar results are obtained for the shape autopower
spectra and autocorrelation functions, but discrepancies
with the model predictions start to appear at larger scales.

D. Model comparison with N-body results

Using the bias parameters, b and by, determined in
the previous subsection, here we compare our model
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FIG. 4. (Left set) IA statistics in real space, the quadrupole moment of the matter density—E-mode cross power spectrum (upper left),
the quadrupole moment of the matter density—shape cross correlation function (upper right), the hexadecapole moment of the halo

E-mode autopower spectrum (lower left), and the hexadecapole moment of the halo shape autocorrelation function (lower right). The
solid and dashed curves are the predictions of NLA and LA models, respectively.
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FIG. 5.

Redshift-space GG power spectra (upper set) and correlation functions (lower set). From the left to right, we show the results
for dark matter, groups, clusters and HOD LRGs. The red and blue points are the measurements of the monopole and quadrupole

moments, respectively. The solid curves are the nonlinear RSD model with the velocity dispersion predicted by linear theory, 6. The

shaded regions indicate the model with the values of o, of 0.8 X o, 5, < ¢, < 6, 5,. The dashed gray curves are the linear theory
prediction.
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predictions of galaxy ellipticity correlations in redshift =~ models selected as well as the choice of the biased density
space with N-body measurements. There is another nui-  field [105]; the value slightly larger and smaller than the
sance parameter, the velocity dispersion parameter ¢,. The  linear theory prediction, o, ;,, is preferred for the dark
best-fitting parameter of o, strongly depends on RSD  matter and biased objects, respectively. The deviation of the
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FIG. 6. Multipoles of redshift-space IA power spectra expanded in terms of associated Legendre polynomials; gE power between
matter density and halo E-mode ellipticity P3 e, (first row), gE power between halo density and halo E-mode ellipticity PgE ;. (second
row), and EE power of halo E-mode ellipticity P53 zr., (third row). The solid curves are the nonlinear RSD model with the velocity
dispersion predicted by linear theory, o, j;,,. The shaded regions indicate the model with the values of ¢, of 0.80, ;, < 6, < 0, jj,. Linear
theory predictions for the multipoles Py, with L < 4 are shown by the gray curves.
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best-fitting value from o, j;, gets larger for incorrect models
of RSD and a broader fitting range, as indicated by a higher
value of k... In the following, we thus do not fit the o,
value with N-body results but rather conservatively show
the results for arange of 0.8 x oy}, < 6, < 6y ;, to indicate

the typical level of theoretical uncertainties due to the FoG
effect. Figure 5 shows the comparison of the nonlinear

model predictions for the redshift-space power spectra,
P_ggf, and correlation functions, égsgf, with the measure-
ments from N-body simulations. The redshift-space power
spectrum and correlation function for dark matter are well-
predicted by the RSD model with the damping factor with
0Oy 1in- Since the group and cluster samples do not contain

subhalos, the measurements are consistent with the linear

120 _ Groups

100

80F 4

10!

i kS PgE,é(k)/bK

100

120 |
100 |

80 f

10t

kO PfE,e(k)/(b bk )

10°

40F
120
100 f
80
60 f

it k1P PgE,é(k)/b%(

— == Linear
— NL +ol}“
=== NL +01}“ x 0.8

0.2 0.3 0.4
k[hMpc ™)

FIG. 7. Similar to Fig. 6 but multipoles of redshift-space IA power spectra expanded in terms of standard Legendre polynomials; gE
power between matter density and halo E-mode ellipticity PgEf (first row), gE power between halo density and halo E-mode ellipticity
ng,f (second row), and EE power of halo E-mode ellipticity Py , (third row).
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Kaiser model but not with the nonlinear RSD model with
the damping function, as expected.

Figures 6-9 provide comparisons of our nonlinear RSD
model predictions of IA statistics to the N-body results. In
these figures results are shown for the group, cluster and
HOD LRG samples from left to right, respectively. Figures 6

and 7 show the results for the power spectra of the halo shape
field expanded in terms of the associated and standard
Legendre polynomials, respectively. Figures 8 and 9 are
similar with Figs. 6 and 8, respectively, but show the results
for the Fourier-counterparts, correlation functions. We will
discuss in detail the results in the rest of this subsection.

1 Clusters
I -

} HOD LRGs

it r? g§+7L(T)/bK

it &, p(r)/(bbx)

i
=
~
=
qf
0 |
W
(]
=~
=
= 100 === Linear .
; — MLl ]
I === NL +olinx 08 ~ % +
PR | L L PR R
10t 102
r [h~'Mpc] r [h~1Mpc] r [h~'Mpc]
FIG. 8. Similar to Fig. 6 but for multipoles of redshift-space IA correlation functions expanded in terms of associated Legendre

polynomials; GI correlation between matter density and halo ellipticity E;g . (first row), GI correlation between halo density and
ellipticity E;j 11, (second row), and II(—) correlation of halo ellipticity &5 | (third row).
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| Clusters

1/ ©
vt %o

r [h~1Mpc] r [h~1Mpc] r [h~1Mpc]

FIG. 9. Similar to Fig. 8 but for multipoles of redshift-space IA correlation functions expanded in terms of standard Legendre
polynomials: GI correlation between matter density and halo ellipticity & o (first row), GI correlation between halo density and
ellipticity 55 ., ¢ (second row), and II(F) correlations of halo ellipticity ffFf (third and fourth rows). Our model of the GI and II(—)

correlation functions in the standard Legendre basis contains infinite series of terms, and here we show the modeling results summed up
to the twelfth order (see the text).

1. IA power spectra and bg. We thus show measured PgE, ;. divided by the best-

The first row of Fig. 6 shows the cross-power spectra of  fitting value of bg determined in Sec. VIC. The measured
matter density and halo E-mode fields, PgE’ (k). The ratio  quadrupole moments IN);?EQ, the lowest-order multipoles, are
PgE, 1 (k)/by does not depend on the bias parameters, b  well-predicted for groups and HOD LRGs by our nonlinear
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RSD model with the velocity dispersion predicted by linear
theory, o, j;,. On the other hand, there is a large discrepancy
for clusters at kK > 0.1 hMpc~!. Interestingly, our model
for the hexadecapole moment, ngA’ well-explains the
measured ones not only for groups and HOD LRGs but
also for clusters. The hexadecapole is severely affected by
the nonlinear RSD effect, and its sign flips at around
k ~0.2 hMpc™!, the scale depending on the typical value
of o,, and thus the LA model fails to predict the measured
hexadecapole. Furthermore, our model provides qualita-
tively good agreement with the fully nonlinear, higher-
order moment, I~’§E.6, measured for all the shape samples.

The second row of Fig. 6 shows the cross-power spectra
of halo density and E-mode fields, i’jE’ .- While the overall
trend is similar with P, in the first row, here we see the
extra contribution of the halo density bias. Since we assume
the simplest linear bias, the discrepancy between the model
and measurement starts to appear at lower k, and gets more
significant for more massive halos, as seen in the result for
clusters (halos with masses of M, > 10"4h~'M).

The third row of Fig. 6 shows the autopower spectra of
the halo E-mode field, P ;. While this quantity is not
affected by the halo density bias at linear order, it is by the
shot noise. We measure the B-mode power spectra in the
same basis, P p.r» and subtract their large-scale limits
from P73, . This estimation of the shot noise becomes
more incorrect for more massive, thus rarer halos. Our
model therefore fails to predict the measurements of P EEA
at k > 0.1 h™! Mpc and IBEEb at all the scales for clusters.
On the other hand, the model works reasonably well at
k < 0.2 h~! Mpc for less massive halos, namely groups and
HOD LRGs.

As seen in Fig. 7, the agreement between the models
and measurements of the IA power spectra expanded in
terms of the standard Legendre polynomials is similar with
that in Fig. 6. It is expected because they are equivalent
quantities but expanded by the different basis. However,
unlike the EE power spectrum in the associated Legendre
basis, P};,, only the monopole of that in the standard
Legendre basis, Py, is affected by the shot noise and
thus suppressed significantly at high-k due to the non-
Poissonian shot noise contribution. It is interesting to note
that Py , (£ =0, 2, 4) are noisier than P}, because the
linear information encoded in the latter is split into the three
multipoles in the standard Legendre basis.

2. IA correlation functions

Figure 8 shows the results similar to Fig. 6 but for the
correlation functions. The first, second and third rows are
respectively multipoles of the GI correlation for matter

density and halo shape fields, Eg L GI correlation for
halo density and halo shape fields, ~§ 1, and II(-)

autocorrelation for halo shape field, EE,L, expanded in
the associated Legendre basis. The comparison of our
model predictions to the N-body measurements shows a
very similar tendency with the Fourier-space results: the
measurements of & ;. are in good agreement with our
models, and the agreement gets worse for Eg +1» particularly
for the cluster shape field. One exception is that the
autocorrelation in configuration space is not affected by
the shot noise as severely as in Fourier space. Thus, one
can see a reasonable agreement between the predictions
and measurements for Ef 1» and even the hexadecapole
of clusters is correctly predicted at the large-scale limit,
unlike PEE.4'

Unlike the power spectra, the nonlinear redshift-space
correlation functions expanded in terms of the standard
Legendre polynomials behave differently from those of the
associated Legendre polynomials, as shown in Fig. 9. Our
nonlinear RSD model of the GI and II(—) correlation
functions expanded in terms of the standard Legendre
polynomials contains infinite series of the associated
Legendre polynomials. As shown in Fig. 2, the model
converges by adding the term up to sufficiently higher
order. We computed the expansion up to the twelfth order
and confirmed the convergence of the formula. We thus
show the modeling results summed up to the twelfth order.
The first row shows the GI correlation functions between
matter density and halo shape fields, &5 , o~ The results for
the quadrupole moments for all the halo samples are well-
explained by our nonlinear RSD model. The second row
shows the GI correlation functions between halo density

and shape fields, éjj + o~ Agreement between the predictions

and measurements gets worse than the case of &5, ,, due to
the nonlinear-density bias effect. The third and fourth rows
show the II(F) correlation functions, &, and &,
respectively. The standard Legendre coefficients of the
II(—) correlations, & ,, are noisier than the associated

Legendre coefficients, Ef,L, since for the latter the linear
contribution is compressed to only one, hexadecapole
moment Z‘f L-

The model constructed for the HOD LRG sample is very
close to the one used to constrain the growth rate from the
SDSS survey [110]. In Ref. [110], we used the monopole
and quadrupole moments of the GI and II correlation
functions at » > 10 h~! Mpc for the cosmological analysis.
The right column in Fig. 9 demonstrates that our formulas
were qualitatively accurate enough for the analysis except
for the II correlation functions, particularly the quadrupole
of the II(+) function. The II correlation functions measured
from the SDSS galaxy samples were so noisy that their
imperfect models would not have affect the cosmological
constraints. If one wants to use larger shape samples in
future galaxy surveys to constrain cosmological models
with precision, the more accurate modeling of the align-
ment statistics needs to be developed [106].
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VII. CONCLUSIONS

In this paper, we have presented analytic model for
nonlinear correlators of galaxy ellipticities in redshift
space. Adopting a simple Gaussian damping function to
describe the nonlinear RSD effect, known as the
Finger-of-God, we have derived formulas for the multi-
pole moments of the power spectra of galaxy ellipticity
field in redshift space, expanded in not only the asso-
ciated Legendre basis, a natural basis for the projected
galaxy shape field, but also the standard Legendre basis,
conventionally used in literature. The model had been
derived for the redshift-space galaxy power spectra by
Ref. [46,48], and our model for the intrinsic alignment
(IA) statistics have been derived by analogy with it. The
multipoles of the correlation functions of the galaxy
shape field are expressed simply by a Hankel transform
of those of the power spectra.

We compared our model with the IA statistics for halos
and mock galaxies measured from N-body simulations.
The measured statistics were found to be in a better
agreement with our nonlinear RSD model than the existing
linear alignment model. It is the first test for the accuracy of
nonlinear RSD models of the IA, though the model had
already been used to place cosmological constraints using
from the redshift-space correlation functions of the galaxy
shape field measured from the Sloan Digital Sky Survey
in Ref. [110].

A series of papers [57-59] used integrated perturbation
theory and presented a nonlinear model of the tidal field
tensor, which naturally includes nonlinear RSD (see also
Ref. [66]). However, the models had not been tested against
N-body simulation measurements. Other perturbation
theory approaches, such as the TNS model [48,105,107]
and distribution function approach [49,81,104,108,109],
can also be used to model the nonlinear RSD effect of
galaxy shape fields. These modelings will be investigated
for various halo samples and redshifts in simulations in
future work.

We presented the formulas of IA statistics in red-
shift space expanded in terms of different bases. While
they should be equivalent, the speed of the convergence
at higher-order multipoles would be different (see
Refs. [81,104] for different bases for the multipole red-
shift-space power spectra). The investigation of this effect
based on the Fisher-matrix approach will be presented in
our future work.
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APPENDIX A: ALTERNATIVE DERIVATIONS
OF GI AND II(-) CORRELATION FUNCTIONS

In Sec. IV we derived the models for the GI and II(—)
correlation functions with the nonlinear RSD effect in terms
of the associated Legendre polynomials. In this appendix,
we provide the derivations of the same models but using the
spherical harmonic expansion.

We begin by considering the spherical harmonic expan-
sion of the GI and II(—) power spectra, P (k), where
X = {g+, —} respectively,

ZP

The coefficients of the spherical harmonic expansion,
PX (k), are given by

k)Y, (k). (A1)

PLW = [ @UP YL, (A

To compute P%, (k) explicitly, we first write the geometric
factors in P3, (k) and P5 (k) due to the projection in terms

of the spherical harmonics, respectively, as

SE¥a(R) + Yoo (R,

2012 _ 12\ —
K200k = h5) = /73

(A3)

_ 5 o [128% A A
(ks = ky)2 — (2kyky)?] = \V 315 e | Yaa(k) + Yy _4(k)].
(A4)

Next, we also express the RSD factor, the integrand of
Eq. (30), in terms of the spherical harmonics,

e = Z F3, 2q

Using the orthogonality of the spherical harmonics, the

YZqO ) (AS)

coefficient F' g")(a) is written as

1 2 N
Fi(a) = 2z / ldﬂku,zne—qu,o(k). (A6)

It is related to p) () [Eq. (30)] as F = /ap™

Substituting these equations into Eq. (23) with Eqs (50)
and (51) and then using Eq. (A2), the functions P% (k) and
P, (k) are given by
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871
P (k) = bicy [ 750 _[bF5y Pas(k) + [F3) Poo(K)]
q=0

“ / POV 25 (k) + Y55 (R)

X YZq,O(I%)Y;m(I%)’ (A7)
B 1287
me( 7b2 3152F2(1P55
X /dzﬁk[y4.4(i<) + Y44 (k)]
X Vago(R)Y2,,(R). (A8)

Utilizing the Wigner 3 symbols, these expressions read,

PYL(K) = by [DF5) Pss(K) + fFy) Pag(k)]
n=0

X\/2(2f+13)(4n+1)<§ (2) 2On>

Q@R w

Py, (k) = b%(ZFg?q)Pae(k)

n=0
5 \/32(2f+ 1)(4n+1) (f 4 2n>
35 00 O
£ 4 2n £ 4 2n
X + . (A10)
m 4 0 m -4 0
where we used the following formula:
/ szkalml (]2) Yf2m2 (]%) Yf3n13 (I%)
_\/(2f1+1)(2f2+1)(2f3+1)
N 4z
‘y C, C Oy €
x( ) 3)( 1 2 3>' (AL1)
0 0 0 mg my my

Among the coefficients me, the only non-vanishing ones
are even multipoles with m = +2, P% = P?,tz- Similarly,
the nonvanishing coefficients P,, are even multipoles
with m = +4, P, = P, _,. The explicit expressions of
the nonzero coefficients that contain linear information are
respectively given as follows:

PUL(K) = bb Q) (@) Pos(k) + by Q) (@) Psy(k),

(A12)

where
0 30
QU a) =Y (7r) aEEY 1 FY). (A13)
n 2 n n
Q" (a) = 1\(51 (143F" - 78V/5F\" + 7V65F"),
(A14)
and
Py (k) = b Q_ o()Pss(k), (A15)
where
414 (0) (0)
Q_4(a) = 255255(2431\/_F — 4420F5 + 918V/5F}

— 68V65F + 7v85FY)).
We show the coefficients F' 5,") up to g = 8 below, which are
required to compute the power spectra which contain linear
information:

(A16)

& (@) = Agp™ (A17)
. A
F{(a) = ZBpt) = p0] (AL8)
(n) Ay (n+2) (n+1) (n)
Fy(a@) =5 35p™" =30p™t 0 4 3pM], - (A19)
. A
F(a) :1—2 231p(+3) —315p(+2) 1 105p(+) — 5p(0)],

(A20)

F{(a) = =5 [6435p(1+) — 12012p(+3) 4 6930p(m+2)

128
—1260p"+1) 4 35p(")], (A21)
with A, = \/n(2¢g + 1). The coefficients Q;’} and F."
required to compute the higher-order multipoles are given
in Appendix B 3.

Next, using the above equations we derive the formulas
of nonlinear GI and II(—) correlation functions of the
galaxy/halo shape field in redshift space, & (r) and & (r).
By substituting Eq. (A1) into Eq. (49), with the Rayleigh
formula, e*” = 3", 4xi’ jo(kr)Y 4, (k) Y%, (7), we have

= EX (MY pn(P)
‘.m

where the function 2% is related to P¥  defined in the

previous section via the Hankel transform, EX (r) =
H'[PX,,(k)](r). Since the non-vanishing GI and II(—)

&x(r) (A22)
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multipoles are restricted to m = £2 and m = +4, respec-
tively, and © (u) = v/27Y,, (1, ¢ = 0), the expansion of
the correlation functions with the normalized associated
Legendre polynomials is given by

5§+,L<r>:\/ 51500 = | H P00, (429
\[_“ \/FHL o R))(r).  (A24)

These equations are equivalent with the final expressions of
the GI and II(—) correlation multipoles in terms of the
associated Legendre basis, given by Egs. (60) and (60)
in Sec. IV.

|

APPENDIX B: HIGHER-ORDER MULTIPOLES

In this paper, we provided the formulas of IA statistics
expanded in terms of the associated and standard Legendre
polynomials and in the body text we explicitly wrote
down the formulas that contain contributions of linear
theory, L < 4 and ¢ < 4, respectively. In this appendix, we
provide our formulas for the higher-order multipoles, up to
L=12and 7 =

1. gE power spectra
The gE power spectra expanded in terms of the asso-
ciated Legendre polynomials, P*;E’ .- are given in Eq. (36).
To compute the nonlinear contributions up to L = 12, we
need to have ijg ; for 4 < L <12, which are given as

o (n V2730
Qups(@) =7~ [P (@) = 20" (a) +70p"*2) () ~ 84p""*) (@) +33p" ) ()], (B1)
< 3y/1190
Q.EIE{S(a) =1 [—p") () + 35p" ) (a) = 210p"*2) (a) + 462p"+3) () — 429p" ) (a) + 143p" ) (a)],  (B2)
o (n 31/385
QO 19(@) = 515 (70" (@) = 3781 (@) + 3465 () — 12012 () + 19305 (a)
— 14586 p"+3) (@) 4 4199 p"+0) ()], (B3)
~(n 5v/3003 . . .
QU y(a) = oaa 1730 (@) 4 231p( ) (@) = 3003+ (@) + 15015p"+) (a)
—36465p" ) (@) + 46189 p"+) () — 29393 p("+0) (q) + 7429 p"+7) (ar)]. (B4)

Those expanded in terms of the standard Legendre polynomials, PiEf, are given in Eq. (39). To obtain the nonlinear

contributions up to £ =

12, we need to have Qé’g , for 4 < £ <12, which are given as

QY s(a) = —3—2 3 15p0) (@) = 110p+1) () + 420p0+2) (@) — 546p+3) (@) + 231 pr+9) (@), (BS)
Q‘f]”E)‘S((x) 5 6 [35 ) (@) = 1295p" ) (&) 4 8190p"*+2) (@) — 18942p"+3) (a) + 18447 p"+4) () — 6435 p "5 (a)],
(B6)
0 21
Q;E{m( )= s 12[ —63p" (@) + 3528 p"+ 1 (a) — 33495p"+2) () + 120120p"*+3) (@) — 199485 p(*+4) (ar)

+ 155584 p"+3) () — 46189 p"+0) (a)], (B7)

2

Qg’gu< ) = 2028 [231p") (a) — 18249p" 1) (a) + 243243 p"+2) () — 1246245p"+3) (ar)

+3099525p"+4) (a) — 4018443 p" ) () + 2615977 p"+9) (@) — 676039 p "7 (a)]. (B8)
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2. EE power spectra

Similarly to the gE power spectra, the EE spectra expanded in terms of the associated Legendre polynomials, P%E, 1. are

given in Eq. (43). To compute the nonlinear contributions up to L = 12, we need to have Q rep for4 < L <12, which are
given as

- 3v91
Qpeela) = 3 [=p9(a) + 15pW(a) = 50p?) (a) + 70p) (a) — 45pW (a) + 11p1) (a)], (B9)
~ 34/1309
Qrrs(@) = =155 [P (@) =30pM (@) +175p@) (a) — 420p19 (@) + 495p1) (@) — 286p*)(a) +65p ()], (B10)
~ 3v/5005
Opp10(a) = T [—p D (a) +49pV(a) — 441 p?) (a) 4+ 1617 p®) (a) — 3003 p*) () 4 3003 p©®) (ax)
—1547p) (@) + 323p 7 (a)], (B11)
~ 15v/1001
Opp 12(a) = 2096 [5p9 (a) = 360p"D(a) + 4620p? (a) — 24024 p3) (@) + 64350p™) (a) — 97240p0) ()
4 83980p ) (a) — 38760p7) (@) + 7429p®) (a)]. (B12)

Those expanded in terms of the standard Legendre polynomials, P35 £.¢» are given in Eq. (45), and Qpp » for4 < £ < 12 are
given as

13

32[ -5p9(a) + 115pW(a) — 530p@ (@) + 966p) (a) — 777p™ (@) + 231p0) (a)], (B13)

Qrrela) =

17

556 —[35p9(a) = 1330p) (@) +9485p?) (a) =27132p®) (a) +37389p*) (a) — 24882 p) (a) + 6435p(0) (a)],

Qres(a) =
(B14)

21
512
—201773p®) (a) + 46189p7) (a)], (B15)

Qrrio(@) = ——[-63p(a) + 3591 p) (a) — 37023 p?) (@) + 153615p) (@) — 319605 p™) (@) + 355069p©) ()

2
3018 [231p9) (a) — 18480p") (a) + 261492p? () — 1489488 p1) (@) 4 4345770p™) (a)

— 7117968 p5) (a) + 6634420p©) () — 3292016p7) (@) 4+ 676039p®) (a)]. (B16)

QEE,lz(a)

3. GI and II(-) power spectra
We showed the GI and II(—) power spectra expanded in terms of the spherical harmonics, P% [Eq. (A12)] and Py,

[Eq. (A15)], respectively. To compute the them with nonlinear contributions up to £ = 12, we need to have the terms Qé’_’g P
and Q_, for 4 < £ <12, which are given as

] 21105
Ol g(a) = S (BSVIBFY —442F " + 1IV22LFY), (B17)
; 21105 \ \
QY () = 50995 (19V7F™ — 2v/1547F\" + VO75F ), (B18)
n 3 \% 110 n n
Q) (a) = Seo0r3 (11SVIIO F{ — 1190v3F\ 4 323V7FY), (B19)

\ V/286
QU 12(@) = 52 (T83FYY) = 290V21F) +23V609F YY), (B20)
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and
4v2 0) ) 0) )
Q_4(a) = 93323 (323v/455F) — 1292v/91F” + 3458v/7F" — 84v/1547F" + 77v/39F\%), (B21)
422 0 0 )
Q_s(a) = 7225 (3059V119 F¥ —1932V1547F” 4 25806V7F” — 4004V51F\) + 429V 119F)).  (B22)
4110 (0) (0) (0) (0) (0)
Q_10(®) = Joi7imas — L (30015V7Fy —5220V/1547Fg" + 32886V/39F |, — 9860vV91F}, +323v2639F|)), (B23)
Q_12(a) = 5z (24273V/17017 FYY — 427924+/429F?) + 300390v/1001F\)
—27132/29029F\%) + 52003v273F'\?). (B24)

To obtain then, we need to compute F’ ,(,") with g < 16. These quantities for 0 < g < 8 are shown in Egs. (A17)-(A21). These

with 8 < g < 16 are obtained as

. A
Fi () = 212 (46189 p(+5) — 109395 p(m+4) 1 90090 p(+3)

256

. A
F(a) = 212 (676039p(+6) — 1939938 p(n+5) + 2078505 p("+4) — 1021020p"+3) + 225225 p(1+2)

1024
—18018p("*+1) 4231 p()),

0 A
FiY(a) = 14 (5014575 p0+7) — 16900975 p(m+0) + 22309287 p(m+5) — 14549535 p(n+4) 4 4849845 p(n+3)

2048

—765765p"2) 4 45045 p(+1) — 429 (M),

F(a) = (300540195 p(n+%)

- 32768

+ 669278610p"+4) — 162954792 p"*+3) 4-19399380p"+2) — 875160p"+1) + 6435p(").

As we showed in Sec. IV, each multipole of the IA
correlation functions in the standard Legendre basis are
expressed by infinite terms expanded in terms of the
associated Legendre polynomials. Computing the above
quantities is necessary to obtain the converged predictions
for the correlation function multipoles in the standard
Legendre basis as shown in the body text.

APPENDIX C: LINEAR THEORY LIMIT

The model developed in this paper has a form that is a
combination of the nonlinear alignment model (NLA)
multiplied by the Gaussian damping function due to
the nonlinear RSD effect. As introduced in Sec. III B,
the damping function is given by Dg.(fkuro,) =
exp (—aui/2), where a = (fo,k)>. We can remove the
effect of the nonlinear RSD by taking the ¢, — 0 limit.
In this appendix we provide the formulas with this
limit, though they were already given in our previous
work [38,51].

— 1163381400p"*7) 4- 1825305300 +0) —

—30030p(**+2) 4-3465p"+D) —63p(),  (B25)
(B26)
(B27)
1487285800p("+>)
(B28)

Note again that the multipoles in the associated
Legendre basis in this paper are expanded by the normal-
ized associated Legendre function ®}' [Eq. (35)] and thus
denoted by tilde.

1. Power spectra

The gE power spectra expanded in terms of the asso-
ciated Legendre polynomials in the linear theory limit are
given by

Pia(k) = \;il_SbK bPss(k) +%fpag(k) , (C1)
Plal) = o1 \/—beP(se(k) (C2)

Those expanded in terms of the standard Legendre poly-
nomials are by
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Piealk) = =3 b Pl = 1P (C)

8

P§E,4(k) - _g (CS)

by fPso(k).

The EE power spectrum expanded in terms of the
associated Legendre polynomials in the linear theory limit
is only P}, ,, given by

- 16
Pl (k) = 35 b Pss(k). (Co)
and those in the standard Legendre basis are by
s 8 2
PEE,o(k) = Ebkpﬁﬁ(k)’ (C7)
s 16
PEE,2<k> = ka&s(k) (C8)
s 8 o
PEE,4(k) = gbKP&i(k)' (C9)

2. Correlation functions

The GI correlation functions expanded in terms of the
associated Legendre polynomials Eg +., in the linear theory
limit (L = 2, 4) are given by

B ()= _;\/%bKWbé&&,Z(r) + fEs02(r)],

~ 8
§+,4(l”) 21 \/7be5594(”)

and similarly, the nonvanishing coefficient for the II(—)
correlation Ef‘L appears only for L = 4,

16
3 \/; bi&ssa(r),

(C10)

&) = (C11)

where the functions &5, and &5, are defined by
Eso.(r) = ML [Pss(K)](r) and &y (r) = H'[Psg(k)](7),
respectively.

Finally, those expressions in terms of the standard
Legendre basis have £ =0, 2, and 4 components. The
multipoles of the GI correlation functions are given by

§+0( ) bef&sz( )

4

- be{—ﬁgmm g} (€12

2 2 4
& o) = gbeéaa,z(") + be{mffss,z(”) +i§59’4(r) }
(C13)

8
§§+,4(”) =733 b fEssa(r). (C14)
The II correlation functions in redshift space are equivalent
with those in real space in the linear theory limit [51]. The
multipoles of the II(+) and II(—) correlation functions in

the standard Legendre basis are respectively given by

8
Solr) = lsb%ég&so( r), (C15)
16
Sa(r) = ﬁb%(égaa,z(r), (C16)
8
14( ) = 35 —bx&ss5.4(r), (C17)
and
8
fi,o(’) = Eb%(é:aa,zt(”), (C18)
s 16 )
&,(r) = —ﬁbgfém(r), (C19)
8
55,4(”) = gb%gf&m(r)- (C20)
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